JP2011080439A - Device for detecting abnormality of particulate filter - Google Patents

Device for detecting abnormality of particulate filter Download PDF

Info

Publication number
JP2011080439A
JP2011080439A JP2009234860A JP2009234860A JP2011080439A JP 2011080439 A JP2011080439 A JP 2011080439A JP 2009234860 A JP2009234860 A JP 2009234860A JP 2009234860 A JP2009234860 A JP 2009234860A JP 2011080439 A JP2011080439 A JP 2011080439A
Authority
JP
Japan
Prior art keywords
temperature
detection
particulate filter
sensor
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009234860A
Other languages
Japanese (ja)
Inventor
Hiroshige Matsuoka
弘芝 松岡
Shinya Teranishi
真哉 寺西
Takashi Sawada
高志 澤田
Hideaki Ito
英明 伊藤
Hirofumi Takeuchi
博文 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2009234860A priority Critical patent/JP2011080439A/en
Priority to DE102010042226A priority patent/DE102010042226A1/en
Publication of JP2011080439A publication Critical patent/JP2011080439A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/0245Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by increasing temperature of the exhaust gas leaving the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/12Other sensor principles, e.g. using electro conductivity of substrate or radio frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/228Warning displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new method using an electric resistance type emitted particulate sensor for determining existence of abnormality of a particulate filter. <P>SOLUTION: The particulate filter DPF is disposed in an exhaust pipe 2 of a diesel engine and particulate matter PM passing through the filter in abnormal time is detected by an electric resistance type PM sensor 1. An electronic control unit ECU compares output values of a detection part 100 under a first temperature condition where exhaust gas temperature T1 and temperature T2 of a pair of detection electrodes 11, 12 of the PM sensor 1 are same and under second temperature condition of T2>T1, and determines abnormality when difference value exceeds a prescribed value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、車両用内燃機関の排出ガス中に存在する微粒子状物質を捕集するパティキュレートフィルタの異常検出装置に関し、特に、電気抵抗式の排出微粒子センサを用いて、パティキュレートフィルタをすり抜ける微粒子状物質の量を検出することにより破損等の異常を検出する装置に関するものである。   The present invention relates to a particulate filter abnormality detection device that collects particulate matter present in exhaust gas from an internal combustion engine for a vehicle, and more particularly, particulates that pass through a particulate filter using an electrical resistance type exhaust particulate sensor. The present invention relates to an apparatus for detecting an abnormality such as breakage by detecting the amount of a particulate material.

自動車用ディーゼルエンジン等において、排出ガスに含まれる環境汚染物質、特に微粒子状炭素(Soot)および可溶性有機成分(SOF)を主体とする微粒子状物質(Particulate Matter;以下、適宜PMと称する)を捕集するために、排気通路にディーゼルパティキュレートフィルタ(以下、適宜DPFと称する)を設置することが行われている。DPFは、一般に、耐熱性に優れる多孔質セラミックスからなり、多数の細孔を有する隔壁に排出ガスを通過させてPMを捕捉する。さらに、PM捕集量が規定量を超えると、ヒータ加熱あるいはポスト噴射等により高温の燃焼排気ガスをDPF内に導入し、PMを燃焼除去してDPFを再生させる。再生時期の判断には、例えば、PM捕集量の増加により前後差圧が増大することを利用することができ、差圧センサの検出結果に基づいてPM捕集量を検出している。   In automobile diesel engines, etc., environmental pollutants contained in exhaust gas, especially particulate matter (Particulate Matter; hereinafter referred to as PM as appropriate), mainly composed of particulate carbon (Soot) and soluble organic components (SOF), are captured. In order to collect, a diesel particulate filter (hereinafter referred to as DPF as appropriate) is installed in the exhaust passage. The DPF is generally made of porous ceramics having excellent heat resistance, and traps PM by passing exhaust gas through a partition wall having a large number of pores. Further, when the amount of collected PM exceeds a specified amount, high-temperature combustion exhaust gas is introduced into the DPF by heater heating or post injection, and PM is burned and removed to regenerate the DPF. For example, the regeneration time can be determined by using the fact that the differential pressure increases due to an increase in the amount of collected PM, and the amount of collected PM is detected based on the detection result of the differential pressure sensor.

一方、特許文献1、2には、排出ガス中のPMを直接検出するためのセンサが提案されている。特許文献1、2は、微粒子状炭素が導電性を有することを利用した電気抵抗式のセンサであり、絶縁性を有する基板の表面に、一対の導電性電極を形成した基本構成を有している。このセンサを、PMが含まれる排出ガスの通路に配置すると、検出部となる電極間に、微粒子状炭素が付着することによる抵抗値の変化から、PMを検出することができる。また、特許文献1には、基板の裏面または内部に発熱体を形成し、検出部の温度を400℃〜600℃に加熱すると、抵抗変化量が大きく、回復時間が短くなって、検出精度が向上することが開示されている。   On the other hand, Patent Documents 1 and 2 propose a sensor for directly detecting PM in exhaust gas. Patent Documents 1 and 2 are electrical resistance type sensors that utilize the conductivity of particulate carbon, and have a basic configuration in which a pair of conductive electrodes are formed on the surface of an insulating substrate. Yes. When this sensor is disposed in the exhaust gas passage containing PM, PM can be detected from a change in resistance value caused by the adhesion of particulate carbon between the electrodes serving as the detection units. Further, in Patent Document 1, when a heating element is formed on the back surface or inside of a substrate and the temperature of the detection unit is heated to 400 ° C. to 600 ° C., the resistance change amount is large, the recovery time is shortened, and the detection accuracy is improved. It is disclosed to improve.

そこで、電気抵抗式のセンサをDPFの上流に設置して、DPFに流入するPM量を測定し、あるいはDPFの下流に設置して、DPFをすり抜けるPM量を測定することが検討されている。前者は差圧センサに代わる再生時期の判断に、後者は、DPFの作動状態の監視、劣化や破損等の判断に利用される。近年は、環境汚染防止のために、車載式故障診断装置(OBD;On Board Diagnosis)の設置が義務付けられており、後者の重要性が増している。なお、PMを検出する技術としては、他に触媒と熱電対を用いてPMの酸化反応による発熱を検出するセンサや、波長可変ダイオードレーザを用いて排出ガスの化学種や温度をモニタリングする方法が知られるが、電気抵抗式のセンサは、簡易な構成で比較的安定した出力が得られる利点がある。   Therefore, it has been studied to install an electrical resistance type sensor upstream of the DPF and measure the amount of PM flowing into the DPF, or install it downstream of the DPF and measure the amount of PM passing through the DPF. The former is used for determining the regeneration time instead of the differential pressure sensor, and the latter is used for monitoring the operating state of the DPF and determining deterioration, breakage, and the like. In recent years, in order to prevent environmental pollution, the installation of an onboard diagnosis (OBD) is obligatory, and the importance of the latter is increasing. In addition, as a technique for detecting PM, there are a sensor for detecting heat generated by oxidation reaction of PM using a catalyst and a thermocouple, and a method for monitoring chemical species and temperature of exhaust gas using a wavelength tunable diode laser. As is known, the electric resistance type sensor has an advantage that a relatively stable output can be obtained with a simple configuration.

故障診断について、特許文献2には、電気抵抗式のセンサの一対の電極間に、多孔質導電材よりなる検出電極を挿入配置し、常時微量の電流が流れる構成とすることで、より少量のPMを検出可能とすることが開示されている。また、特許文献3、4には、DPFから漏れ出るPM量を測定する電気抵抗式のセンサを含む故障判定システムが提案されている。特許文献3の故障センサは、DPFに導入されるPM量を決定する上流センサと、DPFから漏れるPM量を測定する下流センサを備え、上流センサによるPM量を積算してDPFから漏れると推定されるPM量を決定し、下流センサによる測定値との比較から故障を検出する。特許文献4には、DPFの下流に、PMが付着する電気絶縁層に相互に離間して設けた複数の電極を有するセンサを配置し、複数の電極間の電気抵抗値に相関する指標を計測して、計測値が所定基準より小さくなるとDPF故障と判定するECUを備えた故障判定装置が開示されている。   Regarding failure diagnosis, Patent Document 2 discloses a configuration in which a detection electrode made of a porous conductive material is inserted between a pair of electrodes of an electric resistance type sensor so that a small amount of current always flows. It is disclosed that PM can be detected. Patent Documents 3 and 4 propose a failure determination system including an electric resistance type sensor that measures the amount of PM leaking from the DPF. The failure sensor of Patent Document 3 includes an upstream sensor that determines the amount of PM introduced into the DPF and a downstream sensor that measures the amount of PM leaking from the DPF, and is estimated to leak from the DPF by integrating the PM amount from the upstream sensor. The amount of PM to be determined is determined, and a failure is detected from comparison with the measured value by the downstream sensor. In Patent Document 4, a sensor having a plurality of electrodes provided on an electrical insulating layer to which PM adheres is disposed downstream of the DPF, and an index correlating with an electrical resistance value between the plurality of electrodes is measured. Thus, a failure determination device including an ECU that determines that a DPF failure occurs when a measured value becomes smaller than a predetermined reference is disclosed.

特公平2−44386号公報Japanese Examined Patent Publication No. 2-44386 特開2006−266961号公報JP 2006-266961 A 特開2008−298071号公報JP 2008-298071 A 特開2009−144577号公報JP 2009-1444577 A

ところが、電気抵抗式のセンサは、特許文献1に示されるように、温度依存性があり、検出部の温度に応じて抵抗値が変化する。このため、特許文献2においては、予め周囲の温度変化と電気抵抗の値との関係を求めておき、温度測定部によって得られた温度により検出した電気抵抗の値を補正するようになっている。また、補正した電気抵抗値と初期値との差からPM量を算出するために、予め実験等を行ってPM堆積量と電気抵抗値(もしくは変化量)の関係を調べておく必要があり、さらに、正常な状態での検出量を予め調べて特定しておき、算出したPM量と比較することによって、DPFによる捕集が正常に行われているかどうかを判断することになる。   However, as shown in Patent Document 1, the electrical resistance type sensor has temperature dependence, and the resistance value changes according to the temperature of the detection unit. For this reason, in Patent Document 2, the relationship between the ambient temperature change and the electrical resistance value is obtained in advance, and the electrical resistance value detected by the temperature obtained by the temperature measurement unit is corrected. . In addition, in order to calculate the PM amount from the difference between the corrected electrical resistance value and the initial value, it is necessary to investigate the relationship between the PM deposition amount and the electrical resistance value (or change amount) by conducting an experiment or the like in advance. Furthermore, the detection amount in the normal state is examined and specified in advance, and it is determined whether or not the collection by the DPF is normally performed by comparing with the calculated PM amount.

