JP2011038711A - Turbo refrigerator - Google Patents

Turbo refrigerator Download PDF

Info

Publication number
JP2011038711A
JP2011038711A JP2009186971A JP2009186971A JP2011038711A JP 2011038711 A JP2011038711 A JP 2011038711A JP 2009186971 A JP2009186971 A JP 2009186971A JP 2009186971 A JP2009186971 A JP 2009186971A JP 2011038711 A JP2011038711 A JP 2011038711A
Authority
JP
Japan
Prior art keywords
pressure side
operated valve
low
side motor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009186971A
Other languages
Japanese (ja)
Other versions
JP5227919B2 (en
Inventor
Tsuyoshi Okada
健 岡田
Koji Nakamura
康志 中村
Takanori Sekimoto
孝徳 磧本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009186971A priority Critical patent/JP5227919B2/en
Publication of JP2011038711A publication Critical patent/JP2011038711A/en
Application granted granted Critical
Publication of JP5227919B2 publication Critical patent/JP5227919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbo refrigerator performing stable operation with high efficiency by circulating a necessary and sufficient liquid refrigerant, while properly preventing blow-by of refrigerant stem from a capacitor to an intermediate cooler or from the intermediate cooler to an evaporator, even when partial loaded condition or the cooling-water temperature is decreased, as during intermediate periods. <P>SOLUTION: The turbo refrigerator includes a compressor 1, the evaporator 2, the capacitor 3 and the intermediate cooler 4 and further, includes a high-pressure side motor-operated valve 11, arranged in piping for delivering a refrigerant liquid condensed by the capacitor 3 to the intermediate cooler 4; a low-pressure side motor-operated valve 12, arranged in piping for delivering the refrigerant liquid cooled by depressurization and boiling of the refrigerant in the intermediate cooler 4 to the evaporator 2; and a control part 20 controlling the opening of the high-pressure side motor-operated valve 11 and the low-pressure side motor-operated valve 12. The control part 20 controls the opening of the high-pressure side motor-operated valve 11 and the low-pressure side motor-operated valve 12, based on a physical quantity equivalent to a pressure difference between the high-pressure side and the low-pressure side of a refrigeration cycle and a physical quantity equivalent to a refrigerant circulation amount of the refrigeration cycle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は冷凍機に係り、特に多段圧縮ターボ冷凍機に関する。   The present invention relates to a refrigerator, and more particularly to a multistage compression turbo refrigerator.

従来、凝縮器で凝縮した冷媒液を中間冷却器に送る配管に高圧側電動弁を設け、中間冷却器において減圧沸騰した冷媒蒸気をターボ圧縮機の中間圧部に導く配管を設け、減圧沸騰により冷却された冷媒液を中間冷却器から蒸発器に送るターボ冷凍機が提案されている(例えば、特許文献1等)。   Conventionally, a high-pressure motor-operated valve is provided in a pipe that sends the refrigerant liquid condensed in the condenser to the intermediate cooler, and a pipe that guides the refrigerant vapor boiled in the intermediate cooler to the intermediate pressure part of the turbo compressor is provided. A turbo chiller that sends a cooled refrigerant liquid from an intermediate cooler to an evaporator has been proposed (for example, Patent Document 1).

特開平11−344265号公報JP-A-11-344265

このようなターボ冷凍機では、圧縮機の出口側と入口側の圧力差の大きさによって、凝縮器から中間冷却器を通って蒸発器へ至る冷媒の流れやすさが変化する。従って、冷媒の流れやすさの観点からは、高圧側電動弁及び低圧側電動弁の開度を圧力差に基づいて調整すればよいと考えられる。   In such a turbo refrigerator, the ease of flow of the refrigerant from the condenser to the evaporator through the intermediate cooler varies depending on the pressure difference between the outlet side and the inlet side of the compressor. Therefore, from the viewpoint of ease of refrigerant flow, it is considered that the opening degrees of the high-pressure side motor-operated valve and the low-pressure side motor-operated valve may be adjusted based on the pressure difference.

ところで、近年、いわゆる定格条件における運転効率や安定性だけでなく、中間期など、部分負荷条件や冷却水温度が低下した場合における運転効率や安定性に対する要求が高まっている。この場合には、定格条件にはない現象が発生することがある。   By the way, in recent years, not only the operation efficiency and stability under the so-called rated conditions, but also the demand for operation efficiency and stability when the partial load condition and the cooling water temperature are lowered, such as an intermediate period, is increasing. In this case, a phenomenon not in the rated condition may occur.

このため、圧力差に基づく調整のみでは、高圧側電動弁及び低圧側電動弁の開度を適切に制御することができず、ターボ冷凍機の良好な運転状態を維持することができないという問題のあることが発見された。   For this reason, only the adjustment based on the pressure difference cannot appropriately control the opening degrees of the high-pressure side motor-operated valve and the low-pressure side motor-operated valve, and it is impossible to maintain a good operating state of the turbo refrigerator. It was discovered.

例えば、中間期など、部分負荷条件や冷却水温度が低下した場合に、高圧側電動弁及び低圧側電動弁の開度を大きくすると、中間冷却器から蒸発器へ向かって冷媒液だけでなく冷媒蒸気が送られてしまう現象(いわゆる冷媒蒸気の吹き抜け)が発生し得る。これでは、この分の冷媒が仕事をせず、無駄な冷媒を圧縮するため、運転効率が低くなってしまう。   For example, if the opening of the high-pressure side motor-operated valve and the low-pressure side motor-operated valve is increased when the partial load condition or cooling water temperature is reduced, such as during an intermediate period, not only the refrigerant liquid but also the refrigerant A phenomenon in which steam is sent (so-called refrigerant vapor blow-through) may occur. In this case, this amount of refrigerant does not work and compresses useless refrigerant, resulting in low operating efficiency.

しかしながら、従来、このような観点から高圧側電動弁及び低圧側電動弁の開度を制御することに関して考慮されたターボ冷凍機は何ら存在しない。   However, heretofore, there is no turbo chiller considered in terms of controlling the opening degree of the high pressure side motor operated valve and the low pressure side motor operated valve from such a viewpoint.

そこで、本発明の目的は、中間期など、部分負荷条件や冷却水温度が低下した場合にも、凝縮器から中間冷却器、あるいは中間冷却器から蒸発器への冷媒蒸気の吹き抜けを好適に防止しつつ、必要充分な液冷媒を循環させて、安定した効率の高い運転を行うことができるターボ冷凍機を提供することである。   Accordingly, an object of the present invention is to suitably prevent the refrigerant vapor from being blown from the condenser to the intermediate cooler or from the intermediate cooler to the evaporator even when the partial load condition or the cooling water temperature is lowered, such as in an intermediate period. However, it is to provide a turbo chiller capable of circulating a necessary and sufficient liquid refrigerant and performing stable and highly efficient operation.

