JP2011112831A - Laminated grating element and manufacturing method thereof - Google Patents

Laminated grating element and manufacturing method thereof Download PDF

Info

Publication number
JP2011112831A
JP2011112831A JP2009268485A JP2009268485A JP2011112831A JP 2011112831 A JP2011112831 A JP 2011112831A JP 2009268485 A JP2009268485 A JP 2009268485A JP 2009268485 A JP2009268485 A JP 2009268485A JP 2011112831 A JP2011112831 A JP 2011112831A
Authority
JP
Japan
Prior art keywords
liquid crystal
grating
diffraction grating
resin
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009268485A
Other languages
Japanese (ja)
Inventor
Eiji Koyama
栄二 小山
Mitsusuke Miyauchi
充祐 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2009268485A priority Critical patent/JP2011112831A/en
Publication of JP2011112831A publication Critical patent/JP2011112831A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grating element and a manufacturing method thereof, using a high molecular liquid crystal by a simple and easy process, wherein the flexibility of the element constitution is improved by stabilizing the alignment of the liquid crystal without depending on an alignment layer requiring high temperature treatment. <P>SOLUTION: Because the liquid crystal molecules are spontaneously aligned along the longitudinal direction of a groove by filling a groove part of a mold having prescribed recessed and projecting parts, with a polymerizable liquid crystal to cause molecule mutual action between the groove surface and the liquid crystal, the polarizing diffraction grating 2 is structured to align the liquid crystal in the groove longitudinal direction without particularly applying alignment treatment on the surface of the substrate, and a separation element having optical anisotropy is stably formed when the polymerizable liquid crystal is cured by the light irradiation in this state. The formed high molecular liquid crystal grating 2 is next peeled off and transferred on a resin sheet 1 through an adhesive layer 4 composed of a photocurable liquid resin and non-polarized light diffraction grating 3 comprising the photocurable resin is formed in a surface thereof using such a mold having preliminarily formed prescribed projecting and recessed parts. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はグレーティング素子およびその製造方法に関する。また、そのグレーティング素子を備えた光ピックアップ装置に関する。   The present invention relates to a grating element and a manufacturing method thereof. The present invention also relates to an optical pickup device provided with the grating element.

偏光性回折格子は回折効率に入射偏光方向依存性をもたせる回折光学素子であり、DVD初め様々なディスク規格に対応して複雑化する光ピックアップ装置で光学系の小型高機能化に活用されている。例えば特許第3978821号に開示のように、従来、高分子液晶を使用した偏光性回折格子は、ガラス基板などの高耐熱性透明基板上にポリイミド樹脂を塗布・熱硬化したのちバフ研磨による配向処理を行って液晶配向膜とし、基板表面に重合性液晶材料を塗填、重合性液晶が液晶状態である温度で光露光して所定の位相差を有する平坦膜を形成した後、フォトリソプロセスとドライエッチングにより重合性液晶からなる光学的異方性を有する回折格子を形成していた。   Polarization diffraction gratings are diffractive optical elements that make the diffraction efficiency dependent on the direction of incident polarization, and are used to make optical systems smaller and more functional in optical pickup devices that are complicated to meet various disc standards including DVD. . For example, as disclosed in Japanese Patent No. 3978821, conventionally, a polarizing diffraction grating using a polymer liquid crystal is applied with a polyimide resin on a high heat-resistant transparent substrate such as a glass substrate and thermally cured, followed by an alignment treatment by buffing. To form a liquid crystal alignment film, a polymerizable liquid crystal material is applied to the substrate surface, and the polymerizable liquid crystal is exposed to light at a temperature in a liquid crystal state to form a flat film having a predetermined phase difference. A diffraction grating having optical anisotropy made of a polymerizable liquid crystal was formed by etching.

特許第3978821号 Japanese Patent No. 3978821

しかし、この方法では形成された配向膜による重合性液晶の配向状態を安定して管理することが難しく、また配向処理、バフ研磨後の洗浄など工程が複雑になり、低コスト化が難しいという問題があった。   However, with this method, it is difficult to stably manage the alignment state of the polymerizable liquid crystal by the formed alignment film, and the process such as alignment treatment and cleaning after buffing becomes complicated, and it is difficult to reduce the cost. was there.

また、素子軽量化で最も有効な基板のプラスチック化や、更なる小型高機能化で必要となる波長板、回折格子等の有機機能性光学層との一体化を考える上で、配向膜であるポリイミド焼成に必要な温度が180℃以上と、他の有機材料の耐熱温度よりきわめて高いため、素子の構成に大きな制約が加わることも大きな問題点であった。   In addition, it is an alignment film when considering integration with organic functional optical layers such as wave plates and diffraction gratings, which are necessary for making plastics the most effective in terms of weight reduction and further miniaturization and high functionality. Since the temperature required for polyimide baking is 180 ° C. or higher, which is much higher than the heat resistance temperature of other organic materials, it is also a big problem that a large restriction is imposed on the structure of the element.

この課題に対する対策とし、無機酸化物膜の斜め蒸着や、光異方性材料を用いた光配向膜などが提案されているが、これらの手法もいずれもガラス等の無機材料表面への適用を前提としているため、本発明の目的のひとつである有機材料への適用には不十分であった。   As countermeasures against this problem, oblique vapor deposition of inorganic oxide films and photo-alignment films using photo-anisotropic materials have been proposed. All of these techniques are applied to the surface of inorganic materials such as glass. Since it is a premise, it was insufficient for application to an organic material which is one of the objects of the present invention.

本発明は上記の問題を鑑みて、簡素かつ容易なプロセスにて高分子液晶を使用したグレーティング素子およびその製造方法を提供することを目的とする。さらに、高温処理を必要とする配向膜によることなく液晶配向を安定化することにより、素子構成の自由度を高めることを目的とする。   In view of the above problems, an object of the present invention is to provide a grating element using a polymer liquid crystal by a simple and easy process and a method for manufacturing the same. Furthermore, it aims at improving the freedom degree of element structure by stabilizing a liquid crystal alignment, without using the alignment film which requires a high temperature process.

本発明は、液晶配向層を介さずに、等方性媒質中に一軸性高分子液晶層を、その配向方位が格子長手方向と一致するよう格子状に形成することを特徴とする偏光分離素子を提供する。   The present invention relates to a polarization beam splitting element characterized in that a uniaxial polymer liquid crystal layer is formed in an isotropic medium in a lattice shape so that the orientation direction thereof coincides with the longitudinal direction of the lattice without using a liquid crystal alignment layer I will provide a.

さらに、あらかじめ所定寸法に形成した格子溝中に重合性液晶を充填し、そこで重合性液晶を硬化したのち、等方性媒質によって格子間隙部を充填することを特徴とする上記偏光分離素子の製造方法を提供する。   Further, the above-mentioned polarization separation element is manufactured by filling a polymerizable liquid crystal in a lattice groove formed in a predetermined dimension in advance, and curing the polymerizable liquid crystal there, and then filling the lattice gap with an isotropic medium. Provide a method.

本発明の分離素子の構成および製造方法を採用することにより、特別な配向膜を使わずに高分子液晶を良好に安定して配向させることができ、さらに膜厚の調整も容易になるため、分離効率が高くかつ分離効率の均一性のよい偏光分離素子を安定して得ることができる。   By adopting the structure and manufacturing method of the separation element of the present invention, it is possible to satisfactorily and stably align the polymer liquid crystal without using a special alignment film, and it becomes easy to adjust the film thickness. A polarized light separation element having high separation efficiency and good separation efficiency uniformity can be obtained stably.

