JP2011112284A - Orbital estimation system - Google Patents

Orbital estimation system Download PDF

Info

Publication number
JP2011112284A
JP2011112284A JP2009269242A JP2009269242A JP2011112284A JP 2011112284 A JP2011112284 A JP 2011112284A JP 2009269242 A JP2009269242 A JP 2009269242A JP 2009269242 A JP2009269242 A JP 2009269242A JP 2011112284 A JP2011112284 A JP 2011112284A
Authority
JP
Japan
Prior art keywords
observation direction
observation
infrared sensor
estimated
input information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009269242A
Other languages
Japanese (ja)
Other versions
JP5235848B2 (en
Inventor
Takeshi Kuroda
健 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009269242A priority Critical patent/JP5235848B2/en
Publication of JP2011112284A publication Critical patent/JP2011112284A/en
Application granted granted Critical
Publication of JP5235848B2 publication Critical patent/JP5235848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an orbital estimation system improving orbital estimation accuracy of a rocket. <P>SOLUTION: The trajectory estimation system includes: an infrared ray sensor 1; an orbital estimation device 2 using the observation direction detected by the infrared sensor 1 as input information; a database 4 estimating and computing a plume shape by using the estimated position and estimated speed by the orbital estimation device 2 and the radiation intensity detected by the infrared ray sensor 1 as input information; and an observation direction correction device 3 calculating a corrected observation direction by using the observation direction, estimated position, estimated speed and plume shape of an observation target as input information. The plume shape of the observation target depending on a flight condition is estimated and computed by the database 4, and by the observation direction correction device 3, the corrected observation direction in which a deviation between the observation direction of the infrared ray sensor 1 and an airframe reference point caused by the plume shape is reduced is acquired. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、衛星に搭載された赤外線センサを用いて観測対象(推力飛行するロケットなど)を探知追尾する軌道推定システムに関し、特に、観測方向に基づいて観測対象の軌道を推定する軌道推定システムに関するものである。   The present invention relates to a trajectory estimation system that detects and tracks an observation target (such as a rocket flying by thrust) using an infrared sensor mounted on a satellite, and more particularly to a trajectory estimation system that estimates a trajectory of an observation target based on an observation direction. Is.

従来の軌道推定システムとして、ジンバル(Gimbal)で支持された赤外線センサを用いてジェット機を探知追尾する飛翔体誘導装置が知られている(たとえば、特許文献1参照)。
上記特許文献1に記載の従来装置においては、プルーム(赤外線放射面光源であるエンジン排気)の代表点を追尾点とし、ジンバル首振り角の時間変化率に比例して、ジェット機の進行方向にオフセット角を与えることにより、赤外線センサの追尾点であるプルーム代表点と、ジェット機基準点(機体の重要部位)と、の観測方向のずれを軽減している。
As a conventional trajectory estimation system, a flying object guidance apparatus that detects and tracks a jet using an infrared sensor supported by a gimbal is known (see, for example, Patent Document 1).
In the conventional device described in Patent Document 1, the representative point of the plume (engine exhaust which is an infrared radiation surface light source) is used as a tracking point, and is offset in the traveling direction of the jet in proportion to the time change rate of the gimbal swing angle. By providing the angle, the deviation of the observation direction between the plume representative point that is the tracking point of the infrared sensor and the jet plane reference point (an important part of the aircraft) is reduced.

ただし、この場合、観測対象は、大気中を飛行するジェット機であって、プルーム形状(赤外線放射面光源の空間分布)の大きさ(約10メートル)が限られていることを前提としている。
これに対し、地上から大気圏外までを飛行するロケットなどの場合には、プルーム形状が10メートル〜10キロメートルの範囲で大きく変化するので、上記従来装置を用いても、大きく時間変化するプルーム形状に起因するプルーム代表点とロケット機体基準点との観測方向のずれを適切に補正することはできない。
However, in this case, it is assumed that the observation target is a jet flying in the atmosphere, and the plume shape (the spatial distribution of the infrared radiation surface light source) has a limited size (about 10 meters).
On the other hand, in the case of a rocket flying from the ground to the outside of the atmosphere, the plume shape changes greatly in the range of 10 meters to 10 kilometers. Therefore, even if the conventional device is used, the plume shape changes greatly with time. The deviation of the observation direction between the plume representative point and the reference point of the rocket body cannot be corrected appropriately.

特開平1−310300号公報JP-A-1-310300

従来の軌道推定システムは、たとえば特許文献1に記載の技術の場合には、大気中を飛行するジェット機を観測対象としているので、地上から大気圏外まで飛行することからプルーム形状が大きく変化するロケットに対しては、観測方向のずれを適切に補正することができず、ずれを含む観測方向をロケット機体基準点への観測方向として用いると軌道推定精度が劣化するという課題があった。   In the conventional orbit estimation system, for example, in the case of the technique described in Patent Document 1, since the jet aircraft flying in the atmosphere is an observation target, the plume shape changes greatly from flying from the ground to the outside of the atmosphere. On the other hand, the observation direction deviation cannot be corrected appropriately, and there is a problem that the orbit estimation accuracy deteriorates when the observation direction including the deviation is used as the observation direction to the rocket airframe reference point.