上記の目的を達成するために本発明においては、圧縮機,蒸発器,凝縮器,中間冷却器を順次接続して構成される冷凍サイクルを備え、凝縮器で凝縮した冷媒液を中間冷却器に送る配管に設けられる高圧側電動弁と、中間冷却器において冷媒が減圧沸騰することにより冷却された冷媒液を蒸発器に送る配管に設けられる低圧側電動弁と、前記高圧側電動弁及び低圧側電動弁の開度を制御する制御部とを備え、前記制御部は、前記冷凍サイクルの高圧側及び低圧側の圧力差に相当する物理量及び冷凍サイクルの冷媒循環量に相当する物理量に基づいて、前記高圧側電動弁及び低圧側電動弁の開度を制御することを特徴とする。   In order to achieve the above object, the present invention comprises a refrigeration cycle configured by sequentially connecting a compressor, an evaporator, a condenser, and an intercooler, and the refrigerant liquid condensed by the condenser is supplied to the intercooler. A high-pressure side motor-operated valve provided in the pipe to be sent, a low-pressure side motor-operated valve provided in a pipe for sending the refrigerant liquid cooled by boiling the refrigerant in the intermediate cooler to the evaporator, the high-pressure side motor-operated valve and the low-pressure side A control unit that controls the opening degree of the motorized valve, and the control unit is based on a physical quantity corresponding to the pressure difference between the high-pressure side and the low-pressure side of the refrigeration cycle and a physical quantity corresponding to the refrigerant circulation amount of the refrigeration cycle, The opening degree of the high-pressure side electric valve and the low-pressure side electric valve is controlled.

また、上記の目的を達成するために本発明においては、圧縮機,蒸発器,凝縮器,中間冷却器を順次接続して構成される冷凍サイクルを備え、凝縮器で凝縮した冷媒液を中間冷却器に送る配管に設けられる高圧側電動弁と、中間冷却器において冷媒が減圧沸騰することにより冷却された冷媒液を蒸発器に送る配管に設けられる低圧側電動弁と、前記高圧側電動弁及び低圧側電動弁の開度を制御する制御部とを備え、前記制御部は、前記高圧側電動弁及び低圧側電動弁の開度を同期させて制御する。
In order to achieve the above object, the present invention includes a refrigeration cycle in which a compressor, an evaporator, a condenser, and an intercooler are sequentially connected, and the refrigerant liquid condensed by the condenser is intercooled. A high-pressure side motor-operated valve provided in a pipe to be sent to the evaporator, a low-pressure side motor-operated valve provided in a pipe for sending refrigerant liquid cooled by boiling the refrigerant in the intermediate cooler to the evaporator, the high-pressure side motor-operated valve, And a control unit that controls the opening of the low-pressure side electric valve, and the control unit controls the opening of the high-pressure side electric valve and the low-pressure side electric valve in synchronization.
.

本発明のターボ冷凍機によれば、中間期など、部分負荷条件や冷却水温度が低下した場合にも、凝縮器から中間冷却器、あるいは中間冷却器から蒸発器への冷媒蒸気の吹き抜けを好適に防止しつつ、必要充分な液冷媒を循環させて、安定した効率の高い運転を行うことができる。   According to the turbo chiller of the present invention, it is preferable to blow through the refrigerant vapor from the condenser to the intermediate cooler or from the intermediate cooler to the evaporator even when the partial load condition or the cooling water temperature is lowered, such as in the intermediate period. Therefore, it is possible to circulate necessary and sufficient liquid refrigerant and perform stable and highly efficient operation.

本発明のターボ冷凍機の一実施例を示す系統図。The systematic diagram which shows one Example of the turbo refrigerator of this invention. 本発明のターボ冷凍機の他の実施例を示す系統図。The systematic diagram which shows the other Example of the turbo refrigerator of this invention.

以下、本発明に係るターボ冷凍機の実施形態について説明する。   Hereinafter, an embodiment of a turbo refrigerator according to the present invention will be described.

本実施形態に係るターボ冷凍機は、圧縮機1,蒸発器2,凝縮器3,中間冷却器4を順次接続して構成される冷凍サイクルを備え、凝縮器3で凝縮した冷媒液を中間冷却器4に送る配管に設けられる高圧側電動弁11と、中間冷却器4において冷媒が減圧沸騰することにより冷却された冷媒液を蒸発器2に送る配管に設けられる低圧側電動弁12と、前記高圧側電動弁11及び低圧側電動弁12の開度を制御する制御部20とを備え、前記制御部20は、前記冷凍サイクルの高圧側及び低圧側の圧力差に相当する物理量及び冷凍サイクルの冷媒循環量に相当する物理量に基づいて、前記高圧側電動弁11及び低圧側電動弁12の開度を制御する。   The turbo refrigerator according to this embodiment includes a refrigeration cycle configured by sequentially connecting a compressor 1, an evaporator 2, a condenser 3, and an intercooler 4, and intercools the refrigerant liquid condensed by the condenser 3. A high-pressure motor-operated valve 11 provided in a pipe to be sent to the evaporator 4, a low-pressure motor-operated valve 12 provided in a pipe to which the refrigerant liquid cooled by boiling the refrigerant in the intermediate cooler 4 is sent to the evaporator 2; A control unit 20 that controls the opening degree of the high-pressure side motor-operated valve 11 and the low-pressure side motor-operated valve 12, and the control unit 20 has a physical quantity corresponding to a pressure difference between the high-pressure side and the low-pressure side of the refrigeration cycle, and The opening degree of the high-pressure side motor-operated valve 11 and the low-pressure side motor-operated valve 12 is controlled based on a physical quantity corresponding to the refrigerant circulation amount.

上記構成によれば、圧力差に相当する物理量及び冷媒循環量に相当する物理量の双方に基づいて前記高圧側電動弁11及び低圧側電動弁12の開度を制御することで、中間期など、部分負荷条件や冷却水温度が低下した場合にも、凝縮器3から中間冷却器4、あるいは中間冷却器4から蒸発器2への冷媒蒸気の吹き抜けがなく、必要充分な液冷媒を循環させて、安定した効率の高い運転を行うことができる。   According to the above configuration, by controlling the opening degree of the high pressure side motor operated valve 11 and the low pressure side motor operated valve 12 based on both the physical quantity corresponding to the pressure difference and the physical quantity corresponding to the refrigerant circulation amount, Even when the partial load condition or the cooling water temperature is lowered, there is no blowing of refrigerant vapor from the condenser 3 to the intermediate cooler 4 or from the intermediate cooler 4 to the evaporator 2, and the necessary and sufficient liquid refrigerant is circulated. Stable and efficient operation can be performed.

また、前記制御部20は、前記高圧側電動弁11及び低圧側電動弁12の開度を同期させて制御する。このように、高圧側電動弁11及び低圧側電動弁12の開度を同期させて制御することにより、高圧側及び低圧側の圧力バランスが不安定になることがなく、安定した効率の高い運転を行うことができる。   Further, the control unit 20 controls the opening degrees of the high pressure side motor operated valve 11 and the low pressure side motor operated valve 12 in synchronization. Thus, by controlling the opening degree of the high pressure side motor operated valve 11 and the low pressure side motor operated valve 12 in synchronization, the pressure balance between the high pressure side and the low pressure side is not unstable, and the operation is stable and highly efficient. It can be performed.

