JP2011049230A - Noncontact power supply device - Google Patents

Noncontact power supply device Download PDF

Info

Publication number
JP2011049230A
JP2011049230A JP2009194424A JP2009194424A JP2011049230A JP 2011049230 A JP2011049230 A JP 2011049230A JP 2009194424 A JP2009194424 A JP 2009194424A JP 2009194424 A JP2009194424 A JP 2009194424A JP 2011049230 A JP2011049230 A JP 2011049230A
Authority
JP
Japan
Prior art keywords
power
power feeding
power receiving
receiving unit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009194424A
Other languages
Japanese (ja)
Other versions
JP5354539B2 (en
Inventor
Shigeru Abe
茂 阿部
Hiroyoshi Kaneko
裕良 金子
Tomio Yasuda
富夫 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technova Inc
Saitama University NUC
Original Assignee
Technova Inc
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technova Inc, Saitama University NUC filed Critical Technova Inc
Priority to JP2009194424A priority Critical patent/JP5354539B2/en
Publication of JP2011049230A publication Critical patent/JP2011049230A/en
Application granted granted Critical
Publication of JP5354539B2 publication Critical patent/JP5354539B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact power supply device capable of suppressing an influence of leakage magnetic flux due to a position shift between a power supply part 53 and a power reception part 42. <P>SOLUTION: The noncontact power supply device is characterized in that a ground side includes a flat plate type power supply part 53 including a primary-side coil and AC power sources 50 and 51 of the power supply part 53, and a vehicle 40 includes a flat plate type power reception part 42 including a secondary-side coil and a load device 44 electrically connected to the power reception part 42, wherein the power reception part 42 is fixed to the vehicle through a secondary-side shield plate 41 adapted to cut off leakage magnetic flux, and the secondary-side shield plate 41 is made of a nonmagnetic good conductor and set to a size such that even when the vehicle stops at some position within a moving body stop range wherein power supply from the ground side is allowed, the substantially entire region of the power supply part 53 is positioned below the secondary-side shield plate 42. Consequently, the leakage magnetic flux is prevented from extending to the vehicle body even when an allowable amount of a position shift between the power supply part 42 and power reception part 53 is large. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電気自動車などの移動体に非接触で給電する非接触給電装置に関し、給電時に給電側と受電側との間に位置ずれが生じたときの対策を講ずるものである。   The present invention relates to a non-contact power feeding device that feeds power to a moving body such as an electric vehicle in a non-contact manner, and takes measures when a displacement occurs between a power feeding side and a power receiving side during power feeding.

非接触給電装置は、一次コイルと二次コイルとの間の電磁誘導を利用して一次コイルから二次コイルに電力を供給する。この非接触給電装置は、電気自動車やプラグインハイブリッド車に搭載された二次電池を充電するための給電装置として、利用の拡大が見込まれている。
図13は、非接触給電装置を用いたプラグインハイブリッド車の給電システムを示している。
エンジン107とともにモータ106を駆動源として搭載する車両100は、モータ106用の電源である二次電池104と、二次電池104の直流を交流に変換してモータ106に供給するインバータ105と、二次電池104の充電回路103と、非接触給電装置の二次コイル102とを備えており、二次コイル102は、車体の床面の外側に設置される。
一方、給電ステーション側(地上側)は、商用周波数の交流電源200と、この交流を直流に変換し、さらに高周波交流を生成するインバータ201と、非接触給電装置の1次コイル202とを備えており、1次コイル202は地上に設置される。
運転者は、二次コイル102が一次コイル202の真上に来るように車両100を停止させて、二次電池104への給電を開始する。
The non-contact power feeding device supplies power from the primary coil to the secondary coil using electromagnetic induction between the primary coil and the secondary coil. This non-contact power supply device is expected to expand its use as a power supply device for charging a secondary battery mounted on an electric vehicle or a plug-in hybrid vehicle.
FIG. 13 shows a power supply system for a plug-in hybrid vehicle using a non-contact power supply device.
A vehicle 100 equipped with a motor 106 as a drive source together with an engine 107 includes a secondary battery 104 that is a power source for the motor 106, an inverter 105 that converts the direct current of the secondary battery 104 into alternating current, and supplies the alternating current to the motor 106, The charging circuit 103 of the secondary battery 104 and the secondary coil 102 of the non-contact power feeding device are provided, and the secondary coil 102 is installed outside the floor surface of the vehicle body.
On the other hand, the power supply station side (the ground side) includes a commercial frequency AC power supply 200, an inverter 201 that converts this AC to DC and generates high frequency AC, and a primary coil 202 of a non-contact power supply device. The primary coil 202 is installed on the ground.
The driver stops the vehicle 100 so that the secondary coil 102 is directly above the primary coil 202, and starts supplying power to the secondary battery 104.

この非接触給電装置で用いる一次コイル、二次コイルについては、種々の形状のものが開発されている。
図14は、下記特許文献1に開示されたコイルの断面形状(a)及び平面形状(b)を概略的に示している。この装置の1次側は、フラットなフェライト円板から成る磁心コア21と、磁心コア21の片面に渦巻き状に巻回された1次コイル22とを備えている。2次側も1次側と同一形状であり、この1次コイル22と2次コイル32とが、ギャップgを介して対向している。点線Dは磁束線を示している。
About the primary coil and secondary coil which are used with this non-contact electric power feeder, the thing of various shapes has been developed.
FIG. 14 schematically shows a cross-sectional shape (a) and a planar shape (b) of a coil disclosed in Patent Document 1 below. The primary side of the apparatus includes a magnetic core 21 made of a flat ferrite disk and a primary coil 22 wound around one side of the magnetic core 21 in a spiral shape. The secondary side has the same shape as the primary side, and the primary coil 22 and the secondary coil 32 are opposed to each other through the gap g. A dotted line D indicates a magnetic flux line.

なお、この明細書では、1次コイルと磁性体コアとの組合せを給電部と呼び、2次コイルと磁性体コアとの組合せを受電部と呼ぶことにする。但し、給電部には、磁性体コアを持たない1次コイルだけのものも含まれ、受電部には、磁性体コアを持たない2次コイルだけのものも含まれる。   In this specification, a combination of the primary coil and the magnetic core is referred to as a power feeding unit, and a combination of the secondary coil and the magnetic core is referred to as a power receiving unit. However, the power feeding unit includes only a primary coil that does not have a magnetic core, and the power receiving unit includes only a secondary coil that does not have a magnetic core.

図15は、下記特許文献2に開示された非接触給電装置の受電部を示している。この受電部は、フェライトからなる長方形の板状ブロック212を多数組み合わせて板状コア213を形成し、この板状コア213の片面に扁平に巻いたコイル222を配置している。
また、図16には、本発明の発明者らが開発した給電部及び受電部を示している。
この給電部及び受電部は、図16(a)(断面図)、図16(b)(斜視図)に示すように、一次側フェライトコア61の周りに巻回された一次側コイル62と、二次側フェライトコア63の周りに巻回された二次側コイル64とで構成され、また、一次側コイル62と二次側コイル64とが対向する側の反対側に、それぞれ、外部への磁界の漏洩を防止するアルミ板65、66を備えている。点線67は磁束線を表している。
この給電部及び受電部は、水平方向の位置ずれや、垂直方向のギャップ長変動に対して許容量が大きい特質を有している。
FIG. 15 illustrates a power receiving unit of the non-contact power feeding device disclosed in Patent Document 2 below. In this power receiving unit, a plate-like core 213 is formed by combining a large number of rectangular plate-like blocks 212 made of ferrite, and a coil 222 wound flat on one surface of the plate-like core 213 is arranged.
FIG. 16 shows a power feeding unit and a power receiving unit developed by the inventors of the present invention.
As shown in FIG. 16A (cross-sectional view) and FIG. 16B (perspective view), the power feeding unit and the power receiving unit include a primary side coil 62 wound around a primary side ferrite core 61, and The secondary side coil 64 is wound around the secondary side ferrite core 63, and on the opposite side of the side where the primary side coil 62 and the secondary side coil 64 are opposed, Aluminum plates 65 and 66 for preventing leakage of the magnetic field are provided. A dotted line 67 represents a magnetic flux line.
The power feeding unit and the power receiving unit have characteristics that have a large tolerance with respect to a horizontal position shift and a vertical gap length variation.

