JP2011039019A - Superconductive sensor for electromagnetic diagnostic apparatus - Google Patents

Superconductive sensor for electromagnetic diagnostic apparatus Download PDF

Info

Publication number
JP2011039019A
JP2011039019A JP2009204094A JP2009204094A JP2011039019A JP 2011039019 A JP2011039019 A JP 2011039019A JP 2009204094 A JP2009204094 A JP 2009204094A JP 2009204094 A JP2009204094 A JP 2009204094A JP 2011039019 A JP2011039019 A JP 2011039019A
Authority
JP
Japan
Prior art keywords
magnetic field
sensor
rotating body
current
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009204094A
Other languages
Japanese (ja)
Inventor
Kenzo Miya
健三 宮
Haoyu Huang
皓宇 黄
Kentaro Takase
健太郎 高瀬
Ryo Kayata
良 萱田
Shosei Tsujiguchi
将誠 辻口
Perrin Stephane
ペラン ステファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTERNAT INST OF UNIVERSALITY
INTERNATIONAL INSTITUTE OF UNIVERSALITY
Original Assignee
INTERNAT INST OF UNIVERSALITY
INTERNATIONAL INSTITUTE OF UNIVERSALITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTERNAT INST OF UNIVERSALITY, INTERNATIONAL INSTITUTE OF UNIVERSALITY filed Critical INTERNAT INST OF UNIVERSALITY
Priority to JP2009204094A priority Critical patent/JP2011039019A/en
Publication of JP2011039019A publication Critical patent/JP2011039019A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor for an electromagnetic diagnostic apparatus, capable of detecting an abnormal condition of a conductive rotating body without contacting the rotating body, and suppressing attenuation due to a distance of a magnetic field in order to apply to a large device. <P>SOLUTION: The sensor for the electromagnetic diagnostic apparatus includes a high-temperature superconductive electromagnet having a function of a magnetic field generation source generating a static magnetic field for the rotating body, and magnetic field sensors such as an induction coil and a Hall element for measuring a magnetic field generating a current induced by the rotating body moving in the generated magnetic field, and uses a set of the magnetic sensors and the superconductive electromagnet in measurement. The sensor for the electromagnetic diagnostic apparatus is capable of generating a strong magnetic field with a high current by using a high-temperature superconductive material, suppressing the attenuation due to the distance of the magnetic field by enlarging the electromagnet, and controlling the magnetic field by turning on/off the current. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電磁現象を用いて導電性回転体を有する回転機器の異常状態を非接触で検出することを実現する状態監視および状態診断技術に関するものである。  The present invention relates to a state monitoring and state diagnosis technique for realizing non-contact detection of an abnormal state of a rotating device having a conductive rotating body using an electromagnetic phenomenon.

回転機器は現代産業において欠かすことはできず、特にプラント等の大規模施設における重要機器として組み込まれている回転機器に対しては、その停止がシステム全体の停止及びシステム自身の損傷につながる可能性もあるなど、その健全性の確保は重要な課題である。現在、回転機器の健全性評価のためには、運転中の回転機器の振動を測定し、その振幅値、各種統計量、そしてスペクトル分析結果などから各種異常および不具合を検知するという手法が最も多く採用されている。振動診断は比較的簡便でありながら回転機器の異常状態の大半を検出できるとされており、極めて多くの振動診断に関連した研究成果が報告されている。しかしながら、振動診断だけでは回転機器の異常状態および余寿命を必ずしも正しく評価することが出来ないということもまた、近年問題視されている。すなわち、異常振動の度合いが回転機器の機能損失の程度を表すとは必ずしも言うことができず、振動で検出される不具合は回転機器が機能を損失するごく直前であったり、または逆に機能には影響が無いと考えられる微細なキズであるにもかかわらず大きな異常振動が測定されたりする場合がある。このような問題を解決するために、特開2008−096410においては電磁現象を利用した電磁診断技術が提案され、複数の状態監視技術を用いて同時に回転機器の状態監視を行い、得られた信号を総合的に評価することで、異常状態および余寿命をより定量的に評価しようとする試みが行われている。  Rotating equipment is indispensable in the modern industry. Especially for rotating equipment that is incorporated as important equipment in large-scale facilities such as plants, the stoppage may lead to the entire system being stopped and the system itself being damaged. As such, ensuring its soundness is an important issue. Currently, the most common method for evaluating the soundness of rotating equipment is to measure the vibration of rotating equipment during operation and detect various abnormalities and malfunctions from their amplitude values, various statistics, and spectral analysis results. It has been adopted. Although vibration diagnosis is relatively simple, most of the abnormal states of rotating equipment can be detected, and many research results related to vibration diagnosis have been reported. However, in recent years, it has also been regarded as a problem that the abnormal state and remaining life of a rotating device cannot always be correctly evaluated by vibration diagnosis alone. That is, it cannot always be said that the degree of abnormal vibration represents the degree of functional loss of the rotating equipment, and the malfunction detected by vibration is just before the rotating equipment loses its function, or conversely In some cases, large abnormal vibrations may be measured even though the scratches are considered to be fine. In order to solve such a problem, Japanese Patent Application Laid-Open No. 2008-096410 proposes an electromagnetic diagnostic technique using an electromagnetic phenomenon, and simultaneously monitors the status of rotating equipment using a plurality of status monitoring techniques, and obtains the obtained signal. Attempts have been made to evaluate the abnormal state and the remaining life more quantitatively by comprehensively evaluating.