この発明は、上記のような課題を解決するためになされたものであり、プルーム形状が大きく時間変化する観測対象(ロケットなど)の場合でも、赤外線センサによる観測方向に基づいて、観測対象の軌道を高精度に推定可能な軌道推定システムを得ることを目的とする。   The present invention has been made to solve the above-described problems. Even in the case of an observation target (such as a rocket) whose plume shape greatly changes over time, the trajectory of the observation target is based on the observation direction of the infrared sensor. The objective is to obtain a trajectory estimation system capable of estimating

この発明に係る軌道推定システムは、赤外線センサと、赤外線センサで検出した観測対象の観測方向を入力情報として、観測対象の推定位置および推定速度を推定演算する軌道推定装置と、推定位置および推定速度と、赤外線センサで検出した観測対象のプルームの放射強度とを入力情報として、観測対象のプルーム形状を推定演算するデータベースと、観測方向、推定位置、推定速度およびプルーム形状を入力情報として、補正観測方向を算出する観測方向補正装置とを備え、軌道推定装置は、補正観測方向を入力情報として、観測対象の推定位置および推定速度を推定演算するものである。   A trajectory estimation system according to the present invention includes an infrared sensor, a trajectory estimation device that estimates and calculates an estimated position and an estimated speed of an observation object, using an observation direction of the observation object detected by the infrared sensor as input information, an estimated position and an estimated speed And the observed intensity of the plume detected by the infrared sensor as input information, a database for estimating the plume shape of the observation object, and the corrected observation using the observation direction, estimated position, estimated speed and plume shape as input information The trajectory estimation device includes an observation direction correction device that calculates a direction, and estimates and calculates an estimated position and an estimated speed of an observation target using the corrected observation direction as input information.

この発明によれば、プルーム形状を推定演算するデータベースを設けることにより、観測対象(ロケット)の位置や速度によるプルーム形状の変化に影響されることなく、観測対象の機体基準点への観測方向を高精度に取得することができ、軌道推定精度を改善させることができる。   According to the present invention, by providing a database for estimating and calculating the plume shape, the observation direction to the aircraft reference point of the observation target can be determined without being affected by the change in the plume shape due to the position and speed of the observation target (rocket). It can be acquired with high accuracy, and the trajectory estimation accuracy can be improved.

この発明の実施の形態1に用いられる赤外線センサを搭載した衛星と観測対象との関係を示す説明図である。It is explanatory drawing which shows the relationship between the satellite carrying the infrared sensor used for Embodiment 1 of this invention, and an observation object. 一般的なロケットの飛行条件によるロケットプルーム形状変化を示す説明図である。It is explanatory drawing which shows the rocket plume shape change by the flight conditions of a general rocket. この発明の実施の形態1に係る軌道推定システムを示す機能ブロック図である。It is a functional block diagram which shows the track | orbit estimation system which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る軌道推定システムを示す機能ブロック図である。It is a functional block diagram which shows the orbit estimation system which concerns on Embodiment 2 of this invention.

実施の形態1.
図1はこの発明の実施の形態1に用いられる赤外線センサを搭載した衛星10と観測対象11との関係を示す説明図である。
図1において、赤外線センサ(後述する)を搭載した衛星10は、観測対象11(以下、代表的に「ロケット」ともいう)のプルームP(赤外線放射面光源)を観測する。観測対象11は、地球12の大気Aの圏内および圏外を推進可能である。
衛星10は、目視線BをプルームPの観測方向として、プルームPの放射強度を時刻歴でリアルタイムに観測する。
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram showing the relationship between a satellite 10 on which an infrared sensor used in Embodiment 1 of the present invention is mounted and an observation object 11.
In FIG. 1, a satellite 10 equipped with an infrared sensor (described later) observes a plume P (infrared radiation surface light source) of an observation object 11 (hereinafter also referred to as “rocket” typically). The observation object 11 can be propelled within and outside the atmosphere A of the earth 12.
The satellite 10 observes the radiant intensity of the plume P in real time in the time history with the visual line B as the observation direction of the plume P.