また、本発明の発明者らは、下記特許文献3において、このフェライトコアを、図17に示すように、複数枚の細長い板141で形成し、図17(a)(平面図)、(b)(側面図)に示すように、間隔を空けて細長い板141を配列した“すのこ型”コアにコイル142を巻回して給電部及び受電部を構成することを提案している。この場合、大型の一枚板のコアを必要としないため、製造コストの削減を図ることができる。
ところで、車体の床は鉄板で形成されているため、受電部周辺の漏れ磁束が鉄板に侵入した場合に、誘導電流が流れて鉄板が加熱され、給電効率が大幅に低下すると言う問題が生じる。
In addition, in the following Patent Document 3, the inventors of the present invention formed this ferrite core with a plurality of elongated plates 141 as shown in FIG. 17, and FIG. 17 (a) (plan view), (b) ) (Side view), it is proposed that a coil 142 is wound around a “snow-shaped” core in which elongated plates 141 are arranged at intervals to form a power feeding unit and a power receiving unit. In this case, since a large single-sheet core is not required, the manufacturing cost can be reduced.
By the way, since the floor of the vehicle body is formed of an iron plate, there arises a problem that when the leakage magnetic flux around the power receiving unit enters the iron plate, an induced current flows and the iron plate is heated and the power supply efficiency is greatly reduced.

下記特許文献4に記載されているように、漏れ磁束は、良導電性の金属板を用いて遮蔽することができる。この場合、金属板には、漏れ磁束によって渦電流が生じ、この渦電流による逆方向磁束が漏れ磁束に反発し、漏れ磁束の侵入が阻止される。
本発明者等は、非接触給電装置の漏れ磁束に対しても、良導電性の金属板による磁気遮蔽が有効でることを、アルミ板を用いて確かめている(下記非特許文献1)。
As described in Patent Document 4 below, the leakage magnetic flux can be shielded by using a highly conductive metal plate. In this case, an eddy current is generated in the metal plate due to the leakage magnetic flux, and the reverse magnetic flux due to the eddy current repels the leakage magnetic flux, thereby preventing the leakage magnetic flux from entering.
The present inventors have confirmed by using an aluminum plate that magnetic shielding by a highly conductive metal plate is effective against leakage magnetic flux of the non-contact power feeding device (Non-Patent Document 1 below).

特開2008−87733号公報JP 2008-87733 A 特開2008−120239号公報JP 2008-120239 A 特願2009−010997Japanese Patent Application No. 2009-010997 特開平10−64742号公報JP-A-10-64742

江原夏樹・岩田卓也・辻 俊明・金子裕良・阿部 茂・保田富夫:「漏れ磁束遮蔽アルミ板付き非接触給電の特性」, 平20 電学全大,No.4-196 (2008)Natsuki Ehara, Takuya Iwata, Toshiaki Tsuji, Hiroyoshi Kaneko, Shigeru Abe, Tomio Yasuda: "Characteristics of Contactless Power Supply with Leakage Flux Shielding Aluminum Plate", Hei 20 Denki University, No. 4-196 (2008)

従来の非接触給電装置を用いる車両給電システムの多くは、受電効率が変動しないように、車両の停止位置を機械的に規制して、給電部と受電部との位置ずれやギャップ長変化の範囲を厳しく制限している。
しかし、車両を決められた位置に正確に止めることは困難であり、それを強いるシステムは、一般人が利用し難い。
そのため、今後は、利便性の面から、給電部と受電部との位置ずれを許容するシステムが主流になるものと考えられる。
しかし、非接触給電装置の給電部と受電部との位置ずれの許容量を大きくすると、漏れ磁束が大きな問題となる。
Many conventional vehicle power feeding systems that use a non-contact power feeding device mechanically restrict the stop position of the vehicle so that the power receiving efficiency does not fluctuate, and the range of positional deviation and gap length change between the power feeding unit and the power receiving unit Is strictly limited.
However, it is difficult to accurately stop the vehicle at a predetermined position, and the system forcing it is difficult for ordinary people to use.
Therefore, in the future, from the viewpoint of convenience, it is considered that a system that allows a positional shift between the power feeding unit and the power receiving unit will become mainstream.
However, if the allowable amount of positional deviation between the power feeding unit and the power receiving unit of the non-contact power feeding device is increased, leakage magnetic flux becomes a big problem.

本発明は、こうした事情を考慮して創案したものであり、給電部と受電部との位置ずれによる漏れ磁束の影響が抑制できる非接触給電装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a non-contact power feeding device that can suppress the influence of leakage magnetic flux due to the positional deviation between the power feeding unit and the power receiving unit.

本発明の非接触給電装置は、地上側が、1次側コイルを含む平板状の給電部と、前記給電部の1次側コイルに高周波交流を供給する交流電源とを備え、移動体が、前記給電部と略同一の外形を有する、2次側コイルを含む平板状の受電部と、前記受電部の2次側コイルに電気接続された負荷装置とを備え、前記2次側コイルが前記1次側コイルと対向するように移動体を停止させて地上側の前記交流電源から移動体の前記負荷装置への非接触給電が行われる非接触給電装置であって、前記受電部が、当該受電部からの漏洩磁束を遮蔽する2次側遮蔽板を介して前記移動体に固定され、前記2次側遮蔽板が、非磁性の良導電体から成り、その大きさが、前記地上側からの給電が許容される移動体停止範囲のいずれの位置に前記移動体が停止したときでも、前記給電部の略全域が前記2次側遮蔽板の下方に位置する寸法に設定されていることを特徴とする。
この非接触給電装置は、給電部と受電部との位置ずれの許容量が大きくても、漏れ磁束の車体への波及を防止できる。
The non-contact power feeding device of the present invention includes a flat plate-like power feeding unit including a primary side coil on the ground side, and an AC power source that supplies high-frequency AC to the primary side coil of the power feeding unit. A planar power receiving unit including a secondary coil having substantially the same outer shape as the power supply unit; and a load device electrically connected to the secondary coil of the power receiving unit, wherein the secondary coil is the first coil A non-contact power feeding device in which a moving body is stopped so as to face a secondary coil and non-contact power feeding is performed from the AC power supply on the ground side to the load device of the moving body, wherein the power receiving unit receives the power receiving Fixed to the moving body through a secondary shielding plate that shields leakage magnetic flux from the part, the secondary shielding plate is made of a non-magnetic good conductor, and its size is from the ground side The moving body stops at any position within the moving body stop range where power feeding is allowed In air, characterized in that substantially the entire area of the feeding part is set to a dimension that is located below the secondary shield.
This non-contact power feeding device can prevent the leakage magnetic flux from spreading to the vehicle body even if the allowable amount of positional deviation between the power feeding unit and the power receiving unit is large.

また、本発明の非接触給電装置では、前記給電部が、当該給電部からの漏洩磁束を遮蔽する1次側遮蔽板を介して地上に固定され、前記1次側遮蔽板が、非磁性の良導電体から成り、その大きさが、前記移動体停止範囲のいずれの位置に前記移動体が停止したときでも、前記受電部の略全域が前記1次側遮蔽板の上方に位置する寸法に設定されていることが望ましい。
この非接触給電装置は、給電部と受電部との位置ずれの許容量が大きくても、漏れ磁束の地上側への波及を防止できる。
Further, in the non-contact power feeding device of the present invention, the power feeding unit is fixed to the ground via a primary side shielding plate that shields leakage magnetic flux from the power feeding unit, and the primary side shielding plate is nonmagnetic. It is made of a good conductor, and its size is such that when the moving body stops at any position in the moving body stop range, the substantially entire area of the power receiving unit is positioned above the primary shielding plate. It is desirable that it is set.
This non-contact power feeding device can prevent the leakage magnetic flux from spreading to the ground side even if the allowable amount of displacement between the power feeding unit and the power receiving unit is large.

また、本発明の非接触給電装置では、前記給電部が前記1次側コイルと磁性体コアを構成する1次側磁性体板とから成り、前記受電部が前記2次側コイルと磁性体コアを構成する2次側磁性体板とから成る。   Further, in the non-contact power feeding device according to the present invention, the power feeding unit includes the primary side coil and a primary side magnetic body plate constituting the magnetic core, and the power receiving unit includes the secondary side coil and the magnetic core. And a secondary side magnetic material plate.

また、本発明の非接触給電装置は、前記1次側コイルが前記1次側磁性体板(磁性体コア)に巻回され、前記2次側コイルが前記2次側磁性体板(磁性体コア)に巻回されていることが望ましい。
この非接触給電装置の給電部及び受電部は、位置ずれの許容量が大きい。
In the non-contact power feeding device according to the present invention, the primary coil is wound around the primary magnetic plate (magnetic core), and the secondary coil is the secondary magnetic plate (magnetic material). It is desirable to be wound around the core.
The power feeding unit and the power receiving unit of this non-contact power feeding apparatus have a large allowable amount of displacement.