特開2008−096410  JP2008-096410 特願2008−336198  Japanese Patent Application No. 2008-336198 特願2008−336199  Japanese Patent Application No. 2008-336199

電磁診断技術による回転機器の回転体に発生した欠陥等の異常の早期検出を可能とする状態監視技術が提案された(特開2008−096410)。電磁診断技術を用いて回転機器の状態監視を行う際に問題となるのが、回転部位へのアクセス性である。回転部位は常に厚いケーシングに囲まれており、検出感度がケーシングの材質と厚さに影響され易い。特に大型回転機器の場合、設置可能な箇所から回転部までの距離が大きく、回転部における静磁場が発散してしまい、誘起する渦電流が弱くなり検出感度が低くなる問題がある。必要な感度を得るために大きな永久磁石を使用することができるが、磁石の製作および測定中の取扱いは困難である。  A state monitoring technique that enables early detection of an abnormality such as a defect occurring in a rotating body of a rotating device by an electromagnetic diagnosis technique has been proposed (Japanese Patent Laid-Open No. 2008-096410). Accessibility to a rotating part becomes a problem when the state of a rotating device is monitored using an electromagnetic diagnostic technique. The rotating part is always surrounded by a thick casing, and the detection sensitivity is easily affected by the material and thickness of the casing. In particular, in the case of a large rotating device, there is a problem that the distance from the place where the rotating device can be installed to the rotating portion is large, the static magnetic field in the rotating portion diverges, the induced eddy current becomes weak, and the detection sensitivity becomes low. Large permanent magnets can be used to obtain the required sensitivity, but magnet fabrication and handling during measurement is difficult.

回転機器の状態監視においては、各回の測定において得られた信号が同一箇所におけるものであることが必要であるが、測定毎にセンサを配置する場合はセンサの取り付け位置決め精度の保証が困難となる。状態監視を実現するためにはセンサを常時設置することが望ましい。特開2008−096410にて提案された電磁診断技術による状態監視技術においては、永久磁石にコイルを巻いたセンサが使用されている。このようなセンサを長時間設置した状態で回転機器を運転すると、永久磁石からの発生磁場により回転機器の回転状態を乱したり金属異物を捕捉する等の悪影響を与える可能性がある。  In monitoring the status of rotating equipment, it is necessary that the signals obtained in each measurement are at the same location. However, if a sensor is arranged for each measurement, it is difficult to guarantee the sensor positioning accuracy. . In order to realize state monitoring, it is desirable to always install a sensor. In the state monitoring technique based on the electromagnetic diagnosis technique proposed in Japanese Patent Laid-Open No. 2008-096410, a sensor in which a coil is wound around a permanent magnet is used. If such a sensor is installed for a long time and the rotating device is operated, there is a possibility of adverse effects such as disturbing the rotating state of the rotating device or capturing metallic foreign objects due to the magnetic field generated from the permanent magnet.

