JP2011032433A - Method for preparing polycarbonate-polydiorganosiloxane copolymer - Google Patents

Method for preparing polycarbonate-polydiorganosiloxane copolymer Download PDF

Info

Publication number
JP2011032433A
JP2011032433A JP2009182486A JP2009182486A JP2011032433A JP 2011032433 A JP2011032433 A JP 2011032433A JP 2009182486 A JP2009182486 A JP 2009182486A JP 2009182486 A JP2009182486 A JP 2009182486A JP 2011032433 A JP2011032433 A JP 2011032433A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
polydiorganosiloxane
general formula
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009182486A
Other languages
Japanese (ja)
Inventor
Yuji Higaki
勇次 檜垣
Katsuhiro Yamanaka
克浩 山中
Fumitaka Kondo
史崇 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Chemicals Ltd filed Critical Teijin Chemicals Ltd
Priority to JP2009182486A priority Critical patent/JP2011032433A/en
Publication of JP2011032433A publication Critical patent/JP2011032433A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Silicon Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a preparation method whereby a polycarbonate-polydiorganosiloxane copolymer can be efficiently obtained in an industrial scale, provided that the copolymer has a low oligomer content and a narrow molecular weight distribution. <P>SOLUTION: The method for preparing the polycarbonate-polydiorganosiloxane copolymer includes: previously preparing a mixed solution containing an oligomer having a terminal chloroformate group by reacting a dihydric phenol (I) and an ester-forming compound in a mixture of a water-insoluble organic solvent and an aqueous alkaline solution; and subsequently adding a hydroxyaryl-terminated polydiorganosiloxane (II) to the mixed solution so as to carry out interfacial polycondensation of the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ポリカーボネート−ポリジオルガノシロキサン共重合体の製造方法に関する。さらに具体的には、生産性低下や滞留熱安定性低下の原因となるオリゴマー成分量が極めて少なく、分子量分布の狭いポリカーボネート−ポリジオルガノシロキサン共重合体を、簡単な設備で且つ効率よく製造する方法を提供せんとするものである。   The present invention relates to a method for producing a polycarbonate-polydiorganosiloxane copolymer. More specifically, a method for efficiently producing a polycarbonate-polydiorganosiloxane copolymer having a very low molecular weight distribution and a narrow molecular weight distribution, which causes a decrease in productivity and residence heat stability, with simple equipment. Is intended to provide.

ポリカーボネートは、耐衝撃性に優れ、高い熱変形温度と透明性を有するので、成形品の製造に広く用いられているが、ビスフェノールAなど一般的な原料を用いたものでは性能的に十分でない点もあり、用途分野の拡大に伴って更に性能の優れたポリカーボネートの開発が望まれている。そこで、拡大する用途に適合させるために、ビスフェノールA(BPA)などの一般的なモノマー原料に各種の共重合モノマー単位を導入することによる共重合体に関する研究が行われてきている。それら共重合体の研究において、特にBPAとポリジオルガノシロキサンコモノマーからなるポリカーボネート−ポリジオルガノシロキサン共重合体は、BPAホモポリカーボネートと比較して、難燃性や低温耐衝撃性に優れることが知られている。ポリカーボネート−ポリジオルガノシロキサン共重合体は通例、ポリジオルガノシロキサン含有ビスフェノールとBPAのような二価フェノールの混合物をホスゲン及び水酸化ナトリウム水溶液のような水性酸受容体と界面条件下で反応させることによって製造される。   Polycarbonate is excellent in impact resistance and has a high heat distortion temperature and transparency, so it is widely used in the production of molded products. However, the use of general raw materials such as bisphenol A is not sufficient in terms of performance. Therefore, it is desired to develop a polycarbonate having higher performance as the application field expands. Therefore, in order to adapt to expanding applications, research has been conducted on copolymers by introducing various copolymer monomer units into general monomer raw materials such as bisphenol A (BPA). In research on these copolymers, polycarbonate-polydiorganosiloxane copolymers composed of BPA and polydiorganosiloxane comonomer are known to be superior in flame retardancy and low temperature impact resistance compared to BPA homopolycarbonate. Yes. Polycarbonate-polydiorganosiloxane copolymers are typically made by reacting a mixture of polydiorganosiloxane-containing bisphenols and dihydric phenols such as BPA with aqueous acid acceptors such as phosgene and aqueous sodium hydroxide under interfacial conditions. Is done.

例えば、特許文献1、特許文献2、特許文献3には、ポリジオルガノシロキサン含有ビスフェノールをBPAのような二価フェノールとともに水酸化ナトリウム水溶液に溶解させ、さらに塩化メチレンを加えた懸濁溶液に対してホスゲンを導入して反応させる製造方法が開示されている。しかし、かかる製造法により得られるポリカーボネート−ポリジオルガノシロキサン共重合体はオリゴマー成分が多いため分子量分布が広く、水洗洗浄時の水相と有機相の分離が劣悪であり生産効率が悪いのみならず、滞留熱安定性が悪化するため好ましくない。   For example, in Patent Document 1, Patent Document 2, and Patent Document 3, polydiorganosiloxane-containing bisphenol is dissolved in a sodium hydroxide aqueous solution together with a dihydric phenol such as BPA, and a suspension solution in which methylene chloride is further added. A production method in which phosgene is introduced and reacted is disclosed. However, the polycarbonate-polydiorganosiloxane copolymer obtained by such a production method has a large molecular weight distribution due to a large amount of oligomer components, and the separation of the water phase and the organic phase during washing and washing is poor and the production efficiency is not only poor, This is not preferable because the residence heat stability deteriorates.

特許文献4、特許文献5、特許文献6には、あらかじめ塩化メチレンと水酸化ナトリウム水溶液との混合液中においてBPAのような二価フェノールとホスゲンを反応させ、この反応液を静置後、有機相を分離し、クロロホルメート末端ポリカーボネートオリゴマーの塩化メチレン溶液を調整し、このオリゴマー溶液にポリジオルガノシロキサン含有ビスフェノールと末端停止剤を加え、新たに水酸化ナトリウム水溶液、塩化メチレンを加えた後、トリエチルアミンを触媒として重縮合反応を行うことによる製造方法が開示されている。しかし、かかる製造法においては反応液を静置して有機相を分離する工程が必要であることに加え、分離した有機相に対して新たに水酸化ナトリウム水溶液を混合しなければならないため、生産効率が悪い。   In Patent Document 4, Patent Document 5, and Patent Document 6, a dihydric phenol such as BPA and phosgene are reacted in advance in a mixed solution of methylene chloride and an aqueous sodium hydroxide solution. Separate the phases, prepare a methylene chloride solution of chloroformate-terminated polycarbonate oligomer, add polydiorganosiloxane-containing bisphenol and a terminal terminator to this oligomer solution, add sodium hydroxide aqueous solution and methylene chloride, and then add triethylamine. A production method by carrying out a polycondensation reaction using as a catalyst is disclosed. However, in such a production method, in addition to the need for a step of allowing the reaction liquid to stand to separate the organic phase, it is necessary to add a sodium hydroxide aqueous solution to the separated organic phase. ineffective.