また、前記冷凍サイクルの高圧側及び低圧側の圧力差に相当する物理量は、蒸発器2を流通する冷水の出口温度と凝縮器3を流通する冷却水の入口温度との温度差に基づいて決定される。   The physical quantity corresponding to the pressure difference between the high pressure side and the low pressure side of the refrigeration cycle is determined based on the temperature difference between the outlet temperature of the cold water flowing through the evaporator 2 and the inlet temperature of the cooling water flowing through the condenser 3. Is done.

また、前記冷凍サイクルの冷媒循環量に相当する物理量は、蒸発器2を流通する冷水の入口温度と出口温度との温度差に基づいて決定される。ここで、冷水の出口温度としては、温度センサー等によって検出された冷水出口温度を用いるものであってもよく、冷水出口温度の目標温度を用いるものであってもよい。   The physical quantity corresponding to the refrigerant circulation amount of the refrigeration cycle is determined based on the temperature difference between the inlet temperature and the outlet temperature of the cold water flowing through the evaporator 2. Here, the cold water outlet temperature may be a cold water outlet temperature detected by a temperature sensor or the like, or may be a target temperature of the cold water outlet temperature.

前記制御部20は、前記冷凍サイクルの高圧側及び低圧側の圧力差に相当する物理量及び冷凍サイクルの冷媒循環量に相当する物理量に対応させて予め決定された開度に基づいて、前記高圧側電動弁11及び低圧側電動弁12を制御する。   The control unit 20 is configured to control the high-pressure side based on a physical amount corresponding to a pressure difference between the high-pressure side and the low-pressure side of the refrigeration cycle and a predetermined opening corresponding to a physical amount corresponding to the refrigerant circulation amount of the refrigeration cycle. The motorized valve 11 and the low pressure side motorized valve 12 are controlled.

そして、このターボ冷凍機は、前記凝縮器3から中間冷却器4に冷媒液を送る配管には前記高圧側電動弁11と並列に固定絞り流路を設け、前記中間冷却器4から蒸発器2に冷媒液を送る配管には前記低圧側電動弁12と並列に固定絞り流路を設けている。   The turbo chiller is provided with a fixed throttle channel in parallel with the high-pressure side motor operated valve 11 in the pipe for sending the refrigerant liquid from the condenser 3 to the intermediate cooler 4, and from the intermediate cooler 4 to the evaporator 2. A fixed throttle passage is provided in parallel with the low-pressure motor-operated valve 12 in the pipe for sending the refrigerant liquid to the pipe.

以下に、実施例1を図1を用いて説明する。   Hereinafter, Example 1 will be described with reference to FIG.

図1は、本発明におけるターボ冷凍機の構成を示したものである。ターボ冷凍機は、圧縮機1,蒸発器2,凝縮器3,中間冷却器4を配管で接続して冷凍サイクルを構成している。圧縮機1は多段に構成されており複数段の羽根車を備えている。また、圧縮機1は、インバータにより回転数制御される圧縮機である。   FIG. 1 shows a configuration of a turbo refrigerator in the present invention. The turbo refrigerator constitutes a refrigeration cycle by connecting a compressor 1, an evaporator 2, a condenser 3, and an intercooler 4 by piping. The compressor 1 is configured in multiple stages and includes a plurality of stages of impellers. The compressor 1 is a compressor whose rotational speed is controlled by an inverter.

圧縮機1で圧縮された冷媒蒸気は凝縮器3に送られて、凝縮器3内を流れる冷却水に冷却されて凝縮液化する。液化した冷媒液は凝縮器3と中間冷却器4を結ぶ配管の途中に設けられた高圧側電動弁11を通って減圧し、中間冷却器4に送られる。中間冷却器4に送られて冷媒液は減圧により一部が自己蒸発して残りの冷媒液の温度が低下する。温度が低下した冷媒液は中間冷却器4と蒸発器2を結ぶ配管の途中に設けられた低圧側電動弁12を通って減圧し、蒸発器2に送られる。蒸発器2に送られた冷媒液は蒸発器2内を流れる冷水に加熱されて蒸発し、冷媒蒸気となって圧縮機1に送られる。冷媒液を加熱した冷水は温度が低下した冷水となって外部に供給される。圧縮機1に送られた冷媒蒸気は多段の羽根車により圧縮されて、高温高圧の冷媒蒸気となる。   The refrigerant vapor compressed by the compressor 1 is sent to the condenser 3 and is cooled by the cooling water flowing in the condenser 3 to be condensed and liquefied. The liquefied refrigerant liquid is depressurized through the high-pressure side motor operated valve 11 provided in the middle of the pipe connecting the condenser 3 and the intermediate cooler 4 and sent to the intermediate cooler 4. A part of the refrigerant liquid sent to the intercooler 4 is self-evaporated due to decompression, and the temperature of the remaining refrigerant liquid is lowered. The refrigerant liquid whose temperature has been reduced is reduced in pressure through the low-pressure motor-operated valve 12 provided in the middle of the pipe connecting the intercooler 4 and the evaporator 2, and is sent to the evaporator 2. The refrigerant liquid sent to the evaporator 2 is heated and evaporated by the cold water flowing in the evaporator 2 and is sent to the compressor 1 as refrigerant vapor. The cold water that has heated the refrigerant liquid is supplied to the outside as cold water having a lowered temperature. The refrigerant vapor sent to the compressor 1 is compressed by a multistage impeller and becomes high-temperature and high-pressure refrigerant vapor.

また、中間冷却器4で自己蒸発した冷媒蒸気は、中間冷却器4と圧縮機1を結ぶ配管の途中に設けられた電動弁13を通って圧縮機1の2段目以降の羽根車の入口に送られ、1段目の羽根車で圧縮された蒸発器2からの冷媒蒸気と合流して2段目以降の羽根車に圧縮されて高温高圧の冷媒蒸気となり、凝縮器3に送られる。以上のようにして、冷凍サイクルが完結する。   The refrigerant vapor self-evaporated by the intermediate cooler 4 passes through the motor-operated valve 13 provided in the middle of the pipe connecting the intermediate cooler 4 and the compressor 1, and the inlets of the second and subsequent impellers of the compressor 1. The refrigerant vapor from the evaporator 2 compressed by the first stage impeller is joined to the second stage and subsequent impellers to become high-temperature and high-pressure refrigerant vapor, which is sent to the condenser 3. As described above, the refrigeration cycle is completed.