図2は一般的なロケットの飛行条件によるプルーム(2次火炎)形状変化を示す説明図であり、地上から打ち上げられてから、大気圏外に到達するまでのプルーム形状を時系列的(矢印参照)に示している(たとえば、公知文献『The Aerospace Press刊、Frederick S.Simmons著「Rocket Exhaust Plume Phenomenology」(ISBN 1−884989−08−X)の第26頁Fig.2.7』参照)。   Fig. 2 is an explanatory diagram showing changes in the plume (secondary flame) shape due to the flight conditions of a general rocket. The plume shape from launching from the ground to reaching the outside of the atmosphere is shown in time series (see arrows). (See, for example, page 26, FIG. 2.7 of “Rocket Exhaust Plum Phenomenology” published by The Aerospace Press, published by Frederick S. Simons, ISBN 1-884989-08-X).

図2において、2次火炎の直径Dは、地上からの打ち上げ直後においては、10m〜100m程度であり、高度が上昇するにつれて、0.1km〜1km、1km〜10km、へと順次に大きくなり、大気圏外に到達すると、所要推力が小さくなるうえ酸素も存在しないので、1m〜10m程度(破線領域参照)に減少する。
なお、プルーム形状および放射強度において、ロケット推力、プルームPの放射強度、および、プルームPの長さ、の3つのパラメータの間には、正の相関性がある。
In FIG. 2, the diameter D of the secondary flame is about 10 m to 100 m immediately after launching from the ground, and gradually increases from 0.1 km to 1 km, 1 km to 10 km as the altitude increases. When it reaches the outside of the atmosphere, the required thrust becomes small and oxygen does not exist, so it decreases to about 1 m to 10 m (see the broken line area).
In the plume shape and the radiation intensity, there is a positive correlation among the three parameters of the rocket thrust, the plume P radiation intensity, and the plume P length.

以下、図1および図2とともに、図3を参照しながら、この発明の実施の形態1について詳細に説明する。
図3はこの発明の実施の形態1に係る軌道推定システムを示す機能ブロック図であり、衛星10に搭載されたコンピュータ(または、衛星10との間で相互通信可能な地上局に設置されたコンピュータ)により実行されるアルゴリズムを図式的に示している。
図3において、軌道推定システムは、赤外線センサ1と、軌道推定装置2と、観測方向補正装置3と、データベース4と、切替スイッチ5と、航法装置6と、を備えている。
Hereinafter, the first embodiment of the present invention will be described in detail with reference to FIG. 3 together with FIG. 1 and FIG.
FIG. 3 is a functional block diagram showing the orbit estimation system according to Embodiment 1 of the present invention. The computer installed in the satellite 10 (or the computer installed in the ground station capable of mutual communication with the satellite 10). ) Schematically shows the algorithm executed by
In FIG. 3, the trajectory estimation system includes an infrared sensor 1, a trajectory estimation device 2, an observation direction correction device 3, a database 4, a changeover switch 5, and a navigation device 6.

赤外線センサ1は、観測対象11(目標ロケット)に対する観測方向と、目標ロケットのプルームPの放射強度とを観測する。観測方向および放射強度は、それぞれ時間歴として取得される。
軌道推定装置2は、赤外線センサ1で検出した観測対象11の観測方向を入力情報として、観測対象11の推定軌道(推定位置および推定速度)を推定演算する。
The infrared sensor 1 observes the observation direction with respect to the observation target 11 (target rocket) and the radiation intensity of the plume P of the target rocket. The observation direction and the radiation intensity are each acquired as a time history.
The trajectory estimation apparatus 2 estimates and calculates the estimated trajectory (estimated position and estimated speed) of the observation target 11 using the observation direction of the observation target 11 detected by the infrared sensor 1 as input information.

データベース4は、観測対象11の推定位置および推定速度と、赤外線センサ1で検出した観測対象11のプルームPの放射強度とを入力情報として、観測対象11のプルーム形状を推定演算する。   The database 4 estimates the plume shape of the observation target 11 using the estimated position and speed of the observation target 11 and the radiation intensity of the plume P of the observation target 11 detected by the infrared sensor 1 as input information.

観測方向補正装置3は、観測対象11の観測方向、推定位置、推定速度およびプルーム形状を入力情報として、時刻歴からなる補正観測方向を算出する。
切替スイッチ5は、赤外線センサ1からの観測方向と、観測方向補正装置3を介した補正観測方向と、のいずれか一方を選択して、軌道推定装置2に入力する。
The observation direction correction device 3 calculates a corrected observation direction composed of a time history using the observation direction, estimated position, estimated speed, and plume shape of the observation target 11 as input information.
The changeover switch 5 selects one of the observation direction from the infrared sensor 1 and the corrected observation direction via the observation direction correction device 3 and inputs the selected one to the trajectory estimation device 2.