特許文献7には、BPAのような二価フェノールとホスゲンの反応の触媒として有効量の相間移動触媒の存在下において、水性溶剤及び有機溶剤からなる界面反応条件下、pHを約10〜約12の範囲に維持しながら、ビスフェノールのヒドロキシル基の全モル数に基づいて約1〜約99モル%のホスゲンを添加し、pHを約8〜9の範囲まで低下させ、かかるpH範囲を維持しながらホスゲンの該混合物への添加を少なくとも十分量でかつ約5モル%過剰までの量まで継続して行い、ポリジオルガノシロキサン含有ビスフェノールを導入し、pHを約10〜約12の範囲の値まで上昇させ、過剰量のクロルホルメート基を除去する製造方法が開示されている。特許文献8には、pHを約3〜約8に維持しながら、BPAのような二価フェノールをホスゲン、相間移動触媒、水性溶剤及び有機溶剤と界面反応条件下で混合することによって芳香族ビスクロロホルメートを製造し、この芳香族ビスクロロホルメートをポリジオルガノシロキサン含有ビスフェノールと反応せしめた後、pHを約10〜約14の値に調節し、残留クロロホルメートの残量が50ppm以下になるまで反応を行い、次いで得られる混合物に連鎖停止剤、共ホスゲン化触媒等の助剤を添加し、pHを約9〜約12の範囲に維持しながら反応を完了させるのに十分な量のホスゲンを添加する製造法が開示されている。しかし、かかる製造法においては頻繁にpHを調製する必要があり、場合によってはホスゲンを複数回に分けて導入しなければならないため、製造設備や生産工程が複雑化し、生産効率が悪い。   In Patent Document 7, the pH is about 10 to about 12 under the interfacial reaction conditions consisting of an aqueous solvent and an organic solvent in the presence of an effective amount of a phase transfer catalyst as a catalyst for the reaction of a dihydric phenol and phosgene such as BPA. While maintaining the pH range, adding from about 1 to about 99 mol% phosgene based on the total number of moles of hydroxyl groups of the bisphenol, reducing the pH to the range of about 8-9, while maintaining such pH range The addition of phosgene to the mixture is continued at least in a sufficient amount and up to an excess of about 5 mole percent, the polydiorganosiloxane-containing bisphenol is introduced, and the pH is increased to a value in the range of about 10 to about 12. , A process for removing excess chloroformate groups is disclosed. In US Pat. No. 6,057,089, an aromatic bis compound is prepared by mixing a dihydric phenol such as BPA with phosgene, a phase transfer catalyst, an aqueous solvent and an organic solvent under interfacial reaction conditions while maintaining the pH at about 3 to about 8. After producing chloroformate and reacting this aromatic bischloroformate with polydiorganosiloxane-containing bisphenol, the pH is adjusted to a value of about 10 to about 14 so that the residual chloroformate remains at 50 ppm or less. Until the reaction is complete, and then an auxiliary such as a chain terminator, co-phosgenation catalyst, etc. is added to the resulting mixture, sufficient to complete the reaction while maintaining the pH in the range of about 9 to about 12. A process for adding phosgene is disclosed. However, in such a production method, it is necessary to frequently adjust the pH, and in some cases, phosgene must be introduced in a plurality of times, which complicates the production equipment and production process, resulting in poor production efficiency.

特開平3−79626号公報JP-A-3-79626 特開平4−202466号公報JP-A-4-202466 特開平5−247195号公報JP-A-5-247195 特許第2662310号公報Japanese Patent No. 2662310 特開平6−100684号公報Japanese Patent Laid-Open No. 6-100654 特開平6−263865号公報JP-A-6-263865 特開平8−169947号公報JP-A-8-169947 特表2006−518803号公報JP 2006-518803 A

本発明は、上記従来技術にみられるポリカーボネート−ポリジオルガノシロキサン共重合体の製造上の問題を解決し、工業的規模で効率よく、生産性、経済性に優れた方法で、オリゴマー成分量が少なく、分子量分布の狭いポリカーボネート−ポリジオルガノシロキサン共重合体を得ることができる製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems in the production of polycarbonate-polydiorganosiloxane copolymers found in the prior art, is an efficient method on an industrial scale, and is excellent in productivity and economy. Another object of the present invention is to provide a production method capable of obtaining a polycarbonate-polydiorganosiloxane copolymer having a narrow molecular weight distribution.

本発明者は、前記課題を解決すべく鋭意検討を重ねた結果、芳香族ジオキシ化合物とヒドロキシアリール末端ポリジオルガノシロキサンの共重合を行うに際し、あらかじめ芳香族ジオキシ化合物の末端クロロホルメート基を有するオリゴマーを製造した後、該混合溶液中にヒドロキシアリール末端ポリジオルガノシロキサンを加えて界面重縮合させることにより、オリゴマー成分量が少なく分子量分布の狭い高分子量のポリカーボネート−ポリジオルガノシロキサン共重合体を工業的規模で効率よく安定して得ることができることを見出し、この知見に基づいて本発明を完成させるに至った。本発明によれば、上記課題は下記構成により解決される。   As a result of intensive studies to solve the above-mentioned problems, the present inventor preliminarily copolymerized an aromatic dioxy compound and a hydroxyaryl-terminated polydiorganosiloxane with an oligomer having a terminal chloroformate group of the aromatic dioxy compound in advance. Is then added to the mixed solution and subjected to interfacial polycondensation to produce a high molecular weight polycarbonate-polydiorganosiloxane copolymer with a small amount of oligomer components and a narrow molecular weight distribution on an industrial scale. And the present invention has been completed based on this finding. According to the present invention, the above problem is solved by the following configuration.

(構成1)
あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における下記一般式[1]で表わされる二価フェノール(I)とエステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製し、次いで、該混合溶液中に一般式[3]で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることを特徴とする、ポリカーボネート−ポリジオルガノシロキサン共重合体の製造方法。
(Configuration 1)
A mixture containing an oligomer having a terminal chloroformate group by the reaction of a dihydric phenol (I) represented by the following general formula [1] and an ester-forming compound in a mixture of an organic solvent insoluble in water and an aqueous alkaline solution in advance. Next, a hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula [3] is added to the mixed solution, and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are subjected to interfacial polycondensation. A process for producing a polycarbonate-polydiorganosiloxane copolymer.

Figure 2011032433
[上記一般式[1]において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式[2]で表される基からなる群より選ばれる少なくとも一つの基である。
Figure 2011032433
[In General Formula [1], R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or 6 to 6 carbon atoms. 20 cycloalkyl groups, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 3 to 14 carbon atoms, aryloxy groups having 3 to 14 carbon atoms, carbon atoms Represents a group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group, and a carboxyl group. E and f are each an integer of 1 to 4, and W is a single bond or at least one group selected from the group consisting of groups represented by the following general formula [2].

Figure 2011032433
(上記一般式[2]においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。)]
Figure 2011032433
(In the above general formula [2], R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, carbon Represents a group selected from the group consisting of an aryl group having 3 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 19 and R 20 each independently represent a hydrogen atom, a halogen atom, or a carbon atom having 1 to 18 carbon atoms. Alkyl groups, alkoxy groups having 1 to 10 carbon atoms, cycloalkyl groups having 6 to 20 carbon atoms, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, and 3 carbon atoms. -14 aryl group, aryloxy group having 6 to 10 carbon atoms, aralkyl group having 7 to 20 carbon atoms, aralkyloxy group having 7 to 20 carbon atoms, nitro group, aldehyde group, cyano group and Represents a group selected from the group consisting of carboxyl groups, and when there are a plurality of them, they may be the same or different, g is an integer of 1 to 10, and h is an integer of 4 to 7).

Figure 2011032433
(上記一般式[3]において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは500未満の自然数である。XはC〜Cの二価脂肪族基である。)
Figure 2011032433
(In the above general formula [3], R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a substitution having 6 to 12 carbon atoms. Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number in it, q is 0 or a natural number, p + q is a natural number less than 500 .X is a divalent aliphatic group of C 2 ~C 8.)

(構成2)
ポリカーボネート−ポリジオルガノシロキサン共重合体の分子量分布(Mw/Mn)が2.8以下である、前項1記載の製造方法。
(構成3)
一般式[3]で表されるヒドロキシアリール末端ポリジオルガノシロキサンが(2−アリルフェノール)末端ポリジオルガノシロキサンである、前項1記載の製造方法。
(構成4)
一般式[3]で表されるヒドロキシアリール末端ポリジオルガノシロキサンが(2−メトキシ−4−アリルフェノール)末端ポリジオルガノシロキサンである、前項1記載の製造方法。
(構成5)
p+qが5〜70である、前項1記載の製造方法。
(構成6)
一般式[3]で表されるポリジオルガノシロキサンブロックが0.1〜50wt%である、前項1記載の製造方法。
(構成7)
、R、R、R、R、Rがメチル基である、前項1記載の製造方法。
(Configuration 2)
2. The method according to item 1, wherein the polycarbonate-polydiorganosiloxane copolymer has a molecular weight distribution (Mw / Mn) of 2.8 or less.
(Configuration 3)
2. The method according to item 1, wherein the hydroxyaryl-terminated polydiorganosiloxane represented by the general formula [3] is (2-allylphenol) -terminated polydiorganosiloxane.
(Configuration 4)
2. The production method according to item 1, wherein the hydroxyaryl-terminated polydiorganosiloxane represented by the general formula [3] is (2-methoxy-4-allylphenol) -terminated polydiorganosiloxane.
(Configuration 5)
2. The production method according to item 1 above, wherein p + q is 5 to 70.
(Configuration 6)
2. The method according to item 1, wherein the polydiorganosiloxane block represented by the general formula [3] is 0.1 to 50 wt%.
(Configuration 7)
2. The production method according to item 1 above, wherein R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are methyl groups.