本発明は、あらかじめ所定形状に形成された溝に重合性液晶を充填し、溝壁面と液晶分子の相互作用により特別な配向処理を施すことなく自発的に溝長手方向に重合性液晶を配向させた後、その状態で重合性液晶を重合させ配向を維持した状態で高分子液晶とした。これにより、高分子液晶配向方位を、液晶配向層を介することなく溝長手方向に高い精度で制御できるとともに、液晶層厚さもあらかじめ形成してある溝深さにより制御できる。   In the present invention, a polymerizable liquid crystal is filled in a groove formed in a predetermined shape in advance, and the polymerizable liquid crystal is spontaneously aligned in the longitudinal direction of the groove without any special alignment treatment by the interaction between the groove wall surface and liquid crystal molecules. After that, in this state, the polymerizable liquid crystal was polymerized to obtain a polymer liquid crystal while maintaining the alignment. Thereby, the polymer liquid crystal alignment orientation can be controlled with high accuracy in the longitudinal direction of the groove without using the liquid crystal alignment layer, and the liquid crystal layer thickness can also be controlled by the groove depth formed in advance.

本発明で用いる高分子液晶薄膜を形成するための重合性液晶は、液晶性を示すモノマー、オリゴマーその他の反応性化合物などの組成物である。   The polymerizable liquid crystal for forming the polymer liquid crystal thin film used in the present invention is a composition such as a monomer, oligomer or other reactive compound exhibiting liquid crystallinity.

重合性液晶を硬化する手段としては、可視光やUV(紫外)光などの光を照射したり、加熱による方法などがあるが、光を照射する硬化方法が重合性液晶の相転移温度による制約を受けにくいために好ましい。したがって、ここでは光の照射によって重合性液晶を重合して硬化するものとして説明する。なお、本特許では便宜上この液晶が未重合の状態を重合性液晶、高分子化した状態を高分子液晶と呼んで区別することとする。   As a means for curing the polymerizable liquid crystal, there are methods such as irradiation with light such as visible light and UV (ultraviolet) light, and heating. However, the curing method for irradiating light is limited by the phase transition temperature of the polymerizable liquid crystal. Because it is hard to receive, it is preferable. Therefore, here, it is assumed that the polymerizable liquid crystal is polymerized and cured by light irradiation. In this patent, for the sake of convenience, the unpolymerized state of the liquid crystal is called a polymerizable liquid crystal and the polymerized state is called a polymer liquid crystal.

本発明によるグレーティング素子の一例を図1に示す。   An example of a grating element according to the present invention is shown in FIG.

図1(a)は本発明の構造の一例の断面図を示すもので、図中、1は樹脂製の透明シート、2は一軸性高分子液晶からなる偏光性回折格子、3は光硬化樹脂からなる非偏光性の回折格子、4は透明平板と偏光性回折格子を一体化する光硬化樹脂からなる接着層である。この構成で偏光性回折格子2はあらかじめ所定の凹凸をつけた金型などの溝部に重合性液晶を充填することで、溝表面と液晶の間の分子相互作用により自発的に液晶分子が溝長手方向に沿って整列するため、基板表面に特に配向処理を施すことなく液晶を溝長手方向に配向させた構成とすることができ、この状態で光照射により重合性液晶を硬化させると光学異方性を有する分離素子を安定して作成することができる。また、重合性液晶には液晶状態を発現するメソゲン基の末端にアクリル、エポキシ等の重合性を有する官能基を付けたものが好適であり、重合前の液晶状態でネマティック状態を持つものが最も適している。   FIG. 1A shows a cross-sectional view of an example of the structure of the present invention. In the figure, 1 is a resin-made transparent sheet, 2 is a polarizing diffraction grating made of uniaxial polymer liquid crystal, and 3 is a photocurable resin. 4 is an adhesive layer made of a photo-curing resin that integrates the transparent flat plate and the polarizing diffraction grating. With this configuration, the polarizing diffraction grating 2 is filled with polymerizable liquid crystal in a groove such as a mold having a predetermined unevenness in advance, so that the liquid crystal molecules spontaneously grow in the longitudinal direction by the molecular interaction between the groove surface and the liquid crystal. Since the liquid crystal is aligned along the direction, the liquid crystal can be aligned in the longitudinal direction of the groove without any special alignment treatment on the substrate surface. In this state, when the polymerizable liquid crystal is cured by light irradiation, it is optically anisotropic. The separation element having the property can be stably formed. In addition, a polymerizable liquid crystal having a mesogenic group that exhibits a liquid crystal state and a functional group having a polymerizable property such as acrylic or epoxy is suitable, and the liquid crystal state before polymerization has the nematic state most. Is suitable.

形成した高分子液晶格子2は、次いで光硬化性液状樹脂からなる接着層4を介して樹脂シート1上に剥離・転写され、さらにその表面に、あらかじめ所定の凹凸をつけた金型などにより光硬化樹脂からなる非偏光性の回折格子3を形成する。   The formed polymer liquid crystal lattice 2 is then peeled and transferred onto the resin sheet 1 through an adhesive layer 4 made of a photo-curable liquid resin, and further light is emitted by a mold or the like with predetermined irregularities on the surface. A non-polarizing diffraction grating 3 made of a cured resin is formed.

なお、この偏光性回折格子2を樹脂シート1上に直接形成することも技術的には可能であるが、回折格子の溝間隙と樹脂シートの間に必然的に生じる液晶残存層が工程上厚くなり光散乱の原因となり素子特性を低下させる場合がある。   Although it is technically possible to form the polarizing diffraction grating 2 directly on the resin sheet 1, the residual liquid crystal layer inevitably formed between the groove gap of the diffraction grating and the resin sheet is thick in the process. This may cause light scattering and deteriorate the device characteristics.

本構成に用いる樹脂シート1としてはポリカーボネート、ポリオレフィンに代表される熱可塑プラスチック、エポキシ系熱硬化性材料硬化物やアクリル系光重合性材料の硬化物に代表される熱硬化性プラスチックなどが使用できる。また、入射光の偏光状態を変化させるλ/4板やλ/2板のような位相差板、位相差フィルムを用いることも可能であり、この場合、素子に偏光変換機能を付加することができるので好ましい。   As the resin sheet 1 used in the present configuration, polycarbonate, thermoplastic plastic typified by polyolefin, epoxy thermosetting material cured product, thermosetting plastic typified by cured acrylic photopolymerizable material, or the like can be used. . It is also possible to use a retardation plate or retardation film such as a λ / 4 plate or a λ / 2 plate that changes the polarization state of incident light. In this case, a polarization conversion function can be added to the element. It is preferable because it is possible.

また、必要に応じて樹脂シートをはじめとする各層界面には接着力強化のための処理を施すこともできる。この強化処理にはシランカップリング剤処理、表面プラズマ処理、UVオゾン処理といったものが適用可能である。   Moreover, the process for strengthening adhesive force can also be given to the interface of each layer including a resin sheet as needed. For this strengthening treatment, silane coupling agent treatment, surface plasma treatment, UV ozone treatment, and the like can be applied.