1回目の軌道推定処理においては、切替スイッチ5は、図示したように左接点(初期位置)に設定されており、赤外線センサ1から直接得られる観測方向を、軌道推定装置2への入力情報として選択する。
したがって、軌道推定装置2は、赤外線センサ1からの観測方向を用いて軌道推定処理を行い、概略的な推定軌道を算出する。
In the first trajectory estimation process, the change-over switch 5 is set to the left contact point (initial position) as shown, and the observation direction obtained directly from the infrared sensor 1 is used as input information to the trajectory estimation device 2. select.
Therefore, the trajectory estimation device 2 performs trajectory estimation processing using the observation direction from the infrared sensor 1 and calculates a rough estimated trajectory.

次に、2回目の軌道推定処理においては、データベース4は、1回目の軌道推定処理で得られた概略的な推定軌道(推定位置および推定速度)と、赤外線センサ1で検出したプルームPの放射強度とを入力情報として、プルーム形状を推定演算し、プルーム形状の推定値を観測方向補正装置3に入力する。   Next, in the second trajectory estimation process, the database 4 stores the rough estimated trajectory (estimated position and estimated speed) obtained in the first trajectory estimation process and the emission of the plume P detected by the infrared sensor 1. The plume shape is estimated using the intensity as input information, and the estimated value of the plume shape is input to the observation direction correction device 3.

また、上記処理と並行して、航法装置6は、赤外線センサ1を搭載した衛星10の位置を観測方向補正装置3に入力する。
この結果、観測方向補正装置3は、データベース4からのプルーム形状と、赤外線センサ1からの観測方向と、軌道推定装置2からの概略的な推定軌道とを入力情報として、補正観測方向を算出することになる。
In parallel with the above processing, the navigation device 6 inputs the position of the satellite 10 on which the infrared sensor 1 is mounted to the observation direction correction device 3.
As a result, the observation direction correction device 3 calculates the corrected observation direction using the plume shape from the database 4, the observation direction from the infrared sensor 1, and the rough estimated trajectory from the trajectory estimation device 2 as input information. It will be.

このとき、切替スイッチ5は、コンピュータの制御下で、左接点(図示した状態)から右接点に切替えられ、観測方向補正装置3からの補正観測方向を、軌道推定装置2への入力情報として選択する。
これにより、軌道推定装置2は、軌道推定処理を再び実行して、精密な推定軌道を算出する。
At this time, the changeover switch 5 is switched from the left contact point (the state shown in the figure) to the right contact point under the control of the computer, and selects the corrected observation direction from the observation direction correction device 3 as input information to the trajectory estimation device 2. To do.
Thereby, the trajectory estimation apparatus 2 executes the trajectory estimation process again to calculate a precise estimated trajectory.

このように、軌道推定装置2は、1回目の軌道推定処理においては、初期設定位置の切替スイッチ5を介して、赤外線センサ1からの観測方向を入力情報とし、概略的な軌道を推定演算し、2回目の軌道推定処理においては、切替動作された切替スイッチ5を介して、観測方向補正装置3からの補正観測方向を入力情報とし、精密な軌道を推定演算する。   Thus, in the first trajectory estimation process, the trajectory estimation device 2 estimates and calculates a rough trajectory using the observation direction from the infrared sensor 1 as input information via the switch 5 for the initial setting position. In the second orbit estimation process, a precise orbit is estimated and calculated using the corrected observation direction from the observation direction correction apparatus 3 as input information via the changeover switch 5 that has been switched.

このとき、2回目の軌道推定処理において、観測方向補正装置3は、1回目の概略的な軌道の推定演算値(ロケットの飛行高度および飛行速度)とプルームPの放射強度とを用いて得られたデータベース4からのプルーム形状(推定演算値)と、プルームPの長手方向の向き(ロケットの速度ベクトル方向)と、航法装置6から得られた赤外線センサ1の位置とを用いて、高精度の補正観測方向を算出して軌道推定装置2に入力する。   At this time, in the second orbit estimation process, the observation direction correction apparatus 3 is obtained using the first rough orbit estimation calculation value (the flight altitude and the flight speed of the rocket) and the radiation intensity of the plume P. Using the plume shape (estimated calculation value) from the database 4, the longitudinal direction of the plume P (the velocity vector direction of the rocket), and the position of the infrared sensor 1 obtained from the navigation device 6, high-precision The corrected observation direction is calculated and input to the trajectory estimation apparatus 2.

すなわち、切替スイッチ5の動作により、1回目の概略軌道の推定演算に続いて、2回目の精密軌道の推定演算を行い、2段階の軌道推定処理を行う。
これにより、ロケットの飛行条件(位置や速度)によって、図2のようにプルーム形状が大きく変化しても、プルーム形状を補正して、ロケット機体基準点への観測方向が高精度に得られるようになり、軌道推定精度を改善することができる。
That is, by the operation of the changeover switch 5, following the first approximate trajectory estimation calculation, the second precision trajectory estimation calculation is performed, and two-step trajectory estimation processing is performed.
Thus, even if the plume shape changes greatly as shown in FIG. 2 depending on the flight conditions (position and speed) of the rocket, the plume shape is corrected so that the observation direction to the rocket airframe reference point can be obtained with high accuracy. Thus, the accuracy of trajectory estimation can be improved.

