JP2011076763A - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP2011076763A
JP2011076763A JP2009224651A JP2009224651A JP2011076763A JP 2011076763 A JP2011076763 A JP 2011076763A JP 2009224651 A JP2009224651 A JP 2009224651A JP 2009224651 A JP2009224651 A JP 2009224651A JP 2011076763 A JP2011076763 A JP 2011076763A
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
excitation light
optical fiber
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009224651A
Other languages
Japanese (ja)
Inventor
Yoshie Fukui
良恵 福井
Takeshi Ito
毅 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2009224651A priority Critical patent/JP2011076763A/en
Publication of JP2011076763A publication Critical patent/JP2011076763A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light source device with high efficiency of using excited light. <P>SOLUTION: In the light source device having a light source emitting excited light, optical fiber 2 optically connected with the light source and guiding the excited light, a wavelength conversion member 4 receiving the excited light emitted from an emission end of the optical fiber 2 and emitting light of different wavelength regions from the above, and a cavity 8 arranged between the emission end of the optical fiber 2 and the wavelength conversion member 4, the emission end of the optical fiber 2 is arranged at an incident end of the cavity 8, and an illumination surface for the excited light of the wavelength conversion member 4 to be illuminated is arranged at an emission end of the cavity 8. In the cavity 8, the excited light emitted from the emission end of the optical fiber 2 progresses spreadingly toward the illumination surface with the excited light of the wavelength conversion member 4 illuminated. An inner diameter of the emission end of the cavity 8 is substantially the same as an outer diameter of a beam spot of the excited light formed in an effective area 10 on the wavelength conversion member 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光源装置、特に固体発光素子、例えばLED、SLD、LD等を用いた内視鏡用の光源装置に関するものである。   The present invention relates to a light source device, and more particularly to a light source device for an endoscope using a solid light emitting element such as an LED, an SLD, or an LD.

従来から、例えば内視鏡用の光源として、キセノンランプ、ハロゲンランプあるいはメタルハライドランプ等の光源装置が用いられている。このようなランプ光源装置は大型であり、かつ、消費電力が大きかった。
また、これらのランプ型の光源装置を内視鏡に使用する場合、バンドルファイバ等により光源本体から内視鏡先端まで導光する必要があるが、光源装置からバンドルファイバへの入射効率が十分で無いため、内視鏡先端での明るさを高めるのが困難であった。
Conventionally, for example, a light source device such as a xenon lamp, a halogen lamp, or a metal halide lamp has been used as a light source for an endoscope. Such a lamp light source device is large and consumes a large amount of power.
In addition, when these lamp-type light source devices are used in an endoscope, it is necessary to guide light from the light source body to the tip of the endoscope with a bundle fiber or the like, but the incident efficiency from the light source device to the bundle fiber is sufficient. It was difficult to increase the brightness at the distal end of the endoscope because of the absence.

このような状況に鑑みて、例えば図10(a)、(b)に示す光源装置が、特開2007−220326に提案されている。この発光装置は、励起光を射出する励起光源1000と、励起光を伝播するライトガイド20と、ライトガイド20で伝播された励起光を波長変換する波長変換ユニット42により構成されている。図10(b)は、波長変換ユニット42の部分拡大図である。波長変換ユニット42は、ライトガイド20により伝播された励起光を吸収し、波長変換して所定の波長域の光を放出する波長変換部材40を有し、波長変換部材40から放出される波長変換光及び波長変換部材40を透過した励起光を射出するように構成されている。   In view of such a situation, for example, a light source device illustrated in FIGS. 10A and 10B is proposed in Japanese Patent Application Laid-Open No. 2007-220326. The light emitting device includes an excitation light source 1000 that emits excitation light, a light guide 20 that propagates excitation light, and a wavelength conversion unit 42 that converts the wavelength of excitation light propagated by the light guide 20. FIG. 10B is a partially enlarged view of the wavelength conversion unit 42. The wavelength conversion unit 42 includes a wavelength conversion member 40 that absorbs the excitation light propagated by the light guide 20, converts the wavelength, and emits light in a predetermined wavelength range. The wavelength conversion unit 42 emits light from the wavelength conversion member 40. Excitation light that has passed through the light and wavelength conversion member 40 is emitted.

特開2007−220326号公報JP 2007-220326 A

しかしながら、この先行技術においては、図10(b)に示されるように、ライトガイド20と波長変換部材40とが接触して配置されるため、ライトガイド20から出射される励起光が波長変換部材40の、ライトガイド20と接している一点に集中して照射されるため、波長変換部材40のライトガイド20と接している点以外の領域を利用できていない。この結果、波長変換部材40の利用効率が高められていない。   However, in this prior art, as shown in FIG. 10B, the light guide 20 and the wavelength conversion member 40 are arranged in contact with each other, so that the excitation light emitted from the light guide 20 is converted into the wavelength conversion member. For example, the area other than the point in contact with the light guide 20 of the wavelength conversion member 40 cannot be used. As a result, the utilization efficiency of the wavelength conversion member 40 is not improved.

本発明は、上記に鑑みてなされたものであって、保持部材内の構造が簡略化されており、励起光の利用効率が高い光源装置を提案することにある。   The present invention has been made in view of the above, and it is an object of the present invention to propose a light source device in which the structure inside the holding member is simplified and the utilization efficiency of excitation light is high.

上述した課題を解決し、目的を達成するために、本発明は、励起光を射出する光源と、
光源と光学的に接続され、励起光を導光する光ファイバーと、光ファイバー射出端部から射出された励起光を受光し、それとは異なる波長領域の光を射出する波長変換部材と、光ファイバー射出端部と波長変換部材との間に配置されたキャビティとを有する光源装置であって、キャビティの入射端には光ファイバー射出端部が配置され、キャビティの射出端には波長変換部材の励起光が照射される照射面が配置されており、キャビティ内では、光ファイバー射出端部から射出された励起光が、波長変換部材の励起光が照射される照射面に向かって広がって進行し、キャビティの射出端の内径は、波長変換部材上の有効領域に形成する励起光のビームスポットの外径と略等しいことを特徴とする。
In order to solve the above-described problems and achieve the object, the present invention includes a light source that emits excitation light,
An optical fiber optically connected to the light source and guiding the excitation light, a wavelength conversion member that receives the excitation light emitted from the optical fiber emission end, and emits light in a different wavelength region, and an optical fiber emission end And a cavity disposed between the wavelength conversion member and the wavelength conversion member, wherein an optical fiber exit end is disposed at the entrance end of the cavity, and the excitation light of the wavelength conversion member is irradiated at the exit end of the cavity. In the cavity, the excitation light emitted from the optical fiber emission end spreads and travels toward the irradiation surface on which the excitation light of the wavelength conversion member is irradiated. The inner diameter is characterized by being approximately equal to the outer diameter of the beam spot of the excitation light formed in the effective region on the wavelength conversion member.

本発明の好ましい態様にあっては、光ファイバー射出端部と波長変換部材の励起光が照射される照射面の間の距離、すなわちキャビティの長さDは、光ファイバー射出端部から射出された励起光が波長変換部材に形成するビームスポットの外径が、波長変換部材の有効領域とが略等しいか、または小さくなるように構成されていることが望ましい。   In a preferred embodiment of the present invention, the distance between the emission end of the optical fiber and the irradiation surface irradiated with the excitation light of the wavelength conversion member, that is, the cavity length D is determined by the excitation light emitted from the optical fiber emission end. It is desirable that the outer diameter of the beam spot formed on the wavelength conversion member is substantially equal to or smaller than the effective area of the wavelength conversion member.

本発明の好ましい態様にあっては、光ファイバーの開口数をNAF、光ファイバーからの励起光の射出角をφ、波長変換部材上の有効領域の半径をRとしたときに、キャビティの長さDは、条件式(1)で表されるように構成されていることが望ましい。
D≦R/tanφ ・・・(1)
ここで、 φ=sin-1(NAF)である。
In a preferred embodiment of the present invention, when the numerical aperture of the optical fiber is NA F , the exit angle of excitation light from the optical fiber is φ, and the radius of the effective region on the wavelength conversion member is R, the cavity length D Is preferably configured to be expressed by conditional expression (1).
D ≦ R / tanφ (1)
Here, φ = sin −1 (NA F ).

本発明の好ましい態様にあっては、キャビティの長さDは、光ファイバー射出端部から射出された励起光が波長変換部材上の有効領域に形成するビームスポットの面積が、波長変換部材上の有効領域の面積の0.25倍から1倍であるような距離であることが望ましい。   In a preferred embodiment of the present invention, the cavity length D is determined so that the area of the beam spot formed in the effective region on the wavelength conversion member by the excitation light emitted from the optical fiber emission end is effective on the wavelength conversion member. The distance is preferably 0.25 to 1 times the area of the region.

本発明の好ましい態様にあっては、
キャビティの長さをD、
光ファイバー射出端部から射出される励起光の強度をPin
波長変換部材の有効領域における励起光のパワー密度をPph
光ファイバーからの励起光の射出角をφとしたとき、
光ファイバー射出端部から光ファイバーの開口数NAFに従った角度の範囲で励起光が波長変換部材の有効領域に射出され、そのときの励起光の円形の照射面積あたりのパワー密度Pが、波長変換部材が蛍光体を樹脂中に分散させて固めて構成されている場合には、波長変換部材が劣化しない範囲の強度限界Pに略等しいか、それ以下の強度で照射されるように、光ファイバー射出端部と波長変換部材の中心との距離が、条件式(2)を満足するように調整されていることが望ましい。
ph≦P ・・・(2)
ここで、Pph=Pin/(π・D2tan2φ)である。
In a preferred embodiment of the present invention,
The length of the cavity is D,
The intensity of the excitation light emitted from the optical fiber exit end is P in ,
The power density of the excitation light in the effective region of the wavelength conversion member is represented by P ph ,
When the emission angle of the excitation light from the optical fiber is φ,
Excitation light is emitted to the effective area of the wavelength conversion member within an angle range according to the numerical aperture NA F of the optical fiber from the optical fiber exit end, and the power density P per circular irradiation area of the excitation light at that time is wavelength conversion. When the member is formed by dispersing and solidifying the phosphor in the resin, the optical fiber is emitted so that the wavelength conversion member is irradiated with an intensity that is substantially equal to or less than the intensity limit P in a range where the wavelength conversion member does not deteriorate. It is desirable that the distance between the end portion and the center of the wavelength conversion member is adjusted so as to satisfy the conditional expression (2).
P ph ≦ P (2)
Here, P ph = P in / (π · D 2 tan 2 φ).