しかしながら、エンジンからの排出ガスに含まれるPM量は、運転状態(負荷や回転数)によっても大きく変化する。PMが増加する傾向は、負荷が高くなるほど、例えば、エンジン始動時のような低回転数から高回転数までの全域でPM量が多くなる。また出力領域まで回転数が高くなるとPM量が増加する傾向がある。さらに運転状態によって、排出されるPMの性状や粒子分布が変動すると、DPFをすり抜けるPM量も変動する。そのため、DPFの性能低下や破損の有無を判定するには、運転状態に対して予め求めておいたPM量マップと現在のPM量を比較することになるが、全運転領域をマップ化することは容易でない。また、DPFへのPM堆積状態によっても、PMのすり抜け量は変動することから、PM堆積量との関係もマップ化する必要があり、格納するマップ量を増大する上、故障判定の工程も煩雑になる問題がある。   However, the amount of PM contained in the exhaust gas from the engine also varies greatly depending on the operating state (load and rotation speed). The tendency for the PM to increase is that, as the load becomes higher, for example, the amount of PM increases in the entire region from a low rotation speed to a high rotation speed as when the engine is started. Further, the PM amount tends to increase as the rotational speed increases to the output region. Furthermore, when the properties and particle distribution of the discharged PM vary depending on the operating state, the amount of PM that passes through the DPF also varies. Therefore, in order to determine the presence or absence of performance degradation or damage of the DPF, the current PM amount is compared with the PM amount map obtained in advance with respect to the operating state. Is not easy. Further, since the amount of passing PM varies depending on the PM accumulation state on the DPF, it is necessary to map the relationship with the PM accumulation amount, and the map amount to be stored is increased, and the failure determination process is complicated. There is a problem to become.

また、特許文献3には、故障を判定するための具体的な方法が記載されていない。特許文献4の故障判定は、特許文献2と同様に、予め求めておいたPM堆積量と電気抵抗値との関係から、故障判定閾値を求めておくものである。そして、モニタした電極間抵抗値が閾値より小さくなったら軽微な故障とするが、この閾値については、OBD基準値を基準にするとされるものの、運転状態等の具体的な記載はなく、同様の問題が生じる懸念がある。   Patent Document 3 does not describe a specific method for determining a failure. In the failure determination of Patent Document 4, as in Patent Document 2, a failure determination threshold value is obtained from the relationship between the PM accumulation amount and the electrical resistance value obtained in advance. And, if the monitored interelectrode resistance value becomes smaller than the threshold value, it is considered as a minor failure. Although this threshold value is based on the OBD reference value, there is no specific description of the operating state and the like. There are concerns about problems.

そこで本発明は、内燃機関の排出ガスを処理するDPFの異常の有無を判断するための、電気抵抗式の排出微粒子センサを用いた新規な手法を提供し、簡易な構成で、大量のマップや煩雑な補正処理の必要がなく、応答性および精度の高い異常検出装置を実現することを目的とする。   Therefore, the present invention provides a novel method using an electric resistance type exhaust particle sensor for determining the presence or absence of an abnormality in a DPF that processes exhaust gas of an internal combustion engine, and has a simple configuration and a large number of maps and It is an object of the present invention to realize an abnormality detection device with high responsiveness and accuracy without requiring complicated correction processing.

本発明の請求項1に記載の発明は、
内燃機関の排気通路に配設されて排出ガス中の微粒子状物質を捕集するパティキュレートフィルタと、
該パティキュレートフィルタの下流に設置されて、排出ガス中の微粒子状物質の量を検出する排出微粒子センサと、
該排出微粒子センサの検出結果に基づいて、上記パティキュレートフィルタの異常を検出する異常検出部を備え、
上記排出微粒子センサは、絶縁性基体の表面に一対の検出電極を形成した検出部と、該検出部を所定温度に加熱するヒータ部を有し、上記一対の検出電極間に付着する微粒子状物質の量に応じて電気抵抗値が変化する構成であり、
上記異常検出部は、上記排出ガスの温度をT1、上記検出部の上記一対の検出電極の温度をT2とした時に、上記一対の検出電極の温度T2と上記排出ガスの温度T1が等しい第1の温度条件における上記検出部の出力値と、上記一対の検出電極の温度T2が上記排出ガスの温度T1より高い第2の温度条件における上記検出部の出力値とを比較し、その差分値または比の値が所定値を超えた時に、パティキュレートフィルタの異常と判定する判定手段を備える。
The invention according to claim 1 of the present invention provides
A particulate filter disposed in the exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust gas;
An exhaust particulate sensor installed downstream of the particulate filter to detect the amount of particulate matter in the exhaust gas;
An abnormality detection unit that detects an abnormality of the particulate filter based on a detection result of the discharged particulate sensor,
The discharged particulate sensor has a detection part in which a pair of detection electrodes are formed on the surface of an insulating substrate, and a heater part for heating the detection part to a predetermined temperature, and the particulate matter adhered between the pair of detection electrodes The electrical resistance value changes according to the amount of
When the temperature of the exhaust gas is T1, and the temperature of the pair of detection electrodes of the detection unit is T2, the abnormality detection unit has a first temperature T1 of the pair of detection electrodes equal to a temperature T1 of the exhaust gas. The output value of the detection unit under the temperature condition is compared with the output value of the detection unit under the second temperature condition in which the temperature T2 of the pair of detection electrodes is higher than the temperature T1 of the exhaust gas. A determination unit is provided that determines that the particulate filter is abnormal when the ratio value exceeds a predetermined value.

本発明の請求項2に記載の発明において、上記異常検出部は、上記第2の温度条件における上記一対の検出電極の温度T2と上記排出ガスの温度T1の差が、50℃〜200℃の範囲となるように、上記一対の検出電極の温度T2を設定する。   In the invention according to claim 2 of the present invention, the abnormality detection unit has a difference between the temperature T2 of the pair of detection electrodes and the temperature T1 of the exhaust gas in the second temperature condition of 50 ° C. to 200 ° C. The temperature T2 of the pair of detection electrodes is set so as to be in the range.

本発明の請求項3に記載の発明において、上記異常検出部は、上記第2の温度条件における上記一対の検出電極の温度T2と上記排出ガスの温度T1の差を、上記内燃機関の温度または負荷を含む運転条件に基づいて設定する。   In the invention according to claim 3 of the present invention, the abnormality detection unit calculates the difference between the temperature T2 of the pair of detection electrodes and the temperature T1 of the exhaust gas under the second temperature condition, as the temperature of the internal combustion engine or Set based on operating conditions including load.

本発明の請求項4に記載の発明において、上記排出微粒子センサは、上記排気通路に位置する上記絶縁性基体の先端部表面に、櫛歯状の上記一対の検出電極とリード部を形成して上記検出部とし、上記絶縁性基体の先端部裏面に、ヒータ電極およびリード部を形成して上記ヒータ部とする。   In the invention according to claim 4 of the present invention, the exhaust particulate sensor is formed by forming the pair of comb-like detection electrodes and the lead portion on the surface of the distal end portion of the insulating base located in the exhaust passage. A heater electrode and a lead part are formed on the back surface of the front end of the insulating substrate to form the heater part.

本発明の請求項1に記載の発明は、電気抵抗式の排出微粒子センサを用いた新規な手法によりパティキュレートフィルタの異常検出を行う。パティキュレートフィルタに破損等の異常が生じると、排出ガス中の微粒子状物質がパティキュレートフィルタをすり抜けて、下流の排出微粒子センサに流入する。異常検出部は、排出微粒子センサの検出部をヒータ部によって加熱し、排出ガス温度T1と検出電極の温度T2が等しくなるようにした第1の温度条件と、これより検出電極の温度T2が高くなるようにした第2の温度条件において、それぞれセンサ出力値を得る。ここで、異常時にパティキュレートフィルタをすり抜ける微粒子状物質は比較的粗大な粒子が多く、熱泳動の影響を受けやすいために、第1の温度条件よりも高い第2の温度条件では微粒子状物質が付着しにくくなる。   The invention according to claim 1 of the present invention detects an abnormality of a particulate filter by a novel method using an electric resistance type discharged particulate sensor. When an abnormality such as breakage occurs in the particulate filter, the particulate matter in the exhaust gas passes through the particulate filter and flows into the exhaust particulate sensor downstream. The abnormality detection unit heats the detection unit of the exhaust particulate sensor by the heater unit, and the first temperature condition in which the exhaust gas temperature T1 and the detection electrode temperature T2 are equal, and the detection electrode temperature T2 is higher than this. The sensor output value is obtained for each of the second temperature conditions. Here, since the particulate matter that passes through the particulate filter at the time of abnormality is relatively coarse particles and is easily affected by thermophoresis, the particulate matter is not suitable for the second temperature condition higher than the first temperature condition. It becomes difficult to adhere.

このため、これら2水準の温度で検出されたセンサ出力値は、パティキュレートフィルタに異常がある場合、その差分値が正常な場合に比べて大きくなる。したがって、これら出力値を比較することで、パティキュレートフィルタが正常に機能しているかどうかを容易に判定することができる。よって、簡易な構成で、大量のマップや煩雑な補正処理が不要であり、応答性よく高精度な異常検出装置を実現できる。   For this reason, the sensor output value detected at these two levels of temperatures is larger when the particulate filter is abnormal than when the difference value is normal. Therefore, by comparing these output values, it is possible to easily determine whether the particulate filter is functioning normally. Therefore, a simple configuration and a large amount of maps and complicated correction processing are unnecessary, and a highly responsive and accurate abnormality detection apparatus can be realized.