永久磁石の代わりに電磁石を使用することが考えられる。しかし、十分な強度を有する磁場を作り出すには、大きな励磁電流が必要となり、永久磁石と同程度の強度を持つ電磁石を作ることになれば寸法は永久磁石の数倍から数十倍になる。また、従来の銅線で作られる電磁石では大きな励磁電流による発熱の問題も無視できない。  It is conceivable to use an electromagnet instead of a permanent magnet. However, in order to create a magnetic field with sufficient strength, a large excitation current is required. If an electromagnet having the same strength as a permanent magnet is to be produced, the dimensions will be several to several tens of times that of a permanent magnet. Further, in the conventional electromagnet made of copper wire, the problem of heat generation due to a large excitation current cannot be ignored.

本発明は、このような課題を解決するために、センサ部を回転機器に長期間装着しても磁場の影響を回転機器に与えることが無く、且つ高い検出感度が得られる電磁診断装置用センサを提供するものである。  In order to solve such a problem, the present invention provides a sensor for an electromagnetic diagnostic apparatus that does not give an influence of a magnetic field to a rotating device even when the sensor unit is mounted on the rotating device for a long period of time, and can obtain high detection sensitivity. Is to provide.

上述した課題を解決するための請求項1の発明は、電磁診断装置用センサにおいて、励磁部分と磁場センサ部分(誘導コイルやホール素子)を分離し、測定する時には磁場センサ部分と励磁部分をセットで電磁診断装置用センサとして使用することを特徴とする。図1に電磁診断装置用センサを示す。励磁部分では、高温超電導電磁石を使用する。高温超電導材で作られた励磁コイル2に大電流を加え、強い磁場を発生させる。励磁コイルを囲む液体窒素冷却容器3に液体窒素を充満させ励磁コイルの超電導状態を保つ。液体窒素容器には液体窒素を注入する入り口4と出口5があり、随時液体窒素の補充ができる。電磁石であるので磁場の制御が簡単であり、測定する時のみ磁場をオンにすることができる。磁場センサ部分1は励磁部分と分離し、ケーシングの外部または内部に長時間装着できる。ケーシング内部に装着する場合はより回転部に近づくことができ、検出感度を高めることができる。  According to the first aspect of the invention for solving the above-mentioned problems, in the sensor for an electromagnetic diagnostic apparatus, the excitation part and the magnetic field sensor part (induction coil or Hall element) are separated, and when measuring, the magnetic field sensor part and the excitation part are set. And used as a sensor for an electromagnetic diagnostic apparatus. FIG. 1 shows a sensor for an electromagnetic diagnostic apparatus. A high temperature superconducting electromagnet is used in the excitation part. A large current is applied to the exciting coil 2 made of high temperature superconducting material to generate a strong magnetic field. The liquid nitrogen cooling vessel 3 surrounding the excitation coil is filled with liquid nitrogen to maintain the superconducting state of the excitation coil. The liquid nitrogen container has an inlet 4 and an outlet 5 for injecting liquid nitrogen, and liquid nitrogen can be replenished as needed. Since it is an electromagnet, the control of the magnetic field is simple, and the magnetic field can be turned on only when measuring. The magnetic field sensor part 1 is separated from the excitation part and can be mounted outside or inside the casing for a long time. In the case of mounting inside the casing, it is possible to get closer to the rotating part, and the detection sensitivity can be increased.

請求項2の発明は、高温超電導電磁石に直流電流ではなく、交流電流もしくはパルス電流を印加し、磁場センサ出力信号を測定することで渦電流探傷も可能とするものである。  The invention of claim 2 enables eddy current flaw detection by applying an AC current or a pulse current instead of a DC current to a high-temperature superconducting electromagnet and measuring a magnetic field sensor output signal.