また、本発明の非接触給電装置では、前記移動体の進行方向をx方向、それに垂直で前記給電部の前記受電部に対向する面に平行な方向をy方向とするxy平面上で、前記給電部の中心位置C1を原点(0,0)、前記受電部の中心位置C2を(x2、y2)として、前記移動体停止範囲が、−xm<x2<xm且つ−ym<y2<ymと設定される場合に、給電部外形に対し寸法をx方向及び−x方向にそれぞれxmだけ拡大し、y方向及び−y方向にそれぞれymだけ拡大した図形を拡大給電部外形と定義したとき、前記2次側遮蔽板の外形寸法は、受電部外形と拡大給電部外形とを中心位置(C1とC2)を一致させて重ねた図形の外形(和領域)より大きい寸法に設定する。
例えば、前記給電部の外形寸法と前記受電部の外形寸法が同じであれば、前記2次側遮蔽板の大きさが、少なくとも、x方向及び−x方向のそれぞれで前記受電部の外形寸法よりxmだけ大きく、y方向及び−y方向のそれぞれで前記受電部の外形寸法よりymだけ大きくなるように寸法を設定し、
また、例えば、x方向の前記給電部の外形寸法が同方向の前記受電部の外形寸法よりLx1だけ大きく、y方向の前記給電部の外形寸法が同方向の前記受電部の外形寸法よりLy1だけ大きければ、前記2次側遮蔽板の大きさが、少なくとも、x方向及び−x方向のそれぞれで前記受電部の外形寸法より(xm+Lx1/2)だけ大きく、y方向及び−y方向のそれぞれで前記受電部の外形寸法より(ym+Ly1/2)だけ大きくなるように寸法を設定する。
この非接触給電装置では、給電が許容される移動体停止範囲の何処に車両が停止したときでも、給電部の全域が2次側遮蔽板の下方に位置することになり、漏れ磁束の車体への波及が防止できる。
Further, in the non-contact power feeding device of the present invention, on the xy plane, the traveling direction of the moving body is the x direction, and the direction parallel to the surface facing the power receiving unit of the power feeding unit is perpendicular to the x direction. With the center position C 1 of the power feeding unit as the origin (0, 0) and the center position C 2 of the power receiving unit as (x 2 , y 2 ), the moving body stop range is −x m <x 2 <x m and If it is set to -y m <y 2 <y m, a dimension with respect to the feeding section outline enlarged by each x m in the x direction and the -x direction, respectively in the y direction and the -y direction has been enlarged by y m When a figure is defined as an enlarged power supply part outline, the external dimensions of the secondary shielding plate are the outline of the figure formed by superimposing the power receiving part outline and the enlarged power supply part outline with their center positions (C 1 and C 2 ) matched. Set to a larger dimension (sum area).
For example, if the outer dimensions of the power feeding unit and the power receiving unit are the same, the size of the secondary shielding plate is at least as large as the outer dimension of the power receiving unit in each of the x direction and the −x direction. larger by x m, and set the size so that only larger y m than the outer dimensions of the power receiving unit in each y direction and -y direction,
Further, for example, the outer dimension of the power feeding unit in the x direction is larger by L x1 than the outer dimension of the power receiving unit in the same direction, and the outer dimension of the power feeding unit in the y direction is L smaller than the outer dimension of the power receiving unit in the same direction. If it is larger by y1, the size of the secondary shielding plate is at least (x m + L x1 / 2) larger than the outer dimensions of the power receiving unit in each of the x direction and the −x direction. The dimensions are set so as to be larger by (y m + L y1 / 2) than the outer dimensions of the power receiving unit in each direction.
In this non-contact power supply device, the entire area of the power supply unit is located below the secondary shielding plate when the vehicle stops anywhere in the movable body stop range where power supply is allowed. Can be prevented.

また、本発明の非接触給電装置では、前記移動体の進行方向をx方向、それに垂直で前記給電部の前記受電部に対向する面に平行な方向をy方向とするxy平面上で、前記給電部の中心位置C1を原点(0,0)、前記受電部の中心位置C2を(x2、y2)として、前記移動体停止範囲が、−xm<x2<xm且つ−ym<y2<ymと設定される場合に、受電部外形に対し寸法をx方向及び−x方向にそれぞれxmだけ拡大し、y方向及び−y方向にそれぞれymだけ拡大した図形を拡大受電部外形と定義したとき、前記1次側遮蔽板の外形寸法は、給電部外形と拡大受電部外形とを中心位置(C1とC2)を一致させて重ねた図形の外形(和領域)より大きい寸法に設定する。
例えば、前記給電部の外形寸法と前記受電部の外形寸法が同じであれば、前記1次側遮蔽板の大きさが、少なくとも、x方向及び−x方向のそれぞれで前記給電部の外形寸法よりxmだけ大きく、y方向及び−y方向のそれぞれで前記給電部の外形寸法よりymだけ大きくなるように寸法を設定し、
また、例えば、x方向の前記受電部の外形寸法が同方向の前記給電部の外形寸法よりLx2だけ大きく、y方向の前記受電部の外形寸法が同方向の前記給電部の外形寸法よりLy2だけ大きければ、前記1次側遮蔽板の大きさが、少なくとも、x方向及び−x方向のそれぞれで前記給電部の外形寸法より(xm+Lx2/2)だけ大きく、y方向及び−y方向のそれぞれで前記給電部の外形寸法より(ym+Ly2/2)だけ大きくなるように寸法を設定する。
この非接触給電装置では、給電が許容される移動体停止範囲の何処に車両が停止したときでも、受電部の全域が1次側遮蔽板の上方に位置することになり、漏れ磁束の地上側への波及が防止できる。
Further, in the non-contact power feeding device of the present invention, on the xy plane, the traveling direction of the moving body is the x direction, and the direction parallel to the surface facing the power receiving unit of the power feeding unit is perpendicular to the x direction. With the center position C 1 of the power feeding unit as the origin (0, 0) and the center position C 2 of the power receiving unit as (x 2 , y 2 ), the moving body stop range is −x m <x 2 <x m and If it is set to -y m <y 2 <y m, respectively the dimensions in the x direction and the -x direction with respect to the power receiving unit external enlarged by x m, respectively in the y direction and -y direction is magnified by y m When a figure is defined as an enlarged power receiving part outer shape, the outer dimension of the primary shielding plate is the outer shape of the figure in which the power feeding part outer shape and the enlarged power receiving part outer shape are aligned at the center position (C 1 and C 2 ). Set to a larger dimension (sum area).
For example, if the outer dimensions of the power feeding unit and the power receiving unit are the same, the size of the primary shielding plate is at least as large as the outer dimension of the power feeding unit in each of the x direction and the −x direction. larger by x m, and set the size so that only larger y m than the outer dimension of the feeding portion in the respective y-direction and -y direction,
Further, for example, the outer dimension of the power receiving unit in the x direction is larger by L x2 than the outer dimension of the power feeding unit in the same direction, and the outer dimension of the power receiving unit in the y direction is L smaller than the outer dimension of the power feeding unit in the same direction. If it is larger by y2, the size of the primary side shielding plate is at least larger than the outer dimension of the power feeding part in each of the x direction and the −x direction by (x m + L x2 / 2). The dimensions are set so as to be larger by (y m + L y2 / 2) than the outer dimensions of the power feeding part in each direction.
In this non-contact power feeding device, the entire area of the power receiving unit is located above the primary shielding plate when the vehicle stops anywhere in the movable body stopping range where power feeding is allowed, and the leakage flux on the ground side Can be prevented.

また、本発明の非接触給電装置は、前記遮蔽板にアルミ板を用いることが望ましい。   In the non-contact power feeding device of the present invention, it is desirable to use an aluminum plate for the shielding plate.

本発明の非接触給電装置は、給電部と受電部との位置ずれが発生しても、漏れ磁束が車体にまで達しない。そのため、車体の加熱や、給電効率の低下が回避できる。   In the non-contact power feeding device of the present invention, even if the power feeding unit and the power receiving unit are misaligned, the leakage magnetic flux does not reach the vehicle body. Therefore, heating of the vehicle body and a decrease in power supply efficiency can be avoided.