樹脂シート1と偏光性回折格子2の接着に使う接着剤4としては光硬化樹脂がもっとも好適である。特に高分子液晶を形成する重合性液晶にアクリル変性型を使う場合は、接着剤にアクリル系紫外線硬化樹脂を使うことにより高分子液晶層と紫外線硬化樹脂間に強い接着を得ることができる。   As the adhesive 4 used for bonding the resin sheet 1 and the polarizing diffraction grating 2, a photo-curing resin is most preferable. In particular, when an acrylic modified type is used for the polymerizable liquid crystal forming the polymer liquid crystal, strong adhesion can be obtained between the polymer liquid crystal layer and the ultraviolet curable resin by using an acrylic ultraviolet curable resin as an adhesive.

非偏光性回折格子3としては、屈折率が偏光性回折格子2を構成する高分子液晶の常光屈折率(no )又は異常光屈折率(ne )に近いことが入射光の直線偏光方位による偏光分離性能を高める上で望ましい。この材料には例えば光重合型のアクリル系樹脂やエポキシ系樹脂などを使用できる。 Non polarizing diffraction grating 3, the linear polarization direction of close to the ordinary refractive index of the polymer liquid crystal having a refractive index constituting a polarizing diffraction grating 2 (n o) or the extraordinary refractive index (n e) is the incident light It is desirable to improve the polarization separation performance by the. As this material, for example, a photopolymerizable acrylic resin or epoxy resin can be used.

さらに説明の都合上非偏光性回折格子材料により偏光性回折格子間隙を充填するように記述したが、偏光性回折格子間隙を透明等方性材料で充填したのち、さらに別の等方性材料により非偏光性回折格子を積層形成することも可能である。   Further, for the convenience of explanation, it has been described that the polarizing diffraction grating gap is filled with a non-polarizing diffraction grating material. However, after filling the polarizing diffraction grating gap with a transparent isotropic material, a further isotropic material is used. A non-polarizing diffraction grating can also be laminated.

また、この非偏光性回折格子の表面に反射防止膜やカラーフィルター等を形成することも容易である。   It is also easy to form an antireflection film, a color filter or the like on the surface of the non-polarizing diffraction grating.

図1(b)は本発明の別の構造の一例の断面図を示すもので、樹脂フィルムの問題点である剛性が小さいために変形しやすいという問題に対処するため、回折格子積層体裏面に剛性の高い透明平板を張り合わせて一体化したものである。図中、1は樹脂製の透明シート、2は一軸性高分子液晶からなる偏光性回折格子、3は光硬化樹脂からなる非偏光性の回折格子、4は透明平板と偏光性回折格子を一体化する光硬化樹脂からなる接着層であり、この積層体の裏面に透明平板6を接着層5を介して張り合わせた構成であり、透明平板6の裏面には必要に応じ回折格子7を形成する両面構成とすることが可能である。   FIG. 1B shows a cross-sectional view of an example of another structure of the present invention. In order to cope with the problem that the resin film has a low rigidity and is easily deformed, A transparent flat plate with high rigidity is laminated and integrated. In the figure, 1 is a resin-made transparent sheet, 2 is a polarizing diffraction grating made of uniaxial polymer liquid crystal, 3 is a non-polarizing diffraction grating made of a photo-curing resin, and 4 is a transparent flat plate and a polarizing diffraction grating. It is an adhesive layer made of a photo-curing resin, and has a configuration in which a transparent flat plate 6 is bonded to the back surface of this laminate through an adhesive layer 5, and a diffraction grating 7 is formed on the back surface of the transparent flat plate 6 as necessary. A double-sided configuration is possible.

本発明の構成においては樹脂シート表面に偏光性回折格子と非偏光回折格子を順に形成したものについて説明したが、本発明はこれに限定されるものでなく、たとえば偏光分離素子を別の透明部材で挟持した構成や、他の光学部材と積層した構成とすることも可能である。   In the configuration of the present invention, a description has been given of a structure in which a polarizing diffraction grating and a non-polarization diffraction grating are sequentially formed on the resin sheet surface. However, the present invention is not limited to this, and for example, the polarization separation element is replaced with another transparent member. It is also possible to adopt a configuration in which the optical member is sandwiched between the optical members and a configuration in which the optical member is laminated with another optical member.

有機材料では耐熱性が高いものもあるが、この耐熱性は(1)材料に結晶性や部分配向性を持たせる(2軸延伸PET、液晶プラスチック等)、(2)分子骨格を高耐熱性とする(ポリイミド、ポリスルホン等)といった手法でもたらされる。しかしながら、(1)は光散乱や光学異方性制御、(2)は透明性といった問題があり、われわれの検討では実用的な光学素子に使用可能な有機樹脂の耐熱性は熱硬化性プラスチックで180℃、熱可塑性プラスチックで140℃と低く、200℃以上の高温プロセスが必須のポリイミド配向膜形成には耐えるものではない。なお、この耐熱性は熱変形、材料熱分解、使用域での光吸収といった項目より総合的に判断しているものである。   Some organic materials have high heat resistance, but this heat resistance is (1) the material has crystallinity and partial orientation (biaxially stretched PET, liquid crystal plastic, etc.), and (2) the molecular skeleton has high heat resistance. (Polyimide, polysulfone, etc.). However, (1) has problems such as light scattering and optical anisotropy control, and (2) has transparency problems. In our study, the heat resistance of organic resins that can be used in practical optical elements is thermosetting plastics. 180 ° C, 140 ° C is low for thermoplastics, and it does not endure polyimide alignment film formation, which requires a high-temperature process of 200 ° C or higher. The heat resistance is comprehensively determined from items such as thermal deformation, material thermal decomposition, and light absorption in the use range.

なお、上述した本発明の構成において、液晶分子は溝壁面との相互作用により自発的に溝に対し平行方向に配列するため、高分子液晶層の光軸が溝長手方向に平行となる。   In the configuration of the present invention described above, the liquid crystal molecules are spontaneously arranged in a direction parallel to the groove by interaction with the groove wall surface, so that the optical axis of the polymer liquid crystal layer is parallel to the longitudinal direction of the groove.

この効果は溝の断面形状が矩形、三角形、半円形等いずれであっても発現するため用途によって適切な形状を選択することができるが、回折格子に使う場合は矩形形状、三角形が望ましい。   This effect is exhibited regardless of whether the cross-sectional shape of the groove is rectangular, triangular, semicircular, etc., so that an appropriate shape can be selected depending on the application. However, when used for a diffraction grating, a rectangular shape or a triangular shape is desirable.

また、この構成では液晶層の配向が液晶分子と溝壁面との相互作用により発生するため出来上がった高分子液晶の光軸は溝の長手方向のみに限定されるが、これは偏光分離素子として使う場合にはまったく制約とならず、逆にたとえば1素子中に配向方位の異なる複数領域を設けることも容易となる利点がある。ただし決められた入射偏光に対しでは、本発明の偏光回折格子が作用しない格子方向、完全に作用する格子方向は限定される。   In this configuration, since the alignment of the liquid crystal layer is generated by the interaction between the liquid crystal molecules and the groove wall surface, the optical axis of the resulting polymer liquid crystal is limited only to the longitudinal direction of the groove, but this is used as a polarization separation element. In this case, there is no restriction at all, and conversely, for example, there is an advantage that it is easy to provide a plurality of regions having different orientation directions in one element. However, with respect to the determined incident polarized light, the grating direction in which the polarization diffraction grating of the present invention does not act and the grating direction in which it completely acts are limited.