本発明の方法によれば、分子量分布の狭いポリカーボネート−ポリジオルガノシロキサン共重合体を簡便にかつ安定して得ることができる。本発明の方法によって得られるポリカーボネート−ポリジオルガノシロキサン共重合体は産業用資材一般、電気電子機器部品の素材として極めて有用である。   According to the method of the present invention, a polycarbonate-polydiorganosiloxane copolymer having a narrow molecular weight distribution can be obtained easily and stably. The polycarbonate-polydiorganosiloxane copolymer obtained by the method of the present invention is extremely useful as a material for general industrial materials and electrical / electronic equipment parts.

以下、本発明の詳細について説明する。
本発明の製造法で用いられる一般式[1]で表される二価フェノール(I)としては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。
Details of the present invention will be described below.
Examples of the dihydric phenol (I) represented by the general formula [1] used in the production method of the present invention include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, and 1,1-bis. (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-) Methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3,3′-biphenyl) propane, 2,2-bis (4-hydroxy-3-isopropylphenyl) propane, 2,2-bis (3-tert-butyl-4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy) Phenyl) butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) ) Propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) diphenylmethane, 9,9- Bis (4-hydroxyphenyl) fluorene, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) Cyclopentane, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy- , 3'-dimethyldiphenyl ether, 4,4'-sulfonyldiphenol, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfide, 2,2'-dimethyl-4,4'-sulfonyl Diphenol, 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfoxide, 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfide, 2,2′-diphenyl-4,4′-sulfonyldiphenol 4,4′-dihydroxy-3,3′-diphenyldiphenyl sulfoxide, 4,4′-dihydroxy-3,3′-diphenyldiphenyl sulfide, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene 1,4-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis (4-hydro Cyphenyl) cyclohexane, 1,3-bis (4-hydroxyphenyl) cyclohexane, 4,8-bis (4-hydroxyphenyl) tricyclo [5.2.1.02,6] decane, 4,4 ′-(1, 3-adamantanediyl) diphenol, 1,3-bis (4-hydroxyphenyl) -5,7-dimethyladamantane, and the like.

なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。   Among them, 1,1-bis (4-hydroxyphenyl) -1-phenylethane, 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4′-sulfonyldiphenol, 2,2′-dimethyl- 4,4′-sulfonyldiphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene, 1,3-bis {2- (4-hydroxyphenyl) propyl} benzene, 1,4-bis { 2- (4-hydroxyphenyl) propyl} benzene is preferred, especially 2,2-bis (4-hydroxyphenyl) propane, 1,1-bis (4 Hydroxyphenyl) cyclohexane (BPZ), 4,4'-sulfonyl diphenol, 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is preferred. Among them, 2,2-bis (4-hydroxyphenyl) propane having excellent strength and good durability is most preferable. Moreover, you may use these individually or in combination of 2 or more types.

一般式[3]で表されるヒドロキシアリール末端ポリジオルガノシロキサン(II)としては、例えば次に示すような化合物が好適に用いられる。   As the hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula [3], for example, the following compounds are preferably used.

Figure 2011032433
Figure 2011032433

ヒドロキシアリール末端ポリジオルガノシロキサン(II)は、オレフィン性の不飽和炭素−炭素結合を有するフェノール類、好適にはビニルフェノール、2−アリルフェノール、イソプロペニルフェノール、2−メトキシ−4−アリルフェノールを所定の重合度を有するポリシロキサン鎖の末端に、ハイドロシラネーション反応させることにより容易に製造される。なかでも、(2−アリルフェノール)末端ポリジオルガノシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジオルガノシロキサンが好ましく、殊に(2−アリルフェノール)末端ポリジメチルシロキサン、(2−メトキシ−4−アリルフェノール)末端ポリジメチルシロキサンが好ましい。ヒドロキシアリール末端ポリジオルガノシロキサン(II)のポリジオルガノシロキサン重合度(p+q)は5〜70が適切である。かかるポリジオルガノシロキサン重合度(p+q)は好ましくは5〜60、更に好ましくは5〜40である。かかる好適な範囲の下限未満では、耐衝撃性や難燃性に劣るようになり、かかる好適な範囲の上限を超えるとポリジオルガノシロキサンモノマーの導入量が仕込み量に対して著しく低減する。ポリカーボネート−ポリジオルガノシロキサン共重合体を構成するポリジオルガノシロキサン成分含有量は0.1〜50wt%が適切である。かかるポリジオルガノシロキサン成分重量比は好ましくは1〜40wt%、さらに好ましくは1〜20wt%である。かかる好適な範囲の下限未満では、耐衝撃性や難燃性が十分に発揮されず、かかる好適な範囲の上限を超えるとポリジオルガノシロキサンモノマーの導入量が仕込み量に対して著しく低減する。かかるポリジオルガノシロキサン重合度、ポリジオルガノシロキサン成分含有量は、H−NMR測定により算出することが可能である。 The hydroxyaryl-terminated polydiorganosiloxane (II) is a phenol having an olefinically unsaturated carbon-carbon bond, preferably vinylphenol, 2-allylphenol, isopropenylphenol, 2-methoxy-4-allylphenol. It is easily produced by hydrosilation reaction at the end of a polysiloxane chain having a degree of polymerization. Of these, (2-allylphenol) -terminated polydiorganosiloxane and (2-methoxy-4-allylphenol) -terminated polydiorganosiloxane are preferred, and (2-allylphenol) -terminated polydimethylsiloxane, especially (2-methoxy-4) -Allylphenol) -terminated polydimethylsiloxane is preferred. A suitable polydiorganosiloxane polymerization degree (p + q) of the hydroxyaryl-terminated polydiorganosiloxane (II) is 5 to 70. Such polydiorganosiloxane polymerization degree (p + q) is preferably 5 to 60, more preferably 5 to 40. If the amount is less than the lower limit of the preferable range, the impact resistance and flame retardancy are inferior. If the upper limit of the preferable range is exceeded, the amount of polydiorganosiloxane monomer introduced is significantly reduced with respect to the charged amount. The content of the polydiorganosiloxane component constituting the polycarbonate-polydiorganosiloxane copolymer is suitably 0.1 to 50 wt%. The polydiorganosiloxane component weight ratio is preferably 1 to 40 wt%, more preferably 1 to 20 wt%. If the amount is less than the lower limit of the preferable range, the impact resistance and flame retardancy are not sufficiently exhibited. If the upper limit of the preferable range is exceeded, the amount of polydiorganosiloxane monomer introduced is significantly reduced with respect to the charged amount. Such polydiorganosiloxane polymerization degree and polydiorganosiloxane component content can be calculated by 1 H-NMR measurement.

本発明の方法において、ヒドロキシアリール末端ポリジオルガノシロキサン(II)は1種のみを用いてもよく、また、2種以上を用いてもよい。
また、本発明の方法の妨げにならない範囲で、上記二価フェノール(I)、ヒドロキシアリール末端ポリジオルガノシロキサン(II)以外の他のコモノマーを併用することもできる。
In the method of the present invention, hydroxyaryl-terminated polydiorganosiloxane (II) may be used alone or in combination of two or more.
In addition, other comonomers other than the dihydric phenol (I) and hydroxyaryl-terminated polydiorganosiloxane (II) can be used in combination as long as they do not interfere with the method of the present invention.

本発明の方法においては、あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における二価フェノール(I)と炭酸エステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製する。   In the method of the present invention, a mixed solution containing an oligomer having a terminal chloroformate group by the reaction of a dihydric phenol (I) and a carbonate-forming compound in a mixed solution of an organic solvent insoluble in water and an aqueous alkaline solution in advance. To prepare.

二価フェノール(I)のオリゴマーを生成するにあたり、本発明の方法に用いられる二価フェノール(I)の全量を一度にオリゴマーにしてもよく、又は、その一部を後添加モノマーとして後段の界面重縮合反応に反応原料として添加してもよい。後添加モノマーとは、後段の重縮合反応を速やかに進行させるために加えるものであり、必要のない場合には敢えて加える必要はない。
このオリゴマー生成反応の方式は特に限定はされないが、通常、酸結合剤の存在下、水と水に不溶性の有機溶媒との混合液中で行う方式が好適である。
In producing the oligomer of the dihydric phenol (I), the whole amount of the dihydric phenol (I) used in the method of the present invention may be converted into an oligomer at one time, or a part of the dihydric phenol (I) is used as a post-added monomer at the subsequent interface. You may add to a polycondensation reaction as a reaction raw material. The post-added monomer is added to allow the subsequent polycondensation reaction to proceed rapidly, and it is not necessary to add it when it is not necessary.
Although the method of this oligomer production | generation reaction is not specifically limited, Usually, the method performed in the liquid mixture of water and the organic solvent insoluble in water in the presence of an acid binder is suitable.