本発明の実施形態に係る非接触給電装置の構成を示す図The figure which shows the structure of the non-contact electric power feeder which concerns on embodiment of this invention. 地上側の給電部と進行する車両の受電部との位置関係を示す図The figure which shows the positional relationship of the electric power feeding part on the ground side and the power receiving part of the vehicle which advances 給電部と受電部との座標上の関係を示す図The figure which shows the relationship on the coordinate of a power feeding part and a power receiving part 車両停止範囲の境界上の受電部と給電部との位置関係を示す図(その1)The figure which shows the positional relationship of the power receiving part and electric power feeding part on the boundary of a vehicle stop range (the 1) 車両停止範囲の境界上の受電部と給電部との位置関係を示す図(その2)The figure which shows the positional relationship of the power receiving part and electric power feeding part on the boundary of a vehicle stop range (the 2) 車両停止範囲の境界上の受電部と給電部との位置関係を示す図(その3)The figure which shows the positional relationship of the power receiving part and electric power feeding part on the boundary of a vehicle stop range (the 3) 車両停止範囲の境界上の受電部と給電部との位置関係を示す図(その4)The figure which shows the positional relationship of the power receiving part and electric power feeding part on the boundary of a vehicle stop range (the 4) 受電部と給電部の大きさが同じときの受電部とアルミ板との関係を示す平面図The top view which shows the relationship between a power receiving part and an aluminum plate when the magnitude | size of a power receiving part and a power feeding part is the same 受電部と給電部の大きさが同じときの受電部とアルミ板と給電部との関係を示す断面図Sectional drawing which shows the relationship between a power receiving part, an aluminum plate, and a power feeding part when the sizes of the power receiving part and the power feeding part are the same 受電部と給電部との大きさが異なるときの関係を示す断面図Sectional drawing which shows the relationship when the magnitude | size of a receiving part and a electric power feeding part differs 円形の受電部とアルミ板との関係を示す平面図(受電部と給電部の大きさが同じとき)Plan view showing the relationship between a circular power receiving unit and an aluminum plate (when the size of the power receiving unit and the power feeding unit is the same) 長円形の受電部とアルミ板との関係を示す平面図(受電部と給電部の大きさが同じとき)Plan view showing the relationship between an oval power receiving unit and an aluminum plate (when the power receiving unit and the power supply unit are the same size) プラグインハイブリッド車の給電システムを示す図Diagram showing power supply system for plug-in hybrid vehicle 円形の受電部を示す図Diagram showing a circular power receiving unit 長円形の受電部を示す図Diagram showing an ellipse power receiving unit コアにコイルを巻回した給電部及び受電部形を示す図The figure which shows the electric power feeding part and power receiving part shape which wound the coil around the core すのこ型のコアを用いた受電部を示す図The figure which shows the electric power reception part which uses the sunk core

図1は、本発明の実施形態に係る非接触給電装置を模式的に示している。
この装置は、プラグインハイブリッド車40の給電システムに用いられており、エンジン47とともにモータ46を駆動源として搭載する車両40は、モータ46用の電源である二次電池44と、二次電池44の直流を交流に変換してモータ46に供給するインバータ45と、二次電池44の充電回路43と、受電側アルミ板41を介して車体の床面の外側に固定された受電部42とを有している。
一方、給電ステーション側(地上側)は、商用周波数の交流電源50と、この交流が直流に変換され、この直流から、さらに高周波交流を生成するインバータ51と、給電側アルミ板52を介して給電ステーションに固定された給電部53とを備えている。
ここでは、図2に示すように、給電部53及び受電部42として、フェライト板48、54にコイル49、55を巻回した、図16の形態のものを用いている。この給電部53と受電部42とは同一形状である。
FIG. 1 schematically shows a non-contact power feeding apparatus according to an embodiment of the present invention.
This device is used in a power supply system for a plug-in hybrid vehicle 40. A vehicle 40 mounted with a motor 46 as a drive source together with an engine 47 includes a secondary battery 44 as a power source for the motor 46, and a secondary battery 44. An inverter 45 that converts the direct current into alternating current and supplies it to the motor 46, a charging circuit 43 for the secondary battery 44, and a power receiving unit 42 fixed to the outside of the floor of the vehicle body via the power receiving side aluminum plate 41. Have.
On the other hand, the power supply station side (ground side) supplies power via an AC power supply 50 of commercial frequency, this AC is converted to DC, an inverter 51 that generates high-frequency AC from this DC, and an aluminum plate 52 on the power supply side. And a power feeding unit 53 fixed to the station.
Here, as shown in FIG. 2, as the power feeding unit 53 and the power receiving unit 42, those in the form of FIG. 16 in which coils 49 and 55 are wound around ferrite plates 48 and 54 are used. The power feeding unit 53 and the power receiving unit 42 have the same shape.

車両の進行方向をx方向とし、x方向に直交し、給電部53及び受電部42の対向面に平行な方向をy方向とすると、コイル49、55は、y方向に巻回されている。この給電部53及び受電部42は、それらが対向するとき、図16に示すように、コイルに覆われていないフェライト板の露出部分で磁束線に鎖交する。そのため、給電を行うためには、給電部53のフェライト露出部分と受電部42のフェライト露出部分との対向面積が所定量以上存在しなければならない。   If the traveling direction of the vehicle is the x direction, the direction orthogonal to the x direction and the direction parallel to the facing surfaces of the power feeding unit 53 and the power receiving unit 42 is the y direction, the coils 49 and 55 are wound in the y direction. When the power feeding unit 53 and the power receiving unit 42 face each other, as shown in FIG. 16, the power feeding unit 53 and the power receiving unit 42 are linked to the magnetic flux lines at the exposed portion of the ferrite plate not covered with the coil. Therefore, in order to perform power feeding, the facing area between the ferrite exposed portion of the power feeding portion 53 and the ferrite exposed portion of the power receiving portion 42 must be a predetermined amount or more.

図3に示すように、給電部53の中心C1を原点(0,0)とするxy座標を想定し、受電部42の中心C2の座標位置を(x2、y2)とする。このとき、受電部42の中心C2(x2、y2)が四角56で示す範囲内にあれば、給電部53及び受電部42のフェライト露出部分の対向面積が所定量以上に達し、給電が可能になる。従って、給電を受けるためには、受電部42の中心C2が、この四角56の中に入るように車両を停止させる必要がある。そのため、この四角56を車両停止範囲と呼ぶことにする。
車両停止範囲56は、(xm、ym)(−xm、ym)(−xm、−ym)(xm、−ym)の4点で囲まれた範囲である。車両停止範囲56と受電部42の中心C2(x2、y2)との関係は、
−xm<x2<xm 且つ −ym<y2<ym
と表すことができる。
As shown in FIG. 3, an xy coordinate having the center C 1 of the power feeding unit 53 as the origin (0, 0) is assumed, and the coordinate position of the center C 2 of the power receiving unit 42 is defined as (x 2 , y 2 ). At this time, if the center C 2 (x 2 , y 2 ) of the power receiving unit 42 is within the range indicated by the square 56, the opposing area of the exposed portions of the power feeding unit 53 and the power receiving unit 42 reaches a predetermined amount or more. Is possible. Therefore, in order to receive power supply, it is necessary to stop the vehicle so that the center C 2 of the power receiving unit 42 enters the square 56. Therefore, this square 56 will be referred to as a vehicle stop range.
Vehicle stop range 56, (x m, y m) is a range surrounded by four points - - (x m, -y m ) (x m, -y m) (x m, y m). The relationship between the vehicle stop range 56 and the center C 2 (x 2 , y 2 ) of the power receiving unit 42 is as follows:
-X m <x 2 <x m and -y m <y 2 <y m
It can be expressed as.

図4は、受電部42の中心C2(x2、y2)が車両停止範囲56の(xm、ym)の位置にある状態を示している。
図5は、受電部42の中心C2(x2、y2)が車両停止範囲56の(−xm、ym)の位置にある状態を示している。
図6は、受電部42の中心C2(x2、y2)が車両停止範囲56の(−xm、−ym)の位置にある状態を示している。
図7は、受電部42の中心C2(x2、y2)が車両停止範囲56の(xm、−ym)の位置にある状態を示している。
FIG. 4 shows a state where the center C 2 (x 2 , y 2 ) of the power receiving unit 42 is at the position (x m , y m ) of the vehicle stop range 56.
FIG. 5 shows a state where the center C 2 (x 2 , y 2 ) of the power receiving unit 42 is at the position (−x m , y m ) of the vehicle stop range 56.
FIG. 6 shows a state where the center C 2 (x 2 , y 2 ) of the power receiving unit 42 is at the position (−x m , −y m ) of the vehicle stop range 56.
FIG. 7 shows a state where the center C 2 (x 2 , y 2 ) of the power receiving unit 42 is at the position (x m , −y m ) of the vehicle stop range 56.