また本発明においては光透過型素子としての説明を行ったが、当然ながらこの技術は反射型偏光素子にも適用できる。   Further, although the present invention has been described as a light transmission type element, it is needless to say that this technique can also be applied to a reflection type polarizing element.

図2は本実施の形態に係る光ピックアップ装置の概略構成例である。図2に示す光ピックアップ装置は、半導体レーザ101、本発明のグレーティング素子102、偏光ビームスプリッタ−103、カップリングレンズ104、ミラー105、1/4波長板106、対物レンズ光学107、光ディスク108、検出レンズ109、光検出器110から構成されている。   FIG. 2 is a schematic configuration example of the optical pickup device according to the present embodiment. 2 includes a semiconductor laser 101, a grating element 102 of the present invention, a polarizing beam splitter 103, a coupling lens 104, a mirror 105, a quarter wavelength plate 106, an objective lens optical 107, an optical disk 108, and a detection. The lens 109 and the photodetector 110 are included.

半導体レーザ101から照射されたレーザ光は直線偏光でグレーティング素子102に入射する。レーザ光はグレーティング素子102の等方性回折格子部で回折され、トラッキング制御用の3ビームが生成される。ここでグレーティング素子102を偏光性回折格子部の格子長手方向とレーザ光の偏光方向とが直交するように配置すれば、レーザ光は偏光回折格子部ではほとんど回折することなく透過する。ここで例えば透明平板を1/2波長板で形成することで入射レーザ光の偏光方向を90度回転させることも可能である。偏光ビームスプリッター103を透過したレーザ光はカップリングレンズ104にて平行光となり、ミラー105で反射され、1/4波長板106へ入射する。レーザ光は1/4波長板106で円偏光となり、対物レンズ107を通じて、光ディスク108の情報記録面上に集光し、光スポットを形成する。光ディスク108で反射されたレーザ光は再び対物レンズ107を透過し、1/4波長板106の作用により、往路の偏光方向から90度回転した直線偏光となる。ミラー105で反射されたレーザ光は、カップリングレンズ104を透過、偏光ビームスプリッター103に入射、反射され、検出レンズ109を通じて光検出器110にて検出される。ここで、偏光ビームスプリッター103で反射されなかったレーザ光が半導体レーザ101へ戻り(以下戻りレーザ光)、レーザノイズを引き起こす可能性がある。しかし、この戻りレーザ光の偏光方向は往路のレーザ光に対して90度回転した方向であるため、グレーティング素子102の偏光性回折格子部にて回折される。その結果、半導体レーザ101への戻りレーザ光がカットされる。以上のように、本発明にかかるグレーティング素子を使用した光ピックアップ装置は、トラッキング用の3ビームの生成および半導体レーザで発生しうるレーザノイズの抑制が可能である。なお、半導体レーザ101が2つのレーザが1つのパッケージに一体化された2波長レーザの場合、グレーティング素子102を2波長対応の構成とすればよい。   Laser light emitted from the semiconductor laser 101 is incident on the grating element 102 as linearly polarized light. The laser light is diffracted by the isotropic diffraction grating portion of the grating element 102, and three beams for tracking control are generated. Here, if the grating element 102 is arranged so that the grating longitudinal direction of the polarizing diffraction grating portion and the polarization direction of the laser light are orthogonal to each other, the laser light is transmitted through the polarization diffraction grating portion with almost no diffraction. Here, for example, by forming a transparent flat plate with a half-wave plate, the polarization direction of the incident laser light can be rotated by 90 degrees. The laser light that has passed through the polarization beam splitter 103 becomes parallel light by the coupling lens 104, is reflected by the mirror 105, and enters the quarter-wave plate 106. The laser light becomes circularly polarized light by the quarter wavelength plate 106 and is condensed on the information recording surface of the optical disk 108 through the objective lens 107 to form a light spot. The laser light reflected by the optical disk 108 passes through the objective lens 107 again, and becomes linearly polarized light rotated 90 degrees from the forward polarization direction by the action of the quarter wavelength plate 106. The laser beam reflected by the mirror 105 is transmitted through the coupling lens 104, is incident on and reflected by the polarization beam splitter 103, and is detected by the photodetector 110 through the detection lens 109. Here, there is a possibility that the laser light that has not been reflected by the polarization beam splitter 103 returns to the semiconductor laser 101 (hereinafter referred to as return laser light), causing laser noise. However, since the polarization direction of the return laser beam is a direction rotated by 90 degrees with respect to the forward laser beam, it is diffracted by the polarizing diffraction grating portion of the grating element 102. As a result, the return laser beam to the semiconductor laser 101 is cut. As described above, the optical pickup device using the grating element according to the present invention is capable of generating three beams for tracking and suppressing laser noise that can be generated by the semiconductor laser. When the semiconductor laser 101 is a two-wavelength laser in which two lasers are integrated into one package, the grating element 102 may be configured to support two wavelengths.

グレーティング素子の第1の製造方法の各プロセスの側面図を図3の(a)〜(g)に示した。   Side views of each process of the first manufacturing method of the grating element are shown in FIGS.

本実施例においては、まず図3(a)に示すように溝幅1.5μm、溝ピッチ3μm、深さ3μmの溝を表面に形成した金型20上に重合性液晶10としてRMS03−001C(メルク製)を金型凹凸面に滴下、溶剤を加熱乾燥させたのち室温まで戻したのち、基板表面をスキージにて均し、基板溝部よりはみ出した重合性液晶を除去して表面を平坦化させた。なお、この金型はNi−P無電解メッキ表面に機械加工により溝を形成したものである。   In this example, first, as shown in FIG. 3A, RMS03-001C (polymerizable liquid crystal 10 is formed on a mold 20 having grooves having a groove width of 1.5 μm, a groove pitch of 3 μm, and a depth of 3 μm formed on the surface. (Merck) is dropped on the uneven surface of the mold, the solvent is heated and dried, and after returning to room temperature, the substrate surface is leveled with a squeegee to remove the polymerizable liquid crystal protruding from the substrate groove and flatten the surface. It was. In this mold, grooves are formed by machining on the Ni-P electroless plating surface.

この状態で次に図3(b)に示すように365nmの波長を主とした紫外線照射をして重合性液晶を反応硬化させた。   In this state, as shown in FIG. 3B, the polymerizable liquid crystal was reacted and cured by irradiation with ultraviolet light mainly having a wavelength of 365 nm.