炭酸エステル形成性化合物の使用割合は、反応の化学量論比(当量)を考慮して適宜調整すればよい。また、ホスゲン等のガス状の炭酸エステル形成性化合物を使用する場合、これを反応系に吹き込む方法が好適に採用できる。   The use ratio of the carbonate-forming compound may be appropriately adjusted in consideration of the stoichiometric ratio (equivalent) of the reaction. Moreover, when using gaseous carbonate ester-forming compounds, such as phosgene, the method of blowing this into a reaction system can be employ | adopted suitably.

前記酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。
酸結合剤の使用割合も、上記同様に、反応の化学量論比(当量)を考慮して適宜定めればよい。具体的には、オリゴマーの形成に使用する二価フェノール(I)のモル数(通常1モルは2当量に相当)に対して2当量若しくはこれより若干過剰量の酸結合剤を用いることが好ましい。
Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof.
The use ratio of the acid binder may be appropriately determined in consideration of the stoichiometric ratio (equivalent) of the reaction as described above. Specifically, it is preferable to use 2 equivalents or slightly more acid binder than the number of moles of dihydric phenol (I) used to form the oligomer (usually 1 mole corresponds to 2 equivalents). .

前記溶媒としては、公知のポリカーボネートの製造に使用されるものなど各種の反応に不活性な溶媒を1種単独であるいは混合溶媒として使用すればよい。代表的な例としては、例えば、キシレン等の炭化水素溶媒、塩化メチレン、クロロベンゼンをはじめとするハロゲン化炭化水素溶媒などが挙げられる。特に塩化メチレン等のハロゲン化炭化水素溶媒が好適に用いられる。   As said solvent, what is necessary is just to use a solvent inert to various reaction, such as what is used for manufacture of a well-known polycarbonate, individually or as a mixed solvent. Typical examples include hydrocarbon solvents such as xylene, halogenated hydrocarbon solvents such as methylene chloride and chlorobenzene. In particular, a halogenated hydrocarbon solvent such as methylene chloride is preferably used.

オリゴマー生成の反応圧力は特に制限はなく、常圧、加圧、減圧のいずれでもよいが、通常常圧下で反応を行うことが有利である。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は他の条件に左右され一概に規定できないが、通常、0.2〜10時間で行われる。
オリゴマー生成反応のpH範囲は、公知の界面反応条件と同様であり、pHは常に10以上に調製される。
The reaction pressure for oligomer formation is not particularly limited, and any of normal pressure, pressurization, and reduced pressure may be used, but it is usually advantageous to carry out the reaction under normal pressure. The reaction temperature is selected from the range of −20 to 50 ° C., and in many cases, heat is generated with the polymerization, so it is desirable to cool with water or ice. Although the reaction time depends on other conditions and cannot be defined unconditionally, it is usually carried out in 0.2 to 10 hours.
The pH range of the oligomer formation reaction is the same as the known interfacial reaction conditions, and the pH is always adjusted to 10 or more.

本発明においては、このようにして末端クロロホルメート基を有する二価フェノール(I)のオリゴマーを含む混合溶液を得た後、該混合溶液中にヒドロキシアリール末端ポリジオルガノシロキサン(II)を加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることにより、ポリカーボネート−ポリジオルガノシロキサン共重合体を得る。   In the present invention, after obtaining a mixed solution containing an oligomer of dihydric phenol (I) having a terminal chloroformate group in this way, hydroxyaryl-terminated polydiorganosiloxane (II) is added to the mixed solution, A polycarbonate-polydiorganosiloxane copolymer is obtained by interfacial polycondensation of the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer.

界面重縮合反応を行うにあたり、酸結合剤を反応の化学量論比(当量)を考慮して適宜追加してもよい。酸結合剤としては、例えば、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のアルカリ金属炭酸塩、ピリジン等の有機塩基あるいはこれらの混合物などが用いられる。具体的には、使用するヒドロキシアリール末端ポリジオルガノシロキサン(II)、又は上記の如く二価フェノール(I)の一部を後添加モノマーとしてこの反応段階に添加する場合には、後添加分の二価フェノール(I)とヒドロキシアリール末端ポリジオルガノシロキサン(II)との合計モル数(通常1モルは2当量に相当)に対して2当量若しくはこれより過剰量のアルカリを用いることが好ましい。   In performing the interfacial polycondensation reaction, an acid binder may be appropriately added in consideration of the stoichiometric ratio (equivalent) of the reaction. Examples of the acid binder include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, organic bases such as pyridine, and mixtures thereof. Specifically, when the hydroxyaryl-terminated polydiorganosiloxane (II) to be used or a part of the dihydric phenol (I) as described above is added as a post-added monomer to this reaction stage, It is preferable to use 2 equivalents or an excess amount of alkali with respect to the total number of moles of monovalent phenol (I) and hydroxyaryl-terminated polydiorganosiloxane (II) (usually 1 mole corresponds to 2 equivalents).

二価フェノール(I)のオリゴマーとヒドロキシアリール末端ポリジオルガノシロキサン(II)との界面重縮合反応による重縮合は、上記混合液を激しく攪拌することにより行われる。   The polycondensation by interfacial polycondensation reaction between the oligomer of dihydric phenol (I) and the hydroxyaryl-terminated polydiorganosiloxane (II) is carried out by vigorously stirring the above mixture.

かかる重合反応においては、末端停止剤或いは分子量調節剤が通常使用される。末端停止剤としては一価のフェノール性水酸基を有する化合物が挙げられ、通常のフェノール、p−tert−ブチルフェノール、p−クミルフェノール、トリブロモフェノールなどの他に、長鎖アルキルフェノール、脂肪族カルボン酸クロライド、脂肪族カルボン酸、ヒドロキシ安息香酸アルキルエステル、ヒドロキシフェニルアルキル酸エステル、アルキルエーテルフェノールなどが例示される。その使用量は用いる全ての二価フェノール系化合物100モルに対して、100〜0.5モル、好ましくは50〜2モルの範囲であり、二種以上の化合物を併用することも当然に可能である。   In such a polymerization reaction, a terminal terminator or a molecular weight modifier is usually used. Examples of the terminal terminator include compounds having a monohydric phenolic hydroxyl group. In addition to ordinary phenol, p-tert-butylphenol, p-cumylphenol, tribromophenol, etc., long-chain alkylphenols, aliphatic carboxylic acids Examples include chloride, aliphatic carboxylic acid, hydroxybenzoic acid alkyl ester, hydroxyphenylalkyl acid ester, alkyl ether phenol and the like. The amount used is in the range of 100 to 0.5 mol, preferably 50 to 2 mol, based on 100 mol of all dihydric phenol compounds used, and it is naturally possible to use two or more compounds in combination. is there.

重縮合反応を促進するために、トリエチルアミンのような第三級アミン又は第四級アンモニウム塩などの触媒を添加してもよい。
所望に応じ、亜硫酸ナトリウム、ハイドロサルファイドなどの酸化防止剤を少量添加してもよい。
また、本発明の方法は本発明の思想を逸脱しない範囲で連続化することができる。
In order to accelerate the polycondensation reaction, a catalyst such as a tertiary amine such as triethylamine or a quaternary ammonium salt may be added.
If desired, a small amount of an antioxidant such as sodium sulfite or hydrosulfide may be added.
The method of the present invention can be continued without departing from the spirit of the present invention.

分岐化剤を上記の二価フェノール系化合物と併用して分岐化ポリカーボネートとすることができる。かかる分岐ポリカーボネート樹脂に使用される三官能以上の多官能性芳香族化合物としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。   A branching agent can be used in combination with the above dihydric phenol compound to form a branched polycarbonate. Examples of the trifunctional or higher polyfunctional aromatic compound used in the branched polycarbonate resin include phloroglucin, phloroglucid, or 4,6-dimethyl-2,4,6-tris (4-hydroxydiphenyl) heptene-2, 2 , 4,6-trimethyl-2,4,6-tris (4-hydroxyphenyl) heptane, 1,3,5-tris (4-hydroxyphenyl) benzene, 1,1,1-tris (4-hydroxyphenyl) Ethane, 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 4- {4- [ Trisphenol such as 1,1-bis (4-hydroxyphenyl) ethyl] benzene} -α, α-dimethylbenzylphenol, tetra (4-hydride) Loxyphenyl) methane, bis (2,4-dihydroxyphenyl) ketone, 1,4-bis (4,4-dihydroxytriphenylmethyl) benzene, or trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid and their acids Among them, 1,1,1-tris (4-hydroxyphenyl) ethane and 1,1,1-tris (3,5-dimethyl-4-hydroxyphenyl) ethane are preferable. 1-Tris (4-hydroxyphenyl) ethane is preferred.