本発明の電磁診断装置用センサにおいては、高温超電導材で作られる電磁石を使用することで、強力で且つ減衰発散し難い静磁場を作り出し、大型回転機器の外部からでも内部の回転部に十分な強度を有する磁場を与え、電磁診断信号の検出感度を保つことができる。回転機器のケーシング内部に磁場センサを長期間装着することが可能で、測定する時のみ電磁石をオンすることにより、回転機器の回転体に発生する渦電流によって生じる磁場を検出することができる。  In the sensor for an electromagnetic diagnostic apparatus of the present invention, a strong magnetic field that is difficult to attenuate and diverge is created by using an electromagnet made of a high-temperature superconducting material, which is sufficient for an internal rotating part even from the outside of a large rotating device. A magnetic field having an intensity can be applied to maintain the detection sensitivity of the electromagnetic diagnostic signal. A magnetic field sensor can be mounted in the casing of the rotating device for a long period of time, and the magnetic field generated by the eddy current generated in the rotating body of the rotating device can be detected by turning on the electromagnet only when measuring.

次に、本発明における実施例について、添付図面に基づいてより詳細に説明する。各図に共通の部分は同じ符号を使用している。  Next, the Example in this invention is described in detail based on an accompanying drawing. Parts common to the drawings use the same reference numerals.

図2は、本発明における請求項1が大型ポンプのインペラに対して適用された場合の実施例である。本発明の主要部は測定用電磁センサ部1、回転体通過部に静磁場を発生させるための励磁コイル2、そして液体窒素による冷却のための液体窒素冷却容器3、液体窒素の入り口4と出口5から成る。電磁診断装置用センサをポンプのケーシング7の外部に設置し、ケーシング内部のインペラ6を測定する。この図で、4枚の回転翼からなるインペラ6は回転軸8に取り付けられており、インペラ6は回転軸8のまわりを、9に示す矢印の方向に回転する。インペラ6が磁場発生源である高温超電導電磁石によって発生した静磁場中を横切る時に、インペラ6中に起電力が生じ、その結果電流が誘起される。この電流の流れ方はインペラ6中の欠陥の存在の有無および欠陥の性状によって変化するため、磁場センサ1によって検出される信号の値から、欠陥の存在の検知および評価を行うことができる。ここでの磁場センサ1はケーシングの外表面に張り付く誘導コイルとしているが、前述の通り、回転部が静磁場中を横切ることによって発生する誘導電流による動磁場を捉えることが肝要であるため、誘導コイルは必ずしもケーシングの外表面に張り付く必要は無く、さらに誘導コイル以外のホール素子等の磁場センサも適用され得るものである。  FIG. 2 shows an embodiment in which claim 1 of the present invention is applied to an impeller of a large pump. The main parts of the present invention are an electromagnetic sensor unit 1 for measurement, an exciting coil 2 for generating a static magnetic field in a rotating body passage, a liquid nitrogen cooling vessel 3 for cooling with liquid nitrogen, an inlet 4 and an outlet for liquid nitrogen It consists of five. An electromagnetic diagnostic device sensor is installed outside the pump casing 7 to measure the impeller 6 inside the casing. In this figure, an impeller 6 composed of four rotating blades is attached to a rotating shaft 8, and the impeller 6 rotates around the rotating shaft 8 in the direction of an arrow 9. When the impeller 6 crosses the static magnetic field generated by the high-temperature superconducting electromagnet as a magnetic field generation source, an electromotive force is generated in the impeller 6 and, as a result, a current is induced. Since the current flow changes depending on the presence / absence of a defect in the impeller 6 and the nature of the defect, the presence / absence of the defect can be detected and evaluated from the value of the signal detected by the magnetic field sensor 1. The magnetic field sensor 1 here is an induction coil that sticks to the outer surface of the casing. However, as described above, it is important to capture the dynamic magnetic field generated by the induced current generated when the rotating part crosses the static magnetic field. The coil does not necessarily have to stick to the outer surface of the casing, and a magnetic field sensor such as a Hall element other than the induction coil can also be applied.

図3は、本発明における請求項1がタービン翼等の回転翼に対して適用された場合の実施例である。電磁診断装置用センサの励磁部は前述と同様であるが、磁場センサ部の誘導コイルをタービンの車室11の内部に設置し信号を測定する。タービンの羽根10の近傍に設置することによって検出感度を向上させることができる。  FIG. 3 shows an embodiment in which claim 1 of the present invention is applied to a rotor blade such as a turbine blade. The excitation unit of the electromagnetic diagnostic apparatus sensor is the same as described above, but the induction coil of the magnetic field sensor unit is installed inside the turbine casing 11 to measure the signal. The detection sensitivity can be improved by installing it in the vicinity of the turbine blade 10.