蒸発器2の冷水配管には冷水出口温度を計測する温度センサー21および冷水入口温度を計測する温度センサー22が設けられており、凝縮器3の冷却水配管には冷却水入口温度を計測する温度センサー23が設けられている。前記温度センサー21,22,23の信号を入力して、これらの信号を基に、前記高圧側電動弁11および前記低圧側電動弁12の開度をそれぞれ制御する制御部20が設けられている。制御部20はまた、前記温度センサー21,22,23の信号を基に、中間冷却器4と圧縮機1を結ぶ配管の途中に設けた電動弁13の開閉および圧縮機1の回転数制御を行う。   The chilled water piping of the evaporator 2 is provided with a temperature sensor 21 for measuring the chilled water outlet temperature and a temperature sensor 22 for measuring the chilled water inlet temperature, and the cooling water piping of the condenser 3 is a temperature for measuring the cooling water inlet temperature. A sensor 23 is provided. A control unit 20 is provided for inputting the signals of the temperature sensors 21, 22, and 23 and controlling the opening degrees of the high-pressure side electric valve 11 and the low-pressure side electric valve 12 based on these signals. . The control unit 20 also opens and closes the motor-operated valve 13 provided in the middle of the pipe connecting the intercooler 4 and the compressor 1 and controls the rotational speed of the compressor 1 based on the signals of the temperature sensors 21, 22 and 23. Do.

制御部20は、冷水出口温度の目標値を外部から入力されて保持しており、冷水入口温度を計測する温度センサー22の信号から求めた冷水入口温度と前記冷水出口温度の目標値との差からターボ冷凍機の必要冷凍容量を演算し、冷却水入口温度を計測する温度センサー23および冷水出口温度を計測する温度センサー21の信号から求めた冷却水入口温度と冷水出口温度の差からターボ冷凍機の汲み上げ温度差を演算する。   The control unit 20 receives and holds a target value of the cold water outlet temperature from the outside, and the difference between the cold water inlet temperature obtained from the signal of the temperature sensor 22 that measures the cold water inlet temperature and the target value of the cold water outlet temperature. From the difference between the cooling water inlet temperature and the cooling water outlet temperature obtained from the signals of the temperature sensor 23 for measuring the required refrigeration capacity of the turbo refrigerator and the temperature sensor 23 for measuring the cooling water inlet temperature and the temperature sensor 21 for measuring the cooling water outlet temperature. Calculate the pumping temperature difference of the machine.

また制御部20は、前記必要冷凍容量および前記汲み上げ温度差の値に応じて、前記凝縮器3と前記中間冷却器4を結ぶ配管に設けた前記高圧側電動弁11と前記中間冷却器4と前記蒸発器2を結ぶ配管に設けた前記低圧側電動弁12のそれぞれの開度を段階的に変化させるデータマップ(表1参照)を保持しており、このデータマップに従って前記高圧側電動弁11および前記低圧側電動弁12の開度を制御する。表1の流量が冷凍容量に対応し、圧力差が汲み上げ温度差に対応する。   The control unit 20 also includes the high-pressure motor-operated valve 11 and the intermediate cooler 4 provided in a pipe connecting the condenser 3 and the intermediate cooler 4 according to the required refrigeration capacity and the pumping temperature difference value. A data map (see Table 1) for changing the opening degree of each of the low-pressure side motor operated valves 12 provided in the pipe connecting the evaporators 2 in a stepwise manner is held, and the high pressure side motor operated valve 11 according to this data map. And the opening degree of the said low voltage | pressure side motor operated valve 12 is controlled. The flow rate in Table 1 corresponds to the freezing capacity, and the pressure difference corresponds to the pumping temperature difference.

Figure 2011038711
Figure 2011038711

なお、表1はデータマップを模式的に示したものであり、各領域を区切る圧力差の値および流量の値は一定値に固定されているものではなく、それぞれ隣り合う領域毎に異なっていたり、圧力差や流量の関数になっていたりする場合もある。   Table 1 schematically shows a data map, and the pressure difference value and the flow rate value that divide each region are not fixed to a constant value, and may be different for each adjacent region. It may be a function of pressure difference or flow rate.

表1に示すデータマップは、圧縮機1がインバータ制御される領域のうち、必要冷凍容量が大きく、汲み上げ温度差が小さい領域では大きい開度、必要冷凍容量が小さく、汲み上げ温度差が大きい領域では小さい開度となるように設定されている。   The data map shown in Table 1 shows that, among the areas where the compressor 1 is inverter-controlled, the area where the required refrigeration capacity is large and the pumping temperature difference is small has a large opening, the necessary refrigeration capacity is small and the pumping temperature difference is large. The opening is set to be small.

このデータマップに従って、インバータ制御される領域のうち必要冷凍容量が大きい、すなわち冷媒循環量が多く、汲み上げ温度差が小さい、すなわち凝縮器3と中間冷却器4の間の圧力差および中間冷却器4と蒸発器2の間の圧力差が小さい領域(具体的には、流量4且つ圧力差小の領域)では、高圧側電動弁11および低圧側電動弁12の開度が大きく制御され、必要な冷媒循環量を確保するとともに、冷媒蒸気の吹き抜けをなくして性能の低下を防止することができる。   According to this data map, the required refrigeration capacity is large in the inverter controlled region, that is, the refrigerant circulation amount is large and the pumping temperature difference is small, that is, the pressure difference between the condenser 3 and the intercooler 4 and the intercooler 4. In the region where the pressure difference between the gas generator and the evaporator 2 is small (specifically, the region where the flow rate is 4 and the pressure difference is small), the opening degree of the high-pressure side motor-operated valve 11 and the low-pressure side motor-operated valve 12 is greatly controlled. While ensuring the amount of refrigerant circulation, it is possible to prevent the refrigerant vapor from being blown out and prevent the performance from deteriorating.

一方、必要冷凍容量が小さい、すなわち冷媒循環量が小さく、汲み上げ温度差が大きい、すなわち凝縮器3と中間冷却器4の間の圧力差および中間冷却器4と蒸発器2の間の圧力差が大きい領域(具体的には、流量3且つ圧力差大の領域)では、高圧側電動弁11および低圧側電動弁12の開度が小さく制御され、冷媒蒸気の吹き抜けをなくして性能の低下を防止するとともに必要な冷媒循環量を確保してサイクルを成立させることができる。   On the other hand, the required refrigeration capacity is small, that is, the refrigerant circulation amount is small, and the pumping temperature difference is large, that is, the pressure difference between the condenser 3 and the intermediate cooler 4 and the pressure difference between the intermediate cooler 4 and the evaporator 2 are In a large region (specifically, a region where the flow rate is 3 and the pressure difference is large), the opening degree of the high-pressure side motor-operated valve 11 and the low-pressure side motor-operated valve 12 is controlled to be small, thereby preventing the refrigerant vapor from blowing through and preventing performance deterioration. In addition, the cycle can be established by securing the necessary amount of refrigerant circulation.

