JP2011050660A - Particle beam medical treatment system and particle beam irradiation method - Google Patents

Particle beam medical treatment system and particle beam irradiation method Download PDF

Info

Publication number
JP2011050660A
JP2011050660A JP2009204249A JP2009204249A JP2011050660A JP 2011050660 A JP2011050660 A JP 2011050660A JP 2009204249 A JP2009204249 A JP 2009204249A JP 2009204249 A JP2009204249 A JP 2009204249A JP 2011050660 A JP2011050660 A JP 2011050660A
Authority
JP
Japan
Prior art keywords
particle beam
scatterer
scattering
charged particle
scattering member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009204249A
Other languages
Japanese (ja)
Inventor
Takashi Okazaki
隆司 岡崎
Masumi Umezawa
真澄 梅澤
Shinichiro Fujitaka
伸一郎 藤高
Rintaro Fujimoto
林太郎 藤本
Kazuo Hiramoto
和夫 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009204249A priority Critical patent/JP2011050660A/en
Publication of JP2011050660A publication Critical patent/JP2011050660A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radiation-Therapy Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide technology for making a non-circular beam approximate to a circular beam in irradiation using a particle beam having a small diameter. <P>SOLUTION: The particle beam medical treatment system includes: an accelerator accelerating a charged particle beam; a particle beam irradiating device irradiating a target region with the charged particle beam emitted from the accelerator; a beam transport system for connecting the accelerator to the particle beam irradiating device; and a scatterer having at least a first scattering member and a second scattering member formed of a material whose scattering angle of the charged particle beam is larger than that of the first scattering member, wherein the scatterer is disposed so that the major axis of the second scattering member crosses a region having a smaller beam diameter of the passing charged particle beam in a beam passing region of the beam transport system. Thus, the above problem is solved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、粒子線治療システム及び粒子線照射方法に係り、特に、ビームサイズ比が1に近いビームを用いて線量分布の中で線量の高い領域を形成するのに好適な粒子線治療システム及び粒子線照射方法に関する。   The present invention relates to a particle beam therapy system and a particle beam irradiation method, and more particularly to a particle beam therapy system suitable for forming a high-dose region in a dose distribution using a beam having a beam size ratio close to 1. The present invention relates to a particle beam irradiation method.

粒子線治療システムは、陽子ビームや重粒子ビーム(炭素線等)の荷電粒子ビームを患者の患部に照射するがん治療の有効な手段の一つであり、今後、盛んに用いられる見込みである。粒子線治療システムには、患者の患部(標的領域)の線量分布を均一あるいは予め決められた分布に制御することが求められている。   The particle beam therapy system is one of the effective means of cancer treatment that irradiates the affected part of a patient with a charged particle beam such as a proton beam or a heavy particle beam (carbon beam, etc.), and is expected to be actively used in the future. . The particle beam therapy system is required to control the dose distribution of the affected area (target region) of a patient to a uniform or predetermined distribution.

荷電粒子ビームの進行方向(深さ方向)の線量分布の形成には、荷電粒子ビームが停止する直前にエネルギーの大部分を放出してブラッグカーブと呼ばれる線量分布を形成する特性と、そのブラッグカーブのピークであるブラッグピークの、深さ方向での位置は体内に入射する荷電粒子ビームのエネルギーの大きさで制御できる特性を利用する。粒子線治療では、荷電粒子ビームのエネルギーを適切に選択し、荷電粒子ビームを患部近傍で停止させてエネルギーの大部分を患部のがん細胞に与えるようにしている。ここで、ブラッグピークの、深さ方向での幅は数mmである。通常、患部は深さ方向にそれ以上の厚みをもっている。このような患部において患部全体の深さ方向に渡って荷電粒子ビームを効果的に照射するには、深さ方向で患部大に広がり一様度の高い高線量領域(SOBP;Spread Out Bragg Peak)を形成するように、荷電粒子ビームのエネルギーと荷電粒子ビームの照射量を制御する必要がある。   The formation of a dose distribution in the traveling direction (depth direction) of a charged particle beam is characterized by the fact that most of the energy is released immediately before the charged particle beam stops to form a dose distribution called a Bragg curve, and the Bragg curve. The position in the depth direction of the Bragg peak, which is the peak of, utilizes the characteristics that can be controlled by the magnitude of the energy of the charged particle beam incident on the body. In particle beam therapy, the energy of a charged particle beam is appropriately selected, and the charged particle beam is stopped in the vicinity of the affected area so that most of the energy is given to cancer cells in the affected area. Here, the width of the Bragg peak in the depth direction is several mm. Usually, the affected area has a greater thickness in the depth direction. In order to effectively irradiate a charged particle beam in the depth direction of the entire affected area in such an affected area, the high dose region (SOBP: Spread Out Bragg Peak) that spreads to the affected area in the depth direction and has high uniformity. Therefore, it is necessary to control the energy of the charged particle beam and the irradiation amount of the charged particle beam.

荷電粒子ビームの進行方向(深さ方向)の線量分布の形成には、リッジフィルタやRMW(Range Modulation Wheel)等を用いる方法、あるいは、加速器から出射する荷電粒子ビームのエネルギー種を変える方法で、SOBPを形成することが知られている。   For the formation of the dose distribution in the traveling direction (depth direction) of the charged particle beam, a method using a ridge filter, RMW (Range Modulation Wheel) or the like, or a method of changing the energy species of the charged particle beam emitted from the accelerator, It is known to form SOBP.

線量分布を均一等に制御する方法として、荷電粒子ビームの進行方向に垂直な面(照射野面)には、散乱体を用いて荷電粒子ビームを広げる方法や、ビーム径が小さい荷電粒子ビームを用いて照射野面を走査する方法がある。   As a method for uniformly controlling the dose distribution, on the surface perpendicular to the traveling direction of the charged particle beam (irradiation field surface), a method of expanding the charged particle beam using a scatterer, or a charged particle beam having a small beam diameter is used. There is a method of scanning the irradiation field surface by using.

特開2007−37629号公報JP 2007-37629 A

粒子線治療システムでは、荷電粒子ビームの進行方向に垂直な面(照射野面)において、円形に近い形状の荷電粒子ビームを用いることが望ましい。照射野面内での荷電粒子ビームの縦横比をビームサイズ比と呼ぶ。このビームサイズ比が1に近い方が円形に近いが、加速器で加速したビームは必ずしも円形ではない。   In the particle beam therapy system, it is desirable to use a charged particle beam having a shape close to a circle on a plane (irradiation field plane) perpendicular to the traveling direction of the charged particle beam. The aspect ratio of the charged particle beam in the irradiation field plane is called the beam size ratio. The beam size ratio closer to 1 is closer to a circle, but the beam accelerated by the accelerator is not necessarily circular.

特許文献1は、荷電粒子ビームの照射範囲を径方向(ビーム進行方向に対して垂直な方向)に拡大する第1散乱体及び第2散乱体を、粒子線照射装置内に配置する粒子線治療システムを開示している。第1散乱体は荷電粒子ビームのビーム散乱量が大きい物質で構成され、ビーム径方向の線量分布を正規分布状に拡大する。第2散乱体は、荷電粒子ビームのビーム散乱角が大きい物質からなる円盤部と、この円盤部の外周側に設けられ、荷電粒子ビームのビーム散乱角が小さい物質からなるリング部で構成される、2重リング構造を有する。このような第2散乱体は、第1散乱体を通過した荷電粒子ビームのビーム径方向の線量分布を一様に拡大する機能を有する。   Patent Document 1 discloses a particle beam treatment in which a first scatterer and a second scatterer that expand an irradiation range of a charged particle beam in a radial direction (a direction perpendicular to a beam traveling direction) are arranged in a particle beam irradiation apparatus. A system is disclosed. The first scatterer is made of a material having a large beam scattering amount of the charged particle beam, and expands the dose distribution in the beam radial direction into a normal distribution. The second scatterer includes a disk portion made of a material having a large beam scattering angle of the charged particle beam, and a ring portion made of a material having a small beam scattering angle of the charged particle beam. It has a double ring structure. Such a second scatterer has a function of uniformly expanding the dose distribution in the beam diameter direction of the charged particle beam that has passed through the first scatterer.

一方、ビーム径が小さい荷電粒子ビームを用いて照射野面を走査する照射方法では、ビームサイズ比が1から大きくずれると、線量分布の形成の点から、照射野面で照射スポット位置を調整して線量一様度を得る必要があることが分かった。ビームサイズ比が変動すると、ビームサイズ比の大きさに応じて、照射スポット位置を調整する必要があり、大きな課題となる。そのために、照射野内での線量分布を一様、あるいは、予め決めた分布にするには、荷電粒子ビームのビーム形状を円形(ビームサイズ比が1に近いビーム)にする必要がある。   On the other hand, in the irradiation method in which the irradiation field surface is scanned using a charged particle beam having a small beam diameter, if the beam size ratio deviates greatly from 1, the irradiation spot position is adjusted on the irradiation field surface from the viewpoint of forming a dose distribution. It was found that it was necessary to obtain dose uniformity. When the beam size ratio fluctuates, it is necessary to adjust the irradiation spot position according to the size of the beam size ratio, which is a big problem. Therefore, in order to make the dose distribution in the irradiation field uniform or predetermined, the beam shape of the charged particle beam needs to be circular (a beam having a beam size ratio close to 1).

荷電粒子ビームのビームサイズ比が1から大きくずれる場合、ビーム輸送系の電磁石装置を用いて荷電粒子ビームの形状を調整する(円形に近づける)ことは可能である。しかし、回転ガントリーを備える粒子線治療システムの場合、電磁石装置はこの回転ガントリーの回転角度毎に荷電粒子ビームの形状を調整することが必要となり、このような調整にはさらに多大な労力を要する。省力化のためには、回転ガントリーの回転角度に無関係にしてビームサイズの調整を少なくするには、ビームサイズ比を1に近づけることが重要である。特に、ビーム径が小さい荷電粒子ビームのビーム形状を円形に近づける手段を開発することは重要である。   When the beam size ratio of the charged particle beam deviates greatly from 1, it is possible to adjust the shape of the charged particle beam (close to a circle) by using an electromagnet device of a beam transport system. However, in the case of a particle beam therapy system including a rotating gantry, the electromagnet apparatus needs to adjust the shape of the charged particle beam for each rotation angle of the rotating gantry, and such adjustment requires much more labor. In order to save labor, it is important to make the beam size ratio close to 1 in order to reduce the adjustment of the beam size regardless of the rotation angle of the rotating gantry. In particular, it is important to develop means for bringing the beam shape of a charged particle beam having a small beam diameter closer to a circle.