本発明の電磁診断装置用センサ。The sensor for electromagnetic diagnostic apparatuses of this invention. 本発明の一実施例である電磁診断装置用センサをポンプインペラケーシングの外側に設置した場合の鳥瞰図The bird's-eye view when the sensor for an electromagnetic diagnostic apparatus according to one embodiment of the present invention is installed outside the pump impeller casing 本発明の一実施例である電磁診断装置用センサをタービン車室の内側に設置した場合の断面図Sectional drawing at the time of installing the sensor for electromagnetic diagnostic apparatuses which is one Example of this invention inside a turbine casing

1 センサの磁場測定部
2 電磁石の励磁コイル部(高温超電導材)
3 電磁石の液体窒素冷却容器
4 液体窒素冷却容器の液体窒素入り口
5 液体窒素冷却容器の液体窒素出口
6 ポンプのインペラ
7 ポンプのケーシング
8 回転軸
9 回転方向
10 タービンの羽根
11 タービンの車室
1 Magnetic field measurement part of sensor 2 Excitation coil part of electromagnet (high temperature superconducting material)
3 Electromagnetic liquid nitrogen cooling vessel 4 Liquid nitrogen cooling vessel liquid nitrogen inlet 5 Liquid nitrogen cooling vessel liquid nitrogen outlet 6 Pump impeller 7 Pump casing 8 Rotating shaft 9 Rotating direction 10 Turbine blade 11 Turbine casing

Claims (2)

回転体の通過位置に静磁場を発生させる磁場発生源の役割を有する高温超電導電磁石と、発生した磁場中を運動する回転体に誘導された電流が発生する磁場を測定するための誘導コイルやホール素子などの磁場センサを備え、測定する時には磁場センサと高温超電導電磁石をセットで使用することを特徴とする電磁診断装置用センサ。  A high-temperature superconducting electromagnet that acts as a magnetic field source that generates a static magnetic field at the passing position of the rotating body, and an induction coil or hole for measuring the magnetic field generated by the current induced in the rotating body that moves in the generated magnetic field A sensor for an electromagnetic diagnostic apparatus, comprising a magnetic field sensor such as an element and using a magnetic field sensor and a high-temperature superconducting electromagnet as a set for measurement. 回転体の通過位置に静磁場を発生させる磁場発生源の役割を有する高温超電導電磁石と、発生した磁場中を運動する回転体に誘導された電流が発生する磁場を測定するための誘導コイルやホール素子などの磁場センサを備え、請求項1の発明と同様に回転部が静磁場中を横切ることによって発生する誘導電流により発生する動磁場に起因する磁場センサの信号を収集することを可能としつつ、さらに励磁用高温超電導コイルに交流電流もしくはパルス電流を印加し、磁場センサ出力信号を測定することで渦電流探傷も可能とする電磁診断装置用センサ。  A high-temperature superconducting electromagnet that acts as a magnetic field source that generates a static magnetic field at the passing position of the rotating body, and an induction coil or hole for measuring the magnetic field generated by the current induced in the rotating body that moves in the generated magnetic field A magnetic field sensor such as an element is provided, and the magnetic field sensor signals caused by the dynamic magnetic field generated by the induced current generated when the rotating part crosses the static magnetic field as in the first aspect of the invention can be collected. In addition, a sensor for an electromagnetic diagnostic device that enables eddy current flaw detection by applying an alternating current or a pulse current to a high temperature superconducting coil for excitation and measuring a magnetic field sensor output signal.
JP2009204094A 2009-08-14 2009-08-14 Superconductive sensor for electromagnetic diagnostic apparatus Pending JP2011039019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204094A JP2011039019A (en) 2009-08-14 2009-08-14 Superconductive sensor for electromagnetic diagnostic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204094A JP2011039019A (en) 2009-08-14 2009-08-14 Superconductive sensor for electromagnetic diagnostic apparatus

Publications (1)

Publication Number Publication Date
JP2011039019A true JP2011039019A (en) 2011-02-24