そして、中間期など、部分負荷条件や冷却水温度が低下した場合のように、冷媒循環量が小さく且つ圧力差が小さい領域(具体的には、流量3且つ圧力差小の領域)では、高圧側電動弁11および低圧側電動弁12の開度は、冷媒循環量が小さく且つ圧力差が大きい領域(具体的には、流量3且つ圧力差大の領域)における開度よりは大きく、一方、冷媒循環量が大きく且つ圧力差が小さい領域(具体的には、流量4且つ圧力差小の領域)における開度よりは小さく制御される。   And in the region where the refrigerant circulation amount is small and the pressure difference is small (specifically, the region where the flow rate is 3 and the pressure difference is small), such as when the partial load condition or the cooling water temperature is lowered, such as an intermediate period, The opening degree of the side electric valve 11 and the low pressure side electric valve 12 is larger than the opening degree in a region where the refrigerant circulation amount is small and the pressure difference is large (specifically, a region where the flow rate is 3 and the pressure difference is large), It is controlled to be smaller than the opening degree in the region where the refrigerant circulation amount is large and the pressure difference is small (specifically, the region where the flow rate is 4 and the pressure difference is small).

また、制御部20は冷水出口温度の目標値と冷水入口温度を測定するための温度センサー22の信号から求めた冷水入口温度との差を基に、圧縮機1の回転数を制御して圧縮冷媒量を調整する。さらに制御部20は、必要冷凍能力が極端に小さい場合には中間冷却器4と圧縮機1を結ぶ配管の途中に設けた電動弁13を閉とするように制御する。   Further, the control unit 20 controls the rotation speed of the compressor 1 based on the difference between the target value of the chilled water outlet temperature and the chilled water inlet temperature obtained from the signal of the temperature sensor 22 for measuring the chilled water inlet temperature. Adjust the amount of refrigerant. Further, the control unit 20 performs control so that the motor-operated valve 13 provided in the middle of the pipe connecting the intermediate cooler 4 and the compressor 1 is closed when the required refrigeration capacity is extremely small.

また、表1に示すように、冷凍能力(冷媒流量)が小さい領域では、インバータ制御に加えて圧縮機入口のインレットガイドベーンを絞る制御が行われる。この場合には、中間冷却器4からのミストアップを防止するために低圧側電動弁12の開度を大きく制御し、高圧側電動弁11の開度も大きくする。   Further, as shown in Table 1, in the region where the refrigerating capacity (refrigerant flow rate) is small, in addition to inverter control, control for restricting the inlet guide vane at the compressor inlet is performed. In this case, in order to prevent the mist from the intermediate cooler 4, the opening degree of the low pressure side electric valve 12 is largely controlled, and the opening degree of the high pressure side electric valve 11 is also increased.

また、高圧側電動弁11及び低圧側電動弁12の開度は、同期させて制御される。なお、高圧側電動弁11及び低圧側電動弁12の開度を同期させて制御する場合には、高圧側電動弁11及び低圧側電動弁12の開度を同時に変更する場合の他、所定の時間間隔を置いて高圧側電動弁11及び低圧側電動弁12を制御するものであってもよい。即ち、高圧側電動弁11及び低圧側電動弁12のうち何れか一方の開度が変更された場合に、それに連動して他方の開度が変更されるものであればよい。   Moreover, the opening degree of the high pressure side motor operated valve 11 and the low pressure side motor operated valve 12 is controlled in synchronization. In addition, when controlling the opening degree of the high-pressure side motor-operated valve 11 and the low-pressure side motor-operated valve 12 in synchronization, in addition to changing the opening degree of the high-pressure side motor-operated valve 11 and the low-pressure side motor-operated valve 12 simultaneously, The high pressure side motor operated valve 11 and the low pressure side motor operated valve 12 may be controlled at intervals. In other words, when the opening degree of one of the high-pressure side motor-operated valve 11 and the low-pressure side motor-operated valve 12 is changed, the other opening degree may be changed in conjunction therewith.

上記のように構成した本実施例においては、部分負荷条件や冷却水温度が低下した場合にも、凝縮器3から中間冷却器4、あるいは中間冷却器4から蒸発器2への冷媒蒸気の吹き抜けがなく、中間冷却器4から圧縮機1へのミストアップも発生せず、必要充分な液冷媒を循環させて、安定した効率の高い運転を行うことができる。   In the present embodiment configured as described above, refrigerant vapor is blown from the condenser 3 to the intermediate cooler 4 or from the intermediate cooler 4 to the evaporator 2 even when the partial load condition or the cooling water temperature is lowered. No mist up from the intercooler 4 to the compressor 1 occurs, and a necessary and sufficient liquid refrigerant can be circulated to perform a stable and highly efficient operation.

また本実施例においては、冷水出口温度の目標値と冷水出口温度を計測する温度センサー21の信号から求めた冷水出口温度との差に応じて、圧縮機1の回転数を制御するようにしているが、圧縮機1の各段羽根車の入口部にインレットガイドベーンを設けてこのインレットガイドベーンの角度を変化させることにより、冷媒蒸気の流れを調整して圧縮機1の冷媒流量および圧縮比を制御するようにしても良い。このように構成した場合には、圧縮機1を駆動するモーターの回転数を制御するインバータ制御装置が不要となり、コスト削減できるというメリットがある。   Further, in this embodiment, the rotational speed of the compressor 1 is controlled according to the difference between the target value of the cold water outlet temperature and the cold water outlet temperature obtained from the signal of the temperature sensor 21 that measures the cold water outlet temperature. However, by providing an inlet guide vane at the inlet of each stage impeller of the compressor 1 and changing the angle of the inlet guide vane, the flow of the refrigerant vapor is adjusted and the refrigerant flow rate and the compression ratio of the compressor 1 are adjusted. May be controlled. In the case of such a configuration, an inverter control device for controlling the rotation speed of the motor that drives the compressor 1 becomes unnecessary, and there is an advantage that the cost can be reduced.

次に、実施例2を図2を用いて説明する。   Next, Example 2 will be described with reference to FIG.

図2は、本発明におけるターボ冷凍機の構成を示したものである。図1の実施例と異なる点は、凝縮器3と中間冷却器4を結ぶ配管に設けた高圧側電動弁11と並列に固定絞り14を有する配管を儲け、中間冷却器4と蒸発器2を結ぶ配管に設けた低圧側電動弁12と並列に固定絞り15を有する配管を設けた点である。その他の構成は図1の実施例と同様である。   FIG. 2 shows a configuration of a turbo refrigerator in the present invention. The difference from the embodiment of FIG. 1 is that a pipe having a fixed throttle 14 is provided in parallel with the high-pressure side motor operated valve 11 provided in the pipe connecting the condenser 3 and the intermediate cooler 4, and the intermediate cooler 4 and the evaporator 2 are connected. This is a point in which a pipe having a fixed throttle 15 is provided in parallel with the low-pressure side electric valve 12 provided in the pipe to be connected. Other configurations are the same as those of the embodiment of FIG.

上記のように構成した本実施例においては、高圧側電動弁11及び低圧側電動弁12と並列に固定絞り14,15を設けているので、高圧側電動弁11及び低圧側電動弁12のサイズを小さくして、コストダウンを測ることができる。また、固定絞り14,15は、常時冷媒が循環可能であるため、高圧側電動弁11及び低圧側電動弁12の故障時であっても、小さな冷凍能力ではあるが、ターボ冷凍機を運転させることができる。   In the present embodiment configured as described above, since the fixed throttles 14 and 15 are provided in parallel with the high pressure side motor operated valve 11 and the low pressure side motor operated valve 12, the sizes of the high pressure side motor operated valve 11 and the low pressure side motor operated valve 12 are provided. The cost can be measured by reducing In addition, since the fixed throttles 14 and 15 can always circulate the refrigerant, even if the high-pressure side motor-operated valve 11 and the low-pressure side motor-operated valve 12 are out of order, the fixed throttles 14 and 15 operate the turbo chiller although the refrigeration capacity is small. be able to.

なお、本発明に係るターボ冷凍機は、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。   In addition, the turbo refrigerator which concerns on this invention is not limited to the structure of the said embodiment, A various change is possible within the range which does not deviate from the meaning of invention.

例えば、冷水出口温度として、温度センサーによって検出された冷水出口温度を用いるものであってもよく、冷水出口温度の目標温度を用いるものであってもよい。また、冷却水をクーリングタワーを用いて冷却する場合には、冷却水入口温度の代わりに、外気温度を用いるものであってもよい。   For example, the cold water outlet temperature detected by a temperature sensor may be used as the cold water outlet temperature, or the target temperature of the cold water outlet temperature may be used. Moreover, when cooling water is cooled using a cooling tower, the outside air temperature may be used instead of the cooling water inlet temperature.

また、高圧側及び低圧側の圧力差に相当する物理量は、温度センサーを用いて圧力差を間接的に検知するものに限定されず、圧力センサーを用いて直接的に検知するものであってもよい。   Further, the physical quantity corresponding to the pressure difference between the high pressure side and the low pressure side is not limited to the one that indirectly detects the pressure difference using the temperature sensor, and may be one that is directly detected using the pressure sensor. Good.

また、本発明は、高圧側電動弁11及び低圧側電動弁12の開度を同期させて制御するという観点からは、「圧力差に相当する物理量及び冷媒循環量に相当する物理量に基づいて高圧側電動弁11及び低圧側電動弁12の開度を制御すること」は必須の要件ではない。例えば、中間冷却器4に液面センサーを設けて、液面センサーによって中間冷却器4の液面高さを検知し、中間冷却器4の液面高さに応じて高圧側電動弁11及び低圧側電動弁12の開度を同期させて制御することにより、冷媒蒸気の吹き抜けを防止するものであってもよい。   In addition, the present invention, from the viewpoint of controlling the opening degree of the high pressure side motor operated valve 11 and the low pressure side motor operated valve 12 in synchronism, “high pressure based on a physical quantity corresponding to the pressure difference and a physical quantity corresponding to the refrigerant circulation amount”. “Controlling the opening degree of the side motor-operated valve 11 and the low-pressure side motor-operated valve 12” is not an essential requirement. For example, a liquid level sensor is provided in the intermediate cooler 4, the liquid level sensor detects the liquid level height of the intermediate cooler 4, and the high-pressure side electric valve 11 and the low pressure are detected according to the liquid level height of the intermediate cooler 4. By controlling the opening degree of the side motor operated valve 12 in synchronism, the refrigerant vapor may be prevented from being blown through.

本実施形態に係るターボ冷凍機によれば、中間期など、部分負荷条件や冷却水温度が低下した場合にも、凝縮器から中間冷却器、あるいは中間冷却器から蒸発器への冷媒蒸気の吹き抜けを好適に防止しつつ、必要充分な液冷媒を循環させて、安定した効率の高い運転を行うことができる。   According to the turbo chiller according to the present embodiment, the refrigerant vapor is blown from the condenser to the intermediate cooler or from the intermediate cooler to the evaporator even when the partial load condition or the cooling water temperature is lowered, such as in the intermediate period. In this way, it is possible to circulate necessary and sufficient liquid refrigerant and perform stable and highly efficient operation.

また、蒸発器に流通する冷水の入口温度および出口温度を計測する温度センサーと、凝縮器に流通する冷却水の入口温度を計測する温度センサーを設け、これらの温度を基に凝縮器から中間冷却器に冷媒液を送る配管に設けた高圧側電動弁の開度と中間冷却器から蒸発器に冷媒液を送る配管に設けた低圧側電動弁の開度を制御する制御装置を備えた構成としているので、部分負荷条件や冷却水温度が低下した場合にも、凝縮器から中間冷却器、あるいは中間冷却器から蒸発器への冷媒蒸気の吹き抜けがなく、中間冷却器から圧縮機へのミストアップも発生せず、必要充分な液冷媒を循環させて、安定した効率の高い運転を行うことができる。   In addition, a temperature sensor that measures the inlet temperature and outlet temperature of the chilled water that flows to the evaporator and a temperature sensor that measures the inlet temperature of the cooling water that flows to the condenser are provided. Based on these temperatures, intermediate cooling from the condenser is provided. As a configuration provided with a control device for controlling the opening degree of the high-pressure side motor-operated valve provided in the pipe for sending the refrigerant liquid to the evaporator and the opening degree of the low-pressure side motor-operated valve provided in the pipe for sending the refrigerant liquid from the intercooler to the evaporator Therefore, even when the partial load condition or cooling water temperature decreases, there is no blowing of refrigerant vapor from the condenser to the intercooler or from the intercooler to the evaporator, and mist up from the intercooler to the compressor Therefore, it is possible to perform a stable and highly efficient operation by circulating a necessary and sufficient liquid refrigerant.

また、本実施形態に係るターボ冷凍機によれば、冷水出口温度の目標値および冷水入口温度,冷水出口温度,冷却水入口温度の測定値から、必要冷凍容量と汲み上げ温度差を演算し、これらの演算結果を基に、凝縮器から中間冷却器に冷媒液を送る配管に設けた高圧側電動弁の開度と、中間冷却器から蒸発器へ冷媒液を送る配管に設けた低圧側電動弁の開度を、段階的に変化させるデータマップに従って制御するので、部分負荷条件や冷却水温度が低下した場合にも、凝縮器から中間冷却器、あるいは中間冷却器から蒸発器への冷媒蒸気の吹き抜けがなく、中間冷却器から圧縮機へのミストアップも発生せず、必要充分な液冷媒を循環させて、安定した効率の高い運転を行うことができる。   Further, according to the turbo chiller according to the present embodiment, the required refrigeration capacity and the pumping temperature difference are calculated from the target value of the chilled water outlet temperature and the measured values of the chilled water inlet temperature, the chilled water outlet temperature, and the cooling water inlet temperature, Based on the calculation result, the opening degree of the high-pressure side motor-operated valve provided in the pipe that sends the refrigerant liquid from the condenser to the intermediate cooler, and the low-pressure side motor-operated valve provided in the pipe that sends the refrigerant liquid from the intermediate cooler to the evaporator Is controlled according to a data map that changes in stages, so that refrigerant vapor from the condenser to the intercooler, or from the intercooler to the evaporator, even when the partial load condition or cooling water temperature falls There is no blow-through, no mist up from the intercooler to the compressor occurs, and a necessary and sufficient liquid refrigerant is circulated to enable stable and efficient operation.

また、本実施形態に係るターボ冷凍機によれば、凝縮器から中間冷却器に冷媒液を送る配管に設けた高圧側電動弁と並列に固定絞り流路を設け、中間冷却器から蒸発器に冷媒液を送る配管に設けた低圧側電動弁と並列に固定絞り流路を設けているので、各電動弁のサイズを小さくすることができ、コストダウンを図ることができる。   Further, according to the turbo chiller according to the present embodiment, the fixed throttle passage is provided in parallel with the high-pressure side motor operated valve provided in the pipe for sending the refrigerant liquid from the condenser to the intermediate cooler, and the intermediate cooler is changed to the evaporator. Since the fixed throttle channel is provided in parallel with the low-pressure side motorized valve provided in the pipe for sending the refrigerant liquid, the size of each motorized valve can be reduced and the cost can be reduced.

1 圧縮機
2 蒸発器
3 凝縮器
4 中間冷却器
11 高圧側電動弁
12 低圧側電動弁
13 電動弁
14,15 固定絞り
20 制御部
21,22,23 温度センサー
DESCRIPTION OF SYMBOLS 1 Compressor 2 Evaporator 3 Condenser 4 Intermediate cooler 11 High-pressure side motor-operated valve 12 Low-pressure side motor-operated valve 13 Motor-operated valves 14 and 15 Fixed throttle 20 Controllers 21, 22, and 23 Temperature sensor

Claims (7)

圧縮機,蒸発器,凝縮器,中間冷却器を順次接続して構成される冷凍サイクルを備え、
凝縮器で凝縮した冷媒液を中間冷却器に送る配管に設けられる高圧側電動弁と、
中間冷却器において冷媒が減圧沸騰することにより冷却された冷媒液を蒸発器に送る配管に設けられる低圧側電動弁と、
前記高圧側電動弁及び低圧側電動弁の開度を制御する制御部とを備え、
前記制御部は、前記冷凍サイクルの高圧側及び低圧側の圧力差に相当する物理量及び冷凍サイクルの冷媒循環量に相当する物理量に基づいて、前記高圧側電動弁及び低圧側電動弁の開度を制御することを特徴とするターボ冷凍機。
It has a refrigeration cycle consisting of a compressor, an evaporator, a condenser, and an intercooler connected in sequence,
A high-pressure side motor-operated valve provided in a pipe for sending the refrigerant liquid condensed in the condenser to the intercooler;
A low-pressure side motor-operated valve provided in a pipe for sending the refrigerant liquid cooled by boiling the refrigerant under reduced pressure in the intermediate cooler to the evaporator;
A controller for controlling the opening of the high-pressure side motorized valve and the low-pressure side motorized valve,
The controller controls the opening degrees of the high-pressure side motor-operated valve and the low-pressure side motor-operated valve based on a physical quantity corresponding to a pressure difference between the high-pressure side and the low-pressure side of the refrigeration cycle and a physical quantity equivalent to a refrigerant circulation amount of the refrigeration cycle. A turbo refrigerator characterized by controlling.
前記制御部は、前記高圧側電動弁及び低圧側電動弁の開度を同期させて制御することを特徴とする請求項1に記載のターボ冷凍機。   The turbo chiller according to claim 1, wherein the control unit controls the opening degrees of the high-pressure side electric valve and the low-pressure side electric valve in synchronization. 圧縮機,蒸発器,凝縮器,中間冷却器を順次接続して構成される冷凍サイクルを備え、
凝縮器で凝縮した冷媒液を中間冷却器に送る配管に設けられる高圧側電動弁と、
中間冷却器において冷媒が減圧沸騰することにより冷却された冷媒液を蒸発器に送る配管に設けられる低圧側電動弁と、
前記高圧側電動弁及び低圧側電動弁の開度を制御する制御部とを備え、
前記制御部は、前記高圧側電動弁及び低圧側電動弁の開度を同期させて制御することを特徴とするターボ冷凍機。
It has a refrigeration cycle consisting of a compressor, an evaporator, a condenser, and an intercooler connected in sequence,
A high-pressure side motor-operated valve provided in a pipe for sending the refrigerant liquid condensed in the condenser to the intercooler;
A low-pressure side motor-operated valve provided in a pipe for sending the refrigerant liquid cooled by boiling the refrigerant under reduced pressure in the intermediate cooler to the evaporator;
A control unit for controlling the opening of the high-pressure side motorized valve and the low-pressure side motorized valve,
The said control part synchronizes and controls the opening degree of the said high voltage | pressure side motor operated valve and a low voltage | pressure side motor operated valve, The turbo refrigerator characterized by the above-mentioned.
前記冷凍サイクルの高圧側及び低圧側の圧力差に相当する物理量は、蒸発器を流通する冷水の出口温度と凝縮器を流通する冷却水の入口温度との温度差に基づいて決定されることを特徴とする請求項1〜3の何れか一項に記載のターボ冷凍機。   The physical quantity corresponding to the pressure difference between the high pressure side and the low pressure side of the refrigeration cycle is determined based on the temperature difference between the outlet temperature of the cold water flowing through the evaporator and the inlet temperature of the cooling water flowing through the condenser. The turbo refrigerator as described in any one of Claims 1-3 characterized by the above-mentioned. 前記冷凍サイクルの冷媒循環量に相当する物理量は、蒸発器を流通する冷水の入口温度と出口温度との温度差に基づいて決定されることを特徴とする請求項1〜4の何れか一項に記載のターボ冷凍機。   The physical quantity corresponding to the refrigerant circulation amount of the refrigeration cycle is determined based on a temperature difference between an inlet temperature and an outlet temperature of cold water flowing through the evaporator. The turbo refrigerator as described in. 前記制御部は、前記冷凍サイクルの高圧側及び低圧側の圧力差に相当する物理量及び冷凍サイクルの冷媒循環量に相当する物理量に対応させて予め決定された開度に基づいて、前記高圧側電動弁及び低圧側電動弁を制御することを特徴とする請求項1〜5の何れか一項に記載のターボ冷凍機。   The controller controls the high-pressure side electric motor based on a physical quantity corresponding to a pressure difference between the high-pressure side and the low-pressure side of the refrigeration cycle and an opening determined in advance corresponding to a physical quantity corresponding to the refrigerant circulation amount of the refrigeration cycle. The turbo chiller according to any one of claims 1 to 5, wherein the valve and the low-pressure side electric valve are controlled. 前記凝縮器から中間冷却器に冷媒液を送る配管には前記高圧側電動弁と並列に固定絞り流路を設け、
前記中間冷却器から蒸発器に冷媒液を送る配管には前記低圧側電動弁と並列に固定絞り流路を設けたことを特徴とする請求項1〜6の何れか一項に記載のターボ冷凍機。
A pipe for sending the refrigerant liquid from the condenser to the intermediate cooler is provided with a fixed throttle channel in parallel with the high-pressure side motor operated valve,
The turbo refrigeration according to any one of claims 1 to 6, wherein a fixed throttle passage is provided in parallel with the low-pressure side motor operated valve in a pipe for sending the refrigerant liquid from the intermediate cooler to the evaporator. Machine.
JP2009186971A 2009-08-12 2009-08-12 Turbo refrigerator Active JP5227919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186971A JP5227919B2 (en) 2009-08-12 2009-08-12 Turbo refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186971A JP5227919B2 (en) 2009-08-12 2009-08-12 Turbo refrigerator

Publications (2)

Publication Number Publication Date
JP2011038711A true JP2011038711A (en) 2011-02-24
JP5227919B2 JP5227919B2 (en) 2013-07-03

Family

ID=43766668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186971A Active JP5227919B2 (en) 2009-08-12 2009-08-12 Turbo refrigerator

Country Status (1)

Country Link
JP (1) JP5227919B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160441A (en) * 2012-02-06 2013-08-19 Hitachi Appliances Inc Refrigerator
JP2014159923A (en) * 2013-02-20 2014-09-04 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
KR20160138567A (en) * 2014-04-16 2016-12-05 존슨 컨트롤스 테크놀러지 컴퍼니 Method for operating a chiller
WO2018025934A1 (en) * 2016-08-03 2018-02-08 ダイキン工業株式会社 Heat source unit for refrigeration device
WO2018159150A1 (en) * 2017-02-28 2018-09-07 三菱重工サーマルシステムズ株式会社 Turbo refrigerator and turbo refrigerator operation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286761A (en) * 1994-04-18 1995-10-31 Hitachi Ltd Air conditioner
JPH11270918A (en) * 1998-03-24 1999-10-05 Daikin Ind Ltd Refrigerating device
JPH11344265A (en) * 1998-06-02 1999-12-14 Mitsubishi Heavy Ind Ltd Turbo freezer of multistage compression system
JP2004218893A (en) * 2003-01-14 2004-08-05 Hitachi Industries Co Ltd Multi-stage turbo refrigerator
JP2005106314A (en) * 2003-09-29 2005-04-21 Mitsubishi Electric Corp Refrigeration unit
JP2009014210A (en) * 2007-06-29 2009-01-22 Daikin Ind Ltd Refrigerating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286761A (en) * 1994-04-18 1995-10-31 Hitachi Ltd Air conditioner
JPH11270918A (en) * 1998-03-24 1999-10-05 Daikin Ind Ltd Refrigerating device
JPH11344265A (en) * 1998-06-02 1999-12-14 Mitsubishi Heavy Ind Ltd Turbo freezer of multistage compression system
JP2004218893A (en) * 2003-01-14 2004-08-05 Hitachi Industries Co Ltd Multi-stage turbo refrigerator
JP2005106314A (en) * 2003-09-29 2005-04-21 Mitsubishi Electric Corp Refrigeration unit
JP2009014210A (en) * 2007-06-29 2009-01-22 Daikin Ind Ltd Refrigerating device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160441A (en) * 2012-02-06 2013-08-19 Hitachi Appliances Inc Refrigerator
JP2014159923A (en) * 2013-02-20 2014-09-04 Ebara Refrigeration Equipment & Systems Co Ltd Turbo refrigerator
US10883749B2 (en) 2014-04-16 2021-01-05 Johnson Controls Technology Company Method for operating a chiller
KR20160138567A (en) * 2014-04-16 2016-12-05 존슨 컨트롤스 테크놀러지 컴퍼니 Method for operating a chiller
JP2017514093A (en) * 2014-04-16 2017-06-01 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company How to operate the cooler
US11441828B2 (en) 2014-04-16 2022-09-13 Johnson Controls Tyco IP Holdings LLP Method for operating a chiller
KR101995219B1 (en) * 2014-04-16 2019-07-02 존슨 컨트롤스 테크놀러지 컴퍼니 Method for operating a chiller
TWI720941B (en) * 2014-04-16 2021-03-11 日商強生控制科技公司 Method for operating a chiller
US10451326B2 (en) 2014-04-16 2019-10-22 Johnson Controls Technology Company Method for operating a chiller
WO2018025934A1 (en) * 2016-08-03 2018-02-08 ダイキン工業株式会社 Heat source unit for refrigeration device
JP2018025381A (en) * 2016-08-03 2018-02-15 ダイキン工業株式会社 Heat source unit for refrigeration device
WO2018159150A1 (en) * 2017-02-28 2018-09-07 三菱重工サーマルシステムズ株式会社 Turbo refrigerator and turbo refrigerator operation method
CN110312902A (en) * 2017-02-28 2019-10-08 三菱重工制冷空调系统株式会社 The operation method of turborefrigerator and turborefrigerator
CN110312902B (en) * 2017-02-28 2021-08-13 三菱重工制冷空调系统株式会社 Turbo refrigerator and method for operating turbo refrigerator
JP2018141594A (en) * 2017-02-28 2018-09-13 三菱重工サーマルシステムズ株式会社 Turbo refrigerator, and operation method of turbo refrigerator

Also Published As

Publication number Publication date
JP5227919B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
EP2232169B1 (en) Vapor compression system
JP5981180B2 (en) Turbo refrigerator and control method thereof
JP6454564B2 (en) Turbo refrigerator
JP2009204262A (en) Turbo refrigerating machine, heat source system and their control method
KR101602741B1 (en) Constant temperature liquid circulating device and operation method thereof
JP5185298B2 (en) Compressor control method and system
JP2008267722A (en) Heat source machine and refrigerating air conditioner
JP2009204222A (en) Turbo refrigerator, refrigerating system and their control method
JP5227919B2 (en) Turbo refrigerator
JP5412193B2 (en) Turbo refrigerator
JP4859480B2 (en) Turbo chiller, control device thereof, and control method of turbo chiller
JP2008121451A (en) Turbo refrigeration device and method of controlling the same
WO2012090579A1 (en) Heat source system and control method therefor
JP2009002635A (en) Heat source machine, its control method, heat source system and its operating method
US20190299132A1 (en) A method for controlling a vapour compression system during gas bypass valve malfunction
JP2009186033A (en) Two-stage compression type refrigerating device
US20120073316A1 (en) Control of a transcritical vapor compression system
JP2003004316A (en) Method for controlling refrigeration unit
JP2008096072A (en) Refrigerating cycle device
JP6987598B2 (en) Refrigeration cycle control device, heat source device, and its control method
JP2012202590A (en) Refrigerating device
JP2007170706A (en) Refrigeration system
US20170276416A1 (en) Refrigeration apparatus
JP2009236430A (en) Compression type refrigerating machine and its capacity control method
JP2010014386A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

R150 Certificate of patent or registration of utility model

Ref document number: 5227919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250