本発明の請求項2に記載の発明のように、具体的には、上記第2の温度条件にて上記一対の検出電極の温度T2と上記排出ガスの温度T1の差を50℃以上とすれば、センサ出力値の差分値に基づく異常判定が可能である。また、200℃を超えても出力値は大きく変わらず、昇温に必要なエネルギーが大きくなるので、適切な温度差に設定することで、効果的に異常検出ができる。   Specifically, as in the second aspect of the present invention, specifically, the difference between the temperature T2 of the pair of detection electrodes and the temperature T1 of the exhaust gas is set to 50 ° C. or more under the second temperature condition. For example, abnormality determination based on the difference value of the sensor output value is possible. Further, even if the temperature exceeds 200 ° C., the output value does not change greatly, and the energy required for the temperature rise increases, so that an abnormality can be detected effectively by setting an appropriate temperature difference.

本発明の請求項3に記載の発明のように、好適には、内燃機関の温度あるいは負荷により上記一対の検出電極の温度T2と上記排出ガスの温度T1の差を設定する。例えば低温または低負荷運転条件では、未燃焼のHCが排出されやすく、微粒子状物質も付着しやすくなるので、上記一対の検出電極の温度T2と上記排出ガスの温度T1の差を小さくすることができ、効率よい検出が可能になる。逆に高負荷運転条件では温度差を大きくする方がよく、精度よい判定を行うことができる。   As in the third aspect of the present invention, the difference between the temperature T2 of the pair of detection electrodes and the temperature T1 of the exhaust gas is preferably set according to the temperature or load of the internal combustion engine. For example, under low-temperature or low-load operation conditions, unburned HC is likely to be discharged and particulate matter is likely to adhere, so the difference between the temperature T2 of the pair of detection electrodes and the temperature T1 of the exhaust gas can be reduced. And efficient detection is possible. Conversely, it is better to increase the temperature difference under high-load operation conditions, and accurate determination can be made.

本発明の請求項4に記載の発明のように、上記排出微粒子センサは、上記絶縁性基体の先端部に上記検出部を形成して排気通路に設置し、その裏面に上記ヒータ部を配置するとよく、効率よく検出部を加熱して高精度な異常判定が可能である。   As in the invention according to claim 4 of the present invention, the exhaust particulate sensor is configured such that the detection part is formed at the tip of the insulating substrate and installed in the exhaust passage, and the heater part is arranged on the back surface thereof. The detection part can be efficiently heated and the abnormality can be determined with high accuracy.

本発明の第1実施形態において、異常検出部となる電子制御ユニットが備える判定手段の内容を示すフローチャートである。In 1st Embodiment of this invention, it is a flowchart which shows the content of the determination means with which the electronic control unit used as an abnormality detection part is provided. 本発明の異常検出装置が適用されるディーゼルエンジンのシステム全体概略図である。1 is an overall system diagram of a diesel engine to which an abnormality detection device of the present invention is applied. PMセンサの主要部であるPM検出素子構成を示す図である。It is a figure which shows PM detection element structure which is the principal part of PM sensor. PMセンサを、ディーゼルエンジンの排気管に取り付けた状態を示す図である。It is a figure which shows the state which attached PM sensor to the exhaust pipe of the diesel engine. PM堆積量と電極間抵抗値の関係を示す図である。It is a figure which shows the relationship between PM deposition amount and inter-electrode resistance value. PMセンサの検出部の昇温度と抵抗変化率の関係を、正常時と異常時とで比較して示す図である。It is a figure which shows the relationship between the temperature rise of the detection part of PM sensor, and resistance change rate by the time of normal time and the time of abnormality. PMセンサの検出部の昇温度と抵抗変化率の関係を、排気温度の高い時と低い時とで比較して示す図である。It is a figure which shows the relationship between the temperature increase of the detection part of PM sensor, and resistance change rate, when the exhaust temperature is high and when it is low.

本発明のパティキュレートフィルタの異常検出装置を、内燃機関である自動車用ディーゼルエンジンの排ガス浄化システムへ適用した第1実施形態について、図面を参照しながら説明する。図2は、ディーゼルエンジンE/Gのシステム全体概略図で、各気筒に共通のコモンレールRに、高圧ポンプPMPにて昇圧した高圧燃料を所定の噴射圧となるように蓄圧するコモンレール燃料噴射システムを採用し、インジェクタINJによって燃焼室内に直接噴射する直噴エンジンとして構成されている。内部を排気通路とする排気管2には、パティキュレートフィルタであるディーゼルパティキュレートフィルタDPFと、排出微粒子センサであるPMセンサ1が設けられ、異常検出部となる電子制御ユニットECUとともに、本発明のパティキュレートフィルタの異常検出装置を構成している。図1は、電子制御ユニットECUによる異常検出処理のフローチャートで、詳細は後述する。   A first embodiment in which the particulate filter abnormality detection device of the present invention is applied to an exhaust gas purification system for an automobile diesel engine, which is an internal combustion engine, will be described with reference to the drawings. FIG. 2 is a schematic diagram of the entire system of the diesel engine E / G. A common rail fuel injection system for accumulating high pressure fuel boosted by a high pressure pump PMP to a common rail R common to each cylinder so as to become a predetermined injection pressure. Adopted as a direct injection engine that is directly injected into the combustion chamber by an injector INJ. The exhaust pipe 2 having the inside as an exhaust passage is provided with a diesel particulate filter DPF that is a particulate filter and a PM sensor 1 that is an exhaust particulate sensor, and together with an electronic control unit ECU serving as an abnormality detection unit, This constitutes an abnormality detection device for the particulate filter. FIG. 1 is a flowchart of abnormality detection processing by the electronic control unit ECU, which will be described in detail later.

図2において、ディーゼルエンジンE/Gの排気マニホールドMHEXには、タービンTRBが設けられ、タービンTRBに連動して過給器TRBCGRが回転すると、圧縮された空気がインタクーラCLRINTを通過して吸気マニホールドMHINに送られる。排気マニホールドMHEXから排出される燃焼排気の一部はEGRバルブVEGRおよびEGRクーラCLREGRを介して吸気マニホールドMHINに還流する。過給により吸気量を増大して燃焼効率を高め、EGRにより燃焼を緩やかにしてNOx等の排出を抑制する。 In FIG. 2, the exhaust manifold MH EX of the diesel engine E / G is provided with a turbine TRB. When the turbocharger TRB CGR rotates in conjunction with the turbine TRB, the compressed air passes through the intercooler CLR INT. Sent to the intake manifold MH IN . A part of the combustion exhaust discharged from the exhaust manifold MH EX returns to the intake manifold MH IN via the EGR valve V EGR and the EGR cooler CLR EGR . The intake amount is increased by supercharging to increase combustion efficiency, and the combustion is moderated by EGR to suppress the emission of NOx and the like.

排気マニホールドMHEXに接続する排気管2には、ディーゼル酸化触媒DOCおよびディーゼルパティキュレートフィルタDPFが設けられ、燃焼排気ガスを処理する。すなわち、排気管2に排出された燃焼排気ガスは、上流側のディーゼル酸化触媒DOCを通過する間に、未燃焼の炭化水素HC、一酸化炭素COおよび一酸化窒素NOが酸化され、下流側のディーゼルパティキュレートフィルタDPFを通過する間に、微粒子状物質PMが捕集される。NOx除去には、例えば、ディーゼルパティキュレートフィルタDPFの後段に、図略の選択触媒還元SCR等が設けられて、NOxをNとHOに還元して除去する。 The exhaust pipe 2 connected to the exhaust manifold MH EX is provided with a diesel oxidation catalyst DOC and a diesel particulate filter DPF, and processes combustion exhaust gas. That is, while the combustion exhaust gas discharged to the exhaust pipe 2 passes through the upstream diesel oxidation catalyst DOC, unburned hydrocarbons HC, carbon monoxide CO, and nitrogen monoxide NO are oxidized, and the downstream side While passing through the diesel particulate filter DPF, the particulate matter PM is collected. For NOx removal, for example, a selective catalyst reduction SCR (not shown) or the like is provided after the diesel particulate filter DPF, and NOx is reduced to N 2 and H 2 O and removed.

ディーゼル酸化触媒DOCは公知のモノリス担体、例えばコーディエライト等のセラミックスハニカム構造体よりなる担体表面に、酸化触媒を担持してなる。ディーゼル酸化触媒DOCは、ディーゼルパティキュレートフィルタDPFの強制再生時に、供給される燃料の酸化燃焼により排気温度を上昇させ、あるいは微粒子状物質PM中のSOF成分を酸化除去する。また、NOの酸化により生成するNOは、後段のディーゼルパティキュレートフィルタDPFに堆積した微粒子状物質PMの酸化剤として使用され、連続的な酸化を可能にする。 The diesel oxidation catalyst DOC is formed by supporting an oxidation catalyst on a known monolithic carrier, for example, a carrier surface made of a ceramic honeycomb structure such as cordierite. The diesel oxidation catalyst DOC raises the exhaust temperature by oxidative combustion of the supplied fuel or oxidizes and removes the SOF component in the particulate matter PM during forced regeneration of the diesel particulate filter DPF. Further, NO 2 generated by oxidation of NO is used as an oxidant for the particulate matter PM deposited on the diesel particulate filter DPF at the subsequent stage, and enables continuous oxidation.

ディーゼルパティキュレートフィルタDPFは、公知のウォールフロータイプのフィルタ構造を有する。例えば、コーディエライト等の耐熱性セラミックスよりなる多孔質セラミックスハニカム構造体を成形し、ガス流路となる多数のセルの入口側または出口側のいずれか一方を、隣接するセルで互い違いになるように目封じしてフィルタとする。この時、ガス流路を区画するセル壁を貫通して多数の細孔が形成され、ディーゼルパティキュレートフィルタDPFに導入される排出ガス中の微粒子状物質PMを捕獲する。なお、ここでは、ディーゼル酸化触媒DOCとディーゼルパティキュレートフィルタDPFを別体に設けているが、これらを一体化した連続再生式ディーゼルパティキュレートフィルタとして構成することもできる。   The diesel particulate filter DPF has a known wall flow type filter structure. For example, a porous ceramic honeycomb structure made of heat-resistant ceramics such as cordierite is formed, and either the inlet side or the outlet side of a large number of cells serving as gas flow paths are staggered in adjacent cells. Seal the filter to make a filter. At this time, a large number of pores are formed through the cell walls defining the gas flow path, and the particulate matter PM in the exhaust gas introduced into the diesel particulate filter DPF is captured. Here, although the diesel oxidation catalyst DOC and the diesel particulate filter DPF are provided separately, they can be configured as a continuous regenerative diesel particulate filter in which these are integrated.