分岐ポリカーボネート樹脂中の多官能性化合物の割合は、芳香族ポリカーボネート樹脂全量中、0.001〜1モル%、好ましくは0.005〜0.9モル%、より好ましくは0.01〜0.8モル%、特に好ましくは0.05〜0.4モル%である。また特に溶融エステル交換法の場合、副反応として分岐構造が生ずる場合があるが、かかる分岐構造量についても、芳香族ポリカーボネート樹脂全量中、前記した範囲であることが好適である。なお、かかる分岐構造量についてはH−NMR測定により算出することが可能である。 The ratio of the polyfunctional compound in the branched polycarbonate resin is 0.001 to 1 mol%, preferably 0.005 to 0.9 mol%, more preferably 0.01 to 0.8 mol in the total amount of the aromatic polycarbonate resin. The mol%, particularly preferably 0.05 to 0.4 mol%. In particular, in the case of the melt transesterification method, a branched structure may occur as a side reaction. The amount of the branched structure is also preferably in the above-mentioned range in the total amount of the aromatic polycarbonate resin. Such a branched structure amount can be calculated by 1 H-NMR measurement.

反応圧力は、減圧、常圧、加圧のいずれでも可能であるが、通常は、常圧若しくは反応系の自圧程度で好適に行い得る。反応温度は−20〜50℃の範囲から選ばれ、多くの場合、重合に伴い発熱するので、水冷又は氷冷することが望ましい。反応時間は反応温度等の他の条件によって異なるので一概に規定はできないが、通常、0.5〜10時間で行われる。
界面重縮合反応のpH範囲は、公知の界面重縮合反応条件と同様であり、pHは常に10以上に調製される。
The reaction pressure can be any of reduced pressure, normal pressure, and increased pressure. Usually, it can be suitably carried out at normal pressure or about the pressure of the reaction system. The reaction temperature is selected from the range of −20 to 50 ° C., and in many cases, heat is generated with the polymerization, so it is desirable to cool with water or ice. Since the reaction time varies depending on other conditions such as the reaction temperature, it cannot be generally specified, but it is usually performed in 0.5 to 10 hours.
The pH range of the interfacial polycondensation reaction is the same as known interfacial polycondensation reaction conditions, and the pH is always adjusted to 10 or more.

ポリカーボネート−ポリジオルガノシロキサン共重合体の粘度平均分子量は10000〜50000の範囲が適切である。かかる粘度平均分子量は好ましくは13000〜30000、更に好ましくは15000〜25000である。ポリカーボネート−ポリジオルガノシロキサン共重合体の粘度平均分子量が10000未満では、多くの分野において実用上の機械的強度が得られにくく、50000を超えると、溶融粘度が高く、概して高い成形加工温度を必要とする。   The viscosity average molecular weight of the polycarbonate-polydiorganosiloxane copolymer is suitably in the range of 10,000 to 50,000. The viscosity average molecular weight is preferably 13,000 to 30000, more preferably 15000 to 25000. When the viscosity average molecular weight of the polycarbonate-polydiorganosiloxane copolymer is less than 10,000, practical mechanical strength is difficult to obtain in many fields, and when it exceeds 50,000, the melt viscosity is high and generally a high molding processing temperature is required. To do.

本発明でいう粘度平均分子量は、次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出する。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−4 Mv0.83
c=0.7
The viscosity average molecular weight referred to in the present invention is obtained by using an Ostwald viscometer from a solution in which 0.7 g of polycarbonate resin is dissolved in 100 ml of methylene chloride at 20 ° C., the specific viscosity (η SP ) calculated by the following formula:
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
From the obtained specific viscosity (η SP ), the viscosity average molecular weight Mv is calculated by the following formula.
η SP /c=[η]+0.45×[η] 2 c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 Mv 0.83
c = 0.7

得られた反応生成物(粗生成物)は公知の分離精製法等の各種の後処理を施して、所望の純度(精製度)のポリカーボネート−ポリジオルガノシロキサン共重合体として回収することができる。   The obtained reaction product (crude product) can be recovered as a polycarbonate-polydiorganosiloxane copolymer having a desired purity (purity) by performing various post-treatments such as a known separation and purification method.

得られた反応生成物(粗生成物)は、未反応芳香族ジヒドロキシ化合物や副生成物の塩化物、炭酸塩、苛性アルカリから成る水相とポリカーボネート樹脂の有機溶媒溶液から成る有機相とに分離する。分離が不十分な場合は、静置分離や遠心分離などの手段を用いて分離させる。通常、重合反応後のポリカーボネート樹脂溶液は、4〜27w/w%の濃度として得られるが、分離性を向上させるため、あらかじめ19w/w%以下になるまで希釈しておくことが好ましい。分離された有機相は、必要に応じて、塩酸水溶液のような酸性水溶液を使用して、ポリカーボネート樹脂溶液中の塩基性成分(例えば有機アミン)などを抽出除去しておくこと、あるいは水酸化ナトリウム水溶液のようなアルカリ水溶液を使用して、ポリカーボネート樹脂溶液中の未反応モノマーであるジヒドロキシ化合物などを抽出除去しておくことができる。分離された有機相を水で洗浄することにより不純物を除去する。この工程に使用される水は、導電率が好ましくは50μS/cm以下、より好ましくは10μS/cm以下、さらに好ましくは1μS/cm以下のものが有利である。具体的には精製された水であり、例えば蒸留水やイオン交換水が使用される。水による洗浄操作は、ポリカーボネート樹脂溶液と水とを混合し、攪拌した後、有機相と水相を分液し、有機相を取り出すことにより実施される。   The obtained reaction product (crude product) is separated into an aqueous phase composed of unreacted aromatic dihydroxy compounds and by-product chlorides, carbonates and caustics, and an organic phase composed of an organic solvent solution of polycarbonate resin. To do. When the separation is insufficient, the separation is performed using a means such as stationary separation or centrifugation. Usually, the polycarbonate resin solution after the polymerization reaction is obtained as a concentration of 4 to 27 w / w%, but it is preferable to dilute it in advance to 19 w / w% or less in order to improve the separability. The separated organic phase is extracted with an acidic aqueous solution such as an aqueous hydrochloric acid solution, if necessary, to extract and remove basic components (eg, organic amines) in the polycarbonate resin solution, or sodium hydroxide. An aqueous alkaline solution such as an aqueous solution can be used to extract and remove dihydroxy compounds that are unreacted monomers in the polycarbonate resin solution. Impurities are removed by washing the separated organic phase with water. The water used in this step has an electrical conductivity of preferably 50 μS / cm or less, more preferably 10 μS / cm or less, and even more preferably 1 μS / cm or less. Specifically, it is purified water, such as distilled water or ion exchange water. The washing operation with water is carried out by mixing and stirring the polycarbonate resin solution and water, separating the organic phase and the aqueous phase, and taking out the organic phase.

この工程における水洗浄は、少なくとも1回、好ましくは1〜3回、より好ましくは1〜2回実施される。この水洗浄の回数は、使用する水の純度や使用量によっても変わる。通常1回に使用される水の量はポリカーボネート樹脂溶液100容量部当り5〜200容量部、好ましくは10〜100容量部の範囲である。   The water washing in this step is performed at least once, preferably 1 to 3 times, more preferably 1 to 2 times. The number of water washings varies depending on the purity and amount of water used. Usually, the amount of water used at one time is in the range of 5 to 200 parts by volume, preferably 10 to 100 parts by volume per 100 parts by volume of the polycarbonate resin solution.

ここで、水洗浄工程において水相と有機相の分離性が悪く明瞭な界面が形成されない場合、生産効率が著しく低下するため、水洗浄工程における水相と有機相の分離性が良好で明瞭な界面が形成されることが好ましい。   Here, if the separation between the water phase and the organic phase is poor and a clear interface is not formed in the water washing step, the production efficiency is remarkably reduced, so the separation between the water phase and the organic phase in the water washing step is good and clear. It is preferred that an interface be formed.

分離精製された樹脂溶液は、攪拌下の温水に滴下する、ニーダーなどに投入するなど従来の方法によって粒状化することが可能である。溶媒や水分を含むポリカーボネート樹脂粒状体を、乾燥機により乾燥させることにより、押出加工や成形加工に適した粒状物が得られる。   The separated and purified resin solution can be granulated by a conventional method such as dropping it into hot water under stirring or putting it into a kneader. By drying a polycarbonate resin granular material containing a solvent and moisture with a dryer, a granular material suitable for extrusion or molding can be obtained.