本発明者らは、荷電粒子ビームのビーム軌道上に散乱体を設置してビーム形状を調整する方法について種々検討を行った。散乱体は荷電粒子ビームに等方に散乱角を与える。散乱角の大きい粒子の場合、散乱体の通過前のビーム形状が非円形であっても、散乱後には円形に近づく。散乱体として平板を用いると、散乱は等方に起こるので、非円形の長軸,短軸の両方に散乱角が与えられる。このため、非円形ビームを円形に近づけるためには、長軸と短軸の差を埋めるべく散乱角を大きくする必要がある。この場合、非円形ビームの長軸の方も径が大きくなり、径の細いビームを用いようとする照射には不向きになる。逆に、散乱角を小さく押さえると円形形状への近づき方が悪く、非円形形状のままになる。
本発明の目的は、ビーム径が小さい荷電粒子ビームを用いる照射において、荷電粒子ビームの進行方向に垂直な面でのビーム形状を円形に近づける粒子線治療システム及び粒子線照射方法を提供することにある。
The present inventors have made various studies on a method of adjusting a beam shape by installing a scatterer on the beam trajectory of a charged particle beam. The scatterer imparts an isotropic scattering angle to the charged particle beam. In the case of a particle having a large scattering angle, even if the beam shape before passing through the scatterer is non-circular, it approaches a circular shape after scattering. When a flat plate is used as the scatterer, scattering occurs isotropically, and therefore, a scattering angle is given to both the non-circular major axis and minor axis. For this reason, in order to make a non-circular beam close to a circle, it is necessary to increase the scattering angle so as to fill the difference between the long axis and the short axis. In this case, the major axis of the non-circular beam also has a larger diameter, which is not suitable for irradiation that uses a beam having a small diameter. Conversely, if the scattering angle is kept small, the approach to the circular shape is poor and the non-circular shape remains.
An object of the present invention is to provide a particle beam treatment system and a particle beam irradiation method for making a beam shape close to a circle in a plane perpendicular to the traveling direction of a charged particle beam in irradiation using a charged particle beam having a small beam diameter. is there.

(1)上記目的を達成するために、本発明は、荷電粒子ビームを加速する加速器と、この加速器から出射された荷電粒子ビームを標的領域に照射する粒子線照射装置と、加速器と粒子線照射装置をつなぐビーム輸送系と、散乱角が異なる複数の散乱部材を有する散乱体と、ビーム輸送系のビーム通過領域であって、通過する荷電粒子ビームのビーム径が短い領域を、第2散乱部材の長軸が横切るように散乱体を配置する散乱体制御装置を備えることによって、非円形のビーム形状を円形形状にして、患部位置における患部サイズの高線量領域の形成するようにしたものである。   (1) To achieve the above object, the present invention provides an accelerator for accelerating a charged particle beam, a particle beam irradiation apparatus for irradiating a target region with a charged particle beam emitted from the accelerator, an accelerator, and particle beam irradiation. A beam transport system connecting the apparatus, a scatterer having a plurality of scattering members having different scattering angles, and a beam passing region of the beam transport system, wherein a region where the beam diameter of the charged particle beam passing through is short is a second scattering member By providing a scatterer control device that arranges the scatterer so that the long axis of the non-circular beam crosses, a non-circular beam shape is formed into a circular shape so as to form a high-dose area of the affected part size at the affected part position. .

(2)上記(1)において、好ましくは、散乱体を通過する前の荷電粒子ビームのビーム形状を求め、散乱体の配置位置及び回転角度に関する移動指令信号を出力する中央制御装置を備え、散乱体制御装置は、中央制御装置からの移動指令信号に基づいて散乱体を移動及び回転して配置することによって、さらに所望のビーム形状の荷電粒子ビームを得ることができる。   (2) In the above (1), preferably, a central control device for obtaining a beam shape of the charged particle beam before passing through the scatterer and outputting a movement command signal regarding the arrangement position and rotation angle of the scatterer is provided, The body control device can obtain a charged particle beam having a desired beam shape by moving and rotating the scatterer based on the movement command signal from the central control device.

(3)上記(1)において、好ましくは、走査電磁石で粒子線を走査して、標的領域に粒子線を照射するようにしたものである。   (3) In the above (1), preferably, the target region is irradiated with the particle beam by scanning the particle beam with a scanning electromagnet.

(4)上記(1)において、好ましくは、散乱角が異なる複数の散乱部材は、第1の散乱部材と、荷電粒子ビームの散乱角が第1散乱部材より大きい物質で構成される第2散乱部材を少なくとも備え、散乱体は、第2散乱部材が複数の第1散乱部材の間に配置される構成であり、第1散乱部材及び第2散乱部材を通過した荷電粒子ビームの水等価の飛程が同じになるような厚みを有し、散乱体制御装置は、荷電粒子ビームが第1散乱部材及び第2散乱部材を通過する位置に前記散乱体を配置する。   (4) In the above (1), preferably, the plurality of scattering members having different scattering angles are a first scattering member and a second scattering member composed of a substance having a scattering angle of a charged particle beam larger than that of the first scattering member. At least a member, and the scatterer has a configuration in which the second scattering member is disposed between the plurality of first scattering members, and the water-equivalent flight of the charged particle beam that has passed through the first scattering member and the second scattering member. The scatterer control device arranges the scatterer at a position where the charged particle beam passes through the first scattering member and the second scattering member.

(5)上記(4)において、好ましくは、第2散乱部材の短軸方向の幅が、散乱体を通過する前のビーム径の長軸方向の長さよりも小さく、第2散乱部材の長軸方向の幅が、散乱体を通過する前のビーム径の短軸方向の長さより大きい構成とする。   (5) In the above (4), preferably, the width in the minor axis direction of the second scattering member is smaller than the length in the major axis direction of the beam diameter before passing through the scatterer, and the major axis of the second scattering member. The width in the direction is configured to be larger than the length in the minor axis direction of the beam diameter before passing through the scatterer.

(6)上記(1)(2)(3)において、好ましくは、散乱体は、第1散乱部材と第2散乱部材とを交互に複数配置した構成であり、第1散乱部材及び第2散乱部材を通過した荷電粒子ビームの水等価の飛程が同じになるような厚みを有し、散乱体制御装置は、荷電粒子ビームが第1散乱部材及び第2散乱部材を通過する位置に前記散乱体を配置することによって、非円形ビームをより円形形状にすることを特徴とする非等方散乱体を用いるようにしたものである。   (6) In the above (1), (2), and (3), preferably, the scatterer has a configuration in which a plurality of first scattering members and second scattering members are alternately arranged, and the first scattering member and the second scattering member. The scatterer control device has a thickness such that the water equivalent range of the charged particle beam that has passed through the member is the same, and the scatterer control device is configured to scatter the charged particle beam at a position where the charged particle beam passes through the first scattering member and the second scattering member. An anisotropic scatterer characterized in that the non-circular beam is made more circular by arranging the body is used.

(7)上記(6)において、好ましくは、散乱体は、第2散乱部材をビーム中心周りに複数個設置し、ビーム中心から端になるにつれて、第2散乱部材の幅と間隔を徐々に小さくした構成とする。   (7) In the above (6), preferably, the scatterer is provided with a plurality of second scattering members around the beam center, and the width and interval of the second scattering member are gradually reduced from the beam center to the end. The configuration is as follows.

(8)上記(1)(2)(3)において、好ましくは、散乱体は、第1散乱部材と、荷電粒子ビームの散乱角が第1散乱部材よりも大きい物質で構成される第2散乱部材と、この第1散乱部材及び第2散乱部材を支持する支持部材を有し、支持部材の一方の面に第1散乱部材を配置し、支持部材の他方の面に、第1支持部材の一部が重なるように第2支持部材を配置した構成であり、第1散乱部材及び第2散乱部材を通過した荷電粒子ビームの水等価の飛程が同じになるような厚みを有し、散乱体制御装置は、荷電粒子ビームが第1散乱部材及び第2散乱部材を通過する位置に散乱体を配置することによって、非円形ビームをより円形形状にすることができる。   (8) In the above (1), (2), and (3), preferably, the scatterer is a first scattering member and a second scattering composed of a substance having a scattering angle of the charged particle beam larger than that of the first scattering member. And a support member that supports the first scattering member and the second scattering member, the first scattering member is disposed on one surface of the support member, and the first support member is disposed on the other surface of the support member. The second support member is arranged so that a part thereof overlaps, and the charged particle beam having passed through the first scattering member and the second scattering member has a thickness such that the water equivalent range is the same, and is scattered. The body control device can make the non-circular beam more circular by arranging the scatterer at a position where the charged particle beam passes through the first scattering member and the second scattering member.

(9)荷電粒子ビームを加速する加速器と、加速器から出射された荷電粒子ビームを標的領域に照射する粒子線照射装置と、加速器と粒子線照射装置をつなぐビーム輸送系と、荷電粒子ビームの散乱角が異なる複数の散乱部材を有し、ビーム中心から離れるにつれて、散乱角が小さい散乱部材を配置し、ビーム輸送系のビーム通過領域であって、通過する荷電粒子ビームのビーム径が短い領域を、散乱部材のうち最も散乱角が大きい散乱部材の長軸が横切るように散乱体を配置する散乱体制御装置を備えることによって、非円形ビームをより円形形状にすることができる。   (9) An accelerator that accelerates a charged particle beam, a particle beam irradiation device that irradiates a target region with a charged particle beam emitted from the accelerator, a beam transport system that connects the accelerator and the particle beam irradiation device, and scattering of the charged particle beam A plurality of scattering members having different angles are arranged, and as the distance from the center of the beam increases, a scattering member having a smaller scattering angle is arranged, and a beam passing region of the beam transport system in which the beam diameter of the charged particle beam passing through is short. By providing a scatterer control device that arranges the scatterer so that the long axis of the scattering member having the largest scattering angle among the scattering members crosses, the non-circular beam can be made more circular.

(10)上記(9)において、好ましくは、散乱体は散乱角が異なる複数の散乱部材を通過した荷電粒子ビームの水等価の飛程が同じになるような厚みを有することにある。   (10) In the above (9), preferably, the scatterer has a thickness such that the water equivalent ranges of the charged particle beams that have passed through the plurality of scattering members having different scattering angles are the same.

(11)また、荷電粒子ビームを加速する加速器と、加速器から出射された荷電粒子ビームを標的領域に照射する粒子線照射装置と、加速器と粒子線照射装置をつなぐビーム輸送系と、第1散乱部材及び荷電粒子ビームの散乱角が第1散乱部材よりも大きい物質で構成される第2散乱部材を有する散乱体と、散乱体をビーム輸送系のビーム通過領域に配置する散乱体制御装置を備える粒子線治療システムの粒子線照射方法であって、散乱体制御装置は、荷電粒子ビームのビーム径が短い領域を、第2散乱部材の長軸が横切るように散乱体を配置し、散乱体を通過した荷電粒子ビームを粒子線照射装置に輸送し、この輸送された荷電粒子ビームを、粒子線照射装置内にある走査電磁石で偏向して出射することによって、標的領域に高線量領域の形成するようにした。   (11) An accelerator that accelerates the charged particle beam, a particle beam irradiation device that irradiates the target region with the charged particle beam emitted from the accelerator, a beam transport system that connects the accelerator and the particle beam irradiation device, and first scattering And a scatterer having a second scattering member made of a material having a scattering angle of the member and the charged particle beam larger than that of the first scattering member, and a scatterer control device for arranging the scatterer in a beam passage region of the beam transport system. In the particle beam irradiation method of the particle beam therapy system, the scatterer control device arranges the scatterer so that the long axis of the second scattering member crosses the region where the beam diameter of the charged particle beam is short. The charged particle beam that has passed is transported to a particle beam irradiation device, and the transported charged particle beam is deflected by a scanning electromagnet in the particle beam irradiation device and emitted, so that a high-dose region is irradiated on the target region. It was to be formed.