本実施形態では、ディーゼルパティキュレートフィルタDPFに堆積した微粒子状物質PMの量(PM捕集量)を知るために、差圧センサSPが設けられる。差圧センサSPは、圧力導入管を介してディーゼルパティキュレートフィルタDPFの上流側および下流側と接続されており、その前後差圧に応じた信号を電子制御ユニットECUに出力する。また、ディーゼル酸化触媒DOCの上流および、ディーゼルパティキュレートフィルタDPFの上下流には、温度センサST1、ST2、ST3が配設されて、各部の排気温度を監視している。電子制御ユニットECUは、これら出力に基づいてディーゼル酸化触媒DOCの触媒活性状態やディーゼルパティキュレートフィルタDPFのPM捕集状態を監視し、PM捕集量が許容量を超えると、強制再生を行って微粒子状物質PMを燃焼除去する再生制御を実施する。   In the present embodiment, a differential pressure sensor SP is provided in order to know the amount of particulate matter PM deposited on the diesel particulate filter DPF (PM trapping amount). The differential pressure sensor SP is connected to the upstream side and the downstream side of the diesel particulate filter DPF via a pressure introduction pipe, and outputs a signal corresponding to the differential pressure before and after to the electronic control unit ECU. Further, temperature sensors ST1, ST2, and ST3 are disposed upstream of the diesel oxidation catalyst DOC and upstream and downstream of the diesel particulate filter DPF to monitor the exhaust temperature of each part. The electronic control unit ECU monitors the catalytic activation state of the diesel oxidation catalyst DOC and the PM collection state of the diesel particulate filter DPF based on these outputs, and performs forced regeneration when the PM collection amount exceeds the allowable amount. Regeneration control for burning and removing the particulate matter PM is performed.

電子制御ユニットECUによる再生制御では、例えばポスト噴射等を行って排気中のHCを増量し、ディーゼル酸化触媒DOCでのHC反応熱によりディーゼルパティキュレートフィルタDPFの温度を、微粒子状物質PMの燃焼温度以上に上昇させる。この時、ディーゼルパティキュレートフィルタDPFの入ガス温度、出ガス温度を監視して、ディーゼルパティキュレートフィルタDPFが所定の温度範囲となるように制御する。微粒子状物質PMが自然燃焼可能な運転条件では、再生制御を実施しない設定とすることで、燃料消費を抑制することもできる。電子制御ユニットECUは、さらに図示しない各種センサからの検出信号が入力しており、これら信号に基づく最適な燃料噴射量、噴射時期、噴射圧等を算出して、燃料噴射を制御する。   In the regeneration control by the electronic control unit ECU, for example, post injection is performed to increase the amount of HC in the exhaust, the temperature of the diesel particulate filter DPF is changed by the heat of HC reaction in the diesel oxidation catalyst DOC, and the combustion temperature of the particulate matter PM. Raise more. At this time, the inlet gas temperature and the outlet gas temperature of the diesel particulate filter DPF are monitored, and the diesel particulate filter DPF is controlled to be in a predetermined temperature range. Under the operating conditions in which the particulate matter PM can spontaneously burn, the fuel consumption can be suppressed by setting the regeneration control not to be performed. The electronic control unit ECU further receives detection signals from various sensors (not shown), calculates the optimum fuel injection amount, injection timing, injection pressure, and the like based on these signals, and controls fuel injection.

ディーゼルパティキュレートフィルタDPFの下流の排気管2には、PMセンサ1が配置されて、ディーゼルパティキュレートフィルタDPFをすり抜ける微粒子状物質PMを検出する。図3は、PMセンサ1の主要部であるPM検出素子10を示す図であり、図4は、PM検出素子部10を含むPMセンサ1を排気管2に取り付けた状態を示す図である。図3において、PM検出素子10は、絶縁性基体である絶縁基板13表面に一対の検出電極11、12を形成した検出部100と、一対の検出電極11、12と外部の抵抗計測手段とを導通させるリード部111、121と、検出部100の裏面側に積層されて、これを所定温度に加熱するためのヒータ部300を有している。   A PM sensor 1 is disposed in the exhaust pipe 2 downstream of the diesel particulate filter DPF to detect particulate matter PM that passes through the diesel particulate filter DPF. FIG. 3 is a diagram showing the PM detection element 10 which is a main part of the PM sensor 1, and FIG. 4 is a diagram showing a state where the PM sensor 1 including the PM detection element unit 10 is attached to the exhaust pipe 2. In FIG. 3, the PM detection element 10 includes a detection unit 100 in which a pair of detection electrodes 11 and 12 are formed on the surface of an insulating substrate 13 that is an insulating base, a pair of detection electrodes 11 and 12, and an external resistance measurement unit. Lead portions 111 and 121 to be conducted and a heater portion 300 that is stacked on the back side of the detection portion 100 and heats the lead portions to a predetermined temperature.

検出部100は、アルミナ等の電気絶縁性および耐熱性に優れたセラミック材料をドクターブレード法、プレス成形法等の公知の手法を用いて平板状の絶縁基板13に形成し、その先端部表面に、所定の電極間距離をおいて一対の櫛歯形状の検出電極11、12を対向配設させてなる。検出電極11、12は、例えば白金等の貴金属を含む導電性ペーストを、所定のパターンに印刷して形成される。ヒータ部300は、同様にして形成した平板状の絶縁基板33と、その先端部表面に所定パターンで形成したヒータ電極30からなり、リード部31、32によって外部の通電手段に接続されている。   The detection unit 100 is formed on a flat insulating substrate 13 using a known method such as a doctor blade method or a press molding method with a ceramic material excellent in electrical insulation and heat resistance, such as alumina, and is formed on the surface of the tip portion. A pair of comb-shaped detection electrodes 11 and 12 are arranged to face each other at a predetermined inter-electrode distance. The detection electrodes 11 and 12 are formed by printing a conductive paste containing a noble metal such as platinum in a predetermined pattern. The heater unit 300 includes a flat insulating substrate 33 formed in the same manner and a heater electrode 30 formed in a predetermined pattern on the surface of the front end portion, and is connected to external energizing means by lead portions 31 and 32.

図4において、PMセンサ1は、排気管2の管壁20に螺結される筒状ハウジング50を有し、その内部に筒状インシュレータ60に挿入固定されたPM検出素子10の上半部を保持している。PM検出素子10の下半部は、筒状ハウジング50の下端部に固定されて排気管2内に突出する中空のカバー体40内に位置している。カバー体40の底部および側部には、ディーゼルパティキュレートフィルタDPFを通過した微粒子状物質PMを含む排出ガスが流通する孔410、411が穿設されている。   In FIG. 4, the PM sensor 1 has a cylindrical housing 50 that is screwed to the tube wall 20 of the exhaust pipe 2, and the upper half of the PM detection element 10 that is inserted into and fixed to the cylindrical insulator 60 is disposed therein. keeping. The lower half of the PM detection element 10 is positioned in a hollow cover body 40 that is fixed to the lower end of the cylindrical housing 50 and protrudes into the exhaust pipe 2. Holes 410 and 411 through which exhaust gas containing particulate matter PM that has passed through the diesel particulate filter DPF flows are formed in the bottom and side portions of the cover body 40.

この時、微粒子状物質PMを確実に捕捉するため、図示するように、PM検出素子10の検出部100が排気管2の上流側を向くように配置するとよい。また、検出部100を除く絶縁基板13の表面に、リード部111、112を覆って絶縁性保護層14を形成すると、リード部111、112間に微粒子状物質PMが堆積することによる誤検出を防止することができる。   At this time, in order to surely capture the particulate matter PM, it is preferable to arrange the PM detection element 10 so that the detection unit 100 faces the upstream side of the exhaust pipe 2 as illustrated. Further, when the insulating protective layer 14 is formed on the surface of the insulating substrate 13 excluding the detection unit 100 so as to cover the lead units 111 and 112, erroneous detection due to accumulation of particulate matter PM between the lead units 111 and 112 is detected. Can be prevented.

次に、PMセンサ1の基本作動について説明する。図4において、被測定ガスとなる排出ガスは、PMセンサ1のカバー体40の孔410、411から内部に導入され、PM検出素子10の検出部100に到達する。図3において、検出部100の表面には、櫛歯形状の検出電極11、12が所定の間隙を有して形成されているので、排出ガスと接触することにより、導電性の微粒子状炭素を含む微粒子状物質PMが付着し徐々に堆積すると、ある時点で検出電極11、12間が導通する。図5は、PM堆積量を一定速度で増加させた時の、検出電極11、12間の電気抵抗値の変化を示すもので、略絶縁状態である初期状態には、電極間抵抗は1×10Ω以上となっており、検出電極11、12間が導通すると、PM堆積量の増加に伴い電極間抵抗は急激に低下して1×10Ω程度となる。 Next, the basic operation of the PM sensor 1 will be described. In FIG. 4, the exhaust gas to be measured gas is introduced into the inside from the holes 410 and 411 of the cover body 40 of the PM sensor 1 and reaches the detection unit 100 of the PM detection element 10. In FIG. 3, comb-shaped detection electrodes 11 and 12 are formed on the surface of the detection unit 100 with a predetermined gap, so that conductive fine carbon particles are formed by contact with exhaust gas. When the contained particulate matter PM adheres and gradually accumulates, the detection electrodes 11 and 12 become conductive at a certain point. FIG. 5 shows changes in the electrical resistance value between the detection electrodes 11 and 12 when the PM deposition amount is increased at a constant rate. In the initial state, which is a substantially insulated state, the interelectrode resistance is 1 ×. When it is 10 7 Ω or more and the detection electrodes 11 and 12 are conductive, the resistance between the electrodes rapidly decreases with the increase in the PM deposition amount, and becomes about 1 × 10 3 Ω.