以下に実施例を挙げて本発明をさらに説明する。なお実施例中の部は重量部であり、%は重量%である。なお、評価は下記の方法に従った。   The following examples further illustrate the present invention. In addition, the part in an Example is a weight part and% is weight%. The evaluation was performed according to the following method.

(1)粘度平均分子量(Mv)
次式にて算出される比粘度(ηSP)を20℃で塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出する。
ηSP/c=[η]+0.45×[η]2c(但し[η]は極限粘度)
[η]=1.23×10−4 Mv0.83
c=0.7
(1) Viscosity average molecular weight (Mv)
Using a Ostwald viscometer, a specific viscosity (η SP ) calculated by the following formula was determined from a solution obtained by dissolving 0.7 g of polycarbonate resin in 100 ml of methylene chloride at 20 ° C.
Specific viscosity (η SP ) = (t−t 0 ) / t 0
[T 0 is methylene chloride falling seconds, t is sample solution falling seconds]
From the obtained specific viscosity (η SP ), the viscosity average molecular weight Mv is calculated by the following formula.
η SP /c=[η]+0.45×[η]2c (where [η] is the intrinsic viscosity)
[Η] = 1.23 × 10 −4 Mv 0.83
c = 0.7

(2)分子量分布(Mw/Mn)
東ソー(株)社製HLC−8220GPCを用い、ゲルパーミエーションカラムクロマトグラフィー法(GPC法)によるポリスチレン換算測定を実施した。充填剤としてTSK−gelSuperHZ4000、3000、2000をそれぞれ充填した内径4.6cm、長さ15cmのカラム3本を使用し、40℃、移動層としてクロロホルムを0.35ml/minの速度で流し、254nmの紫外線により検出した。
(2) Molecular weight distribution (Mw / Mn)
The polystyrene conversion measurement by gel permeation column chromatography method (GPC method) was implemented using HLC-8220GPC manufactured by Tosoh Corporation. Three columns with an inner diameter of 4.6 cm and a length of 15 cm packed with TSK-gelSuperHZ4000, 3000, and 2000, respectively, were used as the packing material. Chloroform was flowed at a rate of 0.35 ml / min as a moving bed at 40 ° C. Detection was by ultraviolet light.

実施例1
温度計、撹拌機、還流冷却器付き反応器にイオン交換水21592部、48.5%水酸化ナトリウム水溶液3675部を入れ、一般式[1]で表される二価フェノール(I)として2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)3897部、およびハイドロサルファイト7.6部を溶解した後、塩化メチレン14565部を加え、撹拌下22〜30℃でホスゲン1900部を60分要して吹き込んだ。48.5%水酸化ナトリウム水溶液1131部、p−tert−ブチルフェノール108重量部を塩化メチレン800部に溶解した溶液を加え、攪拌しながら一般式[3]で表される二価フェノール(II)として下記構造のポリジオルガノシロキサン化合物(信越化学工業(株)製 X−22−1821)205重量部を塩化メチレン800部に溶解した溶液を加えて乳化状態とした後、再度激しく撹拌した。かかる攪拌下、反応液が26℃の状態でトリエチルアミン4.3重量部を加えて温度26〜31℃において1時間撹拌を続けて反応を終了した。反応終了後有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発させ、ポリカーボネート−ポリジメチルシロキサン共重合体のパウダーを得た。この共重合体の粘度平均分子量は19,600であり、Mw/Mnは2.35であった。水洗洗浄において短時間で明確な界面を形成し、有機相と水相の分離性は極めて良好であった。結果を表1に記載した。
Example 1
In a reactor equipped with a thermometer, a stirrer and a reflux condenser, 21592 parts of ion-exchanged water and 3675 parts of 48.5% aqueous sodium hydroxide solution were added, and 2 as dihydric phenol (I) represented by the general formula [1]. After dissolving 3897 parts of 2-bis (4-hydroxyphenyl) propane (bisphenol A) and 7.6 parts of hydrosulfite, 14565 parts of methylene chloride are added, and 1900 parts of phosgene are added for 60 minutes at 22-30 ° C. with stirring. In short, I blew in. A solution obtained by dissolving 1131 parts of 48.5% aqueous sodium hydroxide solution and 108 parts by weight of p-tert-butylphenol in 800 parts of methylene chloride was added and stirred as a dihydric phenol (II) represented by the general formula [3]. A solution prepared by dissolving 205 parts by weight of a polydiorganosiloxane compound (X-22-1821, manufactured by Shin-Etsu Chemical Co., Ltd.) in 800 parts of methylene chloride was added to obtain an emulsified state, and then vigorously stirred again. Under such stirring, 4.3 parts by weight of triethylamine was added while the reaction solution was at 26 ° C., and stirring was continued at a temperature of 26 to 31 ° C. for 1 hour to complete the reaction. After completion of the reaction, the organic phase is separated, diluted with methylene chloride, washed with water, acidified with hydrochloric acid, washed with water, and poured into a kneader filled with warm water when the conductivity of the aqueous phase is almost the same as that of ion-exchanged water. The methylene chloride was evaporated while stirring to obtain a polycarbonate-polydimethylsiloxane copolymer powder. The copolymer had a viscosity average molecular weight of 19,600 and Mw / Mn was 2.35. In the washing and washing, a clear interface was formed in a short time, and the separation property between the organic phase and the aqueous phase was extremely good. The results are shown in Table 1.

Figure 2011032433
Figure 2011032433

実施例2
2,2−ビス(4−ヒドロキシフェニル)プロパンを3880部、一般式[3]で表される二価フェノール(II)を430重量部用いた以外は、実施例1と同様にした。この共重合体の粘度平均分子量は20,100であり、Mw/Mnは2.52であった。結果を表1に併記する。
Example 2
The procedure was the same as Example 1 except that 3880 parts of 2,2-bis (4-hydroxyphenyl) propane and 430 parts by weight of dihydric phenol (II) represented by the general formula [3] were used. The viscosity average molecular weight of this copolymer was 20,100, and Mw / Mn was 2.52. The results are also shown in Table 1.

実施例3
2,2−ビス(4−ヒドロキシフェニル)プロパンを3860部、一般式[3]で表される二価フェノール(II)を681重量部用いた以外は、実施例1と同様にした。この共重合体の粘度平均分子量は20,000であり、Mw/Mnは2.59であった。水洗洗浄において有機相と水相の分離性は極めて良好であり、短時間で明確な界面を形成した。結果を表1に併記する。
Example 3
The procedure was the same as Example 1 except that 3860 parts of 2,2-bis (4-hydroxyphenyl) propane and 681 parts by weight of dihydric phenol (II) represented by the general formula [3] were used. The copolymer had a viscosity average molecular weight of 20,000 and Mw / Mn of 2.59. Separation between the organic phase and the aqueous phase was very good in washing with water, and a clear interface was formed in a short time. The results are also shown in Table 1.

実施例4
2,2−ビス(4−ヒドロキシフェニル)プロパンを3889部、一般式[3]で表される二価フェノール(II)として、下記構造のポリジオルガノシロキサン化合物(信越化学工業(株)製 X−22−1875)を205重量部用いた以外は、実施例1と同様にした。この共重合体の粘度平均分子量は19,100であり、Mw/Mnは2.44であった。水洗洗浄において有機相と水相の分離性は極めて良好であり、短時間で明確な界面を形成した。結果を表1に併記する。
Example 4
As a dihydric phenol (II) represented by general formula [3] with 3889 parts of 2,2-bis (4-hydroxyphenyl) propane, a polydiorganosiloxane compound having the following structure (Shin-Etsu Chemical Co., Ltd. X- 22-1875) was used in the same manner as in Example 1 except that 205 parts by weight was used. The viscosity average molecular weight of this copolymer was 19,100, and Mw / Mn was 2.44. Separation between the organic phase and the aqueous phase was very good in washing with water, and a clear interface was formed in a short time. The results are also shown in Table 1.

Figure 2011032433
Figure 2011032433

実施例5
2,2−ビス(4−ヒドロキシフェニル)プロパンを3867部、一般式[3]で表される二価フェノール(II)を429重量部用いた以外は、実施例4と同様にした。この共重合体の粘度平均分子量は18,700であり、Mw/Mnは2.57であった。水洗洗浄において有機相と水相の分離性は極めて良好であり、短時間で明確な界面を形成した。結果を表1に併記する。
Example 5
The same procedure as in Example 4 was repeated, except that 3867 parts of 2,2-bis (4-hydroxyphenyl) propane and 429 parts by weight of dihydric phenol (II) represented by the general formula [3] were used. This copolymer had a viscosity average molecular weight of 18,700 and Mw / Mn of 2.57. Separation between the organic phase and the aqueous phase was very good in washing with water, and a clear interface was formed in a short time. The results are also shown in Table 1.

実施例6
2,2−ビス(4−ヒドロキシフェニル)プロパンを3840部、一般式[3]で表される二価フェノール(II)を678重量部用いた以外は、実施例4と同様にした。この共重合体の粘度平均分子量は18,600であり、Mw/Mnは2.53であった。水洗洗浄において有機相と水相の分離性は極めて良好であり、短時間で明確な界面を形成した。結果を表1に併記する。
Example 6
The same procedure as in Example 4 was repeated, except that 3840 parts of 2,2-bis (4-hydroxyphenyl) propane and 678 parts by weight of dihydric phenol (II) represented by the general formula [3] were used. The copolymer had a viscosity average molecular weight of 18,600 and Mw / Mn was 2.53. Separation between the organic phase and the aqueous phase was very good in washing with water, and a clear interface was formed in a short time. The results are also shown in Table 1.

比較例1
温度計、撹拌機、還流冷却器付き反応器にイオン交換水21592部、48.5%水酸化ナトリウム水溶液3675部を入れ、一般式[1]で表される二価フェノール(I)として2,2−ビス(4−ヒドロキシフェニル)プロパン(ビスフェノールA)3897部、一般式[3]で表される二価フェノール(II)として上記ポリジオルガノシロキサン化合物(信越化学工業(株)製 X−22−1821)205重量部、およびハイドロサルファイト7.6部を溶解した後、塩化メチレン14565部を加え、撹拌下22〜30℃でホスゲン1900部を60分要して吹き込んだ。48.5%水酸化ナトリウム水溶液1131部、p−tert−ブチルフェノール108重量部を塩化メチレン800部に溶解した溶液を加え、乳化状態とした後、再度激しく撹拌した。かかる攪拌下、反応液が26℃の状態でトリエチルアミン4.3重量部を加えて温度26〜31℃において1時間撹拌を続けて反応を終了した。反応終了後有機相を分離し、塩化メチレンで希釈して水洗した後塩酸酸性にして水洗し、水相の導電率がイオン交換水と殆ど同じになったところで温水を張ったニーダーに投入して、攪拌しながら塩化メチレンを蒸発し、ポリカーボネート−ポリジメチルシロキサン共重合体のパウダーを得た。この共重合体の粘度平均分子量は21,200であり、Mw/Mnは3.16であった。水洗洗浄において明確な界面を形成するまでに長時間を要し、有機相と水相の分離性は劣悪であった。結果を表1に併記する。
Comparative Example 1
In a reactor equipped with a thermometer, a stirrer and a reflux condenser, 21592 parts of ion-exchanged water and 3675 parts of 48.5% aqueous sodium hydroxide solution were added, and 2 as dihydric phenol (I) represented by the general formula [1]. 3897 parts of 2-bis (4-hydroxyphenyl) propane (bisphenol A) and the above polydiorganosiloxane compound (X-22- manufactured by Shin-Etsu Chemical Co., Ltd.) as the dihydric phenol (II) represented by the general formula [3] 1821) After dissolving 205 parts by weight and 7.6 parts of hydrosulfite, 14565 parts of methylene chloride was added, and 1900 parts of phosgene was blown in at a temperature of 22-30 ° C. for 60 minutes with stirring. A solution prepared by dissolving 1131 parts of a 48.5% aqueous sodium hydroxide solution and 108 parts by weight of p-tert-butylphenol in 800 parts of methylene chloride was added to obtain an emulsified state, and then vigorously stirred again. Under such stirring, 4.3 parts by weight of triethylamine was added while the reaction solution was at 26 ° C., and stirring was continued at a temperature of 26 to 31 ° C. for 1 hour to complete the reaction. After completion of the reaction, the organic phase is separated, diluted with methylene chloride, washed with water, acidified with hydrochloric acid, washed with water, and poured into a kneader filled with warm water when the conductivity of the aqueous phase is almost the same as that of ion-exchanged water. The methylene chloride was evaporated while stirring to obtain a polycarbonate-polydimethylsiloxane copolymer powder. The copolymer had a viscosity average molecular weight of 21,200 and Mw / Mn of 3.16. It took a long time to form a clear interface in washing and washing, and the separability between the organic phase and the aqueous phase was poor. The results are also shown in Table 1.

Figure 2011032433
Figure 2011032433

本発明において得られるポリカーボネート−ポリジオルガノシロキサン共重合体は、光ディスクなどの各種光学ディスクおよび関連部材、電池ハウジングなどの各種ハウジング成形品、鏡筒、メモリーカード、スピーカーコーン、ディスクカートリッジ、面発光体、マイクロマシン用機構部品、ヒンジ付き成形品またはヒンジ用成形品、透光・導光型ボタン類、タッチパネル部品などの光学部品、電気・電子機器分野、自動車分野において幅広く使用することができ極めて有用である。   The polycarbonate-polydiorganosiloxane copolymer obtained in the present invention includes various optical disks such as optical disks and related members, various housing molded products such as battery housings, lens barrels, memory cards, speaker cones, disk cartridges, surface light emitters, It is extremely useful because it can be widely used in micromachine mechanism parts, hinged molded articles or hinge molded parts, optical parts such as translucent / light-guiding buttons, touch panel parts, electrical / electronic devices, and automobiles. .

Claims (7)

あらかじめ水に不溶性の有機溶媒とアルカリ水溶液との混合液中における下記一般式[1]で表わされる二価フェノール(I)とエステル形成性化合物の反応により末端クロロホルメート基を有するオリゴマーを含む混合溶液を調製し、次いで、該混合溶液中に一般式[3]で表わされるヒドロキシアリール末端ポリジオルガノシロキサン(II)を加え、該ヒドロキシアリール末端ポリジオルガノシロキサン(II)と該オリゴマーを界面重縮合させることを特徴とする、ポリカーボネート−ポリジオルガノシロキサン共重合体の製造方法。
Figure 2011032433
[上記一般式[1]において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式[2]で表される基からなる群より選ばれる少なくとも一つの基である。
Figure 2011032433
(上記一般式[2]においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。)]
Figure 2011032433
(上記一般式[3]において、R、R、R、R、R及びRは、各々独立に水素原子、炭素数1〜12のアルキル基又は炭素数6〜12の置換若しくは無置換のアリール基であり、R及びR10は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜10のアルキル基、炭素原子数1〜10のアルコキシ基であり、pは自然数であり、qは0又は自然数であり、p+qは500未満の自然数である。XはC〜Cの二価脂肪族基である。)
A mixture containing an oligomer having a terminal chloroformate group by the reaction of a dihydric phenol (I) represented by the following general formula [1] and an ester-forming compound in a mixture of an organic solvent insoluble in water and an aqueous alkaline solution in advance. Next, a hydroxyaryl-terminated polydiorganosiloxane (II) represented by the general formula [3] is added to the mixed solution, and the hydroxyaryl-terminated polydiorganosiloxane (II) and the oligomer are subjected to interfacial polycondensation. A process for producing a polycarbonate-polydiorganosiloxane copolymer.
Figure 2011032433
[In General Formula [1], R 1 and R 2 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 18 carbon atoms, an alkoxy group having 1 to 18 carbon atoms, or 6 to 6 carbon atoms. 20 cycloalkyl groups, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 3 to 14 carbon atoms, aryloxy groups having 3 to 14 carbon atoms, carbon atoms Represents a group selected from the group consisting of an aralkyl group having 7 to 20 carbon atoms, an aralkyloxy group having 7 to 20 carbon atoms, a nitro group, an aldehyde group, a cyano group, and a carboxyl group. E and f are each an integer of 1 to 4, and W is a single bond or at least one group selected from the group consisting of groups represented by the following general formula [2].
Figure 2011032433
(In the above general formula [2], R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 and R 18 are each independently a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, carbon Represents a group selected from the group consisting of an aryl group having 3 to 14 atoms and an aralkyl group having 7 to 20 carbon atoms, and R 19 and R 20 each independently represent a hydrogen atom, a halogen atom, or a carbon atom having 1 to 18 carbon atoms. Alkyl groups, alkoxy groups having 1 to 10 carbon atoms, cycloalkyl groups having 6 to 20 carbon atoms, cycloalkoxy groups having 6 to 20 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, and 3 carbon atoms. -14 aryl group, aryloxy group having 6 to 10 carbon atoms, aralkyl group having 7 to 20 carbon atoms, aralkyloxy group having 7 to 20 carbon atoms, nitro group, aldehyde group, cyano group and Represents a group selected from the group consisting of carboxyl groups, and when there are a plurality of them, they may be the same or different, g is an integer of 1 to 10, and h is an integer of 4 to 7).
Figure 2011032433
(In the above general formula [3], R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a substitution having 6 to 12 carbon atoms. Or an unsubstituted aryl group, R 9 and R 10 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms, and p is a natural number in it, q is 0 or a natural number, p + q is a natural number less than 500 .X is a divalent aliphatic group of C 2 ~C 8.)
ポリカーボネート−ポリジオルガノシロキサン共重合体の分子量分布(Mw/Mn)が2.8以下である、請求項1記載の製造方法。   The manufacturing method of Claim 1 whose molecular weight distribution (Mw / Mn) of a polycarbonate polydiorganosiloxane copolymer is 2.8 or less. 一般式[3]で表されるヒドロキシアリール末端ポリジオルガノシロキサンが(2−アリルフェノール)末端ポリジオルガノシロキサンである、請求項1記載の製造方法。   The production method according to claim 1, wherein the hydroxyaryl-terminated polydiorganosiloxane represented by the general formula [3] is (2-allylphenol) -terminated polydiorganosiloxane. 一般式[3]で表されるヒドロキシアリール末端ポリジオルガノシロキサンが(2−メトキシ−4−アリルフェノール)末端ポリジオルガノシロキサンである、請求項1記載の製造方法。   The production method according to claim 1, wherein the hydroxyaryl-terminated polydiorganosiloxane represented by the general formula [3] is (2-methoxy-4-allylphenol) -terminated polydiorganosiloxane. p+qが5〜70である、請求項1記載の製造方法。   The manufacturing method of Claim 1 whose p + q is 5-70. 一般式[3]で表されるポリジオルガノシロキサンブロックが0.1〜50wt%である、請求項1記載の製造方法。   The manufacturing method of Claim 1 whose polydiorganosiloxane block represented by General formula [3] is 0.1-50 wt%. 、R、R、R、R、Rがメチル基である、請求項1記載の製造方法。 The manufacturing method of Claim 1 whose R < 3 >, R < 4 >, R < 5 >, R < 6 >, R <7> , R < 8 > is a methyl group.
JP2009182486A 2009-08-05 2009-08-05 Method for preparing polycarbonate-polydiorganosiloxane copolymer Pending JP2011032433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182486A JP2011032433A (en) 2009-08-05 2009-08-05 Method for preparing polycarbonate-polydiorganosiloxane copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182486A JP2011032433A (en) 2009-08-05 2009-08-05 Method for preparing polycarbonate-polydiorganosiloxane copolymer

Publications (1)

Publication Number Publication Date
JP2011032433A true JP2011032433A (en) 2011-02-17

Family

ID=43761825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182486A Pending JP2011032433A (en) 2009-08-05 2009-08-05 Method for preparing polycarbonate-polydiorganosiloxane copolymer

Country Status (1)

Country Link
JP (1) JP2011032433A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080496A (en) * 2012-10-16 2014-05-08 Teijin Ltd Polycarbonate-polydiorganosiloxane copolymer and manufacturing method thereof
KR20140106526A (en) * 2011-12-02 2014-09-03 이데미쓰 고산 가부시키가이샤 Continuous production method for polycarbonate-polyorganosiloxane copolymer
US10189942B2 (en) * 2014-03-31 2019-01-29 Idemitsu Kosan Co., Ltd. Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer, and production method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100684A (en) * 1992-09-21 1994-04-12 Idemitsu Petrochem Co Ltd Production of polycarbonate-polyorganosiloxane copolymer
JPH06263865A (en) * 1993-03-16 1994-09-20 Idemitsu Kosan Co Ltd Production of polycarbonate copolymer
JPH08169947A (en) * 1994-07-21 1996-07-02 General Electric Co <Ge> Silicone-polycarbonate block copolymer and polycarbonate composition with reduced haze,and their production
JP2662310B2 (en) * 1989-07-07 1997-10-08 出光石油化学株式会社 Polycarbonate-polydimethylsiloxane copolymer and method for producing the same
JP2006518803A (en) * 2003-02-21 2006-08-17 ゼネラル・エレクトリック・カンパニイ Transparent heat-resistant polycarbonate-polysiloxane copolymer, transparent blend with polycarbonate, and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662310B2 (en) * 1989-07-07 1997-10-08 出光石油化学株式会社 Polycarbonate-polydimethylsiloxane copolymer and method for producing the same
JPH06100684A (en) * 1992-09-21 1994-04-12 Idemitsu Petrochem Co Ltd Production of polycarbonate-polyorganosiloxane copolymer
JPH06263865A (en) * 1993-03-16 1994-09-20 Idemitsu Kosan Co Ltd Production of polycarbonate copolymer
JPH08169947A (en) * 1994-07-21 1996-07-02 General Electric Co <Ge> Silicone-polycarbonate block copolymer and polycarbonate composition with reduced haze,and their production
JP2006518803A (en) * 2003-02-21 2006-08-17 ゼネラル・エレクトリック・カンパニイ Transparent heat-resistant polycarbonate-polysiloxane copolymer, transparent blend with polycarbonate, and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140106526A (en) * 2011-12-02 2014-09-03 이데미쓰 고산 가부시키가이샤 Continuous production method for polycarbonate-polyorganosiloxane copolymer
KR101938924B1 (en) 2011-12-02 2019-04-10 이데미쓰 고산 가부시키가이샤 Continuous production method for polycarbonate-polyorganosiloxane copolymer
JP2014080496A (en) * 2012-10-16 2014-05-08 Teijin Ltd Polycarbonate-polydiorganosiloxane copolymer and manufacturing method thereof
US10189942B2 (en) * 2014-03-31 2019-01-29 Idemitsu Kosan Co., Ltd. Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer, and production method therefor
US10934392B2 (en) 2014-03-31 2021-03-02 Idemitsu Kosan Co., Ltd. Polyorganosiloxane, polycarbonate-polyorganosiloxane copolymer, and production method therefor

Similar Documents

Publication Publication Date Title
TWI549986B (en) A high-flow polycarbonate copolymer, a method for producing a high molecular weight aromatic polycarbonate resin, and an aromatic polycarbonate compound
KR101787127B1 (en) Polycarbonate-polyorganosiloxane copolymer, process for production of the copolymer, and polycarbonate resin containing the copolymer
JP5919294B2 (en) Polycarbonate-polyorganosiloxane copolymer and method for producing the same
JP5823944B2 (en) Polycarbonate-polydiorganosiloxane copolymer and method for producing the same
RU2551370C2 (en) Method of producing highly polymerised aromatic polycarbonate resin
KR101828300B1 (en) Polycarbonate resin composition having excellent heat resistance and flowability and molded article comprising the same
JP2007536420A (en) Copolycarbonate with improved fluidity
JPS63152623A (en) Aliphatic diol-bis-diphenolcarbonate
KR20130074748A (en) Method of preparing polysiloxane-polycarbonate copolymer
KR101608411B1 (en) [poly(isosorbide carbonate-aromatic carbonate)]-[polycarbonate] block copolymer and method for preparing the same
US4736016A (en) Cyclic polycarbonate oligomers from spirobiindane bisphenols
JP2004525206A (en) Polycarbonate copolymer with excellent hydrolysis stability
JP2011032433A (en) Method for preparing polycarbonate-polydiorganosiloxane copolymer
KR102115799B1 (en) Polysiloxane-polycarbonate copolymer having improved transparency and low temperature impact resistance and method for preparing the same
KR101528362B1 (en) Polysiloxane-polycarbonate copolymer having improved transparency and method for preparing the same
JP2011173989A (en) Method for producing polycarbonate/polydiorganosiloxane copolymer
EP0941268A1 (en) Polycarbonates
US4767840A (en) Cyclic monocarbonate bishaloformates, method for their preparation, and uses thereof
KR20060066060A (en) Process for preparing branched polycarbonate
JP6097113B2 (en) Polycarbonate copolymer and method for producing the same
JP4071145B2 (en) Polycarbonate copolymer and method for producing the same
US4839462A (en) Cyclic polycarbonate oligomers: inhibition of polymerization to linear polycarbonates
US4921975A (en) Cyclic monocarbonate bishaloformates
KR101530322B1 (en) Polysiloxane-polycarbonate copolymer having improved transparency and method for preparing the same
KR102432074B1 (en) Polyester oligomer and method for preparing the same, and polyester-polycarbonate block copolymer comprising the oligomer with improved scratch resistance and method for preparing the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110704

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120604

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008