このように、車両停止範囲56は、車両進行方向に狭く、それと直角な車幅方向には広い。車両進行方向は、例えば、車止めを配置して車両停止位置を規制すれば、運転者は、容易に規定された車両停止位置に止めることができる。一方、車幅方向の停車位置をピンポイントで合わせることは難しいが、この非接触給電装置の車両停止範囲56は、車幅方向に十分な余裕があるため、その範囲内に止めることは難しくない。
受電側アルミ板41は、受電部42の中心C2(x2、y2)が、車両停止範囲56内の何処に移動しても、給電部53の全域が受電側アルミ板41の下方に位置するように、その寸法が設定される。
従って、受電側アルミ板41の寸法は、図4から、−x方向に受電部42よりxm以上大きく、且つ、−y方向に受電部42よりym以上大きく設定され、また、図6から、x方向に受電部42よりxm以上大きく、且つ、y方向に受電部42よりym以上大きく設定される。
Thus, the vehicle stop range 56 is narrow in the vehicle traveling direction and wide in the vehicle width direction perpendicular thereto. In the vehicle traveling direction, for example, if a vehicle stop is arranged to restrict the vehicle stop position, the driver can easily stop at the specified vehicle stop position. On the other hand, although it is difficult to pinpoint the stop position in the vehicle width direction, the vehicle stop range 56 of this non-contact power feeding device has a sufficient margin in the vehicle width direction, so it is not difficult to stop within that range. .
In the power receiving side aluminum plate 41, the entire region of the power feeding unit 53 is located below the power receiving side aluminum plate 41 regardless of where the center C 2 (x 2 , y 2 ) of the power receiving unit 42 moves within the vehicle stop range 56. Its dimensions are set so that it is located.
Thus, the dimensions of the power-receiving-side aluminum plate 41 from FIG. 4, or x m from the power receiving unit 42 in the -x direction increases, and is larger than the power receiving unit 42 or y m in the -y direction, from FIG. 6 , X m or more larger than the power receiving unit 42 in the x direction and y m or larger than the power receiving unit 42 in the y direction.

図8に、受電部42と受電側アルミ板41との関係を平面図で示し、また、図9(a)にy軸での断面図を、図9(b)にx軸での断面図を示している。このように、受電側アルミ板41の寸法は、少なくとも、x方向及び−x方向のそれぞれで受電部42の外形寸法よりxm大きく、y方向及び−y方向のそれぞれで受電部42の外形寸法よりym大きくなるように設定すれば、受電部42の中心C2が、車両停止範囲56内の何処に移動しても、給電部53の全域が受電側アルミ板41の下方に位置することになる。
なお、受電部42と給電部53とは同一形状としているため、給電側アルミ板52の大きさ、及び、給電部53との大きさの関係は、受電側アルミ板41及び受電部42と同様である。
FIG. 8 is a plan view showing the relationship between the power receiving unit 42 and the power receiving side aluminum plate 41, FIG. 9A is a cross-sectional view along the y-axis, and FIG. 9B is a cross-sectional view along the x-axis. Is shown. Thus, the dimensions of the power receiving side aluminum plate 41 are at least x m larger than the outer dimensions of the power receiving section 42 in each of the x and −x directions, and the outer dimensions of the power receiving section 42 in each of the y and −y directions. be set so more y m increases, the center C 2 of the power receiving unit 42, also move anywhere in the vehicle stop range 56, the whole area of the feeding portion 53 is positioned below the power receiving side aluminum plate 41 become.
Since the power reception unit 42 and the power supply unit 53 have the same shape, the relationship between the size of the power supply side aluminum plate 52 and the size of the power supply unit 53 is the same as that of the power reception side aluminum plate 41 and the power reception unit 42. It is.

また、受電部42と給電部53との大きさが異なる場合は、図10に示すように、y軸での断面図で見ると、給電部53が受電部42よりLy2だけ長いとき、受電部42の両側にLy2/2ずつ加えた寸法が給電部53と同じ長さとなる。従って、受電部42の両側にLy2/2ずつ加えた寸法に、さらに、ymを加えてやれば、良いことが分かる。
即ち、x方向の給電部53の外形寸法が同方向の受電部42の外形寸法よりLx1だけ大きく、y方向の給電部53の外形寸法が同方向の受電部42の外形寸法よりLy1だけ大きければ、受電側アルミ板41の大きさは、少なくとも、x方向及び−x方向のそれぞれで受電部42の外形寸法より(xm+Lx1/2)だけ大きく、y方向及び−y方向のそれぞれで受電部42の外形寸法より(ym+Ly1/2)だけ大きくなるように設定すれば良い。
換言すれば、給電部外形に対し寸法をx方向及び−x方向にそれぞれxmだけ拡大し、y方向及び−y方向にそれぞれymだけ拡大した図形を拡大給電部外形と定義したとき、受電側アルミ板41の外形寸法は、受電部外形と拡大給電部外形とを中心位置(C1とC2)を一致させて重ねた図形の外形(和領域)より大きい寸法に設定する。
Further, when the power receiving unit 42 and the power feeding unit 53 are different in size, as shown in FIG. 10, when the power feeding unit 53 is longer than the power receiving unit 42 by L y2 , The dimension obtained by adding L y2 / 2 on both sides of the part 42 is the same length as the power feeding part 53. Therefore, the dimensions added in L y2 / 2 on both sides of the power receiving portion 42, further, do it by adding y m, can be seen better.
That is, the outer dimension of the power feeding part 53 in the x direction is larger by L x1 than the outer dimension of the power receiving part 42 in the same direction, and the outer dimension of the power feeding part 53 in the y direction is only L y1 than the outer dimension of the power receiving part 42 in the same direction. If it is larger, the size of the power receiving side aluminum plate 41 is at least (x m + L x1 / 2) larger than the outer dimensions of the power receiving unit 42 in each of the x direction and the −x direction, and each of the y direction and the −y direction. Therefore, it may be set so as to be larger by (y m + L y1 / 2) than the outer dimension of the power receiving unit 42.
In other words, when the dimension to the feeding portion outer enlarged by each x m in the x direction and the -x direction, is defined as y direction and respectively in the -y direction by y m enlarged enlarged feeding section profile shapes, receiving The outer dimension of the side aluminum plate 41 is set to be larger than the outer shape (sum area) of the figure in which the power receiving unit outer shape and the enlarged power feeding unit outer shape are overlapped with the center positions (C 1 and C 2 ) matched.

この関係は、給電部53が受電部42の大きさより小さいときの給電側アルミ板52の寸法についても同じである。
即ち、x方向の受電部42の外形寸法が同方向の給電部53の外形寸法よりLx1だけ大きく、y方向の受電部42の外形寸法が同方向の給電部53の外形寸法よりLy1だけ大きければ、給電側アルミ板52の大きさは、少なくとも、x方向及び−x方向のそれぞれで給電部53の外形寸法より(xm+Lx1/2)だけ大きく、y方向及び−y方向のそれぞれで給電部53の外形寸法より(ym+Ly1/2)だけ大きくなるように設定する。
このようにすれば、受電部42の中心C2が、車両停止範囲56内の何処に移動しても、受電部42の全域が給電側アルミ板52の上方に位置することになる。
換言すれば、受電部外形に対し寸法をx方向及び−x方向にそれぞれxmだけ拡大し、y方向及び−y方向にそれぞれymだけ拡大した図形を拡大受電部外形と定義したとき、給電側アルミ板52の外形寸法は、給電部外形と拡大受電部外形とを中心位置(C1とC2)を一致させて重ねた図形の外形(和領域)より大きい寸法に設定する。
This relationship also applies to the dimensions of the power supply side aluminum plate 52 when the power supply unit 53 is smaller than the size of the power reception unit 42.
That is, the outer dimension of the power receiving unit 42 in the x direction is larger by L x1 than the outer dimension of the power feeding unit 53 in the same direction, and the outer dimension of the power receiving unit 42 in the y direction is L y1 more than the outer dimension of the power feeding unit 53 in the same direction. greater if the size of the feeding-side aluminum plate 52 is at least greater than the outer dimensions of the power supply unit 53 in each of the x direction and the -x direction by (x m + L x1 / 2 ), each of y and -y directions Thus, it is set so as to be larger than the outer dimension of the power feeding portion 53 by (y m + L y1 / 2).
In this way, regardless of where the center C 2 of the power reception unit 42 moves within the vehicle stop range 56, the entire region of the power reception unit 42 is located above the power supply side aluminum plate 52.
In other words, when the figure is enlarged with respect to the outer shape of the power receiving unit by x m in the x direction and the −x direction, respectively, and the figure enlarged by y m in the y direction and the −y direction is defined as the enlarged power receiving unit outer shape. The outer dimension of the side aluminum plate 52 is set to be larger than the outer shape (sum area) of the figure in which the power supply unit outer shape and the enlarged power receiving unit outer shape are overlapped with the center positions (C 1 and C 2 ) matched.