なお、図3においては、衛星10の位置を航法装置6から出力しているが、衛星10が静止衛星である場合には、位置が一定なので、衛星10の一定位置を既知として用いることができる。   In FIG. 3, the position of the satellite 10 is output from the navigation device 6. However, when the satellite 10 is a geostationary satellite, the position is constant, so that the fixed position of the satellite 10 can be used as known. .

以上のように、この発明の実施の形態1(図1〜図3)に係る軌道推定システムは、赤外線センサ1と、赤外線センサ1で検出した観測対象11の観測方向とを入力情報として、観測対象11の推定位置および推定速度を推定演算する軌道推定装置2と、推定位置および推定速度と、赤外線センサ1で検出した観測対象11のプルームPの放射強度とを入力情報として、観測対象11のプルーム形状を推定演算するデータベース4と、観測方向、推定位置、推定速度およびプルーム形状を入力情報として、補正観測方向を算出する観測方向補正装置3と、を備え、軌道推定装置2は、補正観測方向を入力情報として、観測対象11の推定位置および推定速度を推定演算する。   As described above, the trajectory estimation system according to Embodiment 1 (FIGS. 1 to 3) of the present invention uses the infrared sensor 1 and the observation direction of the observation target 11 detected by the infrared sensor 1 as input information. The trajectory estimation device 2 that estimates and calculates the estimated position and estimated speed of the object 11, the estimated position and estimated speed, and the radiation intensity of the plume P of the observed object 11 detected by the infrared sensor 1 are used as input information. The trajectory estimation device 2 includes a database 4 for estimating and calculating a plume shape, and an observation direction correction device 3 for calculating a corrected observation direction using the observation direction, estimated position, estimated speed, and plume shape as input information. Using the direction as input information, the estimated position and estimated speed of the observation object 11 are estimated and calculated.

データベース4は、赤外線センサ1による観測方向(プルーム代表点とロケット機体基準点との観測方向のずれを軽減処理する前の観測方向)に基づく概略的な推定位置(ロケット位置)および推定速度(速度ベクトル)と、赤外線センサ1からの放射強度とを入力情報として、プルーム形状を推定演算して観測方向補正装置3に入力する。
これにより、観測方向補正装置3は、赤外線センサ1による観測方向を、プルーム形状に応じて、機体基準点への観測方向のずれが軽減するように補正する。
The database 4 includes a rough estimated position (rocket position) and estimated speed (speed) based on the observation direction by the infrared sensor 1 (observation direction before reducing the deviation of the observation direction between the plume representative point and the rocket body reference point). The plume shape is estimated and input to the observation direction correction apparatus 3 using the vector) and the radiation intensity from the infrared sensor 1 as input information.
Thereby, the observation direction correction apparatus 3 corrects the observation direction by the infrared sensor 1 so as to reduce the deviation of the observation direction to the airframe reference point according to the plume shape.

したがって、この発明の実施の形態1によれば、ロケットの位置や速度によりプルーム形状が大きく変化しても、データベース4で推定演算されたプルーム形状に基づいて観測方向のずれを軽減させ、観測対象11(ロケット)の位置や速度によるプルーム形状の変化に影響されることなく、ロケット機体基準点への観測方向が高精度に取得して、軌道推定精度を改善することができる。   Therefore, according to Embodiment 1 of the present invention, even if the plume shape changes greatly depending on the position and speed of the rocket, the deviation in the observation direction is reduced based on the plume shape estimated by the database 4, and the observation target The observation direction to the rocket airframe reference point can be acquired with high accuracy without being affected by the change in plume shape due to the position and speed of 11 (rocket), and the trajectory estimation accuracy can be improved.

実施の形態2.
なお、上記実施の形態1(図3)では、赤外線センサ1で検出された放射強度を、そのままデータベース4への入力情報としたが、図4のように、透過率補正装置7を挿入し、透過率補正装置7で補正された放射強度をデータベース4への入力情報としてもよい。
図4はこの発明の実施の形態2に係る軌道推定システムを示す機能ブロック図であり、前述(図3参照)と同様のものについては、前述と同一符号を付して詳述を省略する。
Embodiment 2. FIG.
In the first embodiment (FIG. 3), the radiation intensity detected by the infrared sensor 1 is used as input information to the database 4 as it is, but a transmittance correction device 7 is inserted as shown in FIG. The radiation intensity corrected by the transmittance correction device 7 may be input information to the database 4.
FIG. 4 is a functional block diagram showing a trajectory estimation system according to Embodiment 2 of the present invention. Components similar to those described above (see FIG. 3) are denoted by the same reference numerals and detailed description thereof is omitted.