このような方法により、ビームサイズ比が1から大きくずれているビーム形状を円形に近い形状にすることができるので、ガントリー回転角毎に調整する必要がなく、ガントリー角度とは無関係に、線量分布一様度の形成が容易にできるものとなる。   By such a method, the beam shape whose beam size ratio is greatly deviated from 1 can be made into a nearly circular shape, so there is no need to adjust every gantry rotation angle, and dose distribution is independent of the gantry angle. Uniformity can be easily formed.

本発明によれば、荷電粒子ビームのビーム形状を円形に近づけることができるので、回転ガントリーの回転角毎にビーム形状を調整する必要がなく、回転ガントリーの回転角度には依存せずに、所望の線量分布を得ることができるようになる。   According to the present invention, since the beam shape of the charged particle beam can be made close to a circle, there is no need to adjust the beam shape for each rotation angle of the rotating gantry, and the desired shape can be obtained without depending on the rotating angle of the rotating gantry. The dose distribution can be obtained.

本発明の第1の実施形態による粒子線治療システムのシステム構成図である。1 is a system configuration diagram of a particle beam therapy system according to a first embodiment of the present invention. 本発明の第1の実施形態による粒子線治療システムに用いる粒子線照射装置の構成図である。It is a block diagram of the particle beam irradiation apparatus used for the particle beam therapy system by the 1st Embodiment of this invention. 本発明の第1の実施形態による散乱体の構成を示した図である。It is the figure which showed the structure of the scatterer by the 1st Embodiment of this invention. 本発明の第1の実施形態による散乱体の説明図である。It is explanatory drawing of the scatterer by the 1st Embodiment of this invention. 本発明の第1の実施形態による散乱体の説明図である。It is explanatory drawing of the scatterer by the 1st Embodiment of this invention. 本発明の他の実施形態による散乱体の構成を示した図である。It is the figure which showed the structure of the scatterer by other embodiment of this invention. 本発明の他の実施形態による散乱体の構成を示した図である。It is the figure which showed the structure of the scatterer by other embodiment of this invention. 本発明の他の実施形態による散乱体の構成を示した図である。It is the figure which showed the structure of the scatterer by other embodiment of this invention.

粒子線を標的領域に照射する粒子線照射装置と、加速器と、それらをつなぐ輸送系とからなる粒子線治療システムにおいて、水等価の飛程が同じになるように厚さを調整した、散乱角の異なる複数の物質を帯状に配列し、帯状に配列した散乱角の大きい物質の短軸方向の幅は非円形ビームの長軸方向の長さより短くし、散乱角の大きい物質の長軸方向の長さは非円形ビームの短軸方向の長さより長くした非等方散乱体を用いて、非円形形状のビームの短軸方向の幅を大きく拡大し非円形のビーム形状を円形形状にして、患部位置における患部サイズの高線量領域の形成するようにしたものである。   In a particle beam therapy system consisting of a particle beam irradiation device that irradiates a target region with a particle beam, an accelerator, and a transport system that connects them, the scattering angle is adjusted so that the water equivalent range is the same. A material with a large scattering angle arranged in a band is made shorter than the length in the long axis direction of the non-circular beam, and the material in the long axis direction of a material with a large scattering angle is arranged in a band shape. Using an anisotropic scatterer whose length is longer than the length of the non-circular beam in the short axis direction, the width of the non-circular beam in the short axis direction is greatly enlarged to make the non-circular beam shape a circular shape, A high-dose area having an affected part size at the affected part position is formed.

本発明の第1の実施形態による粒子線治療システムの構成及び動作を、図1〜図5を用いて説明する。   The configuration and operation of the particle beam therapy system according to the first embodiment of the present invention will be described with reference to FIGS.

まずは、図1を用いて本実施形態による粒子線治療システム100の構成について説明する。図1は、実施例1の粒子線治療システム100のシステム構成図である。   First, the configuration of the particle beam therapy system 100 according to the present embodiment will be described with reference to FIG. FIG. 1 is a system configuration diagram of a particle beam therapy system 100 according to the first embodiment.

本実施形態の粒子線治療システム100は、前段加速器(例えば、直線加速器)1,円形加速器(例えば、シンクロトロン)2,ビーム輸送系3,回転ガントリー4,粒子線照射装置5,制御装置6及び患者支持装置8を備える。   The particle beam therapy system 100 of the present embodiment includes a pre-stage accelerator (for example, a linear accelerator) 1, a circular accelerator (for example, a synchrotron) 2, a beam transport system 3, a rotating gantry 4, a particle beam irradiation apparatus 5, a control apparatus 6, and A patient support device 8 is provided.

前段加速器1は、イオン源(図示せず)及びシンクロトロン2に接続される。シンクロトロン2は、ビーム加速装置である高周波加速空胴30,高周波印加装置31,出射用デフレクタ32,四極電磁石33及び偏向電磁石34を有する。出射用デフレクタ32がビーム輸送系3に接続される。   The front stage accelerator 1 is connected to an ion source (not shown) and a synchrotron 2. The synchrotron 2 includes a high-frequency accelerating cavity 30 that is a beam accelerator, a high-frequency applying device 31, an output deflector 32, a quadrupole electromagnet 33, and a deflecting electromagnet 34. An exit deflector 32 is connected to the beam transport system 3.

ビーム輸送系3は、散乱体14,ビーム経路35,四極電磁石36及び偏向電磁石37を備える。ビーム経路35に沿って散乱体14,四極電磁石36及び偏向電磁石37が配置される。散乱体14は、散乱体駆動装置24を介して散乱体制御部15に接続される。
ビーム輸送系3の一部である逆U字のビーム経路35を含む回転ガントリー4に、粒子線照射装置5が、回転ガントリー4に設置される。回転ガントリー4が回転することによって、患者7への荷電粒子ビームの照射方向を変更できる。ビーム輸送系3が、シンクロトロン2と粒子線照射装置5を接続する。
The beam transport system 3 includes a scatterer 14, a beam path 35, a quadrupole electromagnet 36 and a deflection electromagnet 37. A scatterer 14, a quadrupole electromagnet 36, and a deflection electromagnet 37 are arranged along the beam path 35. The scatterer 14 is connected to the scatterer control unit 15 via the scatterer driving device 24.
The particle beam irradiation device 5 is installed in the rotating gantry 4 in the rotating gantry 4 including the inverted U-shaped beam path 35 which is a part of the beam transport system 3. By rotating the rotating gantry 4, the irradiation direction of the charged particle beam to the patient 7 can be changed. A beam transport system 3 connects the synchrotron 2 and the particle beam irradiation apparatus 5.

図2を用いて、粒子線照射装置5の内部構造について説明する。図2は、粒子線治療システム100に用いる粒子線照射装置5の構成図である。粒子線照射装置5は、ケーシング(図示せず)を有する。このケーシングが回転ガントリーに取り付けられる。ケーシングの内部には、荷電粒子ビームのビーム進行方向の上流側から、ビームプロファイルモニタ12,走査電磁石13,線量モニタ17,ブロックコリメータ18及びマルチリーフコリメータ19をビーム経路(ビーム軸)上に配置している。ビームプロファイルモニタ12は、ビーム輸送系3を経てビーム経路35から粒子線照射装置5に入射された荷電粒子ビームがビーム軸上に位置しているかを確認するモニタである。走査電磁石13は、通過する荷電粒子ビームを偏向して走査する。この走査電磁石13は、例えばビーム軸と垂直な平面上において互いに直交する方向(X方向,Y方向)に荷電粒子ビームを偏向し、照射位置をX方向及びY方向に動かすためのものである。線量モニタ17は、粒子線照射装置5に入射された荷電粒子ビームの線量を検出するモニタである。ブロックコリメータ18は、ビーム軸と垂直な平面上の荷電粒子ビームの照射野形状を成形する開口を有し、その開口の外部の荷電粒子ビームを遮蔽するものである。マルチリーフコリメータ19は、荷電粒子ビームを遮蔽する多数の薄板を有し、薄板をビーム軸と垂直な平面上内へ移動することにより、荷電粒子ビームが通過する領域を任意の形状(患者7の患部の形状)成形するものである。符号20は、患者7に荷電粒子ビームを当てる中心になるアイソセンタである。   The internal structure of the particle beam irradiation apparatus 5 is demonstrated using FIG. FIG. 2 is a configuration diagram of the particle beam irradiation apparatus 5 used in the particle beam therapy system 100. The particle beam irradiation apparatus 5 has a casing (not shown). This casing is attached to the rotating gantry. Inside the casing, a beam profile monitor 12, a scanning electromagnet 13, a dose monitor 17, a block collimator 18, and a multi-leaf collimator 19 are arranged on the beam path (beam axis) from the upstream side in the beam traveling direction of the charged particle beam. ing. The beam profile monitor 12 is a monitor for confirming whether a charged particle beam incident on the particle beam irradiation device 5 from the beam path 35 through the beam transport system 3 is located on the beam axis. The scanning electromagnet 13 deflects and scans the charged particle beam that passes therethrough. The scanning electromagnet 13 is for deflecting the charged particle beam in directions (X direction, Y direction) orthogonal to each other on a plane perpendicular to the beam axis, for example, and moving the irradiation position in the X direction and the Y direction. The dose monitor 17 is a monitor that detects the dose of the charged particle beam incident on the particle beam irradiation apparatus 5. The block collimator 18 has an opening for shaping the irradiation field shape of the charged particle beam on a plane perpendicular to the beam axis, and shields the charged particle beam outside the opening. The multi-leaf collimator 19 has a large number of thin plates that shield the charged particle beam, and moves the thin plate into a plane perpendicular to the beam axis so that the region through which the charged particle beam passes has an arbitrary shape (of the patient 7). The shape of the affected part). Reference numeral 20 denotes an isocenter which is a center for applying a charged particle beam to the patient 7.

制御装置6は、図1に示すように、加速器・輸送系制御部9,照射装置制御部10,散乱体制御部15及び中央制御部11を備える。中央制御装置11が、加速器・輸送系制御部9,照射装置制御部10及び散乱体制御部15に接続され、これらの制御部に指令信号を出力する。また、中央制御部11は、ビーム輸送系3、治療計画装置25及び表示装置26に接続される。加速器・輸送系制御部9は、前段加速器1,シンクロトロン2及びビーム輸送系3に接続され、中央制御部11からの指令信号に基づいて、前段加速器1,シンクロトロン2及びビーム輸送系3を制御する。照射装置制御部10は、粒子線照射装置5に接続され、中央制御装置11からの指令信号に基づいて、粒子線照射装置5内の各機器を制御する。なお、照射装置制御部10は、粒子線照射装置5内に配置される走査電磁石13に供給する電力を調整して、走査磁場を形成させて荷電粒子ビームの走査量を調整する機能を有する。散乱体制御部15は、散乱体駆動装置24に接続される。この散乱体制御部15は、中央制御装置11からの指令信号に基づいて、複数の散乱体のなかから所望の散乱体14を選択し、選択された散乱体14がビーム軌道上に配置されるように駆動指令信号を散乱体駆動装置24に出力する。   As shown in FIG. 1, the control device 6 includes an accelerator / transport system control unit 9, an irradiation device control unit 10, a scatterer control unit 15, and a central control unit 11. The central controller 11 is connected to the accelerator / transport system controller 9, the irradiation device controller 10, and the scatterer controller 15, and outputs command signals to these controllers. The central control unit 11 is connected to the beam transport system 3, the treatment planning device 25, and the display device 26. The accelerator / transport system control unit 9 is connected to the front stage accelerator 1, the synchrotron 2 and the beam transport system 3. Based on the command signal from the central control unit 11, the front stage accelerator 1, the synchrotron 2 and the beam transport system 3 are connected. Control. The irradiation device controller 10 is connected to the particle beam irradiation device 5 and controls each device in the particle beam irradiation device 5 based on a command signal from the central control device 11. The irradiation device control unit 10 has a function of adjusting the power supplied to the scanning electromagnet 13 disposed in the particle beam irradiation device 5 to form a scanning magnetic field to adjust the scanning amount of the charged particle beam. The scatterer control unit 15 is connected to the scatterer driving device 24. The scatterer control unit 15 selects a desired scatterer 14 from a plurality of scatterers based on a command signal from the central control device 11, and the selected scatterer 14 is arranged on the beam trajectory. In this manner, the drive command signal is output to the scatterer driving device 24.

治療計画装置25は、医師によって予め入力されている患者情報(患部の位置及びサイズ,荷電粒子ビームの照射方向,最大照射深さ等)に基づいて治療計画情報を求める。この治療計画情報は、荷電粒子ビームのビームエネルギー,荷電粒子ビームの飛程,SOBP幅,照射野径,患者支持装置8の設置位置等を含む。治療計画装置25は、この治療計画情報を治療計画装置25内の記憶装置(図示せず)に記憶するとともに、中央制御部11内の記憶装置(図示せず)に記憶させる。   The treatment planning device 25 obtains treatment plan information based on patient information (position and size of affected area, irradiation direction of charged particle beam, maximum irradiation depth, etc.) input in advance by a doctor. This treatment plan information includes the beam energy of the charged particle beam, the range of the charged particle beam, the SOBP width, the irradiation field diameter, the installation position of the patient support device 8, and the like. The treatment planning device 25 stores this treatment plan information in a storage device (not shown) in the treatment planning device 25 and also stores it in a storage device (not shown) in the central control unit 11.

中央制御部11は、例えば、キーボードやマウスなどの入力装置から入力された患者識別情報に応じて、これから治療を行う患者7に関する治療計画情報を中央制御部11内の記憶装置から読み込む。中央制御部11は、この治療計画情報に基づいて、シンクロトロン2を構成する高周波加速空胴30,高周波印加装置31,出射用デフレクタ32,四極電磁石33及び偏向電磁石34に対する制御指令データ(加速器制御指令データ),ビーム輸送系3を構成する四極電磁石36及び偏向電磁石37等の各機器に対する制御指令データ(輸送系制御指令データ),ビーム輸送系3のビーム軌道上に配置される散乱体14の制御指令データ(散乱体制御指令データ)、及び粒子線照射装置5を構成するブロックコリメータ18,マルチリーフコリメータ19等の各機器の制御指令データ(照射装置制御指令データ)を作成する。このようにして作成された加速器制御指令データ及び輸送系制御指令データが加速器・輸送系制御部9に出力され、散乱体制御指令データが散乱体制御部15へ出力され、照射装置制御指令データが照射装置制御部10に出力される。   The central control unit 11 reads, from the storage device in the central control unit 11, for example, treatment plan information related to the patient 7 to be treated in accordance with patient identification information input from an input device such as a keyboard or a mouse. Based on this treatment plan information, the central control unit 11 controls control commands for the high-frequency accelerating cavity 30, the high-frequency applying device 31, the deflector 32 for extraction, the quadrupole electromagnet 33, and the deflecting electromagnet 34 that constitute the synchrotron 2 (accelerator control Command data), control command data (transport system control command data) for each device such as the quadrupole electromagnet 36 and the deflection electromagnet 37 constituting the beam transport system 3, and the scatterers 14 arranged on the beam trajectory of the beam transport system 3 Control command data (scattering body control command data) and control command data (irradiation device control command data) for each device such as the block collimator 18 and the multi-leaf collimator 19 constituting the particle beam irradiation device 5 are created. The accelerator control command data and the transport system control command data created in this way are output to the accelerator / transport system control unit 9, the scatterer control command data is output to the scatterer control unit 15, and the irradiation device control command data is It is output to the irradiation device control unit 10.

荷電粒子ビームを照射する対象である患者7をのせた患者支持装置8が移動され、患部がビーム軸の延長線上に位置するように、粒子線照射装置5の下に位置決めされる。中央制御部11からの加速器制御指令データ及び輸送系制御指令データを入力した加速器・輸送系制御部9は、シンクロトロン2及びビーム輸送系3の電磁石を励磁する。また、照射装置制御指令データを入力した照射装置制御部10は、これから治療を行う患者7の患部の形状に合わせて作成されたブロックコリメータ18をビーム軌道上に配置し、マルチリーフコリメータ19の多数の薄板を移動させて患者7の患部に合うように開口部を形成させる。このように荷電粒子ビームの出射準備が完了すると、医者は、制御室の操作盤から治療開始信号を中央制御部11に出力する。   The patient support device 8 carrying the patient 7 to be irradiated with the charged particle beam is moved and positioned under the particle beam irradiation device 5 so that the affected part is located on the extension line of the beam axis. The accelerator / transport system controller 9 having received the accelerator control command data and the transport system control command data from the central controller 11 excites the electromagnets of the synchrotron 2 and the beam transport system 3. In addition, the irradiation device control unit 10 that has input the irradiation device control command data arranges the block collimator 18 created in accordance with the shape of the affected part of the patient 7 to be treated on the beam trajectory. The thin plate is moved to form an opening so as to fit the affected area of the patient 7. When the preparation for emitting the charged particle beam is completed as described above, the doctor outputs a treatment start signal to the central control unit 11 from the operation panel of the control room.

治療開始信号を入力した中央制御部11はイオン源を起動させる。イオン源で発生したイオン(例えば、陽子イオン,炭素イオン等)は、前段加速器1で加速される。前段加速器1から出射された荷電粒子ビームは、シンクロトロン2に入射される。この荷電粒子ビームは、シンクロトロン2で高周波加速空胴30から印加される高周波電力によってエネルギーを与えられて加速される。   The central control unit 11 receiving the treatment start signal activates the ion source. Ions generated from the ion source (for example, proton ions, carbon ions, etc.) are accelerated by the front stage accelerator 1. The charged particle beam emitted from the front accelerator 1 is incident on the synchrotron 2. The charged particle beam is accelerated by being given energy by the high frequency power applied from the high frequency acceleration cavity 30 by the synchrotron 2.

シンクロトロン2の内部を周回する荷電粒子ビームのエネルギーが設定されたエネルギーまでに高められた後、出射用の高周波印加装置31から高周波が荷電粒子ビームに印加される。安定限界内で周回している荷電粒子ビームは、高周波印加装置31による高周波の印加によって安定限界外に移行し、出射用デフレクタ32を通ってシンクロトロン2から出射される。荷電粒子ビームの出射の際には、シンクロトロン2に設けられた四極電磁石33及び偏向電磁石34等の電磁石に導かれる電流が設定値に保持され、安定限界もほぼ一定に保持されている。高周波印加装置31への高周波電力の印加を停止することによって、シンクロトロン2からの荷電粒子ビームの出射が停止される。   After the energy of the charged particle beam that circulates inside the synchrotron 2 is increased to the set energy, a high frequency is applied to the charged particle beam from the high frequency application device 31 for emission. The charged particle beam orbiting within the stability limit moves out of the stability limit by application of high frequency by the high frequency application device 31, and is emitted from the synchrotron 2 through the extraction deflector 32. When the charged particle beam is emitted, the current guided to the electromagnets such as the quadrupole electromagnet 33 and the deflection electromagnet 34 provided in the synchrotron 2 is held at the set value, and the stability limit is also kept almost constant. By stopping the application of the high-frequency power to the high-frequency application device 31, the emission of the charged particle beam from the synchrotron 2 is stopped.

シンクロトロン2から出射された荷電粒子ビームは、ビーム輸送系3を経て粒子線照射装置5に達する。照射装置制御部10は、粒子線照射装置5内の走査電磁石13に供給する電力を制御して、走査磁場を形成し、荷電粒子ビームを走査する。   The charged particle beam emitted from the synchrotron 2 reaches the particle beam irradiation device 5 through the beam transport system 3. The irradiation device controller 10 controls the power supplied to the scanning electromagnet 13 in the particle beam irradiation device 5 to form a scanning magnetic field and scan the charged particle beam.

荷電粒子ビームの進行方向に垂直な照射野へ照射する方法としては、走査電磁石13を用いた、粒子ビームのスポット走査あるいはラスター走査等の方法がある。   As a method of irradiating the irradiation field perpendicular to the traveling direction of the charged particle beam, there is a method such as spot scanning or raster scanning of the particle beam using the scanning electromagnet 13.

次に、図3〜図5を用いて、本実施形態による粒子線治療システム100の散乱体14の構成について説明する。   Next, the configuration of the scatterer 14 of the particle beam therapy system 100 according to the present embodiment will be described with reference to FIGS.

図3を用いて、散乱体14について説明する。図3に、散乱体14の例を示す。本実施例の散乱体14は非等方散乱体であり、散乱角の異なる2種類の物質を配列し、水等価厚の飛程を同じになるように厚みが調整されている。第1散乱部材21a,21bは散乱角が小さい物質で構成され、第2散乱部材22は散乱角が大きい物質で構成されている。第1散乱部材21a,21bは、第2散乱部材22の散乱角よりも小さい物質で構成される。第2散乱部材22が第1散乱部材21aと第1散乱部材21bの間に配置される。第2散乱部材22の長軸方向が、非円形ビームの長軸方向と垂直になるように、非等方散乱体14を構築する。第1散乱部材21は、第2散乱部材22に比べて散乱角が無視できる程小さいほうが望ましい。この場合の第1散乱部材21a,21bの役割は、第2散乱部材22の支持である。例えば、第1散乱部材21a,21bは散乱角の小さい物質として樹脂の一種であるABSやアルミニウム等で構成され、第2散乱部材22は散乱角の大きい物質としてタングステン等で構成される。   The scatterer 14 will be described with reference to FIG. FIG. 3 shows an example of the scatterer 14. The scatterer 14 of this embodiment is an anisotropic scatterer, and two types of substances having different scattering angles are arranged, and the thickness is adjusted so that the range of water equivalent thickness is the same. The first scattering members 21a and 21b are made of a material having a small scattering angle, and the second scattering member 22 is made of a material having a large scattering angle. The first scattering members 21 a and 21 b are made of a material that is smaller than the scattering angle of the second scattering member 22. The second scattering member 22 is disposed between the first scattering member 21a and the first scattering member 21b. The anisotropic scatterer 14 is constructed so that the major axis direction of the second scattering member 22 is perpendicular to the major axis direction of the non-circular beam. It is desirable that the first scattering member 21 is smaller than the second scattering member 22 so that the scattering angle can be ignored. In this case, the role of the first scattering members 21 a and 21 b is to support the second scattering member 22. For example, the first scattering members 21a and 21b are made of ABS or aluminum, which is a kind of resin, as a material having a small scattering angle, and the second scattering member 22 is made of tungsten or the like as a material having a large scattering angle.

本実施例の粒子線治療システム100は、複数個の散乱体を準備している。それぞれの散乱体は、前述と同様、第2散乱部材を2つの第1散乱部材ではさんだ構成を有する。各散乱体は、水等価厚の飛程が同じになるように、第1散乱部材と第2散乱部材の厚みが調整されている。複数の散乱体は、第2散乱部材の短軸方向の長さ(幅)がそれぞれ異なる構成を有する。第2散乱部材の幅が異なる複数の散乱体を準備し、荷電粒子ビームのビームサイズ比に応じて散乱体をビーム軌道上に配置することにより、円形に近い形状の荷電粒子ビームを得ることができる。   The particle beam therapy system 100 of the present embodiment prepares a plurality of scatterers. Each scatterer has a configuration in which the second scattering member is sandwiched between the two first scattering members, as described above. The thicknesses of the first scattering member and the second scattering member are adjusted so that each scatterer has the same range of water equivalent thickness. The plurality of scatterers have a configuration in which the length (width) in the minor axis direction of the second scattering member is different. By preparing a plurality of scatterers having different widths of the second scattering member and arranging the scatterers on the beam trajectory in accordance with the beam size ratio of the charged particle beam, a charged particle beam having a nearly circular shape can be obtained. it can.

第1散乱部材と第2散乱部材と散乱角の違いを利用して荷電粒子ビームの散乱量を非等方にする様子を、図4を用いて説明する。図4(a)は、ビーム軸垂直方向であって第2散乱部材22をその長軸方向から見た図である。第2散乱部材22を通過した荷電粒子ビームは散乱を受けて、Y軸方向にビームサイズが拡大する。図4(b)は、ビーム軸垂直方向であって第2散乱部材22をその短軸方向から見た図である。散乱体14に入射する荷電粒子ビームのビームサイズは、第2散乱部材22の短軸方向幅より大きい。第2散乱部材22の短軸方向の幅が、入射される荷電粒子ビームのビームサイズよりも小さくなるように構成する必要がある。第2散乱部材22を通過した荷電粒子ビームは散乱を受けてビームの広がりが大きくなる。第1散乱部材21a,21bを通過した荷電粒子ビームは散乱角が小さいため、第2散乱部材22を通過した荷電粒子ビームよりもビームサイズが小さくなる。このため、X軸方向へのビームサイズの拡大はほとんどない。その結果、散乱体14を通過した荷電粒子ビームは、非円形ビームの長軸方向であるX方向へのビーム拡大はほとんどなく、ビームの短軸方向であるY方向へのビーム拡大が大きくなり、ビーム形状は円形に近づく。   A state in which the amount of scattering of the charged particle beam is made anisotropic using the difference in scattering angle between the first scattering member and the second scattering member will be described with reference to FIG. FIG. 4A is a view of the second scattering member 22 viewed from the long axis direction in the direction perpendicular to the beam axis. The charged particle beam that has passed through the second scattering member 22 is scattered, and the beam size expands in the Y-axis direction. FIG. 4B is a view of the second scattering member 22 viewed from the short axis direction in the direction perpendicular to the beam axis. The beam size of the charged particle beam incident on the scatterer 14 is larger than the width of the second scattering member 22 in the minor axis direction. The width of the second scattering member 22 in the minor axis direction needs to be configured to be smaller than the beam size of the incident charged particle beam. The charged particle beam that has passed through the second scattering member 22 is scattered and the spread of the beam increases. Since the charged particle beam that has passed through the first scattering members 21 a and 21 b has a small scattering angle, the beam size is smaller than that of the charged particle beam that has passed through the second scattering member 22. For this reason, there is almost no expansion of the beam size in the X-axis direction. As a result, the charged particle beam that has passed through the scatterer 14 has almost no beam expansion in the X direction, which is the major axis direction of the non-circular beam, and the beam expansion in the Y direction, which is the minor axis direction of the beam, increases. The beam shape approaches a circle.

図5に、その様子を示す。図5は、ビーム軸方向から見た図である。図5(a)は、散乱体14を通過する前の荷電粒子ビームのビーム形状を示す。荷電粒子ビームは非円形の形状を有する。図5(b)は、散乱体14を通過した後の荷電粒子ビームのビーム形状を示す。図5(a)の非円形ビームは、散乱体14の長軸方向が非円形ビームの短軸方向と同じであり、荷電粒子ビームは第2散乱部材22で大きく散乱を受け、ビーム短軸方向距離は大きくなる。一方、荷電粒子ビームの長軸方向の端部は、散乱角の小さい物質で構成される第1散乱部材21を通過するので、散乱は小さく、荷電粒子ビームの長軸方向距離は大きくなるなり方が小さい。その結果、散乱体14を通過する前のビーム形状が非円形であったとしても、散乱体14を通過することによってビーム形状が円形に近づく。このように、非円形ビームは、非等方散乱体14を通過して、円形に近づく。   FIG. 5 shows the situation. FIG. 5 is a view as seen from the beam axis direction. FIG. 5A shows the beam shape of the charged particle beam before passing through the scatterer 14. The charged particle beam has a non-circular shape. FIG. 5B shows the beam shape of the charged particle beam after passing through the scatterer 14. In the non-circular beam of FIG. 5A, the major axis direction of the scatterer 14 is the same as the minor axis direction of the non-circular beam, and the charged particle beam is greatly scattered by the second scattering member 22, and the minor axis direction of the beam. The distance increases. On the other hand, since the end of the charged particle beam in the long axis direction passes through the first scattering member 21 made of a material having a small scattering angle, the scattering is small and the long axis direction distance of the charged particle beam is increased. Is small. As a result, even if the beam shape before passing through the scatterer 14 is non-circular, the beam shape approaches a circle by passing through the scatterer 14. Thus, the non-circular beam passes through the anisotropic scatterer 14 and approaches a circular shape.

散乱角は、元々持っているビームの散乱角σ1と散乱体の散乱角σ2とを用いて、散乱体を通過した後の散乱角σは、σ=√(σ1 2+σ2 2)で求められる。散乱体を通過する前のビーム散乱角のX成分とY成分の比率が(X1′,Y1′)=(1,5)の場合、等方散乱体による散乱角として、例えば、(X2′,Y2′)=(5,5)を用いるとすると、散乱体を通過後のビーム散乱角は(X′,Y′)=(5.1,7.1)となり、非円形の度合いは小さくなるが、非円形性は残る。非円形の度合いを更に小さくするには、散乱角を大きくすれば良いがビームサイズが大きくなる。これに対して、非等方散乱体による散乱角として、例えば、(X2′,Y2′)=(5,1)を用いると、非等方散乱体を通過後のビーム散乱角は(X′,Y′)=(5.1,5.1)になり、ビーム径を大きくすることなく、より円形に近づけることができる。 The scattering angle is σ = √ (σ 1 2 + σ 2 2 ) using the original scattering angle σ 1 of the beam and the scattering angle σ 2 of the scatterer. Is required. When the ratio of the X component and the Y component of the beam scattering angle before passing through the scatterer is (X 1 ′, Y 1 ′) = (1, 5), the scattering angle by the isotropic scatterer is, for example, (X If 2 ′, Y 2 ′) = (5, 5) is used, the beam scattering angle after passing through the scatterer is (X ′, Y ′) = (5.1, 7.1), which is a non-circular shape. To a lesser extent, non-circularity remains. To further reduce the degree of non-circularity, the scattering angle can be increased, but the beam size increases. On the other hand, if, for example, (X 2 ′, Y 2 ′) = (5, 1) is used as the scattering angle by the anisotropic scatterer, the beam scattering angle after passing through the anisotropic scatterer is ( X ′, Y ′) = (5.1, 5.1), and it can be made closer to a circle without increasing the beam diameter.

次に、散乱体14の設置場所と操作について述べる。散乱体14の設置場所は、図2に示す走査電磁石13より上流のシンクロトロン2側で、シンクロトロン2を構成する出射用デフレクタ32より下流側に設置する必要がある。ガントリー回転を行う場合、散乱体14の設置場所は、回転ガントリー4の入口より上流の加速器側で、シンクロトロン2を構成する出射用デフレクタ32より下流側に設置する必要がある。例えば、図1に示すように、ビーム輸送系3のビーム軌道上であって、回転ガントリー4の入口部より上流側で、シンクロトロン2を構成する出射用デフレクタ32より下流側に、散乱体14を設置する。散乱体14は、散乱体駆動装置24,散乱体制御部15に接続されている。中央制御部11は、ビーム輸送系3に配置される四極電磁石への励磁電流情報を受け取り、ビーム輸送軸に対して垂直な平面における荷電粒子ビームの傾き(非円形ビームの傾き)を示す回転角度情報を求める。さらに、中央制御部11は、この回転角度情報に基づいて散乱体14の配置位置及び回転角度を求め、散乱体14の配置位置に関する移動指令信号及び回転角度に関する回転指令信号を散乱体制御部15に出力する。散乱体制御部15は、受け取った移動指令信号及び回転指令信号に基づいて、散乱体14を移動・回転させる。散乱体制御部15が散乱体14を移動・回転することによって、荷電粒子ビームの短軸方向に非等方散乱体の散乱角が大きくなり、荷電粒子ビームの長軸方向に非等方散乱体の散乱角が小さくなるように散乱体14を配置できる。このように配置を調整された散乱体14を荷電粒子ビームが通過することで、非円形形状の荷電粒子ビームは円形に整形される。   Next, the installation location and operation of the scatterer 14 will be described. The scatterer 14 needs to be installed on the synchrotron 2 side upstream of the scanning electromagnet 13 shown in FIG. 2 and on the downstream side of the output deflector 32 constituting the synchrotron 2. When the gantry rotation is performed, the scatterer 14 needs to be installed on the accelerator side upstream of the entrance of the rotating gantry 4 and on the downstream side of the output deflector 32 constituting the synchrotron 2. For example, as shown in FIG. 1, on the beam trajectory of the beam transport system 3, on the upstream side of the entrance portion of the rotating gantry 4, on the downstream side of the exit deflector 32 constituting the synchrotron 2, Is installed. The scatterer 14 is connected to the scatterer driving device 24 and the scatterer controller 15. The central control unit 11 receives excitation current information for a quadrupole electromagnet disposed in the beam transport system 3, and a rotation angle indicating the tilt of the charged particle beam (the tilt of the non-circular beam) in a plane perpendicular to the beam transport axis. Ask for information. Further, the central control unit 11 obtains the arrangement position and rotation angle of the scatterer 14 based on the rotation angle information, and sends the movement command signal related to the arrangement position of the scatterer 14 and the rotation command signal related to the rotation angle to the scatterer control unit 15. Output to. The scatterer control unit 15 moves and rotates the scatterer 14 based on the received movement command signal and rotation command signal. When the scatterer control unit 15 moves and rotates the scatterer 14, the scattering angle of the anisotropic scatterer increases in the minor axis direction of the charged particle beam, and the anisotropic scatterer increases in the major axis direction of the charged particle beam. The scatterer 14 can be arranged so that the scattering angle becomes smaller. By passing the charged particle beam through the scatterer 14 whose arrangement is adjusted in this way, the non-circular charged particle beam is shaped into a circle.

非円形ビームを円形にするためには、回転ガントリー4の回転角毎に、回転ガントリー4の磁場を調整する必要があるが、散乱体14を回転ガントリー4の上流側に設置することにより、ビーム形状を円形にすることができるので、ガントリー回転角毎に、回転ガントリー4の磁場調整は不要となる。   In order to make the non-circular beam circular, it is necessary to adjust the magnetic field of the rotating gantry 4 for each rotation angle of the rotating gantry 4, but by installing the scatterer 14 on the upstream side of the rotating gantry 4, Since the shape can be made circular, it is not necessary to adjust the magnetic field of the rotating gantry 4 for each gantry rotation angle.

また、荷電粒子ビームのエネルギーが異なると、散乱体14を通過する際の荷電粒子ビームの散乱角が異なる。このため、シンクロトロン2で加速する荷電粒子ビームのエネルギーを変更した場合には、ビーム軌道上に設置する散乱体14の種類を変える必要がある。あるエネルギー範囲では、同一の散乱体を使用できる。本実施例の粒子線治療システム100では、複数個の散乱体を予め準備しておいて、エネルギー変更時に切り替える。散乱体14の切り替えのために、散乱体駆動装置24を設置する。   Further, when the energy of the charged particle beam is different, the scattering angle of the charged particle beam when passing through the scatterer 14 is different. For this reason, when the energy of the charged particle beam accelerated by the synchrotron 2 is changed, it is necessary to change the type of the scatterer 14 installed on the beam trajectory. In a certain energy range, the same scatterer can be used. In the particle beam therapy system 100 of the present embodiment, a plurality of scatterers are prepared in advance and switched when the energy is changed. In order to switch the scatterer 14, a scatterer driving device 24 is installed.

以上のように、荷電粒子ビームを用いた粒子線治療システムの照射装置を示した。粒子種としては、陽子の他に、炭素,ヘリウム等の重粒子ビームもあり、本装置及び本照射法は適用できるものである。   As described above, an irradiation apparatus of a particle beam therapy system using a charged particle beam has been shown. In addition to protons, there are also heavy particle beams such as carbon and helium, and this apparatus and this irradiation method can be applied.

以下に、本発明の他の実施例である粒子線治療システムについて説明する。   Hereinafter, a particle beam therapy system according to another embodiment of the present invention will be described.

本実施例の粒子線治療システム101は、実施例1の粒子線治療システム100において、ビーム輸送系3のビーム軌道上に設置する散乱体14を、散乱体14Aに替えた構成を有する。   The particle beam therapy system 101 of the present embodiment has a configuration in which the scatterer 14 installed on the beam trajectory of the beam transport system 3 in the particle beam therapy system 100 of the first embodiment is replaced with a scatterer 14A.

図6を用いて、本実施例の散乱体14Aの構成について説明する。散乱体14Aは非等方散乱体であり、散乱角の異なる2種類の物質を配列し、水等価厚の飛程を同じになるように厚みが調整されている。第1散乱部材21a,21b,21cは散乱角が小さい物質で構成され、第2散乱部材22a,22b,22c,22dは散乱角が大きい物質で構成される。第1散乱部材21a,21b,21cの散乱角は、第2散乱部材22a,22b,22c,22dの散乱角よりも小さい。散乱体14Aは、第1散乱部材と第2散乱部材を複数例配置して構成される。第1散乱部材21aが第2散乱部材22aと第2散乱部材22bの間に配置され、第1散乱部材21bが第2散乱部材22bと第2散乱部材22cの間に配置される。つまり、散乱角が異なる2つの散乱部材(第2散乱部材と第1散乱部材)を交互に配置する。第2散乱部材22a,22b,22c,22dのそれぞれの長軸方向が、非円形ビームの長軸方向と垂直になるように、第1散乱部材21a,21b,21cの間に設置する。なお、第1散乱角部材21a,21b,21cは、第2散乱部材22a,22b,22c,22dに比べて、散乱角が無視できる程小さいほうが望ましい。
この場合の第1散乱部材の役割は、第2散乱部材の支持である。第1散乱部材21a,21b,21cはそれぞれ同じ物質で構成され、例えば、樹脂の一種であるABSやアルミニウム等で構成される。第2散乱部材22a,22b,22c,22dはそれぞれ同じ物質で構成され、例えば、タングステン等で構成される。
The configuration of the scatterer 14A of this example will be described with reference to FIG. The scatterer 14A is an anisotropic scatterer, in which two kinds of substances having different scattering angles are arranged, and the thickness is adjusted so that the range of water equivalent thickness is the same. The first scattering members 21a, 21b and 21c are made of a material having a small scattering angle, and the second scattering members 22a, 22b, 22c and 22d are made of a material having a large scattering angle. The scattering angles of the first scattering members 21a, 21b, and 21c are smaller than the scattering angles of the second scattering members 22a, 22b, 22c, and 22d. The scatterer 14A is configured by arranging a plurality of examples of the first scattering member and the second scattering member. The first scattering member 21a is disposed between the second scattering member 22a and the second scattering member 22b, and the first scattering member 21b is disposed between the second scattering member 22b and the second scattering member 22c. That is, two scattering members (second scattering member and first scattering member) having different scattering angles are alternately arranged. The second scattering members 22a, 22b, 22c, and 22d are installed between the first scattering members 21a, 21b, and 21c so that the major axis directions of the second scattering members 22a, 22b, 22c, and 22d are perpendicular to the major axis direction of the non-circular beam. The first scattering angle members 21a, 21b, and 21c are preferably smaller than the second scattering members 22a, 22b, 22c, and 22d so that the scattering angle can be ignored.
In this case, the role of the first scattering member is to support the second scattering member. Each of the first scattering members 21a, 21b, and 21c is made of the same material, for example, ABS or aluminum that is a kind of resin. The second scattering members 22a, 22b, 22c, and 22d are made of the same material, for example, tungsten.

本実施例の粒子線治療システム101でも複数個の散乱体14Aを準備する。それぞれの散乱体は、第1散乱部材と第2散乱部材を交互に配置した構成を有するが、第1散乱部材21a,21b,21cの短軸方向の幅、第2散乱部材22a,22b,22c,22dの短軸方向の幅がそれぞれ異なる。例えば、第2散乱部材の幅と間隔を徐々に小さくした構成を有する調整をする。このように、第2散乱部材の幅や間隔を調整することで、散乱体14Aを通過したビームサイズを調整することができる。また、荷電粒子ビームの強度分布を調整することができる。更には、第2散乱部材22a,22b,22c,22dを、散乱角の異なる物質で、構成しても良い。   Also in the particle beam therapy system 101 of the present embodiment, a plurality of scatterers 14A are prepared. Each scatterer has a configuration in which the first scattering members and the second scattering members are alternately arranged. The width of the first scattering members 21a, 21b, and 21c in the short axis direction, the second scattering members 22a, 22b, and 22c. , 22d have different widths in the minor axis direction. For example, the adjustment is made so that the width and interval of the second scattering member are gradually reduced. Thus, the beam size that has passed through the scatterer 14A can be adjusted by adjusting the width and interval of the second scattering member. In addition, the intensity distribution of the charged particle beam can be adjusted. Further, the second scattering members 22a, 22b, 22c, and 22d may be made of materials having different scattering angles.

本実施例によれば、ビームサイズ比が1から大きくずれているビーム形状を円形に近い形状にすることができるので、ガントリー回転角毎に調整する必要がなく、ガントリー角度とは無関係に、線量分布一様度の形成が容易にできるものとなる。   According to the present embodiment, since the beam shape whose beam size ratio is greatly deviated from 1 can be made to be a circular shape, there is no need to adjust every gantry rotation angle, and the dose is independent of the gantry angle. The distribution uniformity can be easily formed.

本実施例によれば、散乱角の異なる物質を複数配列することによって、非円形ビーム形状の荷電粒子ビームを、より円形に近づけることができる。   According to the present embodiment, by arranging a plurality of substances having different scattering angles, a charged particle beam having a non-circular beam shape can be made more circular.

本発明の他の実施例である粒子線治療システムについて説明する。本実施例の粒子線治療システム102は、実施例1の粒子線治療システム100において、ビーム輸送系3のビーム軌道上に設置する散乱体14を、散乱体14Bに替えた構成を有する。   A particle beam therapy system according to another embodiment of the present invention will be described. The particle beam therapy system 102 according to the present embodiment has a configuration in which the scatterer 14 installed on the beam trajectory of the beam transport system 3 in the particle beam therapy system 100 according to the first embodiment is replaced with a scatterer 14B.

図7を用いて、本実施例の散乱体14Bの構成について説明する。散乱体14Bは非等方散乱体であり、散乱角の異なる2種類の物質を配列する。第1散乱部材21a,21bは散乱角が小さい物質で構成され、第2散乱部材22は散乱角が大きい物質で構成される。第1散乱部材21a,21bの散乱角は、第2散乱部材22の散乱角よりも小さい。第1散乱部材21a,21bと第2散乱部材22は短軸方向のその厚みが異なる形状を有する。支持部材23は、散乱角が無視できる程小さい物質で構成される。支持部材23の一方の面に第1散乱部材21a,21bを配置し、他方の面に第2散乱部材22を配置する。第2散乱部材22は、第1散乱部材21aと第1散乱部材21bにはさまれる。第1散乱部材21a,21b及び第2散乱部材22は、水等価厚の飛程が同じになるようにそれぞれの厚み(形状)が調整され、連続的にその厚みが変化する。このような構成により、第1散乱部材21aと第2散乱部材22の接続部、及び第1散乱部材21bと第2散乱部材22の接続部で、散乱角が連続に変化するので、より円形に近い形状のビームが得られる。   The structure of the scatterer 14B of a present Example is demonstrated using FIG. The scatterer 14B is an anisotropic scatterer, and two kinds of substances having different scattering angles are arranged. The first scattering members 21a and 21b are made of a material having a small scattering angle, and the second scattering member 22 is made of a material having a large scattering angle. The scattering angle of the first scattering members 21 a and 21 b is smaller than the scattering angle of the second scattering member 22. The first scattering members 21a and 21b and the second scattering member 22 have shapes having different thicknesses in the minor axis direction. The support member 23 is made of a material having a small scattering angle. The first scattering members 21a and 21b are arranged on one surface of the support member 23, and the second scattering member 22 is arranged on the other surface. The second scattering member 22 is sandwiched between the first scattering member 21a and the first scattering member 21b. The thicknesses (shapes) of the first scattering members 21a and 21b and the second scattering member 22 are adjusted so that the range of the water equivalent thickness is the same, and the thicknesses continuously change. With such a configuration, the scattering angle continuously changes at the connection portion of the first scattering member 21a and the second scattering member 22 and the connection portion of the first scattering member 21b and the second scattering member 22, so that it becomes more circular. A beam with a close shape is obtained.

本実施例の粒子線治療システム102でも複数個の散乱体14Bを準備する。それぞれの散乱体は、前述と同様、支持部材23の一方の面に第1散乱部材21a,21bを配置し、他方の面に第2散乱部材22を配置する構成を有するが、第1散乱部材21a,21bの短軸方向の幅、第2散乱部材22の短軸方向の幅がそれぞれ異なる。このように、第2散乱部材の幅や間隔を調整することで、この散乱体14Bを通過したビームサイズを調整することができる。また、荷電粒子ビームの強度分布を調整することができる。   A plurality of scatterers 14B are also prepared in the particle beam therapy system 102 of the present embodiment. Each scatterer has a configuration in which the first scattering member 21a, 21b is disposed on one surface of the support member 23 and the second scattering member 22 is disposed on the other surface, as described above. The width in the minor axis direction of 21a and 21b and the width in the minor axis direction of the second scattering member 22 are different. Thus, the beam size that has passed through the scatterer 14B can be adjusted by adjusting the width and interval of the second scattering member. In addition, the intensity distribution of the charged particle beam can be adjusted.

本実施例によれば、ビームサイズ比が1から大きくずれているビーム形状を円形に近い形状にすることができるので、ガントリー回転角毎に調整する必要がなく、ガントリー角度とは無関係に、線量分布一様度の形成が容易にできるものとなる。   According to the present embodiment, since the beam shape whose beam size ratio is greatly deviated from 1 can be made to be a circular shape, there is no need to adjust every gantry rotation angle, and the dose is independent of the gantry angle. The distribution uniformity can be easily formed.

本実施例によれば、散乱角が連続的に変化するように散乱部材が配置されるため、より円形に近い形状の荷電粒子ビームを得ることができる。   According to the present embodiment, since the scattering member is arranged so that the scattering angle continuously changes, a charged particle beam having a shape closer to a circle can be obtained.

本発明の他の実施例である粒子線治療システムについて説明する。本実施例の粒子線治療システム103は、実施例1の粒子線治療システム100において、ビーム輸送系3のビーム軌道上に設置する散乱体14を、散乱体14Cに替えた構成を有する。   A particle beam therapy system according to another embodiment of the present invention will be described. The particle beam therapy system 103 according to the present embodiment has a configuration in which the scatterer 14 installed on the beam trajectory of the beam transport system 3 is replaced with a scatterer 14C in the particle beam therapy system 100 according to the first embodiment.

図8を用いて、本実施例の散乱体14Cの構成について説明する。散乱体14Cは非等方散乱体であり、散乱角の異なる物質を複数配列する。散乱体14を構成する散乱部材は、第2散乱部材,第3散乱部材,第4散乱部材,第5散乱部材の順番で散乱角が小さい物質で構成される。第2散乱部材,第3散乱部材,第4散乱部材,第5散乱部材は、短軸方向のその厚みが異なる形状を有する。支持部材23は、散乱角が無視できる程小さい物質で構成される。支持部材23の一方の面に第3散乱部材27a,27bと第5散乱部材29a,29bを配置し、他方の面に第2散乱部材22と第4散乱部材28a,28bを配置する。第2散乱部材22は、第4散乱部材28aと第4散乱部材28bの間に配置される。第3散乱部材27a,27bは、第5散乱部材29aと第5散乱部材29bの間に配置される。第2散乱部材22は、第3散乱部材27a,27bと重なるように位置される。第4散乱部材28aは、第3散乱部材27aと第5散乱部材29aと重なるように配置される。第4散乱部材28bは、第3散乱部材27bと第5散乱部材29bと重なるように配置される。荷電粒子ビームのビーム中心に位置する第2散乱部材22は、他の散乱部材よりも散乱角が大きい物質で構成され、ビームの端に位置する散乱部材になる程、散乱角が徐々に小さい物質となるように構成される。つまり、散乱体14Cは、支持部材23の中心付近に位置する第2散乱部材2が最も散乱角が大きく、支持部材23の端に向かって順に散乱角が小さくなる散乱部材を配置する。第2散乱部材,第3散乱部材,第4散乱部材,第5散乱部材は、水等価厚の飛程が同じになるようにそれぞれの厚み(形状)が調整され、連続的にその厚みが変化する。このような構成により、散乱体14Cを通過した荷電粒子ビームのビーム形状を、より円形に近づけることができる。   The configuration of the scatterer 14C of the present embodiment will be described with reference to FIG. The scatterer 14C is an anisotropic scatterer, and a plurality of substances having different scattering angles are arranged. The scattering member constituting the scatterer 14 is made of a material having a small scattering angle in the order of the second scattering member, the third scattering member, the fourth scattering member, and the fifth scattering member. The second scattering member, the third scattering member, the fourth scattering member, and the fifth scattering member have shapes having different thicknesses in the minor axis direction. The support member 23 is made of a material having a small scattering angle. The third scattering members 27a and 27b and the fifth scattering members 29a and 29b are arranged on one surface of the support member 23, and the second scattering member 22 and the fourth scattering members 28a and 28b are arranged on the other surface. The second scattering member 22 is disposed between the fourth scattering member 28a and the fourth scattering member 28b. The third scattering members 27a and 27b are disposed between the fifth scattering member 29a and the fifth scattering member 29b. The second scattering member 22 is positioned so as to overlap with the third scattering members 27a and 27b. The fourth scattering member 28a is disposed so as to overlap the third scattering member 27a and the fifth scattering member 29a. The fourth scattering member 28b is disposed so as to overlap the third scattering member 27b and the fifth scattering member 29b. The second scattering member 22 located at the beam center of the charged particle beam is made of a material having a larger scattering angle than the other scattering members, and the scattering angle gradually becomes smaller as the scattering member is located at the end of the beam. It is comprised so that. That is, in the scatterer 14 </ b> C, a scattering member in which the second scattering member 2 located near the center of the support member 23 has the largest scattering angle and the scattering angle gradually decreases toward the end of the support member 23 is arranged. The thicknesses (shapes) of the second scattering member, the third scattering member, the fourth scattering member, and the fifth scattering member are adjusted so that the range of the water equivalent thickness is the same, and the thickness continuously changes. To do. With such a configuration, the beam shape of the charged particle beam that has passed through the scatterer 14C can be made closer to a circle.

本実施例の粒子線治療システム103でも複数個の散乱体14Cを準備する。それぞれの散乱体は、前述と同様、支持部材23の一方の面に第3散乱部材27a,27bと第5散乱部材29a,29bを配置し、他方の面に第2散乱部材22と第4散乱部材28a,28bを配置する構成を有するが、第2散乱部材22,第3散乱部材27a,27b、第4散乱部材28a,28b、第5散乱部材29a,29bの短軸方向の幅がそれぞれ異なる。このように、散乱部材の幅や間隔を調整することで、この散乱体14Cを通過したビームサイズの調整を調整することができる。また、荷電粒子ビームの強度分布を調整することができる。   Also in the particle beam therapy system 103 of the present embodiment, a plurality of scatterers 14C are prepared. As described above, each of the scatterers has the third scattering members 27a and 27b and the fifth scattering members 29a and 29b arranged on one surface of the support member 23, and the second scattering member 22 and the fourth scattering member on the other surface. The members 28a and 28b are arranged, but the second scattering member 22, the third scattering members 27a and 27b, the fourth scattering members 28a and 28b, and the fifth scattering members 29a and 29b have different widths in the short axis direction. . Thus, the adjustment of the beam size that has passed through the scatterer 14C can be adjusted by adjusting the width and interval of the scattering member. In addition, the intensity distribution of the charged particle beam can be adjusted.

本実施例によれば、ビームサイズ比が1から大きくずれているビーム形状を円形に近い形状にすることができるので、ガントリー回転角毎に調整する必要がなく、ガントリー角度とは無関係に、線量分布一様度の形成が容易にできるものとなる。   According to the present embodiment, since the beam shape whose beam size ratio is greatly deviated from 1 can be made to be a circular shape, there is no need to adjust every gantry rotation angle, and the dose is independent of the gantry angle. The distribution uniformity can be easily formed.

実施例1〜4では、円形加速器2としてシンクロトロンを示したが、サイクロトロンを採用した場合にも同様の効果を得ることができる。   In Examples 1-4, although the synchrotron was shown as the circular accelerator 2, the same effect can be acquired also when a cyclotron is employ | adopted.

1 前段加速器
2 円形加速器(シンクロトロン)
3 ビーム輸送系
4 回転ガントリー
5 粒子線照射装置
6 制御装置
7 患者
8 患者支持装置
9 加速器・輸送系制御部
10 照射装置制御部
11 中央制御部
12 ビームプロファイルモニタ
13 走査電磁石
14 散乱体
15 散乱体制御部
17 線量モニタ
18 ブロックコリメータ
19 マルチリーフコリメータ
20 アイソセンタ
21 第1散乱部材(散乱角の小さい物質)
22 第2散乱部材(散乱角の大きい物質)
23 支持部材
24 散乱体駆動装置
25 治療計画装置
26 表示装置
27 第3散乱部材
28 第4散乱部材
29 第5散乱部材
30 高周波加速空胴
31 高周波印加装置
32 出射用デフレクタ
33,36 四極電磁石
34,37 偏向電磁石
35 ビーム経路
100 粒子線治療システム
1 Pre-stage accelerator 2 Circular accelerator (synchrotron)
3 Beam transport system 4 Rotating gantry 5 Particle beam irradiation device 6 Control device 7 Patient 8 Patient support device 9 Accelerator / transport system control unit 10 Irradiation device control unit 11 Central control unit 12 Beam profile monitor 13 Scanning electromagnet 14 Scattering body 15 Scattering body Control unit 17 Dose monitor 18 Block collimator 19 Multi-leaf collimator 20 Isocenter 21 First scattering member (substance with a small scattering angle)
22 Second scattering member (substance with large scattering angle)
23 support member 24 scatterer driving device 25 treatment planning device 26 display device 27 third scattering member 28 fourth scattering member 29 fifth scattering member 30 high-frequency acceleration cavity 31 high-frequency applying device 32 outgoing deflectors 33, 36 quadrupole electromagnet 34, 37 Bending Electromagnet 35 Beam Path 100 Particle Beam Therapy System

Claims (11)

荷電粒子ビームを加速する加速器と、
前記加速器から出射された前記荷電粒子ビームを標的領域に照射する粒子線照射装置と、
前記加速器と前記粒子線照射装置をつなぐビーム輸送系と、
第1散乱部材及び前記荷電粒子ビームの散乱角が前記第1散乱部材よりも大きい物質で構成される第2散乱部材を少なくとも有する散乱体と、
前記ビーム輸送系のビーム通過領域であって、通過する前記荷電粒子ビームのビーム径が短い領域を、前記第2散乱部材の長軸が横切るように前記散乱体を配置する散乱体制御装置を備えることを特徴とする粒子線治療システム。
An accelerator to accelerate the charged particle beam;
A particle beam irradiation apparatus for irradiating a target region with the charged particle beam emitted from the accelerator;
A beam transport system connecting the accelerator and the particle beam irradiation device;
A scatterer having at least a second scattering member made of a substance having a scattering angle of the first scattering member and the charged particle beam larger than that of the first scattering member;
A scatterer control device that arranges the scatterer so that a long axis of the second scattering member crosses a region where the beam diameter of the charged particle beam passing through the beam transport system is short; A particle beam therapy system characterized by that.
前記散乱体を通過する前の前記荷電粒子ビームのビーム形状を求め、前記散乱体の配置位置及び回転角度に関する移動指令信号を出力する中央制御装置を備え、
前記散乱体制御装置は、前記中央制御装置からの移動指令信号に基づいて前記散乱体を移動及び回転して配置することを特徴とする請求項1に記載の粒子線治療システム。
A central control unit for obtaining a beam shape of the charged particle beam before passing through the scatterer, and outputting a movement command signal related to an arrangement position and a rotation angle of the scatterer;
2. The particle beam therapy system according to claim 1, wherein the scatterer control device moves and rotates the scatterer based on a movement command signal from the central control device.
前記粒子線照射装置は、前記荷電粒子ビームを走査する走査電磁石を備えることを特徴とする請求項1に記載の粒子線治療システム。   The particle beam irradiation system according to claim 1, wherein the particle beam irradiation apparatus includes a scanning electromagnet that scans the charged particle beam. 前記散乱体は、前記第2散乱部材が複数の前記第1散乱部材の間に配置された構成であり、前記第1散乱部材及び前記第2散乱部材を通過した前記荷電粒子ビームの水等価の飛程が同じになるような厚みを有し、
前記散乱体制御装置は、前記荷電粒子ビームが前記第1散乱部材及び第2散乱部材を通過する位置に前記散乱体を配置することを特徴とする請求項1乃至3のいずれか1項に記載の粒子線治療システム。
The scatterer has a configuration in which the second scattering member is disposed between the plurality of first scattering members, and is equivalent to the water equivalent of the charged particle beam that has passed through the first scattering member and the second scattering member. It has a thickness that makes the same range,
The said scatterer control apparatus arrange | positions the said scatterer in the position where the said charged particle beam passes a said 1st scattering member and a 2nd scattering member, The Claim 1 thru | or 3 characterized by the above-mentioned. Particle beam therapy system.
前記散乱体は、前記第2散乱部材の短軸方向の幅が、前記散乱体を通過する前の前記ビーム径の長軸方向の長さよりも小さく、前記第2散乱部材の長軸方向の幅が、前記散乱体を通過する前の前記ビーム径の短軸方向の長さより大きい構成であることを特徴とする請求項4に記載の粒子線治療システム。   In the scatterer, the width in the minor axis direction of the second scattering member is smaller than the length in the major axis direction of the beam diameter before passing through the scatterer, and the width in the major axis direction of the second scattering member. The particle beam therapy system according to claim 4, wherein the beam diameter is larger than the length in the minor axis direction of the beam diameter before passing through the scatterer. 前記散乱体は、複数の第1散乱部材と複数の第2散乱部材を有して前記第1散乱部材と前記第2散乱部材とを交互に配置した構成であり、前記第1散乱部材及び前記第2散乱部材を通過した前記荷電粒子ビームの水等価の飛程が同じになるような厚みを有し、
前記散乱体制御装置は、前記荷電粒子ビームが前記第1散乱部材及び第2散乱部材を通過する位置に前記散乱体を配置することを特徴とする請求項1乃至3のいずれか1項に記載の粒子線治療システム。
The scatterer includes a plurality of first scattering members and a plurality of second scattering members, and the first scattering member and the second scattering member are alternately arranged, and the first scattering member and the second scattering member The charged particle beam having passed through the second scattering member has a thickness such that the water equivalent range is the same;
The said scatterer control apparatus arrange | positions the said scatterer in the position where the said charged particle beam passes a said 1st scattering member and a 2nd scattering member, The Claim 1 thru | or 3 characterized by the above-mentioned. Particle beam therapy system.
前記散乱体は、前記第2散乱部材をビーム中心周りに複数個設置し、ビーム中心から端になるにつれて、前記第2散乱部材の幅と間隔を徐々に小さくした構成を有することを特徴とする請求項6に記載の粒子線治療システム。   The scatterer has a configuration in which a plurality of the second scattering members are provided around the center of the beam, and the width and interval of the second scattering member are gradually reduced from the beam center to the end. The particle beam therapy system according to claim 6. 前記散乱体は、第1散乱部材及び第2散乱部材を支持する支持部材を有し、前記支持部材の一方の面に前記第1散乱部材を配置し、前記支持部材の他方の面に、前記第1支持部材の一部が重なるように前記第2支持部材を配置した構成であり、前記第1散乱部材及び前記第2散乱部材を通過した前記荷電粒子ビームの水等価の飛程が同じになるような厚みを有し、
前記散乱体制御装置は、前記荷電粒子ビームが前記第1散乱部材及び第2散乱部材を通過する位置に前記散乱体を配置することを特徴とする請求項1乃至3のいずれか1項に記載の粒子線治療システム。
The scatterer includes a support member that supports the first scattering member and the second scattering member, the first scattering member is disposed on one surface of the support member, and the other surface of the support member The second support member is arranged so that a part of the first support member overlaps, and the water equivalent range of the charged particle beam that has passed through the first scattering member and the second scattering member is the same. Has a thickness such that
The said scatterer control apparatus arrange | positions the said scatterer in the position where the said charged particle beam passes a said 1st scattering member and a 2nd scattering member, The Claim 1 thru | or 3 characterized by the above-mentioned. Particle beam therapy system.
荷電粒子ビームを加速する加速器と、
前記加速器から出射された前記荷電粒子ビームを標的領域に照射する粒子線照射装置と、
前記加速器と前記粒子線照射装置をつなぐビーム輸送系と、
前記荷電粒子ビームの散乱角が異なる複数の散乱部材を有し、ビーム中心から離れるにつれて、散乱角が小さい散乱部材を配置し、
前記ビーム輸送系のビーム通過領域であって、通過する前記荷電粒子ビームのビーム径が短い領域を、前記散乱部材のうち最も散乱角が大きい前記散乱部材の長軸が横切るように前記散乱体を配置する散乱体制御装置を備えることを特徴とする粒子線治療システム。
An accelerator to accelerate the charged particle beam;
A particle beam irradiation apparatus for irradiating a target region with the charged particle beam emitted from the accelerator;
A beam transport system connecting the accelerator and the particle beam irradiation device;
A plurality of scattering members having different scattering angles of the charged particle beam, and a scattering member having a smaller scattering angle as the distance from the center of the beam increases;
The scatterer is arranged such that the long axis of the scattering member having the largest scattering angle crosses the region where the beam diameter of the charged particle beam passing through the beam transport system is short. A particle beam therapy system comprising a scatterer control device to be arranged.
前記散乱体は、前記散乱角が異なる複数の散乱部材を通過した前記荷電粒子ビームの水等価の飛程が同じになるような厚みを有することを特徴とする請求項9に記載の粒子線治療システム。   The particle beam therapy according to claim 9, wherein the scatterer has a thickness such that water-equivalent ranges of the charged particle beams having passed through a plurality of scattering members having different scattering angles are the same. system. 荷電粒子ビームを加速する加速器と、前記加速器から出射された前記荷電粒子ビームを標的領域に照射する粒子線照射装置と、前記加速器と前記粒子線照射装置をつなぐビーム輸送系と、第1散乱部材及び前記荷電粒子ビームの散乱角が前記第1散乱部材よりも大きい物質で構成される第2散乱部材を有する散乱体と、前記散乱体をビーム輸送系のビーム通過領域に配置する散乱体制御装置を備える粒子線治療システムの粒子線照射方法であって、
前記散乱体制御装置は、前記荷電粒子ビームのビーム径が短い領域を、前記第2散乱部材の長軸が横切るように前記散乱体を配置し、
前記散乱体を通過した前記荷電粒子ビームを前記粒子線照射装置に輸送し、
この輸送された前記荷電粒子ビームを、前記粒子線照射装置に配置された走査電磁石で偏向して出射することを特徴とする粒子線治療システムの粒子線照射方法。
An accelerator for accelerating a charged particle beam, a particle beam irradiation device for irradiating a target region with the charged particle beam emitted from the accelerator, a beam transport system connecting the accelerator and the particle beam irradiation device, and a first scattering member And a scatterer having a second scattering member made of a material having a scattering angle of the charged particle beam larger than that of the first scattering member, and a scatterer control device that arranges the scatterer in a beam passage region of a beam transport system A particle beam irradiation method for a particle beam therapy system comprising:
The scatterer control device arranges the scatterer such that a long axis of the second scattering member crosses a region where the beam diameter of the charged particle beam is short,
Transporting the charged particle beam that has passed through the scatterer to the particle beam irradiation device;
A particle beam irradiation method for a particle beam therapy system, characterized in that the transported charged particle beam is deflected and emitted by a scanning electromagnet disposed in the particle beam irradiation apparatus.
JP2009204249A 2009-09-04 2009-09-04 Particle beam medical treatment system and particle beam irradiation method Pending JP2011050660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204249A JP2011050660A (en) 2009-09-04 2009-09-04 Particle beam medical treatment system and particle beam irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204249A JP2011050660A (en) 2009-09-04 2009-09-04 Particle beam medical treatment system and particle beam irradiation method

Publications (1)

Publication Number Publication Date
JP2011050660A true JP2011050660A (en) 2011-03-17

Family

ID=43940290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204249A Pending JP2011050660A (en) 2009-09-04 2009-09-04 Particle beam medical treatment system and particle beam irradiation method

Country Status (1)

Country Link
JP (1) JP2011050660A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061525A (en) * 2011-09-14 2013-04-04 Casio Comput Co Ltd Diffusion wheel for light source, light source device, and projector
WO2017018156A1 (en) * 2015-07-29 2017-02-02 株式会社東芝 Particle beam transport system, and segment thereof
US9881711B2 (en) 2014-09-12 2018-01-30 Mitsubishi Electric Corporation Beam transport system and particle beam therapy system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013061525A (en) * 2011-09-14 2013-04-04 Casio Comput Co Ltd Diffusion wheel for light source, light source device, and projector
US9881711B2 (en) 2014-09-12 2018-01-30 Mitsubishi Electric Corporation Beam transport system and particle beam therapy system
WO2017018156A1 (en) * 2015-07-29 2017-02-02 株式会社東芝 Particle beam transport system, and segment thereof
CN107949423A (en) * 2015-07-29 2018-04-20 株式会社东芝 Beam of particles Transmission system and its segmentation
US10300302B2 (en) 2015-07-29 2019-05-28 Kabushiki Kaisha Toshiba Particle beam transport system, and segment thereof

Similar Documents

Publication Publication Date Title
EP2438961B1 (en) Particle beam irradiation device
JP3702885B2 (en) Method of adjusting particle beam irradiation apparatus and irradiation field forming apparatus
JP3643371B1 (en) Method of adjusting particle beam irradiation apparatus and irradiation field forming apparatus
US8153990B2 (en) Particle beam therapy system
JP5641857B2 (en) Particle beam irradiation apparatus and particle beam therapy apparatus
EP3865178A1 (en) Radiation therapy systems and methods
JP4474549B2 (en) Irradiation field forming device
JP2010238463A (en) Charged particle beam irradiation device
JP4726869B2 (en) Charged particle beam irradiation system and control method thereof
JP2001000562A (en) Medical treatment device
JPH08257148A (en) Rotary gantry
JP5574838B2 (en) Particle beam therapy system
JP2011050660A (en) Particle beam medical treatment system and particle beam irradiation method
JPH10127792A (en) Charged particle beam device
JP5130175B2 (en) Particle beam irradiation system and control method thereof
JP2007175540A (en) Particle beam radiation system and method of controlling radiation apparatus
JP2012029821A (en) Particle beam medical treatment system and particle beam irradiation method
JP6755208B2 (en) Charged particle beam therapy device
CN114096312A (en) Computer program product and computer system for planning and delivering a radiation therapy treatment and method of planning a radiation therapy treatment
JP3964769B2 (en) Medical charged particle irradiation equipment
JP6486141B2 (en) Particle beam therapy apparatus and particle beam adjustment method
JP2003320039A (en) Device and method for irradiating charged particle beam
JP2001061978A (en) Particle beam irradiation method and its device and particle beam treatment device
EP2489406A1 (en) Particle beam irradiation apparatus
JP7165499B2 (en) Charged particle beam therapy system