次に図3(C)に示すように高分子液晶1が充填された金型20上に液状紫外線硬化樹脂を塗布し、その上に樹脂シート1を積層し、波長365nmの波長を主とした紫外線を照射をして紫外線硬化樹脂を反応硬化させ接着層4を形成した。なお樹脂シート1には0.2mm厚ポリカーボネート製広帯域λ/2波長位相差板(カラーリンク・ジャパン株式会社製 商品名PolarCorrect)を使用した。接着層4を構成する液状紫外線硬化樹脂としてはジシクロペンタジエニルヘキサアクリレート(共栄社化学製)20重量部と、イソボルニルアクリレート(共栄社化学製)と屈折率調整剤としてフェノキシアクリレート(共栄社化学製)をあわせて80重量部、重合開始剤としてイルガキュア184(チバスペシャリティケミカルズ製)3重量部、接着強化剤としてシランカップリング剤KBM503(信越化学製)1重量部を混合し、硬化物屈折率を1.53としたものを使用した。また、この際に、金型溝方向と広帯域波長位相差板光軸の成す角は45°とした。   Next, as shown in FIG. 3C, a liquid ultraviolet curable resin is applied onto a mold 20 filled with the polymer liquid crystal 1, and the resin sheet 1 is laminated thereon, with a wavelength of 365 nm as the main component. The adhesive layer 4 was formed by reacting and curing the ultraviolet curable resin by irradiation with ultraviolet rays. The resin sheet 1 was a 0.2 mm thick polycarbonate broadband λ / 2 wavelength retardation plate (trade name PolarCorrect, manufactured by Color Link Japan Co., Ltd.). The liquid UV curable resin constituting the adhesive layer 4 is 20 parts by weight of dicyclopentadienyl hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd.), isobornyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd.) and phenoxy acrylate (manufactured by Kyoeisha Chemical Co., Ltd.) as a refractive index adjuster. ), 80 parts by weight, 3 parts by weight of Irgacure 184 (manufactured by Ciba Specialty Chemicals) as a polymerization initiator, and 1 part by weight of silane coupling agent KBM503 (manufactured by Shin-Etsu Chemical) as an adhesion enhancer are mixed, and the refractive index of the cured product is determined. What was 1.53 was used. At this time, the angle formed by the mold groove direction and the optical axis of the broadband wavelength phase difference plate was 45 °.

この段階で、硬化した紫外線硬化樹脂よりなる透明等方性媒質3は高分子液晶と強固に接着するため、基板側に高分子液晶格子を転写することが可能となる。   At this stage, the transparent isotropic medium 3 made of the cured ultraviolet curable resin is firmly bonded to the polymer liquid crystal, so that the polymer liquid crystal lattice can be transferred to the substrate side.

そののち紫外線硬化樹脂を介して位相差板と一体化した高分子液晶格子を図3(d)のように剥がし取ったのち、次に図3(e)に示すように樹脂シート1の高分子液晶転写側表面に別の液状の紫外線硬化樹脂11を塗布し、溝幅10μm、溝ピッチ20μm、深さ1.5μmの溝を形成した金型21を用い、2P法により格子溝長手方向が偏光回折格子溝長手方向と直交するようさらに回折格子を積層したのち365nmの波長の波長を主とした紫外線を照射して(図3(f))透明樹脂よりなる非偏光性回折格子3を形成して図3(h)のような偏光分離素子を作成した。この紫外線硬化樹脂は、1,6ヘキシルジアクリレート(共栄社化学製)20重量部と、ヒドロキシブチルメタクリレート(共栄社化学製)と屈折率調整剤として2−ヒドロキシ−3−フェノキシプロピルアクリレート(共栄社化学製)をあわせて80重量部と、重合開始剤としてイルガキュア184(チバスペシャリティケミカルズ製)3重量部を混合したものを使用した。   After that, the polymer liquid crystal lattice integrated with the phase difference plate through the ultraviolet curable resin is peeled off as shown in FIG. 3 (d), and then the polymer of the resin sheet 1 as shown in FIG. 3 (e). The liquid crystal transfer side surface is coated with another liquid ultraviolet curable resin 11, and a mold 21 having a groove width of 10 μm, a groove pitch of 20 μm, and a depth of 1.5 μm is used. After the diffraction gratings are further laminated so as to be orthogonal to the longitudinal direction of the diffraction grating grooves, ultraviolet light mainly having a wavelength of 365 nm is irradiated (FIG. 3 (f)) to form a non-polarizing diffraction grating 3 made of a transparent resin. Thus, a polarization separation element as shown in FIG. This UV curable resin is composed of 20 parts by weight of 1,6 hexyl diacrylate (manufactured by Kyoeisha Chemical), hydroxybutyl methacrylate (manufactured by Kyoeisha Chemical) and 2-hydroxy-3-phenoxypropyl acrylate (manufactured by Kyoeisha Chemical) as a refractive index adjusting agent. A mixture of 80 parts by weight and 3 parts by weight of Irgacure 184 (manufactured by Ciba Specialty Chemicals) as a polymerization initiator was used.

この高分子液晶の配向状態を偏光顕微鏡にて観察すると溝方向に高分子液晶格子の分子軸が配向していることが観察され、良好な配向状態であることが確認された。   When the alignment state of the polymer liquid crystal was observed with a polarizing microscope, it was observed that the molecular axes of the polymer liquid crystal lattice were aligned in the groove direction, and it was confirmed that the polymer liquid crystal was in a good alignment state.

また、得られた格子に対して偏光させた赤色レーザ光を照射したところ、偏光方向を溝長手方向に直交にあわせた場合、その平行方向に対して回折光強度が大きく増加することが目視で確認でき、本発明によりλ/2位相差板による偏光方向回転と、偏光回折格子による良好な偏光回折光が得られることを確認できた。   In addition, when the obtained grating was irradiated with polarized red laser light, when the polarization direction was set perpendicular to the groove longitudinal direction, it was visually observed that the diffracted light intensity greatly increased in the parallel direction. It can be confirmed that the polarization direction rotation by the λ / 2 phase difference plate and the good polarization diffracted light by the polarization diffraction grating can be obtained by the present invention.

非偏光性回折格子を形成する紫外線硬化性樹脂の硬化物屈折率を変えて回折格子の透過光強度を測定したものが表1である。

Figure 2011112831
Table 1 shows the intensity of transmitted light of the diffraction grating measured by changing the refractive index of the cured product of the ultraviolet curable resin forming the non-polarizing diffraction grating.
Figure 2011112831

硬化物屈折率はアタゴ製アッベ屈折率計により測定した。なお、偏光回折格子はそのままでは屈折率測定が困難のため、作成した偏光回折格子間隙を重合性液晶で充填、硬化してシート状としたものについて測定を行った。   The refractive index of the cured product was measured with an Atago Abbe refractometer. Since it is difficult to measure the refractive index of the polarization diffraction grating as it is, the measurement was performed on the prepared polarization diffraction grating gap filled with a polymerizable liquid crystal and cured to form a sheet.

測定は最も屈折率差の影響が出やすい偏光回折格子に直交する偏光面(λ/2波長板と一体化しているため、入射光としては回折格子長手方向に平行となる)で行って、最も透過光強度の大きかった紫外線硬化物の屈折率1.53での測定値で規格化している。   The measurement is performed with a polarization plane orthogonal to the polarization diffraction grating that is most easily affected by the refractive index difference (because it is integrated with the λ / 2 wavelength plate, so that the incident light is parallel to the longitudinal direction of the diffraction grating). It is standardized by the measured value at a refractive index of 1.53 of the UV cured product having a high transmitted light intensity.

硬化物屈折率と高分子液晶常光線屈折率の差が大きくなるにつれ、屈折率差による偏光回折格子からの回折が発生し、損失となる。   As the difference between the refractive index of the cured product and the ordinary light refractive index of the polymer liquid crystal increases, diffraction from the polarizing diffraction grating occurs due to the difference in refractive index, resulting in a loss.

損失の目安を10%とすると、許容屈折率差は0.02となった。   When the standard of loss was 10%, the allowable refractive index difference was 0.02.

グレーティング素子の第1の製造方法の各プロセスの側面図を図4の(a)〜(g)に示した。   Side views of each process of the first manufacturing method of the grating element are shown in FIGS.