図4において、軌道推定システムは、前述の構成に加えて、赤外線センサ1とデータベース4との間に挿入された透過率補正装置7を備えている。
透過率補正装置7は、2回目の軌道推定処理において、航法装置6から得られる赤外線センサ1の位置と、軌道推定装置2から得られる観測対象11の推定位置(概略推定値)と、赤外線センサ1で検出されたプルームPの放射強度と、を入力情報として、放射強度に対して、赤外線センサ1と観測対象11(プルームP)との間の空間の透過率補正処理を行い、赤外線センサ1で観測した放射強度をロケット位置での放射強度に換算した補正放射強度をデータベース4に入力する。
4, the trajectory estimation system includes a transmittance correction device 7 inserted between the infrared sensor 1 and the database 4 in addition to the above-described configuration.
In the second trajectory estimation process, the transmittance correction device 7 includes the position of the infrared sensor 1 obtained from the navigation device 6, the estimated position (substantially estimated value) of the observation object 11 obtained from the trajectory estimation device 2, and the infrared sensor. Using the radiation intensity of the plume P detected in 1 as input information, the transmittance of the space between the infrared sensor 1 and the observation object 11 (plume P) is corrected for the radiation intensity, and the infrared sensor 1 The corrected radiation intensity obtained by converting the radiation intensity observed in step 1 into the radiation intensity at the rocket position is input to the database 4.

すなわち、透過率補正装置7は、赤外線の中でも大気透過率の小さい波長帯を用いる場合には、ロケット位置の概略推定値を入力情報として、赤外線センサ1とプルームPとの間の透過率を推定演算し(または、データベース4から求め)、実際のロケット位置(赤外線放射源)でのプルームPの放射強度を補正放射強度として推定演算する。
これにより、データベース4は、大気透過率が小さい波長帯の赤外線を用いた赤外線センサ1の場合であっても、高精度にプルーム形状の推定演算を行うことができる。
That is, the transmittance correction device 7 estimates the transmittance between the infrared sensor 1 and the plume P using the rough estimated value of the rocket position as input information when using a wavelength band with a small atmospheric transmittance among infrared rays. The calculation is performed (or obtained from the database 4), and the radiation intensity of the plume P at the actual rocket position (infrared radiation source) is estimated and calculated as the corrected radiation intensity.
As a result, the database 4 can perform the plume shape estimation calculation with high accuracy even in the case of the infrared sensor 1 using infrared rays in a wavelength band having a low atmospheric transmittance.

以上のように、この発明の実施の形態2(図4)によれば、透過率補正装置7を設けることにより、赤外線センサ1で使用される赤外線の大気に対する透過率が小さい場合でも、プルーム形状を高精度に推定演算することができる。
すなわち、大気透過率が小さな波長を利用した場合に、赤外線センサ1で観測する放射強度が減衰しても、放射強度減衰による観測方向のずれを過小評価することなく、軽減補正することができる。
As described above, according to the second embodiment (FIG. 4) of the present invention, the provision of the transmittance correction device 7 enables the plume shape even when the transmittance of the infrared rays used in the infrared sensor 1 to the atmosphere is small. Can be estimated and calculated with high accuracy.
In other words, when a wavelength having a small atmospheric transmittance is used, even if the radiation intensity observed by the infrared sensor 1 is attenuated, it is possible to perform a reduction correction without underestimating the deviation in the observation direction due to the radiation intensity attenuation.

したがって、観測方向補正装置3で算出される補正観測方向の精度も改善し、ロケット機体基準点への観測方向が高精度に得られるようになり、軌道推定装置2における軌道推定精度が改善する。
また、大気透過率の小さい波長帯の赤外線を用いる場合に、透過率補正によりロケット位置での放射強度に換算することができるので、データベース4において、大気透過率に影響されることなく、減衰する前の放射強度に応じたプルーム形状を推定演算することができ、ロケット機体基準点への観測方向が高精度に得られ、軌道推定精度が改善する。
Therefore, the accuracy of the corrected observation direction calculated by the observation direction correction device 3 is also improved, the observation direction to the rocket body reference point can be obtained with high accuracy, and the orbit estimation accuracy in the trajectory estimation device 2 is improved.
In addition, when infrared rays having a wavelength range with a low atmospheric transmittance are used, the radiation intensity at the rocket position can be converted by correcting the transmittance, so that the database 4 is attenuated without being affected by the atmospheric transmittance. The plume shape corresponding to the previous radiation intensity can be estimated and calculated, the observation direction to the rocket body reference point can be obtained with high accuracy, and the orbit estimation accuracy is improved.