ここでは、給電部53及び受電部42が矩形の外形形状を有する場合の給電側、受電側アルミ板41、52について説明したが、図11に示すように、給電部53及び受電部42が円形の外形形状を有する場合でも、また、図12に示すように、給電部53及び受電部42が長円形の外形形状を有する場合でも同様である。
また、ここでは、アルミ板を漏洩磁束の遮蔽板として用いる場合について説明したが、銅や銀など、その他の非磁性の良導電体を用いることも可能である。
Here, the power feeding side and the power receiving side aluminum plates 41 and 52 in the case where the power feeding unit 53 and the power receiving unit 42 have a rectangular outer shape have been described. However, as shown in FIG. 11, the power feeding unit 53 and the power receiving unit 42 are circular. This is the same even when the outer shape of the power supply unit 53 and the power receiving unit 42 have an oval outer shape as shown in FIG.
Although the case where the aluminum plate is used as a leakage flux shielding plate has been described here, other non-magnetic good conductors such as copper and silver can also be used.

本発明は、給電部及び受電部の位置ずれの許容量が大きい非接触給電装置を実現するものであり、電気自動車、プラグインハイブリッド車、工場内搬送車、移動ロボット、電車など、各種の移動体の非接触給電に広く利用することができる。   The present invention realizes a non-contact power feeding device with a large allowable displacement of a power feeding unit and a power receiving unit, and various types of movement such as an electric vehicle, a plug-in hybrid vehicle, a factory transport vehicle, a mobile robot, and a train It can be widely used for non-contact power feeding of the body.

40 プラグインハイブリッド車
41 受電側アルミ板
42 受電部
43 充電回路
44 二次電池
45 インバータ
46 モータ
47 エンジン
48 フェライト板
49 コイル
50 交流電源
51 インバータ
52 給電側アルミ板
53 給電部
54 フェライト板
55 コイル
61 一次側フェライトコア
62 一次側コイル
63 二次側フェライトコア
64 二次側コイル
65 アルミ板
66 アルミ板
100 車両
102 二次コイル
103 充電回路
104 二次電池
105 インバータ
106 モータ
107 エンジン
141 細長い板
142 すのこ型コア
200 交流電源
201 インバータ
202 1次コイル
212 板状ブロック
213 板状コア
222 コイル
DESCRIPTION OF SYMBOLS 40 Plug-in hybrid vehicle 41 Power receiving side aluminum plate 42 Power receiving part 43 Charging circuit 44 Secondary battery 45 Inverter 46 Motor 47 Engine 48 Ferrite plate 49 Coil 50 AC power supply 51 Inverter 52 Power feeding side aluminum plate 53 Power feeding part 54 Ferrite plate 55 Coil 61 Primary side ferrite core 62 Primary side coil 63 Secondary side ferrite core 64 Secondary side coil 65 Aluminum plate 66 Aluminum plate 100 Vehicle 102 Secondary coil 103 Charging circuit 104 Secondary battery 105 Inverter 106 Motor 107 Engine 141 Elongated plate 142 Snowboard type Core 200 AC power supply 201 Inverter 202 Primary coil 212 Plate block 213 Plate core 222 Coil

Claims (7)

地上側が、1次側コイルを含む平板状の給電部と、前記給電部の1次側コイルに高周波交流を供給する交流電源とを備え、移動体が、前記給電部と略同一の外形を有する、2次側コイルを含む平板状の受電部と、前記受電部の2次側コイルに電気接続された負荷装置とを備え、前記2次側コイルが前記1次側コイルと対向するように移動体を停止させて地上側の前記交流電源から移動体の前記負荷装置への非接触給電が行われる非接触給電装置であって、
前記受電部が、当該受電部からの漏洩磁束を遮蔽する2次側遮蔽板を介して前記移動体に固定され、
前記2次側遮蔽板が、非磁性の良導電体から成り、その大きさが、前記地上側からの給電が許容される移動体停止範囲のいずれの位置に前記移動体が停止したときでも、前記給電部の略全域が前記2次側遮蔽板の下方に位置する寸法に設定されていることを特徴とする非接触給電装置。
The ground side includes a flat plate-like power supply unit including a primary side coil, and an AC power source that supplies high-frequency AC to the primary side coil of the power supply unit, and the moving body has substantially the same outer shape as the power supply unit. A flat power receiving unit including a secondary side coil and a load device electrically connected to the secondary side coil of the power receiving unit, the secondary side coil moving so as to face the primary side coil A non-contact power feeding device in which a body is stopped and non-contact power feeding is performed from the AC power supply on the ground side to the load device of a moving body,
The power receiving unit is fixed to the moving body via a secondary shielding plate that shields leakage magnetic flux from the power receiving unit;
The secondary-side shielding plate is made of a non-magnetic good conductor, and the size of the secondary-side shielding plate is not limited to any position in the movable body stopping range where power supply from the ground side is allowed. A non-contact power feeding device, wherein a substantially entire area of the power feeding unit is set to a dimension located below the secondary shielding plate.
請求項1に記載の非接触給電装置であって、前記給電部が、当該給電部からの漏洩磁束を遮蔽する1次側遮蔽板を介して地上に固定され、前記1次側遮蔽板が、非磁性の良導電体から成り、その大きさが、前記移動体停止範囲のいずれの位置に前記移動体が停止したときでも、前記受電部の略全域が前記1次側遮蔽板の上方に位置する寸法に設定されていることを特徴とする非接触給電装置。   The contactless power supply device according to claim 1, wherein the power feeding unit is fixed to the ground via a primary shielding plate that shields leakage magnetic flux from the power feeding unit, and the primary shielding plate is It consists of a non-magnetic good conductor, and its size is such that when the moving body stops at any position in the moving body stopping range, the substantially entire area of the power receiving unit is positioned above the primary shielding plate. The non-contact electric power feeder characterized by being set to the dimension to carry out. 請求項1または2に記載の非接触給電装置であって、前記給電部が前記1次側コイルと磁性体コアを構成する1次側磁性体板とから成り、前記受電部が前記2次側コイルと磁性体コアを構成する2次側磁性体板とから成ることを特徴とする非接触給電装置。   3. The non-contact power feeding device according to claim 1, wherein the power feeding unit includes the primary side coil and a primary magnetic body plate constituting a magnetic core, and the power receiving unit is the secondary side. A non-contact power feeding device comprising a coil and a secondary magnetic plate constituting a magnetic core. 請求項3に記載の非接触給電装置であって、前記1次側コイルが前記1次側磁性体板に巻回され、前記2次側コイルが前記2次側磁性体板に巻回されていることを特徴とする非接触給電装置。   The contactless power supply device according to claim 3, wherein the primary side coil is wound around the primary side magnetic body plate, and the secondary side coil is wound around the secondary side magnetic body plate. A non-contact power feeding device characterized by comprising: 請求項1から4のいずれかに記載の非接触給電装置であって、前記移動体の進行方向をx方向、それに垂直で前記給電部の前記受電部に対向する面に平行な方向をy方向とするxy平面上で、前記給電部の中心位置C1を原点(0,0)、前記受電部の中心位置C2を(x2、y2)として、前記移動体停止範囲が、−xm<x2<xm且つ−ym<y2<ymと設定され、
給電部外形に対し寸法をx方向及び−x方向にそれぞれxmだけ拡大し、y方向及び−y方向にそれぞれymだけ拡大した図形を拡大給電部外形と定義したとき、前記2次側遮蔽板の外形寸法は、受電部外形と拡大給電部外形とを中心位置(C1とC2)を一致させて重ねた図形の外形(和領域)より大きな寸法に設定されることを特徴とする非接触給電装置。
5. The non-contact power feeding device according to claim 1, wherein the traveling direction of the moving body is an x direction, and a direction perpendicular to the surface and facing the power receiving unit of the power feeding unit is a y direction. On the xy plane, where the center position C 1 of the power feeding unit is the origin (0, 0) and the center position C 2 of the power receiving unit is (x 2 , y 2 ), the moving body stop range is −x m <x 2 <x m and is set to -y m <y 2 <y m ,
When the dimensions of the power supply part outline are enlarged by x m in the x direction and the −x direction, respectively, and the figure enlarged by y m in the y direction and the −y direction is defined as the enlarged power supply part outline, the secondary side shielding is performed. The outer dimension of the plate is set to be larger than the outer shape (sum area) of the figure in which the power receiving unit outer shape and the enlarged power feeding unit outer shape are overlapped with the center positions (C 1 and C 2 ) matched. Non-contact power feeding device.
請求項2から4のいずれかに記載の非接触給電装置であって、前記移動体の進行方向をx方向、それに垂直で前記給電部の前記受電部に対向する面に平行な方向をy方向とするxy平面上で、前記給電部の中心位置C1を原点(0,0)、前記受電部の中心位置C2を(x2、y2)として、前記移動体停止範囲が、−xm<x2<xm且つ−ym<y2<ymと設定され、
受電部外形に対し寸法をx方向及び−x方向にそれぞれxmだけ拡大し、y方向及び−y方向にそれぞれymだけ拡大した図形を拡大受電部外形と定義したとき、前記1次側遮蔽板の外形寸法は、給電部外形と拡大受電部外形とを中心位置(C1とC2)を一致させて重ねた図形の外形(和領域)より大きな寸法に設定されることを特徴とする非接触給電装置。
5. The non-contact power feeding device according to claim 2, wherein a moving direction of the moving body is an x direction, and a direction perpendicular to the surface and parallel to a surface of the power feeding unit facing the power receiving unit is a y direction. On the xy plane, where the center position C 1 of the power feeding unit is the origin (0, 0) and the center position C 2 of the power receiving unit is (x 2 , y 2 ), the moving body stop range is −x m <x 2 <x m and is set to -y m <y 2 <y m ,
The primary-side shielding is defined when the dimensions of the power receiving part outline are enlarged by x m in the x direction and the −x direction, respectively, and the figure enlarged by y m in the y direction and the −y direction is defined as the enlarged power receiving part outline. The outer dimension of the board is set to be larger than the outer shape (sum area) of the figure in which the power supply unit outer shape and the enlarged power receiving unit outer shape are overlapped with the center positions (C 1 and C 2 ) matched. Non-contact power feeding device.
請求項1から6のいずれかに記載の非接触給電装置であって、前記遮蔽板がアルミ板から成ることを特徴とする非接触給電装置。   7. The non-contact power feeding device according to claim 1, wherein the shielding plate is made of an aluminum plate.
JP2009194424A 2009-08-25 2009-08-25 Non-contact power feeding device Expired - Fee Related JP5354539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194424A JP5354539B2 (en) 2009-08-25 2009-08-25 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194424A JP5354539B2 (en) 2009-08-25 2009-08-25 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2011049230A true JP2011049230A (en) 2011-03-10
JP5354539B2 JP5354539B2 (en) 2013-11-27