図4(a)のように無電解Ni−Pメッキ金型に機械加工により溝幅1.5μm、溝ピッチ3μm、深さ3μmの溝を形成した金型20表面に液状の紫外線硬化樹脂12を塗布したのち、その上にカラーリンクジャパン(株)製広帯域1/2波長板(商品名PolarCorrect)からなる樹脂シート1を積層、図4(b)のように紫外線を照射した後剥がしとり(図4(c))、樹脂シート2の表面に金型溝構造を転写した樹脂層13を形成した。紫外線硬化樹脂12としてはジシクロペンタジエニルヘキサアクリレート(共栄社化学製)20重量部と、イソボルニルアクリレート(共栄社化学製)と屈折率調整剤としてフェノキシアクリレート(共栄社化学製)をあわせて80重量部、重合開始剤としてイルガキュア184(チバスペシャリティケミカルズ製)3重量部混合し、硬化物屈折率を1.525としたものを使用した。   As shown in FIG. 4A, a liquid ultraviolet curable resin 12 is applied to the surface of a mold 20 in which grooves having a groove width of 1.5 μm, a groove pitch of 3 μm, and a depth of 3 μm are formed by machining in an electroless Ni—P plating mold. After coating, a resin sheet 1 made of Color Link Japan Co., Ltd. wide-band half-wave plate (trade name PolarCorrect) is laminated, and after being irradiated with ultraviolet rays as shown in FIG. 4 (c)), the resin layer 13 having the mold groove structure transferred to the surface of the resin sheet 2 was formed. As UV curable resin 12, 20 parts by weight of dicyclopentadienyl hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd.), isobornyl acrylate (manufactured by Kyoeisha Chemical Co., Ltd.), and phenoxy acrylate (manufactured by Kyoeisha Chemical Co., Ltd.) as a refractive index adjusting agent are combined and 80 weights. Part, 3 parts by weight of Irgacure 184 (manufactured by Ciba Specialty Chemicals) as a polymerization initiator was mixed, and a cured product having a refractive index of 1.525 was used.

次いで図4(d)に示すように液状の重合性液晶10としてRMS03−001C(メルク製)をフィルム凹凸面に滴下、溶剤を加熱乾燥させたのち室温まで戻したのち、基板表面をスキージにて均し、基板溝部よりはみ出した重合性液晶を除去して表面を平坦化させた。   Next, as shown in FIG. 4 (d), RMS03-001C (manufactured by Merck) is dropped as a liquid polymerizable liquid crystal 10 on the uneven surface of the film, the solvent is heated and dried, and then returned to room temperature. The surface was flattened by removing the polymerizable liquid crystal protruding from the substrate groove.

この状態で次に図4(e)に示すように365nmを主とした紫外線照射をして重合性液晶を反応硬化させ高分子液晶2を形成し、偏光分離素子とした。   In this state, as shown in FIG. 4 (e), ultraviolet light mainly having a wavelength of 365 nm was irradiated to react and cure the polymerizable liquid crystal to form a polymer liquid crystal 2 to obtain a polarization separation element.

この高分子液晶の配向状態を偏光顕微鏡にて観察すると溝方向に高分子液晶格子の分子軸が配向していることが観察され、良好な配向状態であることが確認された。   When the alignment state of the polymer liquid crystal was observed with a polarizing microscope, it was observed that the molecular axes of the polymer liquid crystal lattice were aligned in the groove direction, and it was confirmed that the polymer liquid crystal was in a good alignment state.

得られた偏光性回折格子付基板に対し液状紫外線硬化樹脂14を滴下し、溝幅10μm、溝ピッチ20μm、深さ1.5μmの溝を形成した金型21に、格子溝長手方向が偏光回折格子溝長手方向と直交するよう樹脂シートの偏光回折格子側表面で挟み込み、紫外線照射を行った。   Liquid UV curable resin 14 is dropped on the obtained substrate with a polarizing diffraction grating, and the longitudinal direction of the grating groove is polarized and diffracted on a mold 21 having grooves with a groove width of 10 μm, a groove pitch of 20 μm, and a depth of 1.5 μm. The resin sheet was sandwiched between the polarizing diffraction grating side surfaces so as to be orthogonal to the longitudinal direction of the grating grooves, and then irradiated with ultraviolet rays.

さらにこの上に溝幅4μm、溝ピッチ8μm、溝深さ0.5μmの溝を有する二酸化チタン層7を形成した1mm厚ガラス基板6を、光硬化性接着剤からなる接着層5を介して貼り合わせ(図4(g))、紫外線照射後にガラス基板を含む全体を金型から剥がしとり複合回折格子とした(図4(h))。   Further, a 1 mm thick glass substrate 6 on which a titanium dioxide layer 7 having grooves with a groove width of 4 μm, a groove pitch of 8 μm, and a groove depth of 0.5 μm is formed is bonded via an adhesive layer 5 made of a photocurable adhesive. Together (FIG. 4 (g)), the entire substrate including the glass substrate after UV irradiation was peeled off from the mold to form a composite diffraction grating (FIG. 4 (h)).

得られた格子に対して偏光させた赤色レーザ光を照射したところ、表面の等方材料よりなる回折格子起因の回折スポットと下層の偏光回折格子起因の回折スポット、およびガラス基板表面の二酸化チタンに起因する回折スポットが同時に観察され、かつ偏光方向を偏光回折格子溝長手方向にあわせた場合その直交方向に対して回折光強度が大きく変化することが目視で確認でき、本発明により偏光回折格子と回折格子の積層体が容易に作成できること、およびポリイミド等の配向膜無しでも良好な偏光回折光が得られることを確認できた。   When the obtained grating is irradiated with polarized red laser light, the diffraction spot caused by the isotropic material on the surface, the diffraction spot caused by the lower polarization diffraction grating, and titanium dioxide on the glass substrate surface are irradiated. When the resulting diffraction spot is observed at the same time and the polarization direction is aligned with the longitudinal direction of the polarization grating groove, it can be visually confirmed that the diffracted light intensity greatly changes in the orthogonal direction. It was confirmed that a laminated body of diffraction gratings can be easily prepared, and that good polarized diffracted light can be obtained without an alignment film such as polyimide.

なお、本実施例では偏光回折格子方向と通常の回折格子方向を直交させているが、本発明は当然ながらこれに留まるものでなく、設計上要求されるあらゆる方位に対して任意に形成することが可能である。   In the present embodiment, the polarization diffraction grating direction and the normal diffraction grating direction are orthogonal to each other. However, the present invention is not limited to this, and may be arbitrarily formed in any direction required for design. Is possible.

なお、本実施例1および2で用いたポリカーボネート製位相差板は比較的安価で広い波長域での特性が得られるものの耐熱性が低く、ポリイミド配向膜形成プロセスに耐えられないが、本発明によればこのような材料上にも偏光回折格子が形成可能となり、設計の自由度が大きく高まる。   The polycarbonate retardation plate used in Examples 1 and 2 is relatively inexpensive and has characteristics in a wide wavelength range, but has low heat resistance and cannot withstand the polyimide alignment film forming process. Therefore, a polarization diffraction grating can be formed on such a material, and the degree of freedom in design is greatly increased.