Family

ID=43766930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204094A Pending JP2011039019A (en) 2009-08-14 2009-08-14 Superconductive sensor for electromagnetic diagnostic apparatus

Country Status (1)

Country Link
JP (1) JP2011039019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153713A (en) * 2016-06-28 2016-11-23 中国计量大学 A kind of metallic conduit defect in inner surface detection device
KR101782385B1 (en) 2016-08-16 2017-09-27 한국과학기술원 Graphene quality evaluation device and graphene quality evaluation method using electromagnetic induction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838853A (en) * 1981-08-14 1983-03-07 ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン Method and device for detecting abnormality of conductive rotary member
JPS6444845A (en) * 1987-08-14 1989-02-17 Hitachi Ltd Eddy current flaw detection apparatus
JPH1078412A (en) * 1996-09-02 1998-03-24 Daido Steel Co Ltd Method and device for detecting flaw on surface
JP2001272379A (en) * 2000-03-24 2001-10-05 Kawasaki Steel Corp Method and device for non destructive test for tube
JP2008096410A (en) * 2006-10-12 2008-04-24 International Institute Of Universality State monitoring technique for rotary machine using electromagnetic phenomenon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838853A (en) * 1981-08-14 1983-03-07 ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン Method and device for detecting abnormality of conductive rotary member
JPS6444845A (en) * 1987-08-14 1989-02-17 Hitachi Ltd Eddy current flaw detection apparatus
JPH1078412A (en) * 1996-09-02 1998-03-24 Daido Steel Co Ltd Method and device for detecting flaw on surface
JP2001272379A (en) * 2000-03-24 2001-10-05 Kawasaki Steel Corp Method and device for non destructive test for tube
JP2008096410A (en) * 2006-10-12 2008-04-24 International Institute Of Universality State monitoring technique for rotary machine using electromagnetic phenomenon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153713A (en) * 2016-06-28 2016-11-23 中国计量大学 A kind of metallic conduit defect in inner surface detection device
KR101782385B1 (en) 2016-08-16 2017-09-27 한국과학기술원 Graphene quality evaluation device and graphene quality evaluation method using electromagnetic induction

Similar Documents

Publication Publication Date Title
Jiang et al. A review of condition monitoring of induction motors based on stray flux
US8095324B2 (en) Permanent magnet rotor crack detection
JP5693083B2 (en) Bearing state monitoring apparatus and method
US8258780B2 (en) Self-testing sensor
US7392713B2 (en) Monitoring system for turbomachinery
EP2162698B1 (en) Eddy current sensor
Mohammed et al. Electrical machine permanent magnets health monitoring and diagnosis using an air-gap magnetic sensor
JP5940743B2 (en) Measurement methods and turbines for turbine blade damage detection
Gurusamy et al. Recent trends in magnetic sensors and flux-based condition monitoring of electromagnetic devices
CN107515105B (en) Electromagnetic valve fault diagnosis method based on plunger vibration signal
JP2010151773A (en) Compound sensor for monitoring state of rotation device
Liu et al. Non-invasive winding fault detection for induction machines based on stray flux magnetic sensors
JP2011039019A (en) Superconductive sensor for electromagnetic diagnostic apparatus
US8823369B2 (en) Multi directional electromagnetic yoke for inspection of bores
US20160216333A1 (en) System and method for induction motor rotor bar magnetic field analysis
Muthuvel et al. A planar inductive based oil debris sensor plug
US20170123007A1 (en) Method and apparatus for detecting interturn faults, and electrical machine
CN108267504B (en) Dynamic in-situ monitoring method for blades in ferromagnetic engine shell
KR100946285B1 (en) The apparatus for detecting a wire rope using an eddy current
JP2008096410A (en) State monitoring technique for rotary machine using electromagnetic phenomenon
Sheikh et al. Invasive methods to diagnose stator winding and bearing defects of an induction motors
JP2010151774A (en) Sensor for electromagnetic diagnostic device
EP3904844A1 (en) Method and system for non-invasive vibration-based condition monitoring of a machine
JP2011128074A (en) Method and device for detecting damage of impeller
Bakhri et al. The Methods of Condition Monitoring for Circulator of HTGR

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224