Family

ID=43835318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194424A Expired - Fee Related JP5354539B2 (en) 2009-08-25 2009-08-25 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP5354539B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132242A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Contactless power-reception device
WO2012132205A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Contactless power-reception device
CN102856986A (en) * 2011-07-01 2013-01-02 台湾东电化股份有限公司 Flexible wireless power induction board process and induction module structure
JP2013038893A (en) * 2011-08-08 2013-02-21 Equos Research Co Ltd Power transmission system
GB2497823A (en) * 2011-12-21 2013-06-26 Ampium Ltd Shielded inductive power coupling for an electric vehicle
WO2013168242A1 (en) 2012-05-09 2013-11-14 トヨタ自動車株式会社 Vehicle
WO2013168241A1 (en) 2012-05-09 2013-11-14 トヨタ自動車株式会社 Vehicle
WO2013168239A1 (en) 2012-05-09 2013-11-14 トヨタ自動車株式会社 Vehicle capable of contact-free power reception
WO2013168240A1 (en) 2012-05-09 2013-11-14 トヨタ自動車株式会社 Vehicle
JP2014512163A (en) * 2011-04-08 2014-05-19 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Reverse winding induction power supply
EP2749445A1 (en) 2012-12-28 2014-07-02 Hitachi Power Solutions Co., Ltd. Inductive power supply system for electric operation machine
WO2014147857A1 (en) 2013-03-21 2014-09-25 東亜道路工業株式会社 Trough, paved structure, and construction method for paved structure
WO2014147860A1 (en) 2013-03-21 2014-09-25 東亜道路工業株式会社 Paved structure and construction method for paved structure
CN104417378A (en) * 2013-09-11 2015-03-18 丰田自动车株式会社 Vehicle
WO2015045085A1 (en) * 2013-09-27 2015-04-02 日産自動車株式会社 Vehicle mounting structure of contactless electricity reception device
JP2015065804A (en) * 2009-11-13 2015-04-09 パナソニックIpマネジメント株式会社 Vehicle power charge and supply system
US20150123486A1 (en) * 2012-05-21 2015-05-07 Technova Inc. Contactless power transfer transformer for moving body
JP2015185720A (en) * 2014-03-25 2015-10-22 Tdk株式会社 Coil unit and wireless power transmission device
JP2015185719A (en) * 2014-03-25 2015-10-22 Tdk株式会社 Coil unit and wireless power transmission device
JP2016103613A (en) * 2014-11-28 2016-06-02 トヨタ自動車株式会社 Coil unit
US9620279B2 (en) 2013-03-14 2017-04-11 Yazaki Corporation Coil unit and contactless power supplying apparatus
DE102017106726A1 (en) 2016-03-30 2017-10-05 Tdk Corporation Power transmission device
US9787138B2 (en) 2012-06-04 2017-10-10 Toyota Jidosha Kabushiki Kaisha Power reception device and power transmission device
GB2551731A (en) * 2016-06-28 2018-01-03 Bombardier Primove Gmbh Cable bearing arrangement and method of installing a cable bearing arrangement
JP2018026944A (en) * 2016-08-10 2018-02-15 日置電機株式会社 Measuring apparatus
US10202045B2 (en) 2012-01-16 2019-02-12 Toyota Jidosha Kabushiki Kaisha Vehicle with shielded power receiving coil
US10315527B2 (en) 2014-10-10 2019-06-11 Ihi Corporation Power reception coil device and wireless power transfer system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103997134B (en) * 2014-05-22 2016-01-13 中国矿业大学 The one radiated radio that disappears can transmit electric supply installation

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505480A (en) * 2003-09-08 2007-03-08 スプラッシュパワー リミテッド Inductive power transmission unit with magnetic flux shield
JP2008087733A (en) * 2006-10-05 2008-04-17 Showa Aircraft Ind Co Ltd Noncontact power supply device
JP2008120239A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Noncontact power supply device of mobile body, and its protecting device
JP2008312434A (en) * 2007-05-11 2008-12-25 Seiko Epson Corp Coil device, and power receiving apparatus, power transmission apparatus, and electronic equipment using the coil device
JP2009010394A (en) * 2002-05-13 2009-01-15 Splashpower Ltd Improvement relating to contact-less power transfer
JP2009106136A (en) * 2007-10-25 2009-05-14 Toyota Motor Corp Electric vehicle and power feeding device for vehicle
JP2009106126A (en) * 2007-10-25 2009-05-14 Meleagros Corp Power transmitter, power transmission device and power receiving device of power transmitter
JP2009105434A (en) * 2007-02-20 2009-05-14 Seiko Epson Corp Method of manufacturing coil unit, and jig using for manufacture
JP2009124878A (en) * 2007-11-15 2009-06-04 Meleagros Corp Power transmitter, and power transmitting device and power receiving device for power transmitter
JP2010070048A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Non-contact power receiving apparatus, non-contact power transmission apparatus, non-contact power supply system, and electric vehicle
JP2010530613A (en) * 2007-05-10 2010-09-09 オークランド ユニサービシズ リミテッド Electric vehicle using multiple power sources
JP2010246348A (en) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd Power-receiving device and power-transmitting device
JP2010252498A (en) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd Wireless power transmission device and wireless power transmission method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010394A (en) * 2002-05-13 2009-01-15 Splashpower Ltd Improvement relating to contact-less power transfer
JP2007505480A (en) * 2003-09-08 2007-03-08 スプラッシュパワー リミテッド Inductive power transmission unit with magnetic flux shield
JP2008087733A (en) * 2006-10-05 2008-04-17 Showa Aircraft Ind Co Ltd Noncontact power supply device
JP2008120239A (en) * 2006-11-10 2008-05-29 Mitsubishi Heavy Ind Ltd Noncontact power supply device of mobile body, and its protecting device
JP2009105434A (en) * 2007-02-20 2009-05-14 Seiko Epson Corp Method of manufacturing coil unit, and jig using for manufacture
JP2010530613A (en) * 2007-05-10 2010-09-09 オークランド ユニサービシズ リミテッド Electric vehicle using multiple power sources
JP2008312434A (en) * 2007-05-11 2008-12-25 Seiko Epson Corp Coil device, and power receiving apparatus, power transmission apparatus, and electronic equipment using the coil device
JP2009106126A (en) * 2007-10-25 2009-05-14 Meleagros Corp Power transmitter, power transmission device and power receiving device of power transmitter
JP2009106136A (en) * 2007-10-25 2009-05-14 Toyota Motor Corp Electric vehicle and power feeding device for vehicle
JP2009124878A (en) * 2007-11-15 2009-06-04 Meleagros Corp Power transmitter, and power transmitting device and power receiving device for power transmitter
JP2010070048A (en) * 2008-09-18 2010-04-02 Toyota Motor Corp Non-contact power receiving apparatus, non-contact power transmission apparatus, non-contact power supply system, and electric vehicle
JP2010246348A (en) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd Power-receiving device and power-transmitting device
JP2010252498A (en) * 2009-04-14 2010-11-04 Fujitsu Ten Ltd Wireless power transmission device and wireless power transmission method