また本実施例では金型溝方向と広帯域波長位相差板光軸の成す角は45°としたが、本発明は当然ながらこれに留まるものでなく、設計上要求されるあらゆる方位に対して任意に形成することが可能である。また、位相差板にはポリカーボネート広域波長位相差板を用いたが、それ以外の材料、たとえば高分子液晶を用いた位相差板にも適用可能である。
〔比較例1〕
従来と同様のポリイミド配向膜による偏光回折格子を形成するため、カラーリンクジャパン(株)製広帯域1/2波長板(商品名PolarCorrect)に表面保護のため二酸化ケイ素を0.1μm厚で形成したのち、配向膜用ポリイミド(日産化学製 商品名サンエバー)を塗布し、焼成のため200℃まで徐々に温度を上げたところ、120℃で波長板複屈折の大幅な低下、150℃でポリカーボネートの軟化が発生し、焼成温度までの加熱が行えず、試料作成に至らなかった。
〔比較例2〕
ガラス板表面にポリイミドを塗布、ラビングしたのち重合性液晶RMS03−001C(メルク製)を厚さ2μmにスピンコート、重合して作成した複屈折を有する有機フィルムに配向膜用ポリイミド(日産化学製 商品名サンエバー)を塗布し、焼成のため200℃まで徐々に温度を上げたところ、180℃で膜が着色、200℃ではクラックが発生し、試料作成に至らなかった。着色およびクラックの原因は、材料の熱酸化および熱分解によるものと推測している。
In the present embodiment, the angle formed by the mold groove direction and the optical axis of the broadband wavelength phase difference plate is 45 °. However, the present invention is not limited to this, and is arbitrary in any direction required for design. Can be formed. Moreover, although the polycarbonate wide wavelength phase difference plate was used for the phase difference plate, it is applicable also to phase difference plates using other materials, for example, polymer liquid crystal.
[Comparative Example 1]
In order to form a polarizing diffraction grating using the same polyimide alignment film as before, after forming silicon dioxide with a thickness of 0.1 μm on the broadband 1/2 wavelength plate (trade name PolarCorrect) manufactured by Color Link Japan Co., Ltd. for surface protection After applying polyimide for alignment film (trade name Sunever manufactured by Nissan Chemical Co., Ltd.) and gradually raising the temperature to 200 ° C. for firing, the wavelength plate birefringence was greatly reduced at 120 ° C., and the softening of the polycarbonate at 150 ° C. It was generated and could not be heated up to the firing temperature, resulting in sample preparation.
[Comparative Example 2]
After coating and rubbing polyimide on the glass plate surface, spin coating and polymerization of polymerizable liquid crystal RMS03-001C (manufactured by Merck) to a thickness of 2 μm, a birefringent organic film is formed on the alignment film polyimide (manufactured by Nissan Chemical Co., Ltd.) When the temperature was gradually raised to 200 ° C. for firing, the film was colored at 180 ° C., cracks were generated at 200 ° C., and sample preparation was not achieved. The cause of coloring and cracking is presumed to be due to thermal oxidation and thermal decomposition of the material.

本発明におけるグレーティング素子の一例を示す側面図。The side view which shows an example of the grating element in this invention. 本発明の光ピックアップ装置の概略構成図。1 is a schematic configuration diagram of an optical pickup device of the present invention. 本発明によるグレーティング素子の製造工程の一例を示す側面図。The side view which shows an example of the manufacturing process of the grating element by this invention. 本発明によるグレーティング素子の製造工程の別の一例を示す側面図。The side view which shows another example of the manufacturing process of the grating element by this invention.

1 樹脂シート
2 偏光性回折格子
3 非偏光性回折格子
4、5 接着層
6 透明平板
7 回折格子
10 重合性液晶
11、14 紫外線硬化樹脂
13 樹脂層
20、21 金型
101 半導体レーザ
102 グレーティング素子
103 偏光ビームスプリッター
104 カップリングレンズ
105 ミラー
106 1/4波長板
107 対物レンズ
108 光ディスク
DESCRIPTION OF SYMBOLS 1 Resin sheet 2 Polarizing diffraction grating 3 Non-polarizing diffraction grating 4, 5 Adhesive layer 6 Transparent flat plate 7 Diffraction grating 10 Polymerizable liquid crystal 11, 14 UV curable resin 13 Resin layer 20, 21 Mold 101 Semiconductor laser 102 Grating element 103 Polarizing beam splitter 104 Coupling lens 105 Mirror 106 1/4 wavelength plate 107 Objective lens 108 Optical disc

Claims (11)

少なくとも1枚の樹脂シート上に複数の回折格子が積層されたグレーティング素子であって、前記積層された回折格子のうち少なくとも1層の回折格子は、一軸性高分子液晶からなる偏光性の回折格子であり、かつ、前記積層された回折格子のうち少なくとも1層の回折格子は、光硬化樹脂からなる非偏光性の回折格子であることを特徴とするグレーティング素子。   A grating element in which a plurality of diffraction gratings are laminated on at least one resin sheet, and at least one of the laminated diffraction gratings is a polarizing diffraction grating made of uniaxial polymer liquid crystal And at least one of the stacked diffraction gratings is a non-polarizing diffraction grating made of a photo-curing resin. 前記非偏光性の回折格子は、前記積層された回折格子のうち前記樹脂シートからみて最も遠い側の層の回折格子であることを特徴とする請求項1記載のグレーティング素子。   2. The grating element according to claim 1, wherein the non-polarizing diffraction grating is a diffraction grating of a layer farthest from the resin sheet among the laminated diffraction gratings. 前記偏光性の回折格子は、光学的な異方性を有しないアクリル系光硬化樹脂層の表面にポリイミドおよび無機酸化物膜を介さずに直接形成され、かつ、前記偏光性の回折格子を構成する一軸性高分子液晶の異常光屈折率の方向は、回折格子の溝の長手方向と一致することを特徴とする請求項1記載のグレーティング素子。   The polarizing diffraction grating is directly formed on the surface of an acrylic photo-curing resin layer having no optical anisotropy without a polyimide and an inorganic oxide film, and constitutes the polarizing diffraction grating. The grating element according to claim 1, wherein the direction of the extraordinary light refractive index of the uniaxial polymer liquid crystal is the same as the longitudinal direction of the grooves of the diffraction grating. 前記偏光性の回折格子を構成する一軸性高分子液晶は、重合性を有する官能基を分子中に有するネマティック液晶を主成分とする光重合液晶に紫外線を照射することにより重合したものであり、前記偏光性の回折格子を構成する一軸性高分子液晶重合物の常光線屈折率と、前記非偏光性の回折格子を構成するアクリル系光硬化樹脂硬化物の屈折率の差が0.02以下であることを特徴とする請求項1記載のグレーティング素子。   The uniaxial polymer liquid crystal constituting the polarizing diffraction grating is polymerized by irradiating ultraviolet light onto a photopolymerized liquid crystal mainly composed of a nematic liquid crystal having a polymerizable functional group in the molecule, The difference between the ordinary ray refractive index of the uniaxial polymer liquid crystal polymer constituting the polarizing diffraction grating and the refractive index of the cured acrylic photocurable resin constituting the non-polarizing diffraction grating is 0.02 or less. The grating element according to claim 1, wherein: 前記樹脂シートの耐熱温度が180℃以下であることを特徴とする請求項1記載のグレーティング素子。   The grating element according to claim 1, wherein the heat resistant temperature of the resin sheet is 180 ° C. or less. 前記樹脂シートは、入射光の偏光状態を変化させる一軸性高分子材料からなる波長位相差板で構成されていることを特徴とする請求項1記載のグレーティング素子。   The grating element according to claim 1, wherein the resin sheet is composed of a wavelength retardation plate made of a uniaxial polymer material that changes a polarization state of incident light. 前記樹脂シートが、前記樹脂シートより剛性の高い透明基板に固着してあることを特徴とする請求項1乃至6いずれか1項に記載のグレーティング素子。   The grating element according to claim 1, wherein the resin sheet is fixed to a transparent substrate having higher rigidity than the resin sheet. 前記透明基板の両面のうち、樹脂シートを固着する面と反対側の面に、少なくとも一層の回折格子が形成されていることを特徴とする請求項1乃至7いずれか1項に記載のグレーティング素子。   8. The grating element according to claim 1, wherein at least one diffraction grating is formed on a surface of the transparent substrate opposite to a surface to which the resin sheet is fixed. 9. . 所定形状の溝を形成した転写用型の溝部分に重合性液晶を充填したのち硬化させて高分子液晶とし、前記高分子液晶を接着層を介して透明平板上に第一の回折格子を転写して形成し、さらに前記第一の回折格子の格子間隙部を等方性媒質で充填するグレーティング素子の製造方法であって、前記等方性媒質に転写用金型にて第二の回折格子を転写して形成し、前記接着層と前記等方性媒質はアクリル系の光硬化樹脂であることを特徴とするグレーティング素子の製造方法。   The groove portion of the transfer mold in which the groove having a predetermined shape is formed is filled with a polymerizable liquid crystal and then cured to obtain a polymer liquid crystal, and the polymer liquid crystal is transferred onto a transparent flat plate through an adhesive layer. And a grating element filling the grating gap of the first diffraction grating with an isotropic medium, wherein a second diffraction grating is formed on the isotropic medium with a transfer mold. A method for manufacturing a grating element, wherein the adhesive layer and the isotropic medium are made of an acrylic photo-curing resin. 所定形状の溝を形成した樹脂層の溝部分に重合性液晶を充填したのち硬化させ高分子液晶とし、さらに等方性媒質にて格子間隙部を充填するグレーティング素子の製造方法であって、前記等方性媒質に転写用金型にて回折格子構造を転写して形成し、前記所定形状の溝を形成した樹脂層と前記金型にて転写して形成された回折格子がアクリル系の光硬化樹脂で構成されていることを特徴とするグレーティング素子の製造方法。   A method of manufacturing a grating element, comprising filling a groove portion of a resin layer having a predetermined shape with a polymerizable liquid crystal and then curing to form a polymer liquid crystal, and further filling a lattice gap with an isotropic medium, A diffraction grating structure is transferred to an isotropic medium using a transfer mold, and the resin layer formed with the groove having the predetermined shape and the diffraction grating formed by transfer using the mold are acrylic light. A method of manufacturing a grating element, comprising a cured resin. レーザ光を対物レンズにより光情報記録媒体の情報記録面に集光することで情報の記録/再生を行う光ピックアップ装置であって、当該光ピックアップ装置は請求項1乃至8いずれか1項に記載のグレーティング素子を備えたことを特徴とする光ピックアップ装置。   9. An optical pickup device for recording / reproducing information by condensing a laser beam on an information recording surface of an optical information recording medium by an objective lens, wherein the optical pickup device is any one of claims 1 to 8. An optical pickup device comprising a grating element.
JP2009268485A 2009-11-26 2009-11-26 Laminated grating element and manufacturing method thereof Withdrawn JP2011112831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009268485A JP2011112831A (en) 2009-11-26 2009-11-26 Laminated grating element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009268485A JP2011112831A (en) 2009-11-26 2009-11-26 Laminated grating element and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2011112831A true JP2011112831A (en) 2011-06-09

Family

ID=44235211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009268485A Withdrawn JP2011112831A (en) 2009-11-26 2009-11-26 Laminated grating element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2011112831A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239883A (en) * 2020-02-19 2020-06-05 京东方科技集团股份有限公司 Polarizer, LCD screen and OLED screen
WO2020143266A1 (en) * 2019-01-07 2020-07-16 Boe Technology Group Co., Ltd. A backlight assembly, a display device and a driving method thereof
WO2021018024A1 (en) * 2019-07-29 2021-02-04 京东方科技集团股份有限公司 Display substrate, display panel and display device
JP2022023220A (en) * 2015-06-15 2022-02-07 マジック リープ, インコーポレイテッド Virtual and augmented reality systems and methods

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022023220A (en) * 2015-06-15 2022-02-07 マジック リープ, インコーポレイテッド Virtual and augmented reality systems and methods
JP7203927B2 (en) 2015-06-15 2023-01-13 マジック リープ, インコーポレイテッド Virtual and augmented reality systems and methods
US11733443B2 (en) 2015-06-15 2023-08-22 Magic Leap, Inc. Virtual and augmented reality systems and methods
US11789189B2 (en) 2015-06-15 2023-10-17 Magic Leap, Inc. Display system with optical elements for in-coupling multiplexed light streams
WO2020143266A1 (en) * 2019-01-07 2020-07-16 Boe Technology Group Co., Ltd. A backlight assembly, a display device and a driving method thereof
US11333819B2 (en) 2019-01-07 2022-05-17 Boe Technology Group Co., Ltd. Backlight assembly, a display device and a driving method thereof
WO2021018024A1 (en) * 2019-07-29 2021-02-04 京东方科技集团股份有限公司 Display substrate, display panel and display device
US11402565B2 (en) 2019-07-29 2022-08-02 Boe Technology Group Co., Ltd. Display substrate, display panel and display device
CN111239883A (en) * 2020-02-19 2020-06-05 京东方科技集团股份有限公司 Polarizer, LCD screen and OLED screen
CN111239883B (en) * 2020-02-19 2022-08-23 京东方科技集团股份有限公司 Polarizer, LCD screen and OLED screen

Similar Documents

Publication Publication Date Title
US20110216255A1 (en) Polarization diffraction grating, method for manufacturing the same, and optical pickup apparatus using the polarization diffraction grating
JP6726110B2 (en) Optical element and diffractive optical element
TWI406018B (en) Cartesian polarizers utilizing photo-aligned liquid crystals
US20200271839A1 (en) Optical element
US20060239171A1 (en) Polarizing diffraction element and optical head device
WO1999018459A1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
WO1997013245A1 (en) Optical head device and production method thereof
JPH03174502A (en) Polarization-sensitive beam splitter and method of manufacturing the same
US9594276B2 (en) Optical diffraction element, optical pickup, and optical diffraction element manufacturing method
JP2006252638A (en) Polarization diffraction element and optical head apparatus
JP5107313B2 (en) Polarization diffraction element
JP2011112831A (en) Laminated grating element and manufacturing method thereof
CN116235085A (en) Liquid crystal diffraction element, optical element, image display unit, head-mounted display, beam steering device, and sensor
JP4043058B2 (en) Manufacturing method of diffraction element used in optical head device
WO2010119735A1 (en) Polarization split element and method for manufacturing the same
US7986606B2 (en) Optical head device
WO2008001636A1 (en) Optical component for laser beam
JP2009025489A (en) Method for manufacturing liquid crystal optical element, and optical head device
CN116157711A (en) Liquid crystal diffraction element, optical element, image display unit, head-mounted display, beam steering device, and sensor
JP2007280460A (en) Optical head device
JP2000249831A (en) Optical device and optical head device
JP3982025B2 (en) Manufacturing method of diffraction element
JP4961855B2 (en) Processing method of polymer liquid crystal film
JP4626026B2 (en) Optical head device
JP2003029014A (en) Polarizing diffraction element

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20110825

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130205