1 赤外線センサ、2 軌道推定装置、3 観測方向補正装置、4 データベース、5 切替スイッチ、6 航法装置、7 透過率補正装置、10 衛星、11 観測対象(ロケット)、A 大気、B 目視線(観測方向)、P プルーム。   1 Infrared sensor, 2 orbit estimation device, 3 observation direction correction device, 4 database, 5 selector switch, 6 navigation device, 7 transmittance correction device, 10 satellites, 11 observation target (rocket), A atmosphere, B line of sight (observation) Direction), P plume.

Claims (3)

赤外線センサと、
前記赤外線センサで検出した観測対象の観測方向を入力情報として、前記観測対象の推定位置および推定速度を推定演算する軌道推定装置と、
前記推定位置および前記推定速度と、前記赤外線センサで検出した前記観測対象のプルームの放射強度とを入力情報として、前記観測対象のプルーム形状を推定演算するデータベースと、
前記観測方向、前記推定位置、前記推定速度および前記プルーム形状を入力情報として、補正観測方向を算出する観測方向補正装置と、を備え、
前記軌道推定装置は、前記補正観測方向を入力情報として、前記観測対象の推定位置および推定速度を推定演算することを特徴とする軌道推定システム。
An infrared sensor;
A trajectory estimation device that estimates and calculates the estimated position and estimated speed of the observation target, using the observation direction of the observation target detected by the infrared sensor as input information,
A database for estimating and calculating the plume shape of the observation target, using the estimated position and the estimated speed, and the radiation intensity of the observation target plume detected by the infrared sensor as input information;
An observation direction correction device that calculates a correction observation direction using the observation direction, the estimated position, the estimated speed, and the plume shape as input information, and
The trajectory estimation system is configured to estimate and calculate an estimated position and an estimated speed of the observation target using the corrected observation direction as input information.
前記赤外線センサと前記データベースとの間に挿入された透過率補正装置を備え、
前記透過率補正装置は、前記赤外線センサの位置と、前記観測対象の推定位置と、前記プルームの放射強度とを入力情報として、前記赤外線センサと前記観測対象との間の透過率補正を行い、前記放射強度を補正した補正放射強度を前記データベースに入力することを特徴とする請求項1に記載の軌道推定システム。
Comprising a transmittance correction device inserted between the infrared sensor and the database;
The transmittance correction device performs transmittance correction between the infrared sensor and the observation target, using the position of the infrared sensor, the estimated position of the observation target, and the emission intensity of the plume as input information, The trajectory estimation system according to claim 1, wherein a corrected radiation intensity obtained by correcting the radiation intensity is input to the database.
前記赤外線センサおよび前記観測方向補正装置と、前記軌道推定装置との間に挿入された切替スイッチを備え、
前記切替スイッチは、
1回目の軌道推定処理においては、前記赤外線センサからの観測方向を前記軌道推定装置に対する入力情報とし、
2回目の軌道推定処理においては、前記観測方向補正装置からの補正観測方向を前記軌道推定装置に対する入力情報とし、
前記軌道推定装置は、
前記1回目の軌道推定処理においては、前記赤外線センサからの観測方向を用いて、概略的な推定位置および推定速度を算出し、
前記2回目の軌道推定処理においては、前記補正観測方向を用いて精密な推定位置および推定速度を算出することを特徴とする請求項1または請求項2に記載の軌道推定システム。
A change-over switch inserted between the infrared sensor and the observation direction correction device and the trajectory estimation device;
The changeover switch is
In the first orbit estimation process, the observation direction from the infrared sensor is set as input information to the orbit estimation apparatus,
In the second orbit estimation process, the corrected observation direction from the observation direction correction device is input information to the orbit estimation device,
The trajectory estimation device includes:
In the first trajectory estimation process, using the observation direction from the infrared sensor, a rough estimated position and estimated speed are calculated,
3. The trajectory estimation system according to claim 1, wherein in the second trajectory estimation process, a precise estimated position and an estimated speed are calculated using the corrected observation direction.
JP2009269242A 2009-11-26 2009-11-26 Orbit estimation system Active JP5235848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009269242A JP5235848B2 (en) 2009-11-26 2009-11-26 Orbit estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009269242A JP5235848B2 (en) 2009-11-26 2009-11-26 Orbit estimation system

Publications (2)

Publication Number Publication Date
JP2011112284A true JP2011112284A (en) 2011-06-09
JP5235848B2 JP5235848B2 (en) 2013-07-10

Family

ID=44234757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009269242A Active JP5235848B2 (en) 2009-11-26 2009-11-26 Orbit estimation system

Country Status (1)

Country Link
JP (1) JP5235848B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023181354A1 (en) * 2022-03-25 2023-09-28 日本電気株式会社 Information processing device, calculation method, and storage medium
WO2023181355A1 (en) * 2022-03-25 2023-09-28 日本電気株式会社 Information processing device, detection method, and storage medium
JP7407764B2 (en) 2021-04-27 2024-01-04 三菱電機株式会社 Flying object tracking system, flight path prediction method, monitoring satellite, and ground equipment

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310300A (en) * 1988-06-07 1989-12-14 Toshiba Corp Missile guiding device
JPH03207999A (en) * 1990-01-11 1991-09-11 Mitsubishi Electric Corp Missile guiding apparatus
JPH09197034A (en) * 1996-01-17 1997-07-31 Mitsubishi Electric Corp Target detection device
JP2001256474A (en) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp Device and method for calculating reference point of flying object
JP2006029754A (en) * 2004-07-22 2006-02-02 Toshiba Corp Flying body tracking method and device therefor
US7295149B1 (en) * 2005-10-19 2007-11-13 Lockheed Martin Corporation Method for determining missile information from radar returns
JP2008137439A (en) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp Monitor satellite
US7400289B1 (en) * 2006-09-27 2008-07-15 Lockheed Martin Corporation Plume-to-hardbody offset compensation in boosting missiles
JP2008164242A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Infrared ray detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01310300A (en) * 1988-06-07 1989-12-14 Toshiba Corp Missile guiding device
JPH03207999A (en) * 1990-01-11 1991-09-11 Mitsubishi Electric Corp Missile guiding apparatus
JPH09197034A (en) * 1996-01-17 1997-07-31 Mitsubishi Electric Corp Target detection device
JP2001256474A (en) * 2000-03-10 2001-09-21 Mitsubishi Electric Corp Device and method for calculating reference point of flying object
JP2006029754A (en) * 2004-07-22 2006-02-02 Toshiba Corp Flying body tracking method and device therefor
US7295149B1 (en) * 2005-10-19 2007-11-13 Lockheed Martin Corporation Method for determining missile information from radar returns
US7400289B1 (en) * 2006-09-27 2008-07-15 Lockheed Martin Corporation Plume-to-hardbody offset compensation in boosting missiles
JP2008137439A (en) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp Monitor satellite
JP2008164242A (en) * 2006-12-28 2008-07-17 Mitsubishi Electric Corp Infrared ray detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7407764B2 (en) 2021-04-27 2024-01-04 三菱電機株式会社 Flying object tracking system, flight path prediction method, monitoring satellite, and ground equipment
WO2023181354A1 (en) * 2022-03-25 2023-09-28 日本電気株式会社 Information processing device, calculation method, and storage medium
WO2023181355A1 (en) * 2022-03-25 2023-09-28 日本電気株式会社 Information processing device, detection method, and storage medium

Also Published As

Publication number Publication date
JP5235848B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US8833702B2 (en) Autonomous satellite orbital debris avoidance system and method
KR101157484B1 (en) Uav automatic recovering method
KR101740312B1 (en) Induction control method using camera control information of unmanned air vehicle
US20100259614A1 (en) Delay Compensated Feature Target System
Mastrodemos et al. Autonomous navigation for the deep impact mission encounter with comet tempel 1
US8604966B1 (en) Correction of radar beam refraction using electro-optical measurements
JP5235848B2 (en) Orbit estimation system
Pan et al. A novel fractional order PID navigation guidance law by finite time stability approach
JP5748532B2 (en) Flying object monitoring device
KR20160073052A (en) Active center of gravity and moment of inertia control method by detecting center of gravity offset in real time
US11061107B1 (en) System and method for intercepting an exo-atmospheric target using passive ranging estimation
CN114442654B (en) Satellite image composite guidance method
WO2022176734A1 (en) Flight path model selection method, flying object tracking system, flying object handling system, and ground system
US20200182590A1 (en) Method and system of determining miss-distance
WO2022137623A1 (en) Satellite constellation, flying body handling system, information collection system, satellite information transmission system, satellite, hybrid constellation, hybrid constellation formation method, ground system, mission satellite, and ground facility
Fasano et al. A stereo-vision based system for autonomous navigation of an in-orbit servicing platform
JP7394801B2 (en) Gliding flying object tracking method, flying object tracking system, flying object countermeasure system, and ground system
Gao et al. SIMU/Triple star sensors integrated navigation method of HALE UAV based on atmospheric refraction correction
RU2686453C1 (en) Aircraft navigation method
Dell'Elce et al. Orbital rendez-vous using differential drag in the QB50 constellation
Wagner et al. Cassini-Huygens maneuver experience: second year of saturn tour
WO2022176733A1 (en) Flight location derivation method, flying body tracking system, terrestrial system, and flying body addressing system
Zhang et al. Deep data fusion method for missile-borne inertial/celestial system
RU2751433C1 (en) Method for target designation by direction of guidance system of controlled object
WO2022176890A1 (en) Flying object handling system, defense information integration center, communication route search device, flight path prediction device, handling asset selection device, satellite system above equator, polar-orbit satellite system, and monitoring satellite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250