本発明の好ましい態様にあっては、光ファイバー射出端部と波長変換部材とを保持するための保持部材を有し、保持部材は、波長変換部材を固定する波長変換部材固定部を備え、波長変換部材固定部と波長変換部材の励起光の照射面との接点と、光ファイバー射出端部とを結んだ線を励起光の主軸上へ投影した長さLは、光ファイバー射出端部から射出された励起光が波長変換部材上に形成するビームスポットの外径が、波長変換部材上の有効領域と略等しいか小さくなるように構成されていることが望ましい。   In a preferred aspect of the present invention, the optical system has a holding member for holding the optical fiber emission end portion and the wavelength conversion member, and the holding member includes a wavelength conversion member fixing portion for fixing the wavelength conversion member, and wavelength conversion. A length L obtained by projecting a line connecting the contact point between the member fixing portion and the excitation light irradiation surface of the wavelength conversion member and the optical fiber emission end portion onto the main axis of the excitation light is the excitation emitted from the optical fiber emission end portion. It is desirable that the outer diameter of the beam spot formed by light on the wavelength conversion member is substantially equal to or smaller than the effective area on the wavelength conversion member.

本発明の好ましい態様にあっては、
光ファイバーの開口数をNAF
光ファイバーからの励起光の射出角をφ、
波長変換部材上の有効領域の半径をR、としたときに、
波長変換部材固定部と、光ファイバー射出端部とを結んだ線を励起光の主軸上へ投影した長さLは条件式(3)を満足することが望ましい。
L≦R/tanφ ・・・(3)
ここで、 φ=sin-1(NAF)である。
In a preferred embodiment of the present invention,
The numerical aperture of the optical fiber is NA F ,
The exit angle of the excitation light from the optical fiber is φ,
When the radius of the effective area on the wavelength conversion member is R,
It is desirable that the length L of the line connecting the wavelength conversion member fixing portion and the optical fiber emission end portion projected onto the main axis of the excitation light satisfies the conditional expression (3).
L ≦ R / tanφ (3)
Here, φ = sin −1 (NA F ).

本発明の好ましい態様にあっては、保持部材の、光ファイバー射出端部と波長変換部材固定部との間の保持部材内面は、反射面であることが望ましい。   In a preferred embodiment of the present invention, it is desirable that the holding member inner surface of the holding member between the optical fiber emitting end and the wavelength conversion member fixing portion is a reflecting surface.

本発明の好ましい態様にあっては、保持部材は円柱構造の凹部を有しており、波長変換部材は円柱構造の射出端側に配置され、光ファイバー射出端部は円柱構造の底面側に配置されており、凹部は、波長変換部材から光ファイバー射出端部側へ射出した励起光を凹部の反射面で反射して、反射された励起光を波長変換部材の射出端側へ射出する構造であることが望ましい。   In a preferred embodiment of the present invention, the holding member has a cylindrical structure recess, the wavelength conversion member is disposed on the emission end side of the columnar structure, and the optical fiber emission end is disposed on the bottom surface side of the columnar structure. The recess has a structure in which the excitation light emitted from the wavelength conversion member to the optical fiber emission end side is reflected by the reflection surface of the recess, and the reflected excitation light is emitted to the emission end side of the wavelength conversion member. Is desirable.

本発明の好ましい態様にあっては、保持部材の内部は、光ファイバー射出端部から射出される励起光の主軸に対し、光ファイバー射出端部側より波長変換部材側に広がった、テーパー角θを有する円錐構造を有していることが望ましい。   In a preferred embodiment of the present invention, the inside of the holding member has a taper angle θ that spreads from the optical fiber emission end side to the wavelength conversion member side with respect to the main axis of the excitation light emitted from the optical fiber emission end part. It is desirable to have a conical structure.

本発明の好ましい態様にあっては、保持部材内面と、光ファイバー射出端部から射出される励起光とのなす角であるテーパー角θは、光ファイバーからの励起光の射出角φに対して、条件式(4)の関係を満足するように構成されていることが望ましい。
θ≧φ ・・・(4)
In a preferred embodiment of the present invention, the taper angle θ, which is the angle formed between the inner surface of the holding member and the excitation light emitted from the optical fiber emission end, is a condition with respect to the emission angle φ of the excitation light from the optical fiber. It is desirable to be configured to satisfy the relationship of Expression (4).
θ ≧ φ (4)

本発明にかかる光源装置は、励起光を導光する光ファイバーの射出端部と波長変換部材との位置関係や、波長変換部材の波長変換される有効領域の範囲が最適化され、励起光の利用効率が高いという効果を奏する。   In the light source device according to the present invention, the positional relationship between the emission end of the optical fiber that guides the excitation light and the wavelength conversion member, and the range of the effective region of the wavelength conversion member that is wavelength-converted are optimized, and the use of the excitation light There is an effect of high efficiency.

以下に、本発明にかかる光源装置の実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Hereinafter, embodiments of a light source device according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施例1)
図1は、本発明にかかる光源装置100の本実施例の構成を示す図である。図1に示すように、本実施例の半導体の光源装置は、励起光を射出する光源1と、励起光を導く光ファイバー2と、光源1から射出された励起光を光ファイバー2に光学的に結合するレンズ3と、先端ユニット部6とにより構成されている。
Example 1
FIG. 1 is a diagram showing the configuration of the present embodiment of the light source device 100 according to the present invention. As shown in FIG. 1, the semiconductor light source device of this embodiment includes a light source 1 that emits excitation light, an optical fiber 2 that guides the excitation light, and optically couples the excitation light emitted from the light source 1 to the optical fiber 2. The lens 3 and the tip unit 6 are configured.

先端ユニット部6は図2に示すように、波長変換部材4と、光ファイバー2の射出端部と波長変換部材4との間に位置するキャビティ8とで構成される。キャビティ8の長さD、すなわち、光ファイバー2の射出端部と波長変換部材4の励起光が照射される照射面の中心との間の距離は、光ファイバー2射出端部から射出された励起光が波長変換部材4上に形成するビームスポットの外径が、波長変換部材4上の有効領域10と略等しいか、または小さくなるように調整されている。また、キャビティ8の射出端の内径は、波長変換部材4上の有効領域10に形成する励起光のビームスポットの外径と略等しくなるように構成されている。
ここでキャビティとは、光ファイバーの射出端から射出され、波長変換部材に向かって進行する励起光が通過する連続した空間であり、上面は、波長変換部材の底面であり、下面は光ファイバーの射出端部であり、側面は、側面を囲うようなしきりはない。なお、光ファイバーの射出端部から射出される励起光の広がり角φは、光ファイバーのNAによりφ=sin-1NAと計算される角度である。
また、波長変換部材上の有効領域とは、波長変換部材が所定の波長変換機能を有する領域であり、図2には図示されていないが、波長変換部材4を固定するための波長変換部材固定部等によって、励起光の照射が遮られる領域や、成形の都合等により、欠け等のある周辺領域を除いた領域を意味する。
As shown in FIG. 2, the distal end unit portion 6 includes a wavelength conversion member 4 and a cavity 8 positioned between the emission end portion of the optical fiber 2 and the wavelength conversion member 4. The length D of the cavity 8, that is, the distance between the emission end of the optical fiber 2 and the center of the irradiation surface irradiated with the excitation light of the wavelength conversion member 4 is determined by the excitation light emitted from the emission end of the optical fiber 2. The outer diameter of the beam spot formed on the wavelength conversion member 4 is adjusted so as to be substantially equal to or smaller than the effective area 10 on the wavelength conversion member 4. Further, the inner diameter of the exit end of the cavity 8 is configured to be substantially equal to the outer diameter of the beam spot of the excitation light formed in the effective region 10 on the wavelength conversion member 4.
Here, the cavity is a continuous space through which excitation light emitted from the emission end of the optical fiber and traveling toward the wavelength conversion member passes, the upper surface is the bottom surface of the wavelength conversion member, and the lower surface is the emission end of the optical fiber. It is a part, and the side surface does not have a limit that surrounds the side surface. The spread angle φ of the excitation light emitted from the emission end of the optical fiber is an angle calculated as φ = sin −1 NA by the NA of the optical fiber.
Further, the effective area on the wavelength conversion member is an area where the wavelength conversion member has a predetermined wavelength conversion function, and although not shown in FIG. 2, the wavelength conversion member fixing for fixing the wavelength conversion member 4 is performed. It means a region where the irradiation of excitation light is blocked by a part or the like, or a region excluding a peripheral region with a chip due to the convenience of molding or the like.

光源1は、波長変換部材4を励起するための半導体レーザーである。本実施例では、半導体レーザーの励起波長は450nmであり、最大500mWの出力を有する青色半導体レーザーを用いている。   The light source 1 is a semiconductor laser for exciting the wavelength conversion member 4. In this embodiment, a blue semiconductor laser having an output wavelength of 450 mW and a maximum output of 500 mW is used.

光ファイバー2は、レンズ3を介して光源1と光学的に接続されている。光ファイバー2は、開口数NAFが0.4、コア径が50μm、クラッド径が125μmのマルチモードファイバーを用いている。 The optical fiber 2 is optically connected to the light source 1 through the lens 3. The optical fiber 2 is a multimode fiber having a numerical aperture NA F of 0.4, a core diameter of 50 μm, and a cladding diameter of 125 μm.

本実施例では、波長変換部材4は、粉末蛍光体を樹脂に混合して固めた構成である。粉末蛍光体は一例として、YAG:Ceのような、450nmの励起波長で効率よく540nmの主ピークで発光する一般的な蛍光体である。また、樹脂は、屈折率が1.4のジメチルタイプの短波長の光にも耐えうる耐光性シリコーン樹脂を用いている。   In this embodiment, the wavelength conversion member 4 has a configuration in which a powder phosphor is mixed with resin and hardened. As an example, the powder phosphor is a general phosphor such as YAG: Ce that emits light with a main peak of 540 nm efficiently at an excitation wavelength of 450 nm. The resin is a light-resistant silicone resin that can withstand short-wavelength light of dimethyl type having a refractive index of 1.4.

図2は、光ファイバー2の射出端部から波長変換部材4の間の断面構成を示す。図3は、光ファイバー2の射出端部から波長変換部材4の間の斜視構成を示す。図4は、先端部ユニット部6の射出端側から見た構成を示す。   FIG. 2 shows a cross-sectional configuration between the emission end of the optical fiber 2 and the wavelength conversion member 4. FIG. 3 shows a perspective configuration between the emission end of the optical fiber 2 and the wavelength conversion member 4. FIG. 4 shows a configuration viewed from the injection end side of the tip unit 6.

図3に示すように、波長変換部材4は、その外径が略円形に形成されている。このため、波長変換部材4の有効領域10は、その外形よりやや小さな半径Rphの円形となる。 As shown in FIG. 3, the wavelength conversion member 4 has an outer diameter that is substantially circular. For this reason, the effective region 10 of the wavelength conversion member 4 is a circle having a radius Rph that is slightly smaller than its outer shape.

ここで、波長変換部材4上の有効領域10の半径をRph、波長変換部材4の励起光のビームスポット11の半径をRph-Bとする。本実施例では、図3に示すように、Rph≧Rph-Bの関係、すなわち、波長変換部材4の有効領域10の半径Rphは、波長変換部材4の励起光のビームスポット11の半径Rph-Bと略等しいか、大きくなるように構成されている。 Here, the radius of the effective region 10 on the wavelength conversion member 4 is R ph , and the radius of the beam spot 11 of the excitation light of the wavelength conversion member 4 is R ph-B . In the present embodiment, as shown in FIG. 3, the relationship of R ph ≧ R ph-B , that is, the radius R ph of the effective region 10 of the wavelength conversion member 4 is equal to the beam spot 11 of the excitation light of the wavelength conversion member 4. It is configured to be substantially equal to or larger than the radius Rph-B .

また、本実施例では、光ファイバー2の射出端と波長変換部材4の間の、光ファイバー2から射出される励起光の主軸30上の距離、すなわち光ファイバー2の射出端部と波長変換部材4の励起光が照射される照射面との間のキャビティ8の長さDは、波長変換部材4上の有効領域10の励起光のビームスポット11の外径が波長変換部材4上の有効領域10の外径と略等しくなるような長さに調整されている。つまり、励起光は、光ファイバー2の射出端部から射出されて、広がりながら波長変換部材4上の有効領域10までの距離を進行するが、このとき、有効領域10に形成する励起光のビームスポット11の外径とキャビティ8の射出端の内径が略等しくなるように、キャビティ8の長さDが構成されている。
つまり、光ファイバー2の開口数をNAFとしたとき、光ファイバー2からの励起光の射出角φは、φ=sin-1NAFで計算され、このとき波長変換部材4の有効領域10の半径をRphとすると、キャビティ8の長さDは、条件式(1)を満足するように構成される。
D≦Rph /tanφ ・・・(1)
例えば、光ファイバー2の開口数NAFを0.4、波長変換部材4の有効領域10の半径Rphを1mmとした場合、キャビティ8の長さDは、約2.3mmと計算される。本実施の形態では、波長変換部材4上の有効領域10の外径と、キャビティ8の射出端の内径とが略等しくなるように構成されているため、キャビティ8の射出端の内径と波長変換部材4上の有効領域10の外径は、互いにほぼ等しく、2mmとなる。
Further, in this embodiment, the distance between the emission end of the optical fiber 2 and the wavelength conversion member 4 on the main axis 30 of the excitation light emitted from the optical fiber 2, that is, the excitation of the emission end of the optical fiber 2 and the wavelength conversion member 4. The length D of the cavity 8 between the irradiation surface and the irradiation surface is such that the outer diameter of the beam spot 11 of the excitation light in the effective region 10 on the wavelength conversion member 4 is outside the effective region 10 on the wavelength conversion member 4. The length is adjusted to be approximately equal to the diameter. That is, the excitation light is emitted from the emission end of the optical fiber 2 and travels a distance to the effective region 10 on the wavelength conversion member 4 while spreading. At this time, the beam spot of the excitation light formed in the effective region 10 The length D of the cavity 8 is configured so that the outer diameter of 11 and the inner diameter of the injection end of the cavity 8 are substantially equal.
That is, when the numerical aperture of the optical fiber 2 is NA F , the exit angle φ of the excitation light from the optical fiber 2 is calculated as φ = sin −1 NA F , and at this time, the radius of the effective region 10 of the wavelength conversion member 4 is calculated. Assuming Rph , the length D of the cavity 8 is configured to satisfy the conditional expression (1).
D ≦ R ph / tanφ (1)
For example, when the numerical aperture NA F of the optical fiber 2 is 0.4 and the radius R ph of the effective region 10 of the wavelength conversion member 4 is 1 mm, the length D of the cavity 8 is calculated to be about 2.3 mm. In the present embodiment, since the outer diameter of the effective region 10 on the wavelength conversion member 4 and the inner diameter of the exit end of the cavity 8 are substantially equal, the inner diameter of the exit end of the cavity 8 and the wavelength conversion are configured. The outer diameters of the effective regions 10 on the member 4 are substantially equal to each other and become 2 mm.

励起光を効率よく利用するためには、有効領域10の半径Rphと、波長変換部材4上の有効領域10の励起光のビームスポット11の半径Rph-Bは、必ずしも略等しい必要は無い。波長変換部材4上の有効領域10のビームスポット11が有効領域10と略等しいか、それより小さければ励起光を効率よく利用できる。一方、励起光のビームスポット11が小さすぎる場合には、波長変換部材4上の有効領域10の波長変換可能な領域を有効に使っていないため、ビームスポット11が小さすぎることは避けたほうが良い。 In order to efficiently use the excitation light, the radius R ph of the effective region 10 and the radius R ph-B of the beam spot 11 of the excitation light in the effective region 10 on the wavelength conversion member 4 are not necessarily substantially equal. . If the beam spot 11 in the effective region 10 on the wavelength conversion member 4 is substantially equal to or smaller than the effective region 10, the excitation light can be used efficiently. On the other hand, if the beam spot 11 of the excitation light is too small, the wavelength convertible region of the effective region 10 on the wavelength conversion member 4 is not used effectively. .

図4に示すように、光ファイバー2の射出端部から射出された励起光が波長変換部材4上の有効領域10に形成するビームスポット11の面積をSb16、有効領域10の面積をSph15とする。キャビティ8の長さDは、上述した、励起光のビームスポット11が、波長変換部材4上の有効領域10と等しいか、それより小さくなることに加えて、励起光のビームスポット11の面積Sb16が、波長変換部材4上の有効領域10の面積Sph15の0.25倍から1倍であるような距離に調整されることが望ましい。1倍になる時は、波長変換部材4上の有効領域10の全面に励起光のビームスポット11が照射された状態を意味する。また、励起光のビームスポット11の面積Sb16を波長変換部材4上の有効領域10の面積Sph15の0.25倍以上とすることで、励起光のビームスポット11の照射部が小さくなりすぎることを回避する。このように、波長変換部材4上の有効領域10のビームスポット11の面積Sb15を有効領域10の面積Sph15の0.25倍から1倍の範囲とすることで、小さすぎるビームスポット11を回避し、励起光の利用効率を高め、局所的な熱の上昇を防ぐ構造となる。 As shown in FIG. 4, the area of the beam spot 11 formed in the effective region 10 on the wavelength conversion member 4 by the excitation light emitted from the exit end of the optical fiber 2 is S b 16 and the area of the effective region 10 is S ph. 15 is assumed. The length D of the cavity 8 is such that the beam spot 11 of the excitation light described above is equal to or smaller than the effective region 10 on the wavelength conversion member 4 and the area S of the beam spot 11 of the excitation light. b 16 is preferably adjusted to a distance that is 0.25 to 1 times the area S ph 15 of the effective region 10 on the wavelength conversion member 4. When it is 1 time, it means that the beam spot 11 of the excitation light is irradiated on the entire surface of the effective region 10 on the wavelength conversion member 4. Further, by setting the area S b 16 of the beam spot 11 of the excitation light to be 0.25 times or more the area S ph 15 of the effective region 10 on the wavelength conversion member 4, the irradiation part of the beam spot 11 of the excitation light is small. Avoid becoming too much. Thus, by setting the area S b 15 of the beam spot 11 of the effective region 10 on the wavelength conversion member 4 to be in the range of 0.25 to 1 times the area S ph 15 of the effective region 10, the beam spot that is too small. 11 is avoided, the use efficiency of excitation light is increased, and a local heat rise is prevented.

つまり、波長変換部材4上の有効領域10の励起光のビームスポット11の面積Sb16が有効領域10の面積Sph15の0.24倍以下であると、75%以上も有効領域10の面積に励起光が照射されていないため、その分励起光が波長変換されないことになり励起光を十分利用していないといえる。さらに、励起光の照射密度が狭くなることで熱の上昇が生じやすい。また、光ファイバー射出端部が実装時にずれた場合に、波長変換部材4上の有効領域10の励起光のビームスポット11が中心からずれてしまう。そのズレ量が波長変換部材4上の有効領域10の範囲におさまることが望ましい。そこで波長変換部材4上の有効領域10の励起光のビームスポット11の面積Sb16が有効領域10の面積Sph15の0.25倍以上とすると励起光のビームスポット11の半径分、波長変換部材4の有効領域10の中心からずれても波長変換部材4上の有効領域10におさまることになる。 That is, when the area S b 16 of the beam spot 11 of the excitation light in the effective region 10 on the wavelength conversion member 4 is 0.24 times or less of the area S ph 15 of the effective region 10, 75% or more of the effective region 10 Since the area is not irradiated with the excitation light, it can be said that the excitation light is not sufficiently converted and the excitation light is not sufficiently utilized. Furthermore, the increase in heat tends to occur because the irradiation density of the excitation light is narrowed. Further, when the optical fiber emission end portion is displaced during mounting, the beam spot 11 of the excitation light in the effective region 10 on the wavelength conversion member 4 is displaced from the center. It is desirable that the amount of deviation falls within the range of the effective region 10 on the wavelength conversion member 4. Therefore, if the area S b 16 of the excitation light beam spot 11 in the effective region 10 on the wavelength conversion member 4 is 0.25 times or more than the area S ph 15 of the effective region 10, the wavelength corresponding to the radius of the excitation light beam spot 11 Even if it deviates from the center of the effective region 10 of the conversion member 4, it will fall within the effective region 10 on the wavelength conversion member 4.

本実施例の動作について図1、2及び図3を参照しながら説明する。図1に示すように光源1から射出された励起光は、レンズ3を介して光ファイバー2に光学的に結合され、光ファイバー2のコア内を導光する。光ファイバー2の射出端部から射出された励起光は、その開口数NAFに従い、条件式(1)に示される出射角度φ(=sin-1(NAF))の範囲内で射出され、波長変換部材4上の有効領域10に向かって照射される。 The operation of this embodiment will be described with reference to FIGS. As shown in FIG. 1, the excitation light emitted from the light source 1 is optically coupled to the optical fiber 2 through the lens 3 and guided in the core of the optical fiber 2. The excitation light emitted from the emission end of the optical fiber 2 is emitted within the range of the emission angle φ (= sin −1 (NA F )) shown in the conditional expression (1) according to the numerical aperture NA F , and the wavelength Irradiation toward the effective area 10 on the conversion member 4 is performed.

その際、図3に示すように、励起光のビームスポット11が波長変換部材4の有効領域10に十分広がるように、キャビティ8の長さが所定の距離Dを有している。この波長変換部材4の有効領域10に照射された、励起光のビームスポット11の大きさは、キャビティ8の射出端の内径と略等しい。このため、波長変換部材4の有効領域10の大きさに対して、波長変換部材4上の有効領域10に形成される励起光のビームスポット11の大きさが、略等しいか、それより小さい範囲に、光ファイバー2の射出端部から射出される。光ファイバー2から射出された励起光が、光ファイバー2のNAに応じた射出角度φでキャビティ8内に広がって進行し、波長変換部材4上の有効領域10に照射される。そして波長変換部材4で波長変換され、効率的に先端ユニット部6の射出端側の面から波長変換光が取り出される。   At this time, as shown in FIG. 3, the length of the cavity 8 has a predetermined distance D so that the beam spot 11 of the excitation light sufficiently spreads over the effective region 10 of the wavelength conversion member 4. The size of the beam spot 11 of the excitation light irradiated on the effective region 10 of the wavelength conversion member 4 is substantially equal to the inner diameter of the exit end of the cavity 8. For this reason, the size of the beam spot 11 of the excitation light formed in the effective region 10 on the wavelength conversion member 4 is substantially equal to or smaller than the size of the effective region 10 of the wavelength conversion member 4. Then, the light is emitted from the emission end of the optical fiber 2. Excitation light emitted from the optical fiber 2 travels in the cavity 8 at an emission angle φ corresponding to the NA of the optical fiber 2 and travels to the effective region 10 on the wavelength conversion member 4. Then, the wavelength is converted by the wavelength conversion member 4 and the wavelength-converted light is efficiently extracted from the surface on the emission end side of the tip unit 6.

本実施例のように構成することで部品点数が少なく、簡便な構造で、光ファイバー2射出端から射出した励起光を波長変換部材4上の有効領域10内に照射することが可能となる。すなわち、波長変換部材4を効率的に利用することが可能となるため、小型で明るい光源を実現することが可能となる。   By configuring as in the present embodiment, the number of components is small, and the effective region 10 on the wavelength conversion member 4 can be irradiated with the excitation light emitted from the emission end of the optical fiber 2 with a simple structure. That is, since the wavelength conversion member 4 can be used efficiently, a small and bright light source can be realized.

また、あらかじめ波長変換部材4の励起光のビームスポット11の大きさに影響するキャビティ8の長さDか、波長変換部材4上の有効領域10のどちらかの長さを定めると、もう一方の長さも設定可能である。よって波長変換部材4の大きさは、有効領域10の大きさを考慮して、波長変換部固定部7の大きさが加わる分、大きくなるように設定している。このことで、励起光が波長変換されずに、有効に利用できない領域を省くことで、励起光の利用効率が高い光源装置を実現することが可能となる。   If the length D of the cavity 8 that affects the size of the beam spot 11 of the excitation light of the wavelength conversion member 4 or the length of the effective region 10 on the wavelength conversion member 4 is determined in advance, the other The length can also be set. Therefore, the size of the wavelength conversion member 4 is set so as to increase as the size of the wavelength conversion portion fixing portion 7 is added in consideration of the size of the effective region 10. Thus, it is possible to realize a light source device with high use efficiency of excitation light by omitting a region where excitation light is not wavelength-converted and cannot be used effectively.

波長変換部材4の有効領域10のビームスポット11に比べ波長変換部材4上の有効領域10を十分大きくすると、励起光が波長変換しない部分が増え、その分先端ユニット部6のサイズが大きくなってしまう。しかし、本実施例によれば、図4に示すように、波長変換部材4上の有効領域10の面積Sph15と、波長変換部材4の有効領域10に形成される励起光ビームスポット11の面積Sb16との比Sb/Sphが、0.25から1の間であれば、励起光の利用効率を十分高くすることが可能となる。 If the effective area 10 on the wavelength conversion member 4 is sufficiently large compared to the beam spot 11 in the effective area 10 of the wavelength conversion member 4, the portion where the excitation light is not wavelength-converted increases, and the size of the tip unit 6 increases accordingly. End up. However, according to the present embodiment, as shown in FIG. 4, the area S ph 15 of the effective region 10 on the wavelength conversion member 4 and the excitation light beam spot 11 formed in the effective region 10 of the wavelength conversion member 4 When the ratio S b / S ph to the area S b 16 is between 0.25 and 1, the utilization efficiency of the excitation light can be made sufficiently high.

(実施例1の変形例)
次に、本実施例の変形例について、図2を参照して説明する。
本発明の実施例1の光源装置において、波長変換部材4の発熱の影響を考慮し、励起光が波長変換部材4上に形成される励起光のビームスポット11における励起光のパワー密度を所定値以下とする構成としてもよい。以下、パワー密度を考慮する場合の変形例について、説明する。
(Modification of Example 1)
Next, a modification of the present embodiment will be described with reference to FIG.
In the light source device according to the first embodiment of the present invention, the power density of the excitation light in the beam spot 11 of the excitation light formed on the wavelength conversion member 4 is set to a predetermined value in consideration of the heat generation of the wavelength conversion member 4. The following configuration is also possible. Hereinafter, a modified example in consideration of the power density will be described.

波長変換部材が樹脂含有する場合、高強度の励起光照射により、樹脂が劣化するという問題がある。この樹脂の劣化により、波長変換部材の光透過率が低下するため、波長変換部材4内の樹脂による励起光の吸収が大きくなるため、結果として励起光の利用効率が低下してしまう。本変形例では、波長変換部材4が含有する樹脂が劣化しないように、波長変換部材4上に照射される励起光のパワー密度が所定値以下となるように、キャビティ8の長さDを設定している。   When the wavelength conversion member contains a resin, there is a problem that the resin deteriorates due to high-intensity excitation light irradiation. Due to the deterioration of the resin, the light transmittance of the wavelength conversion member is lowered, and the absorption of the excitation light by the resin in the wavelength conversion member 4 is increased. As a result, the utilization efficiency of the excitation light is lowered. In this modification, the length D of the cavity 8 is set so that the power density of the excitation light irradiated on the wavelength conversion member 4 is not more than a predetermined value so that the resin contained in the wavelength conversion member 4 does not deteriorate. is doing.

図2に示すように、励起光は、光ファイバー2の射出端から波長変換部材4に向かって、広がりながら進む。従って、波長変換部材4上に形成される励起光のビームスポット11は、光ファイバー2の射出端と波長変換部材4の励起光が照射される照射面との間隔、すなわちキャビティ8の長さDが長くなるに従って大きくなる。この結果、波長変換部材4の励起光の照射面上でのパワー密度Pphは、キャビティ8の長さDが長くなるに従って小さくなる。   As shown in FIG. 2, the excitation light travels while spreading from the exit end of the optical fiber 2 toward the wavelength conversion member 4. Therefore, the excitation light beam spot 11 formed on the wavelength conversion member 4 has an interval between the emission end of the optical fiber 2 and the irradiation surface irradiated with the excitation light of the wavelength conversion member 4, that is, the length D of the cavity 8. It gets bigger as it gets longer. As a result, the power density Pph on the irradiation surface of the wavelength conversion member 4 with the excitation light decreases as the length D of the cavity 8 increases.

このパワー密度Pphが、波長変換部材4が含有する樹脂が劣化する限界であるパワー密度限界P以下になるように、キャビティ8の長さDを設定することで、波長変部材4が含有する樹脂が劣化しないようにすることが可能となる。   The resin contained in the wavelength changing member 4 is set by setting the length D of the cavity 8 so that the power density Pph is equal to or less than the power density limit P that is a limit of deterioration of the resin contained in the wavelength conversion member 4. Can be prevented from deteriorating.

本変形例では、以下に示す条件式(2)の関係を満足するようにキャビティ8の長さを設定することで、この条件を満足するように構成している。
ph≦P ・・・(2)
In the present modification, the length of the cavity 8 is set so as to satisfy the relationship of the conditional expression (2) shown below, thereby satisfying this condition.
P ph ≦ P (2)

ここで、
光ファイバー射出端部から射出される励起光の強度をPin
光ファイバー2の開口数をNAF
光ファイバー2から射出される励起光の拡がり角をφ、とすると、
P=Pin/(π・D2tan2φ)
φ=sin-1(NAF)の関係がある。
here,
The intensity of the excitation light emitted from the optical fiber exit end is P in ,
The numerical aperture of the optical fiber 2 is NA F ,
If the divergence angle of the excitation light emitted from the optical fiber 2 is φ,
P = P in / (π · D 2 tan 2 φ)
There is a relationship of φ = sin −1 (NA F ).

すなわち、波長変換部材4上に照射される励起光のパワー密度Pphが、波長変換部材4が含有する樹脂が劣化しない範囲であるパワー密度限界Pと略等しいか、それ以下となるように、キャビティ8の長さDが設定されている。   That is, the cavity is set so that the power density Pph of the excitation light irradiated on the wavelength conversion member 4 is substantially equal to or less than the power density limit P in which the resin contained in the wavelength conversion member 4 does not deteriorate. A length D of 8 is set.

例えば、光ファイバー2の開口数NAFを0.4、光ファイバー射出端部から射出される励起光の強度Pinを200mW、波長変換部材4が許容する励起光のパワー密度限界Pを334mW/mm2とした場合、キャビティ8の長さDは1mm以上とすればよい。 For example, 0.4 numerical aperture NA F of the optical fiber 2, an optical fiber 200mW intensity P in of the excitation light emitted from the exit end, the wavelength conversion member 4 334mW / mm 2 the power density limit P of the excitation light to allow the In this case, the length D of the cavity 8 may be 1 mm or more.

また、例えば、キャビティ8の長さDを2mmとすると、波長変換部材4上に形成されるビームスポットのパワー密度Pphは84mW/mm2となるため、パワー密度限界Pが84mW/mm2以上である波長変換部材4を使用することが可能である。このように、キャビティ8の長さDを変えることで、波長変換部材4上の有効領域10に形成される励起光のビームスポットのパワー密度Pphを制御できるため、使用する波長変換部材4のパワー密度限界Pに合わせて光源装置を設計することが可能となる。 For example, if the length D of the cavity 8 is 2 mm, the power density P ph of the beam spot formed on the wavelength conversion member 4 is 84 mW / mm 2 , so the power density limit P is 84 mW / mm 2 or more. It is possible to use the wavelength conversion member 4 which is. Thus, by changing the length D of the cavity 8, the power density Pph of the beam spot of the excitation light formed in the effective region 10 on the wavelength conversion member 4 can be controlled, so that the wavelength conversion member 4 to be used can be controlled. It becomes possible to design the light source device according to the power density limit P.

この結果、本変形例によると、樹脂が劣化し難くなるため、樹脂による励起光の吸収が増加することが無いため、励起光の利用効率の低減を抑えることが可能となる。さらに、劣化した樹脂による波長変換光の吸収も同時に抑えることができるため、波長変換光の利用効率の低減も小さく抑えることが可能となる。これにより、励起光、波長変換光の利用効率の高い、明るい光源装置を実現することが可能となる。また、波長変換部材4の局所的な発熱等も抑制されるため、先端ユニット部6の発熱も小さく押さえる等の効果もある。   As a result, according to the present modification, the resin is hardly deteriorated, and the absorption of the excitation light by the resin does not increase. Therefore, it is possible to suppress the reduction of the utilization efficiency of the excitation light. Furthermore, since the absorption of the wavelength-converted light by the deteriorated resin can be suppressed at the same time, it is possible to suppress a reduction in the utilization efficiency of the wavelength-converted light. This makes it possible to realize a bright light source device with high utilization efficiency of excitation light and wavelength converted light. In addition, since local heat generation of the wavelength conversion member 4 is also suppressed, there is an effect of suppressing the heat generation of the tip unit 6 to be small.

(実施例2)
次に、本発明の実施例2について説明する。図5、6は、本発明にかかる光源装置の本実施例の先端ユニット部6の構成を示す図である。
(Example 2)
Next, a second embodiment of the present invention will be described. 5 and 6 are diagrams showing the configuration of the tip unit 6 of the present embodiment of the light source device according to the present invention.

本実施例は、光ファイバー2の射出端側に設けられた先端ユニット部6内の光ファイバー2の射出端部と波長変換部材4の励起光が照射される照射面の間のキャビティ8の外側に円柱状の凹面を有する保持部材50が配置されている点で実施例1とは異なっている。なお、図5、6において、図2で示した実施例1の部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。   In the present embodiment, a circle is formed outside the cavity 8 between the emission end of the optical fiber 2 in the tip unit 6 provided on the emission end side of the optical fiber 2 and the irradiation surface irradiated with the excitation light of the wavelength conversion member 4. This is different from the first embodiment in that a holding member 50 having a columnar concave surface is arranged. 5 and 6, members indicated by the same reference numerals as those of the first embodiment shown in FIG. 2 are the same members, and detailed description thereof is omitted.

本実施例では、光ファイバー2の射出端部と波長変換部材4を保持する保持部材50を備える。波長変換部材固定部7は、図5に示すように、円柱状の保持部材50内面に、波長変換部材4が係合するような段差形状として形成されている。波長変換部材固定部7の形状は、射出端方向から見たとき、円柱状の保持部材内面9にフィットするような円形状の溝、または、間隔を空けて取り付けられた小さい板状部材である。   In this embodiment, a holding member 50 that holds the emission end of the optical fiber 2 and the wavelength conversion member 4 is provided. As shown in FIG. 5, the wavelength conversion member fixing portion 7 is formed in a stepped shape such that the wavelength conversion member 4 engages with the inner surface of the cylindrical holding member 50. The shape of the wavelength conversion member fixing portion 7 is a circular groove that fits the cylindrical holding member inner surface 9 when viewed from the direction of the emission end, or a small plate-like member that is attached at an interval. .

図5、6において、保持部材50内部には、円柱型の凹部が形成され、凹部である保持部材内面9は反射面になっている。図5において、光ファイバー2の射出端部から射出され、波長変換部材4の有効領域10上に照射された励起光は、その一部が波長変換部材4に吸収され、また別の一部は波長変換部材4を透過して先端ユニット部6の射出端より外部に射出される。さらに励起光の別の一部は、波長変換部材4上の有効領域10で反射・散乱されて、保持部材内面9方向に射出される。保持部材50の保持部材内面9には、このような励起光を反射する反射面が形成されている。また、波長変換部材4は、その外径が略円形に形成されており、保持部材50内の保持部材内面9に形成された波長変換部材固定部7に固定されている。   5 and 6, a cylindrical recess is formed inside the holding member 50, and the holding member inner surface 9 which is a recess is a reflecting surface. In FIG. 5, a part of the excitation light emitted from the emission end of the optical fiber 2 and irradiated on the effective region 10 of the wavelength conversion member 4 is absorbed by the wavelength conversion member 4, and another part is the wavelength. The light passes through the conversion member 4 and is ejected from the ejection end of the tip unit 6 to the outside. Further, another part of the excitation light is reflected and scattered by the effective region 10 on the wavelength conversion member 4 and emitted toward the inner surface 9 of the holding member. The holding member inner surface 9 of the holding member 50 is formed with a reflection surface that reflects such excitation light. The wavelength converting member 4 has an outer diameter that is substantially circular, and is fixed to a wavelength converting member fixing portion 7 formed on the holding member inner surface 9 in the holding member 50.

本実施例では、光ファイバー2の射出端と、波長変換部材4との間の、光ファイバー2から射出される励起光の主軸30上の距離、すなわち光ファイバー2の射出端部と、波長変換部材固定部7と波長変換部材4の励起光の照射面との接点とを結んだ直線を、励起光の主軸30上へ投影した長さLを調整することで、波長変換部材4上の励起光のビームスポット11の外径を調整している。
励起光は、光ファイバー2の射出端部から射出されて、広がりながら波長変換部材4まで進行する。このとき、波長変換部材4の有効領域10上に形成する励起光のビームスポット11の外径が、波長変換部材4の有効領域10の外径と略等しくなるか、またはそれより小さくなるように、長さLが調整されている。
すなわち、光ファイバー2の開口数をNAF、光ファイバー2からの励起光の射出角φ、波長変換部材4の有効領域10の半径をRphとすると、波長変換部材固定部7と波長変換部材4との接点と、光ファイバー2射出端部とを結んだ直線を、励起光の主軸上へ投影した長さLは、条件式(3)を満足するように構成されている。
L≦Rph /tanφ ・・・(3)
ここで、 φ=sin-1(NAF)の関係がある。
In this embodiment, the distance between the emission end of the optical fiber 2 and the wavelength conversion member 4 on the main axis 30 of the excitation light emitted from the optical fiber 2, that is, the emission end of the optical fiber 2 and the wavelength conversion member fixing portion. The beam of excitation light on the wavelength conversion member 4 is adjusted by adjusting the length L of the straight line connecting the contact point 7 and the contact point of the wavelength conversion member 4 with the excitation light irradiation surface onto the main axis 30 of the excitation light. The outer diameter of the spot 11 is adjusted.
The excitation light is emitted from the emission end of the optical fiber 2 and travels to the wavelength conversion member 4 while spreading. At this time, the outer diameter of the beam spot 11 of the excitation light formed on the effective region 10 of the wavelength conversion member 4 is substantially equal to or smaller than the outer diameter of the effective region 10 of the wavelength conversion member 4. The length L is adjusted.
That is, assuming that the numerical aperture of the optical fiber 2 is NA F , the emission angle φ of the excitation light from the optical fiber 2, and the radius of the effective region 10 of the wavelength conversion member 4 is R ph , the wavelength conversion member fixing portion 7 and the wavelength conversion member 4 A length L obtained by projecting a straight line connecting the contact point and the exit end of the optical fiber 2 onto the main axis of the excitation light is configured to satisfy the conditional expression (3).
L ≦ R ph / tanφ (3)
Here, there is a relationship of φ = sin −1 (NA F ).

本実施例では、図4に示すように、光ファイバー2の射出端部から射出された励起光が波長変換部材4上に形成するビームスポット11の面積Sb16が、波長変換部材4上の有効領域10の面積Sph15の0.25倍から1倍であるようなエリアに照射されるように構成されている。
ここに示す長さLは、実施例1のキャビティの長さDと同様の箇所をさしており、保持部材の場合に別の表現で表している。
In the present embodiment, as shown in FIG. 4, the area S b 16 of the beam spot 11 formed on the wavelength conversion member 4 by the excitation light emitted from the emission end of the optical fiber 2 is effective on the wavelength conversion member 4. It is configured to irradiate an area that is 0.25 to 1 times the area S ph 15 of the region 10.
The length L shown here refers to the same location as the length D of the cavity of the first embodiment, and is expressed by another expression in the case of the holding member.

次に、本実施例の動作について図5、6を参照しながら説明する。そして、図5に示すように光ファイバー2の射出端部より射出された励起光は、保持部材50内を波長変換部材4の方向へ進行し、波長変換部材4上に照射される。   Next, the operation of this embodiment will be described with reference to FIGS. As shown in FIG. 5, the excitation light emitted from the emission end of the optical fiber 2 travels in the holding member 50 toward the wavelength conversion member 4 and is irradiated onto the wavelength conversion member 4.

図5に示すように、光ファイバー2から射出された励起光である光b1は、その一部が波長変換部材4に吸収、波長変換されて、波長変換部材4の射出端側の面から波長変換光が出射される。また、別の一部は波長変換部材4上の有効領域10で反射・散乱された光b2となり、保持部材50の内部に向けて進行する。この光b2は保持部材内面9に形成された反射面で反射され、その一部は光b3となり、波長変換部材4へ照射される。このように、波長変換部材4に照射された光b3は、励起光であるため、波長変換部材4により波長変換されて波長変換光となり、先端ユニット部6の射出端から出射される。   As shown in FIG. 5, a part of the light b <b> 1 that is the excitation light emitted from the optical fiber 2 is absorbed and wavelength-converted by the wavelength conversion member 4, and wavelength conversion is performed from the emission end side surface of the wavelength conversion member 4. Light is emitted. Another part becomes the light b 2 reflected and scattered by the effective region 10 on the wavelength conversion member 4 and travels toward the inside of the holding member 50. The light b2 is reflected by the reflecting surface formed on the inner surface 9 of the holding member, and a part of the light b2 becomes the light b3 and is irradiated to the wavelength conversion member 4. Thus, since the light b3 irradiated to the wavelength conversion member 4 is excitation light, the wavelength conversion member 4 converts the wavelength into wavelength-converted light, which is emitted from the exit end of the tip unit portion 6.

また、波長変換部材4で波長変換された波長変換光の一部は、波長変換部材4の励起光が照射された面の反対側の面から波長変換光として射出される。また波長変換光の別の一部は、励起光が照射された面で散乱され、ここから保持部材50内部に射出される。保持部材50内部に射出された波長変換光の一部である光a1は、保持部材50の内部に向けて進行し、保持部材内面9に形成された反射面で反射され、その一部は光a2となり、波長変換部材4に照射され、波長変換部材4を通過して先端ユニット部6の射出端部より射出される。   A part of the wavelength converted light converted by the wavelength converting member 4 is emitted as wavelength converted light from the surface opposite to the surface irradiated with the excitation light of the wavelength converting member 4. Another part of the wavelength-converted light is scattered on the surface irradiated with the excitation light and is emitted from here into the holding member 50. The light a1, which is a part of the wavelength converted light emitted into the holding member 50, travels toward the inside of the holding member 50 and is reflected by the reflecting surface formed on the holding member inner surface 9, and part of the light a1 is light. a2 is emitted to the wavelength conversion member 4, passes through the wavelength conversion member 4, and is emitted from the emission end of the tip unit 6.

本実施例のように構成することで、波長変換部材4の有効領域10で反射・散乱した励起光を、保持部材50内面の凹部の反射面で反射して、先端ユニット部6の射出端側に再び励起光が進行する。この励起光の一部は波長変換部材4に照射され、さらにその一部は波長変換光に変換されて照明光となる。この結果、実施例1の効果に加え、さらに励起光の利用効率を上げることが可能となり、効率の良い光源装置を提供することが可能となる。さらに、本実施例における、保持部材内面9に形成された反射面は、波長変換部材から射出された波長変換光も反射する機能を有しているため、保持部材内面9に向けて出射された波長変換光を、先端ユニット部の射出端側に導くことが可能となる。この結果、第1の実施例の効果に加え、波長変換光の利用効率も向上することが可能となる。   By configuring as in the present embodiment, the excitation light reflected / scattered by the effective region 10 of the wavelength conversion member 4 is reflected by the reflection surface of the concave portion on the inner surface of the holding member 50, and the emission end side of the tip unit portion 6 The excitation light proceeds again. A part of this excitation light is irradiated to the wavelength conversion member 4, and a part of the excitation light is converted into wavelength conversion light to become illumination light. As a result, in addition to the effects of the first embodiment, it is possible to further increase the use efficiency of the excitation light, and to provide an efficient light source device. Furthermore, in the present embodiment, the reflection surface formed on the holding member inner surface 9 has a function of reflecting the wavelength converted light emitted from the wavelength conversion member, and thus is emitted toward the holding member inner surface 9. Wavelength converted light can be guided to the exit end side of the tip unit. As a result, in addition to the effects of the first embodiment, it is possible to improve the utilization efficiency of the wavelength-converted light.

(実施例3)
次に、本発明の実施例3について、図7を参照しながら説明する。図7は、本発明にかかる光源装置の本実施例の先端ユニット部6の構成を示す図である。
(Example 3)
Next, Embodiment 3 of the present invention will be described with reference to FIG. FIG. 7 is a diagram showing the configuration of the tip unit portion 6 of the present embodiment of the light source device according to the present invention.

本実施例は、光ファイバー2の射出端部側に設けられた先端ユニット部6が図7のようにテーパー型保持部材500で構成されている点が実施例1,2とは異なっている。このテーパー型保持部材500は、光ファイバー2の射出端部と波長変換部材4との間のキャビティ8の外側に配置されている。なお、図7において、実施例1,2の部材と同一の参照符号で指示された部材は同様の部材であり、その詳しい説明は省略する。   This embodiment is different from Embodiments 1 and 2 in that the tip unit portion 6 provided on the exit end side of the optical fiber 2 is configured with a tapered holding member 500 as shown in FIG. The tapered holding member 500 is disposed outside the cavity 8 between the emission end of the optical fiber 2 and the wavelength conversion member 4. In FIG. 7, members indicated by the same reference numerals as those of the first and second embodiments are the same members, and detailed description thereof is omitted.

本実施例では、テーパー型保持部材500のテーパー形状は、光ファイバー2の射出端側から波長変換部材4の配置される側に向かって広がるような、円錐状のテーパー面である。このテーパー型保持部材内面90のテーパー面は反射面になっている。   In the present embodiment, the tapered shape of the tapered holding member 500 is a conical tapered surface that extends from the emission end side of the optical fiber 2 toward the side where the wavelength conversion member 4 is disposed. The tapered surface of the tapered holding member inner surface 90 is a reflective surface.

図7において、励起光の主軸30とテーパー型保持部材内面90のテーパー面とのなす角をテーパー角θとする。テーパー角θは、励起光の射出角φと略等しいか、それより大きな角度となるように設定されている。すなわち以下に示す条件式(4)を満足するように設定されている。このため、光ファイバー2の射出端部から射出した励起光は直接テーパー面に照射されない。
θ≧φ ・・・(4)
In FIG. 7, an angle formed between the main axis 30 of the excitation light and the tapered surface of the tapered holding member inner surface 90 is a taper angle θ. The taper angle θ is set to be substantially equal to or larger than the excitation light emission angle φ. That is, it is set so as to satisfy the following conditional expression (4). For this reason, the excitation light emitted from the emission end of the optical fiber 2 is not directly irradiated onto the tapered surface.
θ ≧ φ (4)

図8(a)は、波長変換部材4での励起光のビームスポット11を示した斜視図である。図8(b)は、波長変換部材4を、光ファイバー2の射出端側から見たときの、波長変換部材4の有効領域10と、励起光のビームスポット11の位置関係を示した図である。
本実施例では、励起光が波長変換部材4上に形成するビームスポット11の面積Sb16が、波長変換部材4上の有効領域10の面積Sph15の0.25倍から1倍であるようなエリアに照射されるように構成されている。
FIG. 8A is a perspective view showing a beam spot 11 of excitation light on the wavelength conversion member 4. FIG. 8B is a diagram showing a positional relationship between the effective region 10 of the wavelength conversion member 4 and the beam spot 11 of the excitation light when the wavelength conversion member 4 is viewed from the emission end side of the optical fiber 2. .
In this embodiment, the area S b 16 of the beam spot 11 formed by the excitation light on the wavelength conversion member 4 is 0.25 to 1 times the area S ph 15 of the effective region 10 on the wavelength conversion member 4. Such an area is configured to be irradiated.

図9は、本実施例における、先端ユニット部6の断面図である。以下、本実施例の動作について、図9を参照しながら説明する。   FIG. 9 is a cross-sectional view of the tip unit 6 in the present embodiment. The operation of the present embodiment will be described below with reference to FIG.

テーパー型保持部材500のテーパー型保持部材内面90のテーパー角θは、光ファイバー2の射出端部から射出される励起光の射出角φより大きなテーパー角となっているため、励起光b1は、テーパー面に照射されること無く、波長変換部材4に向かって進行する。   Since the taper angle θ of the taper type holding member inner surface 90 of the taper type holding member 500 is larger than the emission angle φ of the excitation light emitted from the emission end of the optical fiber 2, the excitation light b1 is tapered. It progresses toward the wavelength conversion member 4 without irradiating the surface.

図9に示すように、励起光b1は、波長変換部材4上の有効領域10で反射・散乱されて励起光b4となり、テーパー型保持部材500の内部に向けて進行する。この励起光b4はテーパー型保持部材内面90に形成された反射面で反射され、励起光b5となる。このように、テーパー型保持部材内面90方向に反射、散乱された励起光は、反射面であるテーパー面での反射を繰り返し(図9のb5、b6)、その一部は波長変換部材4に照射される。このような励起光の一部は、波長変換部材4により波長変換されて波長変換光となり、先端ユニット部6の射出端から出射される。   As shown in FIG. 9, the excitation light b <b> 1 is reflected and scattered by the effective region 10 on the wavelength conversion member 4 to become excitation light b <b> 4, and travels toward the inside of the tapered holding member 500. The excitation light b4 is reflected by the reflection surface formed on the tapered holding member inner surface 90, and becomes excitation light b5. In this way, the excitation light reflected and scattered in the direction of the tapered holding member inner surface 90 repeats reflection on the tapered surface which is the reflection surface (b5 and b6 in FIG. 9), and a part thereof is applied to the wavelength conversion member 4. Irradiated. A part of such excitation light is wavelength-converted by the wavelength conversion member 4 to become wavelength-converted light, and is emitted from the exit end of the tip unit portion 6.

波長変換部材4に照射された励起光(b1、b6)は、その一部が波長変換部材4に吸収、波長変換されて、その一部は波長変換部材4の射出端側の面から波長変換光が出射される。また、別の一部はテーパー型保持部材500の内面方向に出射される。テーパー型保持部材500のテーパー面は反射面とされているため、この波長変換光を反射し、反射された波長変換光の一部を波長変換部材4を経由して外部に射出する。   A part of the excitation light (b 1, b 6) irradiated to the wavelength conversion member 4 is absorbed and wavelength converted by the wavelength conversion member 4, and a part of the excitation light (b 1, b 6) is converted from the surface on the emission end side of the wavelength conversion member 4. Light is emitted. Another part is emitted toward the inner surface of the tapered holding member 500. Since the tapered surface of the tapered holding member 500 is a reflecting surface, the wavelength converted light is reflected, and a part of the reflected wavelength converted light is emitted to the outside via the wavelength converting member 4.

上記のように、テーパー型保持部材500をテーパー型形状とし、その内面を反射面とすることで、波長変換部材4で反射、散乱された励起光がテーパー型保持部材内面90へ照射された励起光を、テーパー型保持部材内面に形成された反射面で反射して、励起光の一部を再び波長変換部材4へ照射することが可能となる。波長変換部材4に直接、またはテーパー端保持部材内面を経由して照射された励起光は、波長変換部材4により波長変換されて、照明光として外部に射出される。このように、本実施例のように構成することで、実施例1の効果に加え、波長変換部材で反射、散乱された励起光を再利用することが可能となり、励起光の利用効率をより高めることが可能となる。また、実施例2と比べ、保持部材内面をテーパー形状とすることで、保持部材内面方向に反射、散乱された励起光を、より少ない反射回数で波長変換部材方向に導くことが可能となるため、反射による励起光のロスを小さく抑えることが可能となる。   As described above, the tapered holding member 500 has a tapered shape, and its inner surface is a reflecting surface, so that excitation light reflected and scattered by the wavelength conversion member 4 is irradiated on the inner surface 90 of the tapered holding member. The light is reflected by the reflecting surface formed on the inner surface of the tapered holding member, and a part of the excitation light can be irradiated again to the wavelength conversion member 4. The excitation light irradiated on the wavelength conversion member 4 directly or via the inner surface of the tapered end holding member is wavelength-converted by the wavelength conversion member 4 and emitted to the outside as illumination light. In this way, by configuring as in the present embodiment, in addition to the effects of the first embodiment, it becomes possible to reuse the excitation light reflected and scattered by the wavelength conversion member, thereby further improving the use efficiency of the excitation light. It becomes possible to raise. Further, since the inner surface of the holding member is tapered as compared with the second embodiment, excitation light reflected and scattered toward the inner surface of the holding member can be guided to the wavelength conversion member direction with a smaller number of reflections. The loss of excitation light due to reflection can be kept small.

なお、本発明の全ての実施例では、励起光源として半導体レーザーを例として挙げたが、これにとらわれることなく、光ファイバー2に結合可能な光源であれば、発光ダイオード(LED)やSLD等の固体発光素子、色素レーザー、気体レーザー等を利用することが可能である。   In all of the embodiments of the present invention, a semiconductor laser is used as an example of an excitation light source. However, any light source that can be coupled to the optical fiber 2 without being limited thereto is used as a solid light emitting diode (LED) or SLD. A light emitting element, a dye laser, a gas laser, or the like can be used.

また、本実施例では波長変換部材として、樹脂に粉末蛍光体を混合して固めた例を挙げたが、光ファイバー2から射出された励起光をそれと異なる波長の光に波長変換する材料であれば、単結晶や有機発光材料、量子ドット等、どのような材料でも利用することが可能である。
なお、本実施例は、ほんの一例に過ぎず、本発明の主旨を逸脱しない範囲で様々な変形が可能である。
Moreover, although the example which mixed and hardened the powder fluorescent substance in resin was given as a wavelength conversion member in the present Example, if it is the material which wavelength-converts the excitation light inject | emitted from the optical fiber 2 to the light of a different wavelength from it, Any material such as a single crystal, an organic light emitting material, or a quantum dot can be used.
The present embodiment is merely an example, and various modifications can be made without departing from the gist of the present invention.

以上のように、本発明にかかる光源装置は、励起光の利用効率が高くなるので、小型化された光源装置に有用であり、特に、内視鏡用の光源装置に適している。   As described above, since the light source device according to the present invention has high utilization efficiency of excitation light, it is useful for a miniaturized light source device and is particularly suitable for a light source device for an endoscope.

実施例1の構成を説明する図である。1 is a diagram illustrating a configuration of Example 1. FIG. 光ファイバーの射出端部から波長変換部材の間の断面図を示す。Sectional drawing between the output end part of an optical fiber and a wavelength conversion member is shown. 光ファイバーの射出端部から波長変換部材の間の斜視図を示す。The perspective view between the wavelength conversion member from the injection | emission end part of an optical fiber is shown. 先端ユニット部の射出端側から見た鳥瞰図を示す。The bird's-eye view seen from the injection | emission end side of the front-end | tip unit part is shown. 実施例2の先端ユニット部を説明する図である。It is a figure explaining the front-end | tip unit part of Example 2. FIG. 実施例2の変形例を説明する図である。It is a figure explaining the modification of Example 2. FIG. 実施例3の先端ユニット部の構成を示す図である。It is a figure which shows the structure of the front-end | tip unit part of Example 3. FIG. 実施例3の斜視図および波長変換部材を、光ファイバーの射出端側から見た図である。It is the figure which looked at the perspective view of Example 3, and the wavelength conversion member from the emission end side of the optical fiber. 実施例3の断面図である。6 is a cross-sectional view of Example 3. FIG. 従来の発光装置を説明する図である。It is a figure explaining the conventional light-emitting device.

1、1000 励起光源
2 光ファイバー
4、40 波長変換部材
6 先端ユニット部
7 波長変換部材固定部
8 キャビティ
10 有効領域
11 ビームスポット
13 励起光
50 保持部材
500 テーパー型保持部材
9 保持部材内面
90 テーパー型保持部材内面
20 ライトガイド
DESCRIPTION OF SYMBOLS 1,1000 Excitation light source 2 Optical fiber 4, 40 Wavelength conversion member 6 Tip unit part 7 Wavelength conversion member fixing | fixed part 8 Cavity 10 Effective area 11 Beam spot 13 Excitation light 50 Holding member 500 Taper type holding member 9 Holding member inner surface 90 Taper type holding Member inner surface 20 Light guide

Claims (11)

励起光を射出する光源と、
前記光源と光学的に接続され、前記励起光を導光する光ファイバーと、
光ファイバー射出端部から射出された前記励起光を受光し、それとは異なる波長領域の光を射出する波長変換部材と、
前記光ファイバー射出端部と前記波長変換部材との間に配置されたキャビティとを有する光源装置であって、
前記キャビティの入射端には、前記光ファイバー射出端部が配置され、前記キャビティの射出端には前記波長変換部材の前記励起光が照射される照射面が配置されており、
前記キャビティ内では、前記光ファイバー射出端部から射出された前記励起光が、前記波長変換部材の前記励起光が照射される照射面に向かって広がって進行し、
前記キャビティの射出端の内径は、前記波長変換部材上の有効領域に形成する前記励起光のビームスポットの外径と略等しいことを特徴とする光源装置。
A light source that emits excitation light;
An optical fiber optically connected to the light source and guiding the excitation light;
A wavelength conversion member that receives the excitation light emitted from the optical fiber emission end and emits light in a wavelength region different from the excitation light;
A light source device having a cavity disposed between the optical fiber emission end and the wavelength conversion member,
At the incident end of the cavity, the optical fiber exit end is disposed, and at the exit end of the cavity, an irradiation surface on which the excitation light of the wavelength conversion member is irradiated is disposed,
In the cavity, the excitation light emitted from the optical fiber emission end portion spreads and proceeds toward an irradiation surface irradiated with the excitation light of the wavelength conversion member,
The light source device according to claim 1, wherein an inner diameter of an emission end of the cavity is substantially equal to an outer diameter of a beam spot of the excitation light formed in an effective region on the wavelength conversion member.
前記光ファイバー射出端部と前記波長変換部材の前記励起光が照射される照射面の間の距離、すなわち前記キャビティの長さDは、前記光ファイバー射出端部から射出された前記励起光が前記波長変換部材上に形成するビームスポットの外径が、前記波長変換部材上の有効領域と略等しいか、または小さくなるように調整されていることを特徴とする請求項1に記載の光源装置。   The distance between the optical fiber emission end and the irradiation surface of the wavelength conversion member irradiated with the excitation light, that is, the length D of the cavity is determined by the wavelength conversion of the excitation light emitted from the optical fiber emission end. The light source device according to claim 1, wherein an outer diameter of a beam spot formed on the member is adjusted to be substantially equal to or smaller than an effective area on the wavelength conversion member. 前記光ファイバーの開口数をNAF、前記光ファイバーからの励起光の射出角をφ、前記波長変換部材上の有効領域の半径をRとしたときに、前記キャビティの長さDは、条件式(1)を満足することを特徴とする請求項2に記載の光源装置。
D≦R/tanφ ・・・(1)
ここで、 φ=sin-1(NAF)である。
When the numerical aperture of the optical fiber is NA F , the exit angle of the excitation light from the optical fiber is φ, and the radius of the effective region on the wavelength conversion member is R, the length D of the cavity is a conditional expression (1 The light source device according to claim 2, wherein:
D ≦ R / tanφ (1)
Here, φ = sin −1 (NA F ).
前記キャビティの長さDは、前記光ファイバー射出端部から射出された前記励起光が前記波長変換部材上の有効領域に形成するビームスポットの面積が、前記波長変換部材の有効領域の面積の0.25倍から1倍であるような距離に調整されていることを特徴とする請求項3に記載の光源装置。   The length D of the cavity is such that the area of the beam spot formed in the effective region on the wavelength conversion member by the excitation light emitted from the optical fiber emission end is 0. 0 of the area of the effective region of the wavelength conversion member. 4. The light source device according to claim 3, wherein the light source device is adjusted to a distance that is 25 times to 1 time. 前記光ファイバー射出端部から射出される前記励起光の強度をPin
前記波長変換部材の有効領域における前記励起光のパワー密度をPph
前記波長変換部材が劣化しないパワー密度限界をPとしたとき、条件式(2)を満足するように調整されていることを特徴とする請求項3に記載の光源装置。
ここで、
前記光ファイバーの開口数をNAF
前記光ファイバーからの励起光の射出角をφとし、
ph≦P ・・・(2)
ここで、Pph=Pin/(π・D2tan2φ)
φ=sin-1(NAF)である。
The intensity of the excitation light emitted from the optical fiber emission end is P in ,
The power density of the excitation light in the effective region of the wavelength conversion member is P ph ,
The light source device according to claim 3, wherein the light source device is adjusted so as to satisfy the conditional expression (2), where P is a power density limit at which the wavelength conversion member does not deteriorate.
here,
The numerical aperture of the optical fiber is NA F ,
The exit angle of the excitation light from the optical fiber is φ,
P ph ≦ P (2)
Here, P ph = P in / (π · D 2 tan 2 φ)
φ = sin −1 (NA F ).
前記光源装置は、前記光ファイバー射出端部と前記波長変換部材とを保持するための保持部材を有し、
前記保持部材は、前記波長変換部材を固定する波長変換部材固定部を備え、
前記波長変換部材固定部と波長変換部材の前記励起光の照射面との接点と、前記光ファイバー射出端部とを結んだ直線を前記励起光の主軸上へ投影した長さLは、前記光ファイバー射出端部から射出された前記励起光が前記波長変換部材上に形成するビームスポットの外径が、前記波長変換部材上の有効領域と略等しいか、または小さくなるように調整されていることを特徴とする請求項1に記載の光源装置。
The light source device has a holding member for holding the optical fiber emission end portion and the wavelength conversion member,
The holding member includes a wavelength conversion member fixing portion that fixes the wavelength conversion member,
A length L of a straight line connecting the contact point between the wavelength conversion member fixing part and the excitation light irradiation surface of the wavelength conversion member and the optical fiber emission end is projected onto the main axis of the excitation light. The outer diameter of the beam spot formed on the wavelength conversion member by the excitation light emitted from the end is adjusted so as to be substantially equal to or smaller than the effective area on the wavelength conversion member. The light source device according to claim 1.
前記光ファイバーの開口数をNAF
前記光ファイバーからの励起光の射出角をφ、
前記波長変換部材上の有効領域の半径をR、としたときに、
前記波長変換部材固定部と波長変換部材の前記励起光の照射面との接点と、前記光ファイバー射出端部とを結んだ線を前記励起光の主軸上へ投影した長さLは条件式(3)を満足することを特徴とする請求項6に記載の光源装置。
L≦R/tanφ ・・・(3)
ここで、 φ=sin-1(NAF)である。
The numerical aperture of the optical fiber is NA F ,
The exit angle of the excitation light from the optical fiber is φ,
When the radius of the effective region on the wavelength conversion member is R,
A length L obtained by projecting a line connecting the contact point between the wavelength conversion member fixing portion and the excitation light irradiation surface of the wavelength conversion member and the optical fiber emission end portion onto the main axis of the excitation light is a conditional expression (3 The light source device according to claim 6, wherein:
L ≦ R / tanφ (3)
Here, φ = sin −1 (NA F ).
前記保持部材の、前記光ファイバー射出端部と前記波長変換部材固定部との間の保持部材内面は、反射面であることを特徴とする請求項7に記載の光源装置。   The light source device according to claim 7, wherein an inner surface of the holding member between the optical fiber emission end portion and the wavelength conversion member fixing portion of the holding member is a reflection surface. 前記保持部材は円柱構造の凹部を有しており、前記波長変換部材は前記円柱構造の射出端側に配置され、前記光ファイバー射出端部は前記円柱構造の底面側に配置されており、前記凹部は、前記波長変換部材から前記光ファイバー射出端部側へ射出した励起光を前記凹部の前記反射面で反射して、前記励起光を前記波長変換部材の射出端側へ射出する構造であることを特徴とする請求項8に記載の光源装置。   The holding member has a cylindrical structure recess, the wavelength conversion member is disposed on the exit end side of the columnar structure, the optical fiber exit end is disposed on the bottom surface side of the columnar structure, and the recess Is a structure in which the excitation light emitted from the wavelength conversion member to the optical fiber emission end side is reflected by the reflection surface of the concave portion and the excitation light is emitted to the emission end side of the wavelength conversion member. The light source device according to claim 8, wherein the light source device is a light source device. 前記保持部材の内部は、前記光ファイバー射出端部から射出される前記励起光の主軸に対し、前記光ファイバー射出端部側より前記波長変換部材側に広がった、テーパー角を有する円錐構造を有しており、前記円錐構造内面に形成された反射面は、前記波長変換部材から前記光ファイバー射出端部側へ射出した励起光を反射して、前記励起光を前記波長変換部材の射出端側へ射出する構造であることを特徴とする請求項8に記載の光源装置。   The inside of the holding member has a conical structure having a taper angle that spreads from the optical fiber emission end side to the wavelength conversion member side with respect to the main axis of the excitation light emitted from the optical fiber emission end part. The reflection surface formed on the inner surface of the conical structure reflects the excitation light emitted from the wavelength conversion member to the optical fiber emission end side and emits the excitation light to the emission end side of the wavelength conversion member. The light source device according to claim 8, wherein the light source device has a structure. 前記保持部材内面と、前記光ファイバー射出端部から射出される前記励起光の主軸とのなす角であるテーパー角θは、前記光ファイバーからの励起光の射出角φに対して、条件式(4)の関係を満足するように構成されていることを特徴とする請求項10に記載の光源装置。
θ≧φ ・・・(4)
The taper angle θ, which is the angle formed between the inner surface of the holding member and the main axis of the excitation light emitted from the optical fiber emission end, is expressed by conditional expression (4) with respect to the emission angle φ of the excitation light from the optical fiber. The light source device according to claim 10, wherein the light source device is configured to satisfy the following relationship.
θ ≧ φ (4)
JP2009224651A 2009-09-29 2009-09-29 Light source device Pending JP2011076763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009224651A JP2011076763A (en) 2009-09-29 2009-09-29 Light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009224651A JP2011076763A (en) 2009-09-29 2009-09-29 Light source device

Publications (1)

Publication Number Publication Date
JP2011076763A true JP2011076763A (en) 2011-04-14

Family

ID=44020571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009224651A Pending JP2011076763A (en) 2009-09-29 2009-09-29 Light source device

Country Status (1)

Country Link
JP (1) JP2011076763A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248401A (en) * 2011-05-27 2012-12-13 Olympus Corp Light source device
CN103090235A (en) * 2013-01-30 2013-05-08 重庆绿色智能技术研究院 White light source based on laser
US9134010B2 (en) 2011-05-27 2015-09-15 Olympus Corporation Light source apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248401A (en) * 2011-05-27 2012-12-13 Olympus Corp Light source device
US9134010B2 (en) 2011-05-27 2015-09-15 Olympus Corporation Light source apparatus
CN103090235A (en) * 2013-01-30 2013-05-08 重庆绿色智能技术研究院 White light source based on laser

Similar Documents

Publication Publication Date Title
US8356924B2 (en) Light source apparatus
JP5019289B2 (en) Fiber optic lighting equipment
US9841546B2 (en) Light source apparatus
JP5478232B2 (en) Lighting device
US8186864B2 (en) Light source device
JP2012174551A (en) Light-emitting device
EP2767756B1 (en) Light-source device
US20090105696A1 (en) Nd:yag laser for removing fatty tissue
JP5173663B2 (en) LIGHT SOURCE DEVICE AND ENDOSCOPE DEVICE USING THE SAME
US9528684B2 (en) Light converter emitting illumination light and light source apparatus using the light converter
JP6012936B2 (en) Lighting device
JP6406800B2 (en) Light emitting device and light conversion unit
JP2011076763A (en) Light source device
US20170038514A1 (en) Light source apparatus and endoscope apparatus with the light source apparatus
JP4315404B2 (en) Laser apparatus, optical amplifier and laser processing apparatus
JP7117492B2 (en) lighting equipment
JP2005300823A (en) Optical unit, illumination apparatus and projection type display apparatus
JP5480929B2 (en) Endoscopic light projecting unit
JP7011715B2 (en) Endoscope Illumination Optical System and Endoscope
US10849487B2 (en) Illumination unit and endoscope system
JP2001168425A (en) Laser device and laser processor
WO2021028969A1 (en) Optical device, wireless endoscope, and endoscope system
CN110778926A (en) Lighting device
CN111413805A (en) Reflective laser lighting structure
JP2017011115A (en) Light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131127