ここで、ディーゼルパティキュレートフィルタDPFに、セル壁の破損、溶損といった何らかの不具合が生じて、正常な捕集が困難になると、排出ガスとともに放出される微粒子状物質PMが増加する。そこで、従来は、PMセンサ1の検出電極11、12間を流れる電流を計測し、PM堆積量と電気抵抗値の関係に基づいて、故障判定を行っている。例えば、所定期間にディーゼルパティキュレートフィルタDPFをすり抜ける微粒子状物質PMが、正常時よりも明らかに多ければ、異常と判断することができる。   Here, if any problem such as breakage or melting of the cell wall occurs in the diesel particulate filter DPF and normal collection becomes difficult, the particulate matter PM released together with the exhaust gas increases. Therefore, conventionally, the current flowing between the detection electrodes 11 and 12 of the PM sensor 1 is measured, and failure determination is performed based on the relationship between the PM deposition amount and the electrical resistance value. For example, if the particulate matter PM that passes through the diesel particulate filter DPF during a predetermined period is clearly more than normal, it can be determined as abnormal.

ところが、前述したように、検出部100の温度により電極間抵抗または抵抗変化率は変動する。このため従来の方法では、ヒータ部300により検出部100の温度を一定に保持することが前提となる。ただし、運転状態により周囲の排気温度も大きく変動するので、検出部100を一定温度に保持するのは容易でなく、温度補正が必須となる。また、運転状態によってエンジンE/Gから排出される微粒子状物質PMの量や性質が変動するので、ディーゼルパティキュレートフィルタDPFをすり抜ける微粒子状物質PMの量も増減し、判定閾値を一定値とすると誤判定のおそれがある。あるいは、運転状態に応じたマップを基に補正を行ったり判定閾値を変更したりすることも可能であるが、マップ量が増大する。   However, as described above, the interelectrode resistance or the resistance change rate varies depending on the temperature of the detection unit 100. For this reason, in the conventional method, it is assumed that the temperature of the detection unit 100 is kept constant by the heater unit 300. However, since the surrounding exhaust temperature varies greatly depending on the operating state, it is not easy to maintain the detection unit 100 at a constant temperature, and temperature correction is essential. Further, since the amount and properties of the particulate matter PM discharged from the engine E / G vary depending on the operating state, the amount of the particulate matter PM that passes through the diesel particulate filter DPF is also increased and decreased, and the determination threshold is set to a constant value. There is a risk of misjudgment. Alternatively, it is possible to perform correction or change the determination threshold based on a map corresponding to the driving state, but the map amount increases.

本発明のパティキュレートフィルタの異常検出装置は、このような従来の不具合を解消するために、排気温度をT1、検出電極11、12の温度をT2とし、T2−T1を昇温度ΔTとした時に、PMセンサ1による微粒子状物質PMの検出を、T2=T1(昇温度ΔT=0℃)の第1の温度条件と、T2−T1>0℃の第2の温度条件において実施する。すなわち、第1の温度条件は、排気温度T1と検出部100の温度T2が等しい温度となるように、第2の温度条件は、排気温度T1より検出部100の温度T2が高い温度となるように、ヒータ部300を制御した場合であり、この2種類に設定した温度条件でのセンサ出力値を比較することで、異常の有無を判断する。   In order to eliminate such a conventional problem, the particulate filter abnormality detection device of the present invention is configured such that the exhaust temperature is T1, the detection electrodes 11 and 12 are T2, and T2-T1 is the elevated temperature ΔT. The particulate matter PM is detected by the PM sensor 1 under the first temperature condition of T2 = T1 (increased temperature ΔT = 0 ° C.) and the second temperature condition of T2−T1> 0 ° C. That is, the first temperature condition is such that the exhaust temperature T1 is equal to the temperature T2 of the detection unit 100, and the second temperature condition is such that the temperature T2 of the detection unit 100 is higher than the exhaust temperature T1. In addition, the heater unit 300 is controlled, and the presence or absence of an abnormality is determined by comparing the sensor output values under these two types of temperature conditions.

図6は、PMセンサ1の検出部100の昇温度ΔTと、初期状態から一定時間経過後のPMセンサ1の検出電極11、12間の抵抗変化率ΔRの関係を示している。ここでは、破損等がない正常なディーゼルパティキュレートフィルタDPF(正常時)と、内部のセル壁に破損が生じているディーゼルパティキュレートフィルタDPF(DPF破損時)を用意し、それぞれ昇温度ΔTを0℃〜200℃まで変化させて、検出部100の抵抗変化率ΔRを測定した。図に明らかなように、正常時には、昇温度ΔTが増加するのに伴い、抵抗変化率ΔRは徐々に低下しているが、その変化の割合は小さくほぼ一定で、昇温度ΔTが0℃と、200℃での抵抗変化率ΔRの差はわずかである。   FIG. 6 shows the relationship between the temperature increase ΔT of the detection unit 100 of the PM sensor 1 and the resistance change rate ΔR between the detection electrodes 11 and 12 of the PM sensor 1 after a predetermined time has elapsed from the initial state. Here, a normal diesel particulate filter DPF (when normal) that is not damaged and a diesel particulate filter DPF (when the DPF is damaged) in which the internal cell wall is damaged are prepared. The resistance change rate ΔR of the detection unit 100 was measured while changing the temperature from 0 ° C. to 200 ° C. As apparent from the figure, the resistance change rate ΔR gradually decreases as the temperature rise ΔT increases at normal times, but the rate of change is small and almost constant, and the temperature rise ΔT is 0 ° C. The difference in resistance change rate ΔR at 200 ° C. is slight.

これに対して、ディーゼルパティキュレートフィルタDPFに破損がある時には、微粒子状物質PMが正常時より全体に増加する。さらに、昇温度ΔTが小さいほど、抵抗変化率ΔRが大きくなり、かつ急激に変化している。この正常時とは異なる傾向は、ディーゼルパティキュレートフィルタDPFをすり抜けてPMセンサ1に堆積する微粒子状物質PMの違いによるものと推定される。つまり、正常時であれば、ディーゼルパティキュレートフィルタDPFの細孔に捕捉されにくい微細粒子(例えば0.1μm〜0.01μm程度)であり、一方、クラック等の破損が生じると、微粒子状物質PMのすり抜け量が増大し、特に粗大粒子(例えば1μm〜10μm程度)が増加する。そして、1μm以上の粗大粒子は、熱泳動の影響を受けやすいことから、昇温度ΔTによってPMセンサ1への付着率が変化すると考えられる。   On the other hand, when the diesel particulate filter DPF is damaged, the particulate matter PM increases as a whole from the normal time. Furthermore, as the temperature increase ΔT is smaller, the resistance change rate ΔR is larger and changes more rapidly. It is presumed that the tendency different from the normal time is due to the difference in particulate matter PM that passes through the diesel particulate filter DPF and accumulates on the PM sensor 1. That is, fine particles (eg, about 0.1 μm to 0.01 μm) that are difficult to be trapped in the pores of the diesel particulate filter DPF under normal conditions. On the other hand, if damage such as cracks occurs, the particulate matter PM The amount of slipping increases, and in particular, coarse particles (for example, about 1 μm to 10 μm) increase. Since coarse particles of 1 μm or more are easily affected by thermophoresis, it is considered that the adhesion rate to the PM sensor 1 varies depending on the temperature rise ΔT.

熱泳動は、温度勾配のある場に存在する微小粒子が、粒子と気体分子との相互作用により、高温側から低温側へ移動する現象である。PMセンサ1の検出部100の温度が、導入される排気温度と同等で、温度差がなければ、排出ガス中の微粒子状物質PMは検出部100に到達し、堆積する。ところが、PMセンサ1の検出部100の温度を高くすると、付近の気体分子の運動量がより大きくなり、低温側へ向かう力となる。気体分子との衝突は、粒子が大きいほど頻度が高くなるから、微粒子状物質PM、特に1μm以上の粗大粒子は、熱泳動力を受けて検出部100への付着率(抵抗変化率)が低下し、温度差がない場合との付着率(抵抗変化率)の差が大きくなる。一方、正常時には、微細粒子が主体であるために熱泳動力を受けにくいと推定される。   Thermophoresis is a phenomenon in which fine particles existing in a temperature gradient field move from a high temperature side to a low temperature side due to the interaction between the particles and gas molecules. If the temperature of the detection unit 100 of the PM sensor 1 is equal to the exhaust gas temperature to be introduced and there is no temperature difference, the particulate matter PM in the exhaust gas reaches the detection unit 100 and accumulates. However, when the temperature of the detection unit 100 of the PM sensor 1 is increased, the momentum of the nearby gas molecules becomes larger, resulting in a force toward the low temperature side. Since collisions with gas molecules become more frequent as the particles become larger, the particulate matter PM, especially coarse particles of 1 μm or more, receives a thermophoretic force and decreases the adhesion rate (resistance change rate) to the detection unit 100. However, the difference in adhesion rate (resistance change rate) from the case where there is no temperature difference becomes large. On the other hand, it is presumed that during normal times, it is difficult to receive thermophoretic force because it is mainly composed of fine particles.

図7は、排気温度が低い場合と排気温度が高い場合とで、昇温度ΔTと抵抗変化率ΔRの関係が変化するかどうかを調べた結果を併せて示している。図示されるように、排気温度が高い場合に比べて、排気温度が低い場合は、全体に抵抗変化率が高くなる側へシフトしている。これは、排気温度が低い条件では、未燃焼のまま排出されるHCの量が増加し、微粒子状物質PM中のSOFの量も増加することから、これらが微粒子状物質PMのPMセンサ素子1の検出部100への付着を促進し、付着率(抵抗変化率)を増加させるものと考えられる。排気温度が低い条件とは、例えば低温始動時や低負荷の運転条件の時である。   FIG. 7 also shows the results of examining whether the relationship between the temperature increase ΔT and the resistance change rate ΔR changes between when the exhaust temperature is low and when the exhaust temperature is high. As shown in the figure, when the exhaust gas temperature is lower than when the exhaust gas temperature is high, the overall resistance shift rate is shifted to the higher side. This is because when the exhaust gas temperature is low, the amount of HC discharged without being burned increases, and the amount of SOF in the particulate matter PM also increases, so these are the PM sensor elements 1 of the particulate matter PM. It is considered that the adhesion to the detection unit 100 is promoted and the adhesion rate (resistance change rate) is increased. The condition where the exhaust temperature is low is, for example, a low temperature start or a low load operating condition.

次に、図1のフローチャートに基づいて、異常検出部となる電子制御ユニットECUが備える判定手段の一例を説明する。図1のステップS100では、まずデータ取込を行い、PMセンサ1に導入される排気温度T1として、ディーゼルパティキュレートフィルタDPF下流の温度センサST3出力を取り込む。また、図示しない水温センサからディーゼルエンジンE/Gの冷却水温Twを、エンジン回転数センサからディーゼルエンジンE/Gの回転数NEを取り込み、アクセル開度センサ等の出力に基づき燃料噴射量Qを求める。   Next, an example of determination means provided in the electronic control unit ECU serving as the abnormality detection unit will be described based on the flowchart of FIG. In step S100 of FIG. 1, data is first captured, and the output of the temperature sensor ST3 downstream of the diesel particulate filter DPF is captured as the exhaust temperature T1 introduced into the PM sensor 1. Further, the cooling water temperature Tw of the diesel engine E / G is taken from a water temperature sensor (not shown), the rotational speed NE of the diesel engine E / G is taken from the engine speed sensor, and the fuel injection amount Q is obtained based on the output of the accelerator opening sensor or the like. .

ステップS110では、PMセンサ1の検出部100を第1の温度条件に設定する。ここでは、ステップS100で取り込んだ排気温度T1と、検出部100の検出電極11、12温度T2が等しくなるように、ヒータ部300の通電制御を実施する。ヒータ部300は、検出部100の裏面に密着して配置されているので、ヒータ部300の温度が排気温度T1と等しくなるように制御することで、検出電極11、12を含む検出部100を所定温度とすることができる。ヒータ部300の温度はヒータ電極30の抵抗値を検出することにより容易に制御できる。   In step S110, the detection unit 100 of the PM sensor 1 is set to the first temperature condition. Here, the energization control of the heater unit 300 is performed so that the exhaust temperature T1 taken in step S100 and the detection electrodes 11 and 12 temperatures T2 of the detection unit 100 become equal. Since the heater unit 300 is disposed in close contact with the back surface of the detection unit 100, the detection unit 100 including the detection electrodes 11 and 12 is controlled by controlling the temperature of the heater unit 300 to be equal to the exhaust temperature T1. The predetermined temperature can be set. The temperature of the heater unit 300 can be easily controlled by detecting the resistance value of the heater electrode 30.

ステップS120では、第1の温度条件において、PMセンサ1の検出電極11、12間の抵抗変化率ΔR1を計測する。この時、一定時間経過後の検出部100の抵抗変化率は、検出電極11、12間に付着した微粒子状物質PMの変化率(付着面積)に比例し、また、第1の温度条件では、熱泳動の影響がないので、ディーゼルパティキュレートフィルタDPFに何らかの異常がある場合には、前述した図6に示したように、検出される抵抗変化率ΔR1は正常時よりも大きくなる。   In step S120, the resistance change rate ΔR1 between the detection electrodes 11 and 12 of the PM sensor 1 is measured under the first temperature condition. At this time, the resistance change rate of the detection unit 100 after a lapse of a certain time is proportional to the change rate (attachment area) of the particulate matter PM attached between the detection electrodes 11 and 12, and in the first temperature condition, Since there is no influence of thermophoresis, when there is some abnormality in the diesel particulate filter DPF, the detected resistance change rate ΔR1 becomes larger than that in the normal state as shown in FIG.

次に、ステップS130では、第2の温度条件を設定するための昇温度ΔTを決定する。ここで決定される昇温度ΔTは、例えば中負荷の運転条件において、DPF破損等の異常があった場合に、第1の温度条件に対して明らかな変化が検出できる温度差とする。好適には、図7の昇温度ΔTと抵抗変化率ΔRの関係から、例えば100℃〜200℃の範囲において、予め所定の基準値を設定しておくことができる。通常の運転時における排気温度は、例えば300℃〜350℃程度であるので、100℃以上の温度差を設けることで、安定した出力が得られる温度範囲にて抵抗変化率ΔRを精度よく検出できる。また、温度差が200℃を超えると抵抗値の変化はほとんどなくなり、微粒子状物質PMの燃焼温度に近づくので、200℃以下とすることで、昇温に必要なエネルギーを抑制し、検出誤差を防止できる。   Next, in step S130, a temperature increase ΔT for setting the second temperature condition is determined. The temperature increase ΔT determined here is, for example, a temperature difference at which an obvious change with respect to the first temperature condition can be detected when there is an abnormality such as a DPF breakage in the medium load operating condition. Preferably, a predetermined reference value can be set in advance in the range of 100 ° C. to 200 ° C., for example, from the relationship between the temperature increase ΔT and the resistance change rate ΔR in FIG. Since the exhaust temperature during normal operation is, for example, about 300 ° C. to 350 ° C., by providing a temperature difference of 100 ° C. or more, the resistance change rate ΔR can be accurately detected in a temperature range where stable output can be obtained. . Further, when the temperature difference exceeds 200 ° C., the resistance value hardly changes and approaches the combustion temperature of the particulate matter PM. By setting the temperature to 200 ° C. or less, energy required for temperature rise is suppressed, and detection error is reduced. Can be prevented.

ステップS140では、ステップS130で設定した基準の昇温度ΔTを補正するため、低温または低負荷の運転条件であるか否かを判定する。具体的には、ステップS100で取り込んだデータから、ディーゼルエンジンE/Gの冷却水温度Twが所定温度(例えば80℃)以下である時に低温と判断し、またはディーゼルエンジンE/Gの回転数NE、燃料噴射量Qが所定値以下である時に、低負荷の運転条件であると判断する。例えば、低温始動時には、排出されるHCが多くなるため、微粒子状物質PMが付着しやすくなり、図7に示したように、昇温度ΔTと抵抗変化率ΔRの関係が、通常運転時に対して変化する。低負荷運転時も同様である。   In step S140, in order to correct the reference temperature increase ΔT set in step S130, it is determined whether the operating condition is a low temperature or low load. Specifically, from the data captured in step S100, it is determined that the temperature is low when the cooling water temperature Tw of the diesel engine E / G is equal to or lower than a predetermined temperature (for example, 80 ° C.), or the rotational speed NE of the diesel engine E / G When the fuel injection amount Q is equal to or less than a predetermined value, it is determined that the operating condition is a low load. For example, at the time of low temperature start, the amount of HC that is discharged increases, so that the particulate matter PM easily adheres. As shown in FIG. 7, the relationship between the temperature increase ΔT and the resistance change rate ΔR is compared with that during normal operation. Change. The same applies to low load operation.

そこで、ステップS140が肯定判断された場合は、ステップS150に進んで、ステップS130で設定した昇温度ΔTを補正する。具体的には、微粒子状物質PMの付着量(抵抗変化率)の差が大きくなる傾向となるため、昇温度ΔTをより小さくする。例えば、基準の昇温度ΔTが100℃である場合には、−50℃として補正後の昇温度ΔTを50℃とする。ステップS140が否定判断された場合は、ステップS150をスキップして、ステップ160に進む。   Therefore, when an affirmative determination is made in step S140, the process proceeds to step S150, and the temperature increase ΔT set in step S130 is corrected. Specifically, since the difference in the adhesion amount (resistance change rate) of the particulate matter PM tends to increase, the temperature increase ΔT is made smaller. For example, when the reference temperature increase ΔT is 100 ° C., the corrected temperature increase ΔT is set to −50 ° C. and the corrected temperature increase ΔT is set to 50 ° C. If a negative determination is made in step S140, step S150 is skipped and the process proceeds to step 160.

次いで、ステップ160では、決定された昇温度ΔTに基づいて、PMセンサ1の検出部100を第2の温度条件に設定する。ここでは、検出部100の検出電極11、12温度T2=排気温度T1+昇温度ΔTとなるように、ヒータ部300の通電制御を実施する。さらに、ステップS170では、第2の温度条件において、PMセンサ1の検出電極11、12間の抵抗変化率ΔR2を計測する。この第2の温度条件では、検出部100が周囲の温度より高くなるので、熱泳動の影響が生じ、ディーゼルパティキュレートフィルタDPFに何らかの異常がある場合でも、前述した図6に示したように、検出される抵抗変化率ΔR2は比較的小さくなる。   Next, in step 160, the detection unit 100 of the PM sensor 1 is set to the second temperature condition based on the determined temperature increase ΔT. Here, the energization control of the heater unit 300 is performed so that the detection electrodes 11 and 12 of the detection unit 100, temperature T2 = exhaust temperature T1 + temperature increase ΔT. Further, in step S170, the resistance change rate ΔR2 between the detection electrodes 11 and 12 of the PM sensor 1 is measured under the second temperature condition. Under this second temperature condition, the detection unit 100 becomes higher than the ambient temperature, so that the influence of thermophoresis occurs, and even if there is some abnormality in the diesel particulate filter DPF, as shown in FIG. The detected resistance change rate ΔR2 is relatively small.

そこで、続くステップ180において、計測された抵抗変化率ΔR1、ΔR2を比較して、異常判定を行う。ここでは、抵抗変化率ΔR1と抵抗変化率ΔR2の差を算出し、差分値ΔR1−ΔR2が予め設定した所定値を超えたか否かを判定する。所定値は、例えば図7に示される関係に基づいて、ディーゼルパティキュレートフィルタDPFが正常に作動している場合の差分値よりも大きく、何らかの異常があると判断できる値以上であればよく、あるいは軽微な破損や性能低下または溶損といった異常の種類対応する複数の値を予め実験等によって設定しておくこともできる。   Therefore, in the subsequent step 180, the measured resistance change rates ΔR1 and ΔR2 are compared, and abnormality determination is performed. Here, the difference between the resistance change rate ΔR1 and the resistance change rate ΔR2 is calculated, and it is determined whether or not the difference value ΔR1−ΔR2 exceeds a predetermined value set in advance. The predetermined value may be larger than the difference value when the diesel particulate filter DPF is operating normally based on the relationship shown in FIG. A plurality of values corresponding to the types of abnormalities such as minor breakage, performance degradation or melting damage can be set in advance by experiments or the like.

ステップ180が肯定判断されると、ディーゼルパティキュレートフィルタDPFに何らかの異常があると判断して、ステップ190へ進み、例えば警告灯を点灯して運転者に異常を知らせる。ステップ180が否定判断された時には、ディーゼルパティキュレートフィルタDPFは正常と判断して、本処理を一旦終了する。   If the determination in step 180 is affirmative, it is determined that there is some abnormality in the diesel particulate filter DPF, and the process proceeds to step 190, for example, a warning lamp is lit to notify the driver of the abnormality. When a negative determination is made in step 180, it is determined that the diesel particulate filter DPF is normal, and this process is temporarily terminated.

以上のようにして、本実施形態では、PMセンサ1の検出部100温度を、排気温度T1を基準とする第1の温度条件と、これより昇温度ΔTだけ高い第2の温度条件とした時の抵抗変化率ΔR1、ΔR2に基づいて、ディーゼルパティキュレートフィルタDPFの異常を容易に検出することができる。したがって、電気抵抗式のPMセンサを用いた比較的簡易な構成で、大量のマップや温度補正を不要として、かつ精度よい判定が可能である。   As described above, in the present embodiment, when the temperature of the detection unit 100 of the PM sensor 1 is set to the first temperature condition based on the exhaust gas temperature T1 and the second temperature condition higher than this by the temperature increase ΔT. The abnormality of the diesel particulate filter DPF can be easily detected on the basis of the resistance change rates ΔR1 and ΔR2. Therefore, with a relatively simple configuration using an electrical resistance PM sensor, a large amount of maps and temperature correction are not required, and accurate determination is possible.

なお、上記実施形態では、図1のステップ140、150において、低温または低負荷の運転条件の時に、昇温度ΔTを補正するようにしたが、高負荷の運転条件で昇温度ΔTを補正するようにしてもよい。このような運転条件の場合は、未燃焼のHCの排出が減り、微粒子状物質PMが付着しにくくなるので、逆に昇温度ΔTを大きくすることが好ましい。この時、第1の温度条件と第2の温度条件の温度差が大きくなり、これら温度における抵抗変化率ΔR1、ΔR2の差が大きくなって、検出誤差を防止する。また図1のステップS180において、これら温度における抵抗変化率ΔR1、ΔR2の差を比較して判定しているが、各温度における抵抗変化率ΔR1、ΔR2の比の値ΔR1/ΔR2にて判定を行うことも可能である。   In the above embodiment, in steps 140 and 150 in FIG. 1, the temperature increase ΔT is corrected under the low temperature or low load operating condition. However, the temperature increase ΔT is corrected under the high load operating condition. It may be. Under such operating conditions, the discharge of unburned HC is reduced and the particulate matter PM is less likely to adhere, so it is preferable to increase the temperature rise ΔT. At this time, the temperature difference between the first temperature condition and the second temperature condition increases, and the difference between the resistance change rates ΔR1 and ΔR2 at these temperatures increases, thereby preventing detection errors. Further, in step S180 of FIG. 1, the difference between the resistance change rates ΔR1 and ΔR2 at these temperatures is compared and determined, but the determination is performed based on the ratio value ΔR1 / ΔR2 of the resistance change rates ΔR1 and ΔR2 at each temperature. It is also possible.

また、本発明で用いるPMセンサは、上記実施形態の構成に限らず、一対の検出電極の形状や配置、ヒータ部、カバー体その他各部構成を、適宜変更することもできる。さらに、パティキュレートフィルタの構成や、排気処理システム、燃料噴射システムの各部構成を任意に変更することができる。   Further, the PM sensor used in the present invention is not limited to the configuration of the above-described embodiment, and the shape and arrangement of the pair of detection electrodes, the heater unit, the cover body, and other components can be changed as appropriate. Furthermore, the configuration of the particulate filter and the configuration of each part of the exhaust treatment system and the fuel injection system can be arbitrarily changed.

本発明のパティキュレートフィルタの異常検出装置は、ディーゼルパティキュレートフィルタを搭載した自動車への設置が義務付けられる車載式故障診断装置(OBD)等の用途に用いられて、環境汚染物質の排出を防止する。また、自動車用ディーゼルエンジンに限らず、システム構成の異なる他のエンジンや、排気通路に排出ガスに含まれる微粒子状物質を捕集するパティキュレートフィルタを備えるシステムのいずれにも好適に使用することができる。   The particulate filter abnormality detection device of the present invention is used for applications such as an on-board failure diagnosis device (OBD) that is required to be installed in an automobile equipped with a diesel particulate filter, and prevents discharge of environmental pollutants. . In addition to the automobile diesel engine, it can be suitably used for any other engine having a different system configuration or a system having a particulate filter for collecting particulate matter contained in exhaust gas in the exhaust passage. it can.

DPF ディーゼルパティキュレートフィルタ(パティキュレートフィルタ)
ECU 電子制御ユニット(異常検出部)
E/G ディーゼルエンジン(内燃機関)
ECU 電子制御ユニット(異常検出部)
1 PMセンサ(排出微粒子センサ)
10 PM検出素子
100 検出部
11、12 検出電極
111、121 リード部
13 絶縁性基板(絶縁性基体)
14 絶縁性保護層
2 排気管(排気通路)
20 管壁
30 ヒータ電極
31、32 リード部
300 ヒータ部
40 カバー体
410、411 孔
50 ハウジング
60 インシュレータ
DPF Diesel particulate filter (particulate filter)
ECU Electronic control unit (abnormality detection unit)
E / G diesel engine (internal combustion engine)
ECU Electronic control unit (abnormality detection unit)
1 PM sensor (exhaust particulate sensor)
DESCRIPTION OF SYMBOLS 10 PM detection element 100 Detection part 11, 12 Detection electrode 111, 121 Lead part 13 Insulating substrate (insulating base | substrate)
14 Insulating protective layer 2 Exhaust pipe (exhaust passage)
20 Tube wall 30 Heater electrode 31, 32 Lead part 300 Heater part 40 Cover body 410, 411 hole 50 housing 60 insulator

Claims (4)

内燃機関の排気通路に配設されて排出ガス中の微粒子状物質を捕集するパティキュレートフィルタと、
該パティキュレートフィルタの下流に設置されて、排出ガス中の微粒子状物質の量を検出する排出微粒子センサと、
該排出微粒子センサの検出結果に基づいて、上記パティキュレートフィルタの異常を検出する異常検出部を備え、
上記排出微粒子センサは、絶縁性基体の表面に一対の検出電極を形成した検出部と、該検出部を所定温度に加熱するヒータ部を有し、上記一対の検出電極間に付着する微粒子状物質の量に応じて電気抵抗値が変化する構成であり、
上記異常検出部は、上記排出ガスの温度をT1、上記検出部の上記一対の検出電極の温度をT2とした時に、上記一対の検出電極の温度T2と上記排出ガスの温度T1が等しい第1の温度条件における上記検出部の出力値と、上記一対の検出電極の温度T2が上記排出ガスの温度T1より高い第2の温度条件における上記検出部の出力値とを比較し、その差分値または比の値が所定値を超えた時に、パティキュレートフィルタの異常と判定する判定手段を備えることを特徴とするパティキュレートフィルタの異常検出装置。
A particulate filter disposed in the exhaust passage of the internal combustion engine for collecting particulate matter in the exhaust gas;
An exhaust particulate sensor installed downstream of the particulate filter to detect the amount of particulate matter in the exhaust gas;
An abnormality detection unit that detects an abnormality of the particulate filter based on a detection result of the discharged particulate sensor,
The discharged particulate sensor has a detection part in which a pair of detection electrodes are formed on the surface of an insulating substrate, and a heater part for heating the detection part to a predetermined temperature, and the particulate matter adhered between the pair of detection electrodes The electrical resistance value changes according to the amount of
When the temperature of the exhaust gas is T1, and the temperature of the pair of detection electrodes of the detection unit is T2, the abnormality detection unit has a first temperature T1 of the pair of detection electrodes equal to a temperature T1 of the exhaust gas. The output value of the detection unit under the temperature condition is compared with the output value of the detection unit under the second temperature condition in which the temperature T2 of the pair of detection electrodes is higher than the temperature T1 of the exhaust gas. A particulate filter abnormality detection device comprising: a determination unit that determines that the particulate filter is abnormal when the ratio value exceeds a predetermined value.
上記異常検出部は、上記第2の温度条件における上記一対の検出電極の温度T2と上記排出ガスの温度T1の差が、50℃〜200℃の範囲となるように、上記一対の検出電極の温度T2を設定する請求項1記載のパティキュレートフィルタの異常検出装置。   The abnormality detection unit is configured so that a difference between the temperature T2 of the pair of detection electrodes and the temperature T1 of the exhaust gas in the second temperature condition is in a range of 50 ° C. to 200 ° C. 2. The particulate filter abnormality detection device according to claim 1, wherein the temperature T2 is set. 上記異常検出部は、上記第2の温度条件における上記一対の検出電極の温度T2と上記排出ガスの温度T1の差を、上記内燃機関の温度または負荷を含む運転条件に基づいて設定する請求項1記載のパティキュレートフィルタの異常検出装置。   The abnormality detection unit sets a difference between a temperature T2 of the pair of detection electrodes and a temperature T1 of the exhaust gas in the second temperature condition based on an operating condition including a temperature or a load of the internal combustion engine. The particulate filter abnormality detection device according to claim 1. 上記排出微粒子センサは、上記排気通路に位置する上記絶縁性基体の先端部表面に、櫛歯状の上記一対の検出電極とリード部を形成して上記検出部とし、上記絶縁性基体の先端部裏面に、ヒータ電極およびリード部を形成して上記ヒータ部とする請求項1記載のパティキュレートフィルタの異常検出装置。   The exhaust particulate sensor includes a pair of comb-like detection electrodes and a lead portion formed on a surface of a tip portion of the insulating base located in the exhaust passage to form the detection portion, and the tip of the insulating base The particulate filter abnormality detection device according to claim 1, wherein a heater electrode and a lead portion are formed on the back surface to form the heater portion.
JP2009234860A 2009-10-09 2009-10-09 Device for detecting abnormality of particulate filter Withdrawn JP2011080439A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009234860A JP2011080439A (en) 2009-10-09 2009-10-09 Device for detecting abnormality of particulate filter
DE102010042226A DE102010042226A1 (en) 2009-10-09 2010-10-08 Abnormality detector for use in particulate filter of exhaust gas-purification system of diesel engine for motor vehicles, has judging unit which determines if particulate filter is abnormal when difference value exceeds predetermined value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009234860A JP2011080439A (en) 2009-10-09 2009-10-09 Device for detecting abnormality of particulate filter

Publications (1)

Publication Number Publication Date
JP2011080439A true JP2011080439A (en) 2011-04-21

Family

ID=43796960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009234860A Withdrawn JP2011080439A (en) 2009-10-09 2009-10-09 Device for detecting abnormality of particulate filter

Country Status (2)

Country Link
JP (1) JP2011080439A (en)
DE (1) DE102010042226A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011129295A1 (en) * 2010-04-15 2011-10-20 いすゞ自動車株式会社 Exhaust sensor
WO2013014739A1 (en) * 2011-07-25 2013-01-31 トヨタ自動車株式会社 Control device for internal combustion engine
JP2013047670A (en) * 2011-06-27 2013-03-07 Delphi Technologies Inc Particulate substance detection method for particulate substance sensor
WO2013042195A1 (en) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
WO2013042188A1 (en) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
WO2013042189A1 (en) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
WO2013042190A1 (en) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP2014005734A (en) * 2012-06-21 2014-01-16 Hino Motors Ltd Detection method of particulate amount in exhaust gas exhausted from engine and detection device of the same
JPWO2013018224A1 (en) * 2011-08-04 2015-03-05 トヨタ自動車株式会社 Control device for internal combustion engine
CN104641216A (en) * 2012-06-21 2015-05-20 罗伯特·博世有限公司 Method for the functional control of a sensor for detecting particles and sensor for detecting particles
JP2016084725A (en) * 2014-10-23 2016-05-19 トヨタ自動車株式会社 Abnormality diagnosis device of air-fuel ratio sensor
WO2016147711A1 (en) * 2015-03-13 2016-09-22 株式会社デンソー Particulate matter detection system
WO2017002942A1 (en) * 2015-07-01 2017-01-05 株式会社デンソー Device for determining whether abnormality has occurred in filter device
US10317328B2 (en) 2014-08-26 2019-06-11 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2020002830A (en) * 2018-06-26 2020-01-09 三菱化工機株式会社 Control device of solid component separation device, solid component separation device, marine exhaust gas scrubber system, and marine diesel engine
WO2020162281A1 (en) * 2019-02-04 2020-08-13 株式会社デンソー Particulate matter detection sensor
CN113606023A (en) * 2021-08-24 2021-11-05 一汽解放汽车有限公司 Particle trap break-in method, device, computer equipment and storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011372591B2 (en) * 2011-07-04 2015-06-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification apparatus for internal combustion engine
JP6256392B2 (en) * 2015-03-17 2018-01-10 トヨタ自動車株式会社 Filter abnormality detection device
DE102017111252A1 (en) * 2017-05-23 2018-11-29 Man Truck & Bus Ag Method for real-time detection of deposits in internal combustion engines with AGN systems
JP6947671B2 (en) * 2018-03-23 2021-10-13 日本特殊陶業株式会社 Particle detection device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244386A (en) 1988-08-05 1990-02-14 Ricoh Co Ltd Pid controller
JP2006266961A (en) 2005-03-25 2006-10-05 Ngk Insulators Ltd Soot sensor
US20080282682A1 (en) 2007-05-16 2008-11-20 Honeywell International Inc. Integrated DPF loading and failure sensor
JP2009144577A (en) 2007-12-13 2009-07-02 Mitsubishi Motors Corp Failure determination device for particulate filter

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226824A (en) * 2010-04-15 2011-11-10 Isuzu Motors Ltd Exhaust sensor
WO2011129295A1 (en) * 2010-04-15 2011-10-20 いすゞ自動車株式会社 Exhaust sensor
JP2013047670A (en) * 2011-06-27 2013-03-07 Delphi Technologies Inc Particulate substance detection method for particulate substance sensor
JP5240408B1 (en) * 2011-07-25 2013-07-17 トヨタ自動車株式会社 Control device for internal combustion engine
WO2013014739A1 (en) * 2011-07-25 2013-01-31 トヨタ自動車株式会社 Control device for internal combustion engine
JPWO2013018224A1 (en) * 2011-08-04 2015-03-05 トヨタ自動車株式会社 Control device for internal combustion engine
WO2013042188A1 (en) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
AU2011377329B2 (en) * 2011-09-20 2015-01-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
WO2013042189A1 (en) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JP5344096B2 (en) * 2011-09-20 2013-11-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5344093B2 (en) * 2011-09-20 2013-11-20 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US9382830B2 (en) 2011-09-20 2016-07-05 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
EP2759683A1 (en) * 2011-09-20 2014-07-30 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
WO2013042190A1 (en) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
EP2759683A4 (en) * 2011-09-20 2015-02-18 Toyota Motor Co Ltd Exhaust purification device for internal combustion engine
US9180410B2 (en) 2011-09-20 2015-11-10 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JPWO2013042195A1 (en) * 2011-09-20 2015-03-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JPWO2013042190A1 (en) * 2011-09-20 2015-03-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2013042195A1 (en) * 2011-09-20 2013-03-28 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
US9056278B2 (en) 2011-09-20 2015-06-16 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
CN104641216A (en) * 2012-06-21 2015-05-20 罗伯特·博世有限公司 Method for the functional control of a sensor for detecting particles and sensor for detecting particles
US9964529B2 (en) * 2012-06-21 2018-05-08 Robert Bosch Gmbh Method for checking the function of a sensor for detecting particles, and a sensor for detecting particles
US20150177204A1 (en) * 2012-06-21 2015-06-25 Robert Bosch Gmbh Method for checking the function of a sensor for detecting particles, and a sensor for detecting particles
JP2014005734A (en) * 2012-06-21 2014-01-16 Hino Motors Ltd Detection method of particulate amount in exhaust gas exhausted from engine and detection device of the same
JP2015520387A (en) * 2012-06-21 2015-07-16 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Function monitoring method of particle detection sensor and particle detection sensor
US10317328B2 (en) 2014-08-26 2019-06-11 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2016084725A (en) * 2014-10-23 2016-05-19 トヨタ自動車株式会社 Abnormality diagnosis device of air-fuel ratio sensor
WO2016147711A1 (en) * 2015-03-13 2016-09-22 株式会社デンソー Particulate matter detection system
CN108350778A (en) * 2015-07-01 2018-07-31 株式会社电装 Whether judgement has occurred abnormal device in filter for installation
JP2017015010A (en) * 2015-07-01 2017-01-19 株式会社デンソー Filter abnormality determination device
WO2017002942A1 (en) * 2015-07-01 2017-01-05 株式会社デンソー Device for determining whether abnormality has occurred in filter device
JP2020002830A (en) * 2018-06-26 2020-01-09 三菱化工機株式会社 Control device of solid component separation device, solid component separation device, marine exhaust gas scrubber system, and marine diesel engine
JP7058565B2 (en) 2018-06-26 2022-04-22 三菱化工機株式会社 Solid component separator controller, solid component separator, marine exhaust gas scrubber system, and marine diesel engine
WO2020162281A1 (en) * 2019-02-04 2020-08-13 株式会社デンソー Particulate matter detection sensor
JP2020125959A (en) * 2019-02-04 2020-08-20 株式会社デンソー Particulate matter detection sensor
CN113412425A (en) * 2019-02-04 2021-09-17 株式会社电装 Particulate matter detection sensor
CN113412425B (en) * 2019-02-04 2024-03-08 株式会社电装 Particle substance detection sensor
CN113606023A (en) * 2021-08-24 2021-11-05 一汽解放汽车有限公司 Particle trap break-in method, device, computer equipment and storage medium
CN113606023B (en) * 2021-08-24 2022-05-17 一汽解放汽车有限公司 Particle catcher running-in method, device, computer equipment and storage medium

Also Published As

Publication number Publication date
DE102010042226A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP2011080439A (en) Device for detecting abnormality of particulate filter
US20110314796A1 (en) Particulate matter detection sensor and control device of controlling the same
JP2012047722A (en) Particulate matter detection sensor and method for determining abnormality of the sensor
US20120151992A1 (en) Particulate matter detection sensor
JP5115873B2 (en) Particulate filter failure detection device
JP4325367B2 (en) Exhaust temperature sensor failure detection device
US20120085146A1 (en) Particulate matter detection sensor
EP1921289B1 (en) Exhaust gas purifying apparatus for measuring particles
CN106248540B (en) Particulate matter sensor and exhaust gas purification system using same
JP2009144577A (en) Failure determination device for particulate filter
WO2006092946A1 (en) Exhaust emission control device and internal combustion engine equipped with the exhaust emission control device and particulate filter regenerating method
JP2006266961A (en) Soot sensor
EP2949892B1 (en) Exhaust purification device for internal combustion engine
JP2011080926A (en) Particulate detecting element
JP4186425B2 (en) Soot particle detection sensor, diesel particulate filter device using the same, and control method therefor
US11230960B2 (en) Failure detection apparatus and failure detection method for particulate filter
JP2006307701A (en) Exhaust emission control device having particulate filter, and internal combustion engine having the exhaust emission control device
JP5768892B2 (en) Control device for internal combustion engine
JP2011252459A (en) Device for detection of failure in particulate filter
JP2005194935A (en) Exhaust emission control device
EP3056700A1 (en) Exhaust purification system
JP2010285917A (en) Particulate matter detection device and state determination device for exhaust emission control device
EP3056699B1 (en) Exhaust purification system
JP2013160208A (en) Exhaust emission control apparatus and exhaust emission control method
JP2017083288A (en) Filter failure detection device and particulate matter detection device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108