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065804A (en) * 2009-11-13 2015-04-09 パナソニックIpマネジメント株式会社 Vehicle power charge and supply system
WO2012132205A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Contactless power-reception device
WO2012132242A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Contactless power-reception device
JP2014512163A (en) * 2011-04-08 2014-05-19 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー Reverse winding induction power supply
US9496081B2 (en) 2011-04-08 2016-11-15 Access Business Group International Llc Counter wound inductive power supply
US9520226B2 (en) 2011-04-08 2016-12-13 Access Business Group International Llc Counter wound inductive power supply
CN102856986A (en) * 2011-07-01 2013-01-02 台湾东电化股份有限公司 Flexible wireless power induction board process and induction module structure
JP2013038893A (en) * 2011-08-08 2013-02-21 Equos Research Co Ltd Power transmission system
GB2497823A (en) * 2011-12-21 2013-06-26 Ampium Ltd Shielded inductive power coupling for an electric vehicle
US10202045B2 (en) 2012-01-16 2019-02-12 Toyota Jidosha Kabushiki Kaisha Vehicle with shielded power receiving coil
US10960770B2 (en) 2012-05-09 2021-03-30 Toyota Jidosha Kabushiki Kaisha Vehicle
US10286794B2 (en) 2012-05-09 2019-05-14 Toyota Jidosha Kabushiki Kaisha Vehicle
JPWO2013168239A1 (en) * 2012-05-09 2015-12-24 トヨタ自動車株式会社 Vehicles that can receive power without contact
KR20150015490A (en) 2012-05-09 2015-02-10 도요타지도샤가부시키가이샤 Vehicle
WO2013168240A1 (en) 2012-05-09 2013-11-14 トヨタ自動車株式会社 Vehicle
WO2013168239A1 (en) 2012-05-09 2013-11-14 トヨタ自動車株式会社 Vehicle capable of contact-free power reception
WO2013168241A1 (en) 2012-05-09 2013-11-14 トヨタ自動車株式会社 Vehicle
WO2013168242A1 (en) 2012-05-09 2013-11-14 トヨタ自動車株式会社 Vehicle
US9793045B2 (en) * 2012-05-21 2017-10-17 Technova Inc. Contactless power transfer transformer for moving body
US20150123486A1 (en) * 2012-05-21 2015-05-07 Technova Inc. Contactless power transfer transformer for moving body
US9787138B2 (en) 2012-06-04 2017-10-10 Toyota Jidosha Kabushiki Kaisha Power reception device and power transmission device
EP2749445A1 (en) 2012-12-28 2014-07-02 Hitachi Power Solutions Co., Ltd. Inductive power supply system for electric operation machine
US9620279B2 (en) 2013-03-14 2017-04-11 Yazaki Corporation Coil unit and contactless power supplying apparatus
US9873333B2 (en) 2013-03-21 2018-01-23 Toa Road Corporation Paved structure and construction method for paved structure
WO2014147860A1 (en) 2013-03-21 2014-09-25 東亜道路工業株式会社 Paved structure and construction method for paved structure
WO2014147857A1 (en) 2013-03-21 2014-09-25 東亜道路工業株式会社 Trough, paved structure, and construction method for paved structure
US9855847B2 (en) 2013-03-21 2018-01-02 Toa Road Corporation Trough, paved structure, and construction method for paved structure
CN104417378A (en) * 2013-09-11 2015-03-18 丰田自动车株式会社 Vehicle
US9533592B2 (en) 2013-09-11 2017-01-03 Toyota Jidosha Kabushiki Kaisha Vehicle
CN104417378B (en) * 2013-09-11 2016-10-05 丰田自动车株式会社 Vehicle
WO2015045085A1 (en) * 2013-09-27 2015-04-02 日産自動車株式会社 Vehicle mounting structure of contactless electricity reception device
US9827864B2 (en) 2013-09-27 2017-11-28 Nissan Motor Co., Ltd. Vehicle mounting structure of contactless power reception device
JPWO2015045085A1 (en) * 2013-09-27 2017-03-02 日産自動車株式会社 In-vehicle structure of non-contact power receiving device
JP2015185719A (en) * 2014-03-25 2015-10-22 Tdk株式会社 Coil unit and wireless power transmission device
JP2015185720A (en) * 2014-03-25 2015-10-22 Tdk株式会社 Coil unit and wireless power transmission device
US10315527B2 (en) 2014-10-10 2019-06-11 Ihi Corporation Power reception coil device and wireless power transfer system
JP2016103613A (en) * 2014-11-28 2016-06-02 トヨタ自動車株式会社 Coil unit
DE102017106726A1 (en) 2016-03-30 2017-10-05 Tdk Corporation Power transmission device
US10305330B2 (en) 2016-03-30 2019-05-28 Tdk Corporation Power transmission device
GB2551731A (en) * 2016-06-28 2018-01-03 Bombardier Primove Gmbh Cable bearing arrangement and method of installing a cable bearing arrangement
JP2018026944A (en) * 2016-08-10 2018-02-15 日置電機株式会社 Measuring apparatus

Also Published As

Publication number Publication date
JP5354539B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5354539B2 (en) Non-contact power feeding device
JP5751647B2 (en) Non-contact power feeding device
JP5240786B2 (en) Non-contact power feeding device
US10843579B2 (en) Charging configuration for the inductive wireless emission of energy
JP5286445B1 (en) Wireless power feeder for electric mobile body
EP2953143B1 (en) Coil unit and wireless power transmission device
US20150091518A1 (en) Charging configuration for the inductive wireless emission of energy
EP2924842B1 (en) Coil unit and wireless power transmission device
JP6300106B2 (en) Non-contact power transmission device
JP6217518B2 (en) Wireless power supply system and wireless power transmission system
WO2013133255A1 (en) Contactless power transfer device
TW200832860A (en) Non-contact type power feeder system for mobile object and protecting apparatus therefor
WO2014142233A1 (en) Coil unit and non-contact power supply apparatus
JP2010173503A (en) Non-contact power supply device
JP6302549B2 (en) Inductor unit, wireless power transmission device, and electric vehicle
EP3675323A1 (en) Wireless charging device using multi-coil
EP2953148B1 (en) Contactless-power-transfer-device coil and contactless power-transfer device
EP2698799B1 (en) Magnetic configuration for High Efficiency Power Processing
CN109904935B (en) Coil device, non-contact power supply system, and auxiliary magnetic member
JP2016127078A (en) Coil device
JP2014063768A (en) Coil unit used for non-contact power supply system
US20180025839A1 (en) Power Transfer Unit of a System for Inductive Power Transfer, a Method of Manufacturing a Primary Power Transfer Unit and of Operating a Primary Power Transfer Unit
JP6226500B2 (en) Contactless power supply system
JP6383086B2 (en) Inductor unit and electric vehicle
JP6035155B2 (en) Coil device for contactless power transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130820

R150 Certificate of patent or registration of utility model

Ref document number: 5354539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees