JP2011018557A - Power supply circuit for led lighting, and led electric bulb mounted with the power supply circuit for led lighting - Google Patents

Power supply circuit for led lighting, and led electric bulb mounted with the power supply circuit for led lighting Download PDF

Info

Publication number
JP2011018557A
JP2011018557A JP2009162362A JP2009162362A JP2011018557A JP 2011018557 A JP2011018557 A JP 2011018557A JP 2009162362 A JP2009162362 A JP 2009162362A JP 2009162362 A JP2009162362 A JP 2009162362A JP 2011018557 A JP2011018557 A JP 2011018557A
Authority
JP
Japan
Prior art keywords
power supply
voltage
circuit
led lighting
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009162362A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Hashiguchi
満洋 橋口
Takakazu Miyahara
隆和 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elm Co Ltd
Original Assignee
Elm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elm Co Ltd filed Critical Elm Co Ltd
Priority to JP2009162362A priority Critical patent/JP2011018557A/en
Publication of JP2011018557A publication Critical patent/JP2011018557A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply circuit for LED (light-emitting diode) lighting with a high power factor at use as a commercial alternating-current power source in an inverter system capable of controlling light by a general light controller varying a power supply voltage or an average power supply voltage, and an LED electric bulb mounted with the power supply circuit for the LED lighting.SOLUTION: The power supply circuit for the LED lighting inputs a voltage to be applied on an inverter circuit into a light-controlling terminal DM provided at a control IC 1 by dividing it at a given partial pressure ratio to the control IC 1 controlling the inverter circuit. By this, the light control of an LED element becomes possible by a general light controller varying the power supply voltage or the average power supply voltage.

Description

本発明は、電源電圧又は平均電源電圧を可変させる一般的な調光器で調光可能なインバータ方式のLED(発光ダイオード)点灯用電源回路及び該LED点灯用電源回路を搭載したLED電球に関する。   The present invention relates to an inverter-type LED (light-emitting diode) lighting power circuit that can be dimmed by a general dimmer that varies a power supply voltage or an average power supply voltage, and an LED bulb equipped with the LED lighting power circuit.

近年、エネルギー効率の悪い白熱電球やハロゲン電球に代わる代替光源として、電球型蛍光灯やLED電球が製造販売されている。これらの電球型蛍光灯やLED電球では、インバータ回路を備える電源回路が多く用いられている。   In recent years, bulb-type fluorescent lamps and LED bulbs have been manufactured and sold as alternative light sources to replace inefficient incandescent bulbs and halogen bulbs. In these bulb-type fluorescent lamps and LED bulbs, a power supply circuit including an inverter circuit is often used.

LED電球に内蔵される電源回路は、通常、整流回路とインバータ回路から成る。ここで、整流回路は、商用電源から供給される交流電力を直流電力に変換するものであり、例えばブリッジ接続したダイオード及び平滑用コンデンサから構成される。また、インバータ回路は前記整流回路を経て入力された直流電力を高周波電力に変換するものであり、降圧・昇圧を行うトランスやコイル、高周波スイッチング等を行う制御ICなどから構成される。   The power supply circuit built in the LED bulb is usually composed of a rectifier circuit and an inverter circuit. Here, the rectifier circuit converts AC power supplied from a commercial power source into DC power, and includes, for example, a bridge-connected diode and a smoothing capacitor. The inverter circuit converts DC power input through the rectifier circuit into high-frequency power, and includes a transformer and a coil that perform step-down / step-up and a control IC that performs high-frequency switching.

特開2004−192833号公報JP 2004-192833 A

上記の制御ICは、その多くが、インバータ回路への入力電圧が変動する際に輝度が変化することを防ぐために、LED素子に流れる電流を一定に保つ回路(定電流回路)が組み込まれている(例えば引用文献1)。これにより、インバータ回路へ入力される電源電圧が変動しても一定の輝度でLED素子を発光させることができる。その反面、電源電圧(又は電源電圧の平均値)を変化させることによる調光ができなくなるという問題が生じる。ホテルや結婚式場、レストランなど、イベントや天候、時間帯等により照明の明るさを変える必要のある施設では、一般的に電源電圧又は平均電源電圧を可変させる方式の調光が行われており、従って、従来のLED電球では対応できず、将来製造の中止が予定されている白熱電球の代替には利用できない。また家庭など小規模な用途においても電源電圧を可変させる方式の調光器が組み込まれている例が増えており、同様に白熱電球を従来のインバータ型の蛍光灯やLED電球で代替することはできない。   Most of the above control ICs incorporate a circuit (constant current circuit) that keeps the current flowing through the LED element constant in order to prevent the luminance from changing when the input voltage to the inverter circuit fluctuates. (For example, cited document 1). Thereby, even if the power supply voltage input to the inverter circuit fluctuates, the LED element can emit light with a constant luminance. On the other hand, there arises a problem that light control cannot be performed by changing the power supply voltage (or the average value of the power supply voltages). In facilities such as hotels, wedding halls, restaurants, etc. where the brightness of lighting needs to be changed depending on events, weather, time zones, etc., dimming is generally performed by changing the power supply voltage or the average power supply voltage. Therefore, conventional LED bulbs cannot be used, and cannot be used as an alternative to incandescent bulbs that are scheduled to be discontinued in the future. In addition, there are an increasing number of cases where dimmers with a variable power supply voltage are incorporated in small-scale applications such as homes. Similarly, replacing incandescent bulbs with conventional inverter-type fluorescent lamps and LED bulbs Can not.

また、定電流回路が組み込まれたインバータ回路は負性抵抗特性を示すため、電源回路に供給する電圧(電源電圧)を減少させると、許容値以上の電流がインバータ回路に流入し、回路を破損させる恐れがある。そのため、上記の電源電圧を可変させる調光器に対して、従来のインバータ方式のLED電球を使用することは禁止されている。また、従来のインバータ方式の電球型蛍光灯やLED電球は、交流を直流に整流した上でインバータ回路により電圧や電流を変換しているが、同整流回路には平滑用コンデンサが付加されているため、コンデンサインプット型整流回路になる。これにより、インバータ回路に流入する電流はコンデンサインプット型特有の高調波を多く含むパルス状のものとなり、力率も0.6前後になる。電力会社は力率の高低によっても、電気料金の割引・割増を行っており、このような力率の低いLED電球を多数用いた場合、電気料金が割高となる。一方、モータや安定器型蛍光灯等の誘導負荷による遅れ力率は、進相コンデンサを付加する事により容易に改善できるが、このような進み位相の改善には大容量のコイルを必要とするため容易ではない。また、大量の高調波が発生すると、同じ電力系統に接続された力率改善用進相コンデンサ等に過大な電流が流れて障害が生じる恐れもある。   Inverter circuits with a built-in constant current circuit exhibit negative resistance characteristics, so if the voltage supplied to the power supply circuit (power supply voltage) is decreased, a current exceeding the allowable value flows into the inverter circuit and damages the circuit. There is a fear. Therefore, it is prohibited to use a conventional inverter-type LED bulb for the dimmer that varies the power supply voltage. In addition, the conventional inverter type light bulb type fluorescent lamp and LED light bulb convert the voltage and current by the inverter circuit after rectifying the alternating current into the direct current, but a smoothing capacitor is added to the rectifier circuit. Therefore, it becomes a capacitor input type rectifier circuit. As a result, the current flowing into the inverter circuit has a pulse shape including many harmonics peculiar to the capacitor input type, and the power factor is about 0.6. Electricity companies discount or increase electricity charges even if the power factor is high or low. If many LED bulbs with such low power factor are used, the electricity charge becomes high. On the other hand, the delay power factor due to inductive loads such as motors and ballast-type fluorescent lamps can be easily improved by adding a phase advance capacitor, but a large capacity coil is required to improve such a lead phase. It is not easy. In addition, when a large amount of harmonics is generated, an excessive current may flow through the power factor improving phase-advancing capacitor connected to the same power system, causing a failure.

本発明が解決しようとする課題は、一般的なインバータ回路用制御ICを用いて、力率が1に近い高力率のLED点灯用電源回路を提供するとともに、電源電圧又は電源電圧の平均値を可変させる調光器を用いて調光可能なインバータ方式のLED点灯用電源回路を提供することである。   The problem to be solved by the present invention is to provide an LED lighting power supply circuit having a high power factor close to 1 using a general inverter circuit control IC, and to supply power voltage or an average value of the power supply voltage. It is providing the inverter-type LED lighting power supply circuit which can be dimmed using the dimmer which makes variable.

上記課題を解決するために成された本発明に係るLED点灯用電源回路は、
調光端子又は電流検出回路用基準電源入力端子のいずれかを具備する制御ICを用いた、直流電圧を高周波電圧に変換するインバータ回路を備えるLED点灯用電源回路において、前記インバータ回路に印加される電源電圧又は該電源電圧から一定電圧分低下させた電圧を所定の分圧比で分圧する分圧手段を有し、該分圧手段で分圧された電圧を前記調光端子又は前記電流検出回路用基準電源入力端子に入力することを特徴とする。
An LED lighting power supply circuit according to the present invention made to solve the above problems is as follows.
In an LED lighting power supply circuit including an inverter circuit that converts a DC voltage into a high-frequency voltage using a control IC having either a dimming terminal or a reference power supply input terminal for a current detection circuit, applied to the inverter circuit A voltage dividing unit that divides a power supply voltage or a voltage obtained by lowering the power supply voltage by a predetermined voltage at a predetermined voltage dividing ratio, and the voltage divided by the voltage dividing unit is used for the dimming terminal or the current detection circuit; Input to the reference power input terminal.

本発明に係るLED点灯用電源回路によれば、インバータ回路に印加される電源電圧又は該電源電圧から一定電圧分低下させた電圧を所定の分圧比で、インバータ回路の制御ICの調光端子又は電流検出回路用基準電源入力端子に入力している。これにより、電源電圧を変化させたときに調光端子又は電流検出回路用基準電源入力端子に印加される電圧も同じ比率で変化するため、電源電圧を変えることによりLEDに供給される電流量も変化することになる。従って、電源電圧を可変させる調光器を用いた調光が可能となる。   According to the LED lighting power supply circuit of the present invention, the power supply voltage applied to the inverter circuit or a voltage obtained by lowering the power supply voltage by a predetermined voltage at a predetermined voltage dividing ratio or the dimming terminal of the control IC of the inverter circuit or Input to the reference power supply input terminal for the current detection circuit. Thereby, when the power supply voltage is changed, the voltage applied to the dimming terminal or the reference power supply input terminal for the current detection circuit also changes at the same ratio. Therefore, the amount of current supplied to the LED by changing the power supply voltage is also increased. Will change. Therefore, it is possible to perform dimming using a dimmer that varies the power supply voltage.

本発明のLED点灯用電源回路は、従来の電源回路に対して特別な回路や部品を追加していない。従って、LED電球を製造するためのコストを殆ど増加させることなく、電源電圧を可変させる調光器を用いた調光が可能となる。また、これにより、ホテルやレストラン等の大きな施設で、白熱電球やハロゲン電球に代替させることができるため、省電力化に大きく寄与することができる。   The LED lighting power supply circuit of the present invention does not add any special circuits or components to the conventional power supply circuit. Therefore, it is possible to perform dimming using a dimmer that varies the power supply voltage without substantially increasing the cost for manufacturing the LED bulb. In addition, this makes it possible to replace incandescent light bulbs and halogen light bulbs in large facilities such as hotels and restaurants, which can greatly contribute to power saving.

さらに、上記のインバータ回路は負性抵抗特性を持たないという特徴を有している。従って、本発明の電源回路に整流回路を加え、さらに整流回路で通常用いられる平滑用コンデンサを除去又は小容量にすることにより、整流回路の出力を脈流とし、商用電源から流入する電流と電圧の波形及び位相をほぼ一致させることができる。この結果、1に近い力率を得ることができる。また、高調波もほとんど生じないため、ホテルやレストラン等の大きな施設で、白熱電球やハロゲン電球を本発明に係る電源回路を内蔵したLED電球で代替しても、力率低下により割増料金を支払う心配が無く、更に高調波により施設内や周辺に障害を与える恐れもないため、省電力化に大きく寄与することができる。   Further, the above inverter circuit has a characteristic that it does not have negative resistance characteristics. Therefore, by adding a rectifier circuit to the power supply circuit of the present invention and further removing or reducing the smoothing capacitor normally used in the rectifier circuit, the output of the rectifier circuit is pulsated and the current and voltage flowing from the commercial power supply The waveform and phase can be substantially matched. As a result, a power factor close to 1 can be obtained. In addition, since almost no harmonics are generated, even if the incandescent light bulb or halogen light bulb is replaced with an LED light bulb with a built-in power supply circuit according to the present invention in a large facility such as a hotel or restaurant, an extra charge is paid due to the power factor decrease. There is no worry and there is no risk of damage to the facility and surroundings due to harmonics, which can greatly contribute to power saving.

直流電源に接続された従来のLED点灯用電源回路を示す回路図。The circuit diagram which shows the power supply circuit for the conventional LED lighting connected to DC power supply. 本発明に係るLED点灯用電源回路の第1実施例を示す回路図。The circuit diagram which shows 1st Example of the power circuit for LED lighting which concerns on this invention. 制御ICの内部構造及びその周辺を示す概略回路図。The schematic circuit diagram which shows the internal structure of control IC, and its periphery. 従来例のLED点灯用電源回路の動作説明のための波形図。The wave form diagram for operation | movement description of the power circuit for LED lighting of a prior art example. 従来例のLED点灯用電源回路において、制御ICの調光端子の電圧を変化させた場合の波形図。The wave form diagram at the time of changing the voltage of the light control terminal of control IC in the power supply circuit for LED lighting of a prior art example. 第1実施例のLED点灯用電源回路の動作説明のための波形図。The wave form diagram for operation | movement description of the power circuit for LED lighting of 1st Example. 交流電源に接続された従来のLED点灯用電源回路を示す回路図。The circuit diagram which shows the power supply circuit for the conventional LED lighting connected to AC power supply. 本発明に係るLED点灯用電源回路の第2実施例を示す回路図。The circuit diagram which shows 2nd Example of the power circuit for LED lighting which concerns on this invention. 従来例における電流・電圧波形を示す図。The figure which shows the electric current and voltage waveform in a prior art example. 従来例の整流回路において平滑用コンデンサを取り除く又は容量を小さくした場合の電流・電圧波形を示す図。The figure which shows the electric current and voltage waveform at the time of removing the smoothing capacitor in the rectifier circuit of a prior art example, or making capacity | capacitance small. 第2実施例の電流・電圧波形を示す図。The figure which shows the electric current and voltage waveform of 2nd Example. 第2実施例のLED点灯用電源回路の動作説明のための波形図。The wave form diagram for operation | movement description of the power circuit for LED lighting of 2nd Example. 調光端子DMへの分圧の第1変形例を示す調光端子DM周辺の回路図(a)、第2変形例を示す調光端子DM周辺の回路図(b)、第3変形例を示す調光端子DM周辺の回路図(c)。Circuit diagram (a) around the dimming terminal DM showing a first modification of the partial pressure to the dimming terminal DM, circuit diagram (b) around the dimming terminal DM showing a second modification, and a third modification The circuit diagram (c) around the dimming terminal DM shown.

本発明による第1実施例を図1〜図6を用いて説明する。
図1は直流電源を使用する従来のLED点灯電源回路を示す回路図であり、調光端子DMにボリューム等を経て規定の電圧を印加することにより、明るさを調整できるものである。図2は本実施例による電源電圧の可変により調光可能なLED点灯電源回路の回路図であり、電源電圧を分圧用抵抗R4、R5により分圧して調光端子DMに入力している。
なお、図1及び図2の回路図には、本実施例において重要な意味を持つ部分を破線で囲んでいる。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a circuit diagram showing a conventional LED lighting power supply circuit using a DC power supply, and the brightness can be adjusted by applying a prescribed voltage to the dimming terminal DM through a volume or the like. FIG. 2 is a circuit diagram of an LED lighting power supply circuit capable of dimming by varying the power supply voltage according to the present embodiment. The power supply voltage is divided by voltage dividing resistors R4 and R5 and input to the dimming terminal DM.
In the circuit diagrams of FIG. 1 and FIG. 2, a portion having an important meaning in the present embodiment is surrounded by a broken line.

図3は図1及び図2で用いた一般的なLED点灯用インバータ回路制御ICの内部構造を簡略化して示したものである。この制御ICの一般的な動作を図3の回路図及び図4の波形図を用いて説明する。なお、制御ICとしては、例えば米国リニアテクノロジー社製のLT3755(又はLT3755−1)を用いることができる。このLT3755(LT3755−1)ではCTRL端子が調光端子DMに相当する。   FIG. 3 shows a simplified internal structure of a general LED lighting inverter circuit control IC used in FIGS. 1 and 2. The general operation of this control IC will be described with reference to the circuit diagram of FIG. 3 and the waveform diagram of FIG. As the control IC, for example, LT3755 (or LT3755-1) manufactured by Linear Technology, Inc. can be used. In this LT3755 (LT3755-1), the CTRL terminal corresponds to the dimming terminal DM.

制御IC1の内部には、制御IC1が使用する安定な電源を作る安定化電源回路、動作の基準になる基準クロック(OSC)、該OSCのクロック信号の立ち上がりエッジで出力が正転するフリップフロップ(FF)、該FFの出力を外部若しくは内部に設けたトランジスタや電界効果トランジスタ(FET)を駆動するのに必要な駆動能力に増強するドライバー、該トランジスタやFETに流れる電流を検出するための電流検出端子CS、該電流検出端子CS用の比較電圧を入力し明るさを可変させる調光端子DMがある。   The control IC 1 includes a stabilized power supply circuit that generates a stable power source used by the control IC 1, a reference clock (OSC) serving as a reference for operation, and a flip-flop whose output is normally rotated at a rising edge of the clock signal of the OSC ( FF), a driver for enhancing the driving capability required to drive the transistor or field effect transistor (FET) provided outside or inside the output of the FF, and current detection for detecting a current flowing through the transistor or FET There is a dimming terminal DM for inputting a comparison voltage for the terminal CS and the current detection terminal CS and changing the brightness.

図4の一番上の波形はOSCにおけるクロック信号であり、その立ち上がりエッジでFFの出力(Q)が正転し、ドライバーを経てFETがオンになる。これにより、FETのドレイン電圧VDは略電源電圧から略0Vに下降し、FETにはコイルL1を経由して電流が流れ、抵抗R2により電圧に変換され電流検出端子CSに入力される。   The top waveform in FIG. 4 is a clock signal in the OSC, and the output (Q) of the FF is normally rotated at the rising edge thereof, and the FET is turned on through the driver. As a result, the drain voltage VD of the FET drops from approximately the power supply voltage to approximately 0 V, a current flows through the FET via the coil L1, is converted into a voltage by the resistor R2, and is input to the current detection terminal CS.

コイルL1に流れる電流は時間に比例して増加し、その比例係数(傾き)はコイルL1のインダクタンスに反比例し、電源電圧に比例する。この電流検出端子CSの電圧が調光端子DMの電圧に等しくなる、即ちコイルL1の電流が規定値に達すると、比較器の出力が正転し、その出力によりFFのリセットRST端子を経てFFがリセットされる。その結果、FFのQは0に下がり、FETはオフになる。   The current flowing through the coil L1 increases in proportion to time, and the proportionality coefficient (slope) is inversely proportional to the inductance of the coil L1 and proportional to the power supply voltage. When the voltage of the current detection terminal CS becomes equal to the voltage of the dimming terminal DM, that is, when the current of the coil L1 reaches a specified value, the output of the comparator is rotated forward, and the output is passed through the reset RST terminal of the FF. Is reset. As a result, the Q of FF falls to 0 and the FET is turned off.

なお、FETを1回通電することによりLED素子LED1〜LEDnに供給されるエネルギーはコイルL1に蓄えられるエネルギーに相当し、(コイルL1のインダクタンス)×(コイルL1に流れる電流)/2となるため、電源電圧が変動してもコイルL1の電流値が一定に保たれる。これにより、常に一定のエネルギーが直列接続されたLED1からLEDnに供給されることになる。 Incidentally, the energy supplied to the LED element LED1~LEDn by energizing once FET corresponds to the energy stored in the coil L1, the (current flowing through the coil L1) 2/2 × (the inductance of the coil L1) Therefore, even if the power supply voltage fluctuates, the current value of the coil L1 is kept constant. Thereby, constant energy is always supplied to LEDn from LED1 connected in series.

次に、コイルL1に流れる電流の勾配は電圧に比例するため、比較器が正転するまでに要する時間は、電源電圧が高いと早く、電源電圧が低いと遅いことになる。このことはOSCのクロック信号の周期が一定の場合、図4のドレイン電圧VDの波形に示すように、電源電圧が高いと短時間しかFETは通電せず、電源電圧が低いと長時間通電することになり、即ち、電源電圧が高いと電源の平均電流は減少し、電源電圧が低いと平均電流が増加することになる。従って、図1に示す従来例の電源回路が、電圧と電流が反比例する負性抵抗特性を示していることが分かる。   Next, since the gradient of the current flowing through the coil L1 is proportional to the voltage, the time required for the comparator to rotate forward is fast when the power supply voltage is high, and slow when the power supply voltage is low. This means that when the period of the OSC clock signal is constant, as shown in the waveform of the drain voltage VD in FIG. 4, the FET is energized only for a short time when the power supply voltage is high, and is energized for a long time when the power supply voltage is low. That is, when the power supply voltage is high, the average current of the power supply decreases, and when the power supply voltage is low, the average current increases. Therefore, it can be seen that the conventional power supply circuit shown in FIG. 1 exhibits a negative resistance characteristic in which voltage and current are inversely proportional.

このことは、電源電圧が変動しても照明の輝度が変わらないという利点である反面、市場で主に利用されている、サイリスタやトライアック等の半導体スイッチを使って商用電源を間欠的に通電することにより平均電圧を可変して調光する方式や、スライダックと呼ばれる単巻きトランスで電源電圧を可変させる調光する方式に対して使用すると、調光ができないばかりでなく、電源電圧が下がった際に規定電流の数倍の電流が流れることによりヒューズ等の保護回路が焼損するなど破損の恐れがある。従って、多くのLED電球や電球型蛍光灯は、このような電源電圧を可変させる方式の調光器に対して使用することが禁止されている。   Although this is an advantage that the brightness of the illumination does not change even if the power supply voltage fluctuates, the commercial power supply is intermittently energized using semiconductor switches such as thyristors and triacs that are mainly used in the market. Therefore, dimming is possible not only when dimming the power supply voltage with a single winding transformer called slidac, but also when the power supply voltage drops. If a current several times the specified current flows through the protective circuit, the protection circuit such as a fuse may be burned out and damaged. Therefore, many LED bulbs and bulb-type fluorescent lamps are prohibited from being used for such dimmers that vary the power supply voltage.

一方、図3の調光端子DMの電圧を変化させた場合の動作を図5を用いて説明する。
電源電圧が一定の場合、コイルL1に流れる電流の増加の傾きは一定であるから、調光端子DMの電圧が低いとコイルL1の電流は短時間に規定値に達し、比較器の出力Vcmpの出力レベルがH(High)になり、FFがリセットされ、FETがオフになる。この結果、コイルL1に蓄えられるエネルギーは調光端子DMの端子電圧の高低によりコントロールされることになる。
On the other hand, the operation when the voltage of the dimming terminal DM in FIG. 3 is changed will be described with reference to FIG.
When the power supply voltage is constant, the slope of increase in the current flowing through the coil L1 is constant. Therefore, when the voltage at the dimming terminal DM is low, the current in the coil L1 reaches a specified value in a short time, and the output Vcmp of the comparator The output level becomes H (High), the FF is reset, and the FET is turned off. As a result, the energy stored in the coil L1 is controlled by the level of the terminal voltage of the dimming terminal DM.

図6は図2に示す本実施例のLED点灯用電源回路の動作を示す波形図であり、電源電圧を所定の割合で分圧した電圧を調光端子DMに入力している。ここで、電源電圧をV、コイルL1のインダクタンスをL、FETがオンになってから時間t後にコイルL1に流れる電流をi、電流検出用抵抗R2の値をR、調光端子DMに入力する電圧の電源電圧Vに対する分圧比をrとして数式にすると
i=(V/L)・t
i・R=V/r
この二つの連立方程式をtについて解くと
t=L/r・R
となり、FETがオンする時間は、電源電圧に関係なく、コイルL1のインダクタンスLと、調光端子DMに入力する電圧の電源電圧Vに対する分圧比rと、電流検出用抵抗R2の値で決まる一定値となる。
FIG. 6 is a waveform diagram showing the operation of the LED lighting power supply circuit of this embodiment shown in FIG. 2, and a voltage obtained by dividing the power supply voltage at a predetermined ratio is inputted to the dimming terminal DM. Here, the power supply voltage is V, the inductance of the coil L1 is L, the current flowing in the coil L1 after time t after the FET is turned on is i, the value of the current detection resistor R2 is R, and the dimming terminal DM is input. I = (V / L) · t, where r is the voltage division ratio of the voltage to the power supply voltage V
i ・ R = V / r
When these two simultaneous equations are solved for t, t = L / r · R
Thus, the time during which the FET is turned on is constant regardless of the power supply voltage, and is determined by the value of the inductance L of the coil L1, the voltage dividing ratio r of the voltage input to the dimming terminal DM with respect to the power supply voltage V, and the current detection resistor R2. Value.

以上のことから、電源電圧を抵抗などで分圧し、電源電圧と比例関係にある電圧を調光端子DMに入力することにより、図6に示すグラフのように電源電圧に比例した電流が流れることになり、電源電圧を変えることによる調光が可能となる。   From the above, by dividing the power supply voltage with a resistor or the like and inputting a voltage proportional to the power supply voltage to the dimming terminal DM, a current proportional to the power supply voltage flows as shown in the graph of FIG. Thus, dimming can be performed by changing the power supply voltage.

本発明に係るLED点灯用電源回路の第2実施例について図7〜図13を用いて説明する。本実施例は、第1実施例の回路の前段に整流回路を加えたものであり、本実施例の電源回路には商用電源(交流電源)が接続される。   A second embodiment of the LED lighting power supply circuit according to the present invention will be described with reference to FIGS. In this embodiment, a rectifier circuit is added in front of the circuit of the first embodiment, and a commercial power supply (AC power supply) is connected to the power supply circuit of this embodiment.

図7は商用電源を使用する従来のLED点灯電源回路の回路図である。また、図8は本実施例による、電源電圧若しくは電源電圧の平均値を変えることにより電球の調光を行う調光器を用いてLED素子の輝度を変化させることができ、且つ、力率が1に近い高力率LED点灯電源回路を示した回路図である。
なお、図7及び図8の回路図には、第1実施例と同様に、本実施例において重要な意味を持つ部分を破線で囲んでいる。
FIG. 7 is a circuit diagram of a conventional LED lighting power supply circuit using a commercial power supply. Further, FIG. 8 shows that the luminance of the LED element can be changed by using a dimmer for dimming the bulb by changing the power supply voltage or the average value of the power supply voltage according to this embodiment, and the power factor is 1 is a circuit diagram showing a high power factor LED lighting power supply circuit close to 1. FIG.
In the circuit diagrams of FIG. 7 and FIG. 8, like the first embodiment, portions having an important meaning in the present embodiment are surrounded by broken lines.

図7の従来例では、商用電源は、回路が異常時に破断するヒューズ又は微小抵抗等から成る保護素子R6を経て、ブリッジ接続されたダイオードD2により整流され、平滑用コンデンサC4により平滑されたあとノイズ防止用のコイルL2、コンデンサC3を経て、制御IC1やコイルL1、FET等から成るインバータ回路に入力される。調光端子DMにはボリュームで分圧された制御IC1内部で安定化された電源Vccが接続されており、直列接続されたLED1からLEDnに流す電流を変化させ、これらの輝度を変更させることができる。一方、電源電圧を変化させてもこれらのLED素子に流れる電流は変わらないため、一般的な調光器による調光はできず、電源電圧が下がる際、電源電流が定格電流の数倍に達することがあるため、ダイオードD2の焼損や、保護素子R6の破断が発生するおそれがある。   In the conventional example shown in FIG. 7, the commercial power supply is rectified by a bridge-connected diode D2 via a protective element R6 made of a fuse or a minute resistance that breaks when the circuit is abnormal, and then smoothed by a smoothing capacitor C4. It passes through the prevention coil L2 and capacitor C3, and is input to an inverter circuit composed of the control IC1, coil L1, FET, and the like. The dimming terminal DM is connected to a power supply Vcc stabilized in the control IC 1 divided by a volume, and the current flowing from the LED 1 connected in series to the LED n can be changed to change the luminance thereof. it can. On the other hand, since the current flowing through these LED elements does not change even when the power supply voltage is changed, dimming by a general dimmer cannot be performed, and when the power supply voltage decreases, the power supply current reaches several times the rated current. In some cases, the diode D2 may burn out or the protective element R6 may break.

図8に示す第2実施例は、図7の従来例と同じく商用電源を使用する例であるが、図7とは異なり、電源電圧を分圧用抵抗R4、R5により分圧し、調光端子DMに入力している。これにより、第1実施例と同じく電源電圧(又は平均電源電圧)を変えることによりLED素子に流れる電流(又は平均電流)を変化させることができ、外部の調光器を用いて調光することが可能となる。   The second embodiment shown in FIG. 8 is an example in which a commercial power supply is used as in the conventional example of FIG. 7, but unlike FIG. 7, the power supply voltage is divided by voltage dividing resistors R4 and R5, and the dimming terminal DM is used. Is entered. Accordingly, the current (or average current) flowing through the LED element can be changed by changing the power supply voltage (or average power supply voltage) as in the first embodiment, and the light is adjusted using an external dimmer. Is possible.

次に、第2実施例のLED点灯用電源回路の力率について説明する。
まず、図7の従来例におけるコンデンサインプット型の整流回路の動作を図9に示す。図9の上側実線は商用電源の電圧波形であり、それをダイオードD2により全波整流に変換し、平滑用コンデンサC4により平滑化している。これにより全波整流の脈流の多くが消失し、破線に示すような電圧波形(V(C4))になる。この整流回路の動作は次のようになっている。まず、平滑用コンデンサC4が商用電源のピーク値まで充電される。その後、商用電源の電圧はサインカーブで減少していくが、コンデンサの内部に蓄積された電荷により平滑用コンデンサC4の電圧は急に下がらないため、ダイオードD2は非導通となり、商用電源から電力が供給されなくなる。この間、平滑用コンデンサC4に蓄積された電荷によりインバータ回路は動作を継続するため、平滑用コンデンサC4の電圧は低下していく。そして、商用電源の電圧の絶対値が増加し、平滑用コンデンサC4の電圧を越えるとダイオードD2が再び導通する。
Next, the power factor of the LED lighting power supply circuit according to the second embodiment will be described.
First, FIG. 9 shows the operation of the capacitor input type rectifier circuit in the conventional example of FIG. The upper solid line in FIG. 9 shows the voltage waveform of the commercial power supply, which is converted into full-wave rectification by the diode D2, and smoothed by the smoothing capacitor C4. As a result, most of the pulsating flow of full wave rectification disappears, resulting in a voltage waveform (V (C4)) as shown by the broken line. The operation of this rectifier circuit is as follows. First, the smoothing capacitor C4 is charged to the peak value of the commercial power supply. After that, the voltage of the commercial power supply decreases with a sine curve, but the voltage of the smoothing capacitor C4 does not drop suddenly due to the electric charge accumulated in the capacitor, so that the diode D2 becomes non-conductive, and power is supplied from the commercial power supply. It will not be supplied. During this time, the inverter circuit continues to operate due to the electric charge accumulated in the smoothing capacitor C4, so that the voltage of the smoothing capacitor C4 decreases. When the absolute value of the voltage of the commercial power supply increases and exceeds the voltage of the smoothing capacitor C4, the diode D2 becomes conductive again.

コンデンサインプット型の整流回路は上記のような動作を繰り返すため、図9の下側実線で示すように電流が流れる時と流れない時が生じることになる。また、その電流波形のピークは電圧波形より位相が進み、更に、電流波形は商用電源周波数の正弦波ではなく大量の高調波を含むことになる。この平滑用コンデンサC4を取り除くか小さくすると、コンデンサインプット型特有の間欠的で電源電圧に対して進相した電流は流れなくなり、電圧波形と位相は合致する。しかしながら、負荷のインバータ回路の電圧と電流の関係が負性抵抗であるため、その電流波形は図10のようになり、コンデンサインプット型に比べると力率や高調波ノイズは改善されるものの正弦波とは程遠く、力率は0.7〜0.8後にとどまる。   Since the capacitor input type rectifier circuit repeats the above-described operation, there are times when current flows and when current does not flow as indicated by the lower solid line in FIG. Further, the peak of the current waveform is advanced in phase from the voltage waveform, and further, the current waveform includes a large amount of harmonics instead of a sine wave of the commercial power supply frequency. When this smoothing capacitor C4 is removed or made smaller, the intermittent current specific to the capacitor input type and the phase-advanced current with respect to the power supply voltage does not flow, and the voltage waveform and phase match. However, since the relationship between the voltage and current of the inverter circuit of the load is a negative resistance, the current waveform is as shown in FIG. 10, and although the power factor and harmonic noise are improved as compared with the capacitor input type, the sine wave Far away, the power factor remains after 0.7-0.8.

これに対し、同様に平滑用コンデンサC4を取り除くか小さくした本実施例では、インバータ回路の負性抵抗特性が消失しているため、電源電圧に比例した電流が流れるようになり、その電流波形は図11のようになる。この結果、電圧と電流の位相が合致し、更に電圧に比例した電流が流れるため、電流波形は電圧に比例した正弦波になり、力率は概ね1になるとともに高調波がほとんど含まれないことになる。なお、この平滑用コンデンサC4の容量の具体的な数値は、消費電流1A当たり22μF以下とするのが望ましい。   On the other hand, in the present embodiment in which the smoothing capacitor C4 is similarly removed or reduced, since the negative resistance characteristic of the inverter circuit has disappeared, a current proportional to the power supply voltage flows, and its current waveform is As shown in FIG. As a result, the phase of the voltage and current match, and a current proportional to the voltage flows. Therefore, the current waveform becomes a sine wave proportional to the voltage, the power factor becomes approximately 1 and almost no harmonics are included. become. It should be noted that the specific value of the capacity of the smoothing capacitor C4 is desirably 22 μF or less per 1 A of consumed current.

本実施例の電源回路における交流電源半周期分の動作を図12に示す。この図から、電源電圧と相関する電圧を調光端子DMに入力することにより、電源電圧に相関する電源電流が流れることが分かる。   FIG. 12 shows the operation of the AC power supply half cycle in the power supply circuit of this embodiment. From this figure, it can be seen that when a voltage correlated with the power supply voltage is input to the dimming terminal DM, a power supply current correlated with the power supply voltage flows.

また、図7の従来例においてLED1〜LEDnから成るLED群は電源電圧の変動に関係なく一定のエネルギーが供給されるため、これらのLED群と並列に接続されているコンデンサC1はインバータのチョッピング周波数において電荷を貯えLEDに安定した電流を流せばよく、さらにチョッピング周波数が数十KHz〜数百KHzと高いため、その容量は1μF以下で良い。一方、図8に示す本実施例の電源回路は、LED群に流れる電流は商用電源の全波整流波形となるため、商用電源周波数の2倍の周波数で点滅することになる。この周波数は人間の目が明暗を識別できる周期に比べ遥かに短いため、不快感を与えることはないが、電源周波数帯域において蓄積効果を期待できる数百〜数千μFのコンデンサを使用することで、より安定な光を発することができる。   Further, in the conventional example of FIG. 7, the LED group composed of LEDs 1 to LEDn is supplied with a constant energy regardless of fluctuations in the power supply voltage. Therefore, the capacitor C1 connected in parallel with these LED groups is the chopping frequency of the inverter. In this case, it is only necessary to store a charge and to allow a stable current to flow through the LED. Further, since the chopping frequency is as high as several tens KHz to several hundreds KHz, the capacitance may be 1 μF or less. On the other hand, in the power supply circuit of the present embodiment shown in FIG. 8, the current flowing through the LED group becomes a full-wave rectified waveform of the commercial power supply, and therefore blinks at a frequency twice the commercial power supply frequency. Since this frequency is much shorter than the period in which the human eye can distinguish between light and dark, it does not give discomfort, but by using a capacitor of several hundred to several thousand μF that can be expected to have a storage effect in the power supply frequency band. , Can emit more stable light.

なお、図1、図2、図7及び図8の回路図において、コンデンサの記号に一般のコンデンサの記号と電解コンデンサの記号を使い分けて用いているが、この使い分けはコンデンサの種類を分けるためのものではなく、容量値の大きさを示すために使ったものである。ここで、一般コンデンサ記号は略1μF以下を、電解コンデンサ記号はそれ以上の容量値を示している。   1, 2, 7, and 8, the capacitor symbol is a common capacitor symbol and an electrolytic capacitor symbol, and this is used for different types of capacitors. It is not used to indicate the capacity value. Here, the general capacitor symbol indicates approximately 1 μF or less, and the electrolytic capacitor symbol indicates a capacitance value higher than that.

また、図2、図8及び上記説明において、調光端子DMに入力する電圧は電源電圧を抵抗で分圧したものとしたが、図13(a)のようにトランジスタのエミッタフォロアーや、図13(b)のようにバッファー増幅器を使うなど、多くの方法がある。   In FIG. 2, FIG. 8, and the above description, the voltage input to the dimming terminal DM is obtained by dividing the power supply voltage by a resistor. However, as shown in FIG. There are many methods such as using a buffer amplifier as in (b).

図13(c)は、電源電圧(又は平均電源電圧)を可変する調光器を用いた場合に、さらに安定した動作を可能にする回路例である。外部から調光するために電源電圧を下げると、制御IC1の電源電圧が低下し、該制御IC1の動作が不安定になる。その結果、照明がちらついたり、ある電圧で制御ICの動作が急に停止することがある。このような照明がいきなり消える等の不具合を防ぐために、図13(c)の変形例では、調光端子DMに入力する電源電圧の分圧回路にツェナー効果のあるダイオードを付加している。   FIG. 13C is a circuit example that enables a more stable operation when a dimmer that varies the power supply voltage (or average power supply voltage) is used. When the power supply voltage is lowered for dimming from the outside, the power supply voltage of the control IC 1 is lowered and the operation of the control IC 1 becomes unstable. As a result, the lighting may flicker or the operation of the control IC may suddenly stop at a certain voltage. In order to prevent such a problem that the illumination suddenly disappears, in the modified example of FIG. 13C, a diode having a Zener effect is added to the voltage dividing circuit of the power supply voltage input to the dimming terminal DM.

図2及び図8に示す抵抗R3、R4による分圧の場合、電源電圧をVpとすると、調光端子DMに入力される電圧VdmはVdm=Vp・R4/(R3+R4)となる。一方、図13(c)のように、ツェナー電圧がVzであるツェナーダイオードZD1を付加すると、Vdm=(Vp−Vz)・R4/(R3+R4)となるため、電源電圧がVz以下になるとDM端子の入力電圧が0Vになる。このツェナー電圧Vzを制御IC1の動作電圧以上にすると、IC1は正常に動作する状態でLEDの電流は0まで下がるため、制御IC1が不安定になる前に消灯する。   In the case of voltage division by the resistors R3 and R4 shown in FIGS. 2 and 8, assuming that the power supply voltage is Vp, the voltage Vdm input to the dimming terminal DM is Vdm = Vp · R4 / (R3 + R4). On the other hand, when a Zener diode ZD1 having a Zener voltage of Vz is added as shown in FIG. 13C, Vdm = (Vp−Vz) · R4 / (R3 + R4). Therefore, when the power supply voltage becomes Vz or less, the DM terminal Input voltage becomes 0V. If the zener voltage Vz is set to be equal to or higher than the operating voltage of the control IC1, the LED current decreases to 0 in a state where the IC1 operates normally, so that the LED is turned off before the control IC1 becomes unstable.

また、図13(c)の変形例では、定電流素子(又は定電流回路)CCも用いられており、電源電圧が変化してもツェナーダイオードZD1に概ね一定の電流を流すことができる。さらに、消灯が突然起きる現象も、電源電圧Vpがツェナー電圧Vzに近づく段階で滑らかに消灯に至るため、従来の白熱電球と同等の調光特性を、本変形例の電源回路を用いたLED電球に備えさせることができる。   In the modification of FIG. 13C, a constant current element (or constant current circuit) CC is also used, and a substantially constant current can flow through the Zener diode ZD1 even if the power supply voltage changes. Furthermore, the phenomenon that the light is suddenly turned off also smoothly turns off when the power supply voltage Vp approaches the zener voltage Vz. Therefore, the LED light bulb using the power supply circuit of the present modification has the same dimming characteristics as the conventional incandescent light bulb. Can be prepared.

なお、インバータ回路用制御ICとしては、上記したLT3755(又はLT3755−1)に限らず、米国ナショナルセミコンダクタ社製のLM3409など同様の機能を有するものを使用することができる。LM3409の場合では、IADJ端子が調光端子DMに相当するため、このIADJ端子に電源電圧を分圧した電圧を入力すれば良い。   The inverter circuit control IC is not limited to the above-described LT3755 (or LT3755-1), but may be one having a similar function such as LM3409 manufactured by National Semiconductor USA. In the case of LM3409, since the IADJ terminal corresponds to the dimming terminal DM, a voltage obtained by dividing the power supply voltage may be input to the IADJ terminal.

また、調光端子の代わりに電流検出回路用基準電源入力端子を用い、該電流検出回路用基準電源入力端子に電源電圧を分圧させた電圧を入力した場合も、上記実施例と同様の結果が得られる。   In addition, when a reference power input terminal for the current detection circuit is used instead of the dimming terminal and a voltage obtained by dividing the power supply voltage is input to the reference power input terminal for the current detection circuit, the same result as in the above embodiment is obtained. Is obtained.

さらに上記実施例の回路は一般的な例を示したものであり、これらの実施例に限定されるものでないことは言うまでもないことである。   Further, the circuit of the above embodiment shows general examples, and it goes without saying that the circuit is not limited to these embodiments.

1…制御IC
C1、C2、C3、C3’、C4、C4’…コンデンサ
CC…定電流素子
CS…電流検出端子
DM…調光端子
L1、L2…コイル
LED1、…、LEDn…LED素子
R1、R2、R3、R4、R5…抵抗
1 ... Control IC
C1, C2, C3, C3 ', C4, C4' ... Capacitor CC ... Constant current element CS ... Current detection terminal DM ... Dimming terminal L1, L2 ... Coil LED1, ..., LEDn ... LED elements R1, R2, R3, R4 , R5 ... resistance

Claims (8)

調光端子又は電流検出回路用基準電源入力端子のいずれかを具備する制御ICを用いた、直流電圧を高周波電圧に変換するインバータ回路を備えるLED点灯用電源回路において、前記インバータ回路に印加される電源電圧又は該電源電圧から一定電圧分低下させた電圧を所定の分圧比で分圧する分圧手段を有し、該分圧手段で分圧された電圧を前記調光端子又は前記電流検出回路用基準電源入力端子に入力することを特徴とするLED点灯用電源回路。   In an LED lighting power supply circuit including an inverter circuit that converts a DC voltage into a high-frequency voltage using a control IC having either a dimming terminal or a reference power supply input terminal for a current detection circuit, applied to the inverter circuit A voltage dividing means for dividing a power supply voltage or a voltage obtained by lowering the power supply voltage by a predetermined voltage at a predetermined voltage dividing ratio, and the voltage divided by the voltage dividing means for the dimming terminal or the current detection circuit; An LED lighting power supply circuit characterized by being input to a reference power supply input terminal. 交流電源電圧を、整流回路を通して前記インバータ回路に供給することを特徴とする請求項1に記載のLED点灯用電源回路。   2. The LED lighting power supply circuit according to claim 1, wherein an AC power supply voltage is supplied to the inverter circuit through a rectifier circuit. 前記整流回路が、交流電源電圧の平滑用コンデンサを有しないことを特徴とする請求項2に記載のLED点灯用電源回路。   The LED lighting power supply circuit according to claim 2, wherein the rectifier circuit does not have a capacitor for smoothing an AC power supply voltage. 前記整流回路が、消費電流1A当たり22μF以下の平滑用コンデンサを有することを特徴とする請求項2に記載のLED点灯用電源回路。   3. The LED lighting power supply circuit according to claim 2, wherein the rectifier circuit has a smoothing capacitor of 22 μF or less per 1 A of consumption current. 前記調光端子又は前記電流検出回路用基準電源入力端子への分圧が、定電圧効果を持つ電子部品により電源電圧から一定電圧分低下させた後に行われることを特徴とする請求項1〜4のいずれかに記載のLED点灯用電源回路。   5. The voltage division to the dimming terminal or the reference power supply input terminal for the current detection circuit is performed after the voltage is reduced by a constant voltage from the power supply voltage by an electronic component having a constant voltage effect. LED power supply circuit according to any one of the above. 前記電子部品が、ツェナーダイオードもしくは同機能を有する電子部品であることを特徴とする請求項5に記載のLED点灯用電源回路。   6. The LED lighting power supply circuit according to claim 5, wherein the electronic component is a Zener diode or an electronic component having the same function. 直流電圧を高周波電圧に変換するインバータ回路を備えるLED点灯用電源回路において、前記インバータ回路の出力が、電源電圧に関係なく、常に第1の一定時間だけオンし、第2の一定時間だけオフすることにより、該インバータ回路が負性抵抗を示さないことを特徴とするLED点灯用電源回路。   In an LED lighting power supply circuit including an inverter circuit that converts a DC voltage into a high-frequency voltage, the output of the inverter circuit is always turned on for a first fixed time and turned off for a second fixed time regardless of the power supply voltage. Thus, the LED lighting power supply circuit, wherein the inverter circuit does not exhibit a negative resistance. 請求項1〜7のいずれかのLED点灯用電源回路を搭載することを特徴とするLED電球。   8. An LED bulb comprising the LED lighting power supply circuit according to claim 1 mounted thereon.
JP2009162362A 2009-07-09 2009-07-09 Power supply circuit for led lighting, and led electric bulb mounted with the power supply circuit for led lighting Pending JP2011018557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162362A JP2011018557A (en) 2009-07-09 2009-07-09 Power supply circuit for led lighting, and led electric bulb mounted with the power supply circuit for led lighting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162362A JP2011018557A (en) 2009-07-09 2009-07-09 Power supply circuit for led lighting, and led electric bulb mounted with the power supply circuit for led lighting

Publications (1)

Publication Number Publication Date
JP2011018557A true JP2011018557A (en) 2011-01-27

Family

ID=43596183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162362A Pending JP2011018557A (en) 2009-07-09 2009-07-09 Power supply circuit for led lighting, and led electric bulb mounted with the power supply circuit for led lighting

Country Status (1)

Country Link
JP (1) JP2011018557A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169183A (en) * 2011-02-15 2012-09-06 Yoshikawa Rf System Kk Dimming-type lighting circuit
CN102781147A (en) * 2012-08-16 2012-11-14 广东良得电子科技有限公司 LED (Light-emitting diode) power supply circuit with high power factor
KR101311730B1 (en) * 2013-04-29 2013-09-26 미미라이팅주식회사 Led dimming lighting lamp apparatus having flickerless function
CN103687165A (en) * 2012-09-13 2014-03-26 瑞鼎科技股份有限公司 LED driving device and operating method thereof
CN103687163A (en) * 2012-09-13 2014-03-26 瑞鼎科技股份有限公司 Light emitting diode driving device and operation method thereof
CN103687166A (en) * 2012-09-13 2014-03-26 瑞鼎科技股份有限公司 LED driving device and operating method thereof
KR20170097204A (en) * 2014-12-31 2017-08-25 셍레드 옵토일렉트로닉스 컴퍼니 리미티드 Dimming circuit and dimming system suitable for SCR dimmer circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327152A (en) * 2003-04-23 2004-11-18 Toshiba Lighting & Technology Corp Led lighting device and led lighting fixture
JP2005011739A (en) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Circuit for preventing malfunction when dimming and lighting system
JP2006319172A (en) * 2005-05-13 2006-11-24 Wako Denken Kk Adapter device for light control of led lamp
JP2010284031A (en) * 2009-06-05 2010-12-16 Sharp Corp Switching power supply device and lighting device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327152A (en) * 2003-04-23 2004-11-18 Toshiba Lighting & Technology Corp Led lighting device and led lighting fixture
JP2005011739A (en) * 2003-06-20 2005-01-13 Matsushita Electric Ind Co Ltd Circuit for preventing malfunction when dimming and lighting system
JP2006319172A (en) * 2005-05-13 2006-11-24 Wako Denken Kk Adapter device for light control of led lamp
JP2010284031A (en) * 2009-06-05 2010-12-16 Sharp Corp Switching power supply device and lighting device using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012169183A (en) * 2011-02-15 2012-09-06 Yoshikawa Rf System Kk Dimming-type lighting circuit
CN102781147A (en) * 2012-08-16 2012-11-14 广东良得电子科技有限公司 LED (Light-emitting diode) power supply circuit with high power factor
TWI481304B (en) * 2012-09-13 2015-04-11 Raydium Semiconductor Corp Led driving apparatus and operating method thereof
CN103687165A (en) * 2012-09-13 2014-03-26 瑞鼎科技股份有限公司 LED driving device and operating method thereof
CN103687163A (en) * 2012-09-13 2014-03-26 瑞鼎科技股份有限公司 Light emitting diode driving device and operation method thereof
CN103687166A (en) * 2012-09-13 2014-03-26 瑞鼎科技股份有限公司 LED driving device and operating method thereof
TWI481303B (en) * 2012-09-13 2015-04-11 Raydium Semiconductor Corp Led driving apparatus and operating method thereof
TWI481302B (en) * 2012-09-13 2015-04-11 Raydium Semiconductor Corp Led driving apparatus and operating method thereof
CN103687166B (en) * 2012-09-13 2015-08-19 瑞鼎科技股份有限公司 LED driving device and operating method thereof
KR101311730B1 (en) * 2013-04-29 2013-09-26 미미라이팅주식회사 Led dimming lighting lamp apparatus having flickerless function
KR20170097204A (en) * 2014-12-31 2017-08-25 셍레드 옵토일렉트로닉스 컴퍼니 리미티드 Dimming circuit and dimming system suitable for SCR dimmer circuit
JP2018500748A (en) * 2014-12-31 2018-01-11 セングレッド オプトエレクトロニクス カンパニー リミテッド Dimming circuit and dimming system suitable for SCR dimmer circuit
KR101956494B1 (en) * 2014-12-31 2019-03-08 셍레드 옵토일렉트로닉스 컴퍼니 리미티드 Dimming circuit and dimming system suitable for SCR dimmer circuit

Similar Documents

Publication Publication Date Title
US8872444B2 (en) Lighting device for solid-state light source and illumination apparatus including same
US9717120B2 (en) Apparatus and methods of operation of passive LED lighting equipment
US8044600B2 (en) Brightness-adjustable LED driving circuit
CN103763842B (en) LED lamp
EP2490511B1 (en) Electronic ballast
CN101861009B (en) Control circuit for light emitting device
JP6048943B2 (en) Drive circuit, illumination light source, and illumination device
US8482214B2 (en) Apparatus and methods of operation of passive LED lighting equipment
US20120146525A1 (en) Apparatus and methods of operation of passive and active led lighting equipment
EP2579689A1 (en) Led turn-on circuit, lamp, and illumination apparatus
JP2013186944A (en) Power supply for illumination, and illuminating fixture
JP2011018557A (en) Power supply circuit for led lighting, and led electric bulb mounted with the power supply circuit for led lighting
CN103582231A (en) Light emitting diode driving device
KR101377038B1 (en) LED lighting apparatus
EP2685618A2 (en) Power supply, solid-state light-emitting element lighting device, and luminaire
JP5834235B2 (en) Solid-state light source lighting device and lighting apparatus and lighting system using the same
JP2011034847A (en) Power supply device and lighting fixture
JP2013251951A (en) Power-supply device and lighting device
JP2014143209A (en) Lighting device, and illuminating fixture and illumination system using the same
JP2010245014A (en) Non-blinking brightness adjusting device for non-resistance light emitting load
AU2010286130B2 (en) Apparatus and methods of operation of passive and active LED lighting equipment
JP5300501B2 (en) Lighting device and lighting apparatus
US11172551B2 (en) Solid-state lighting with a driver controllable by a power-line dimmer
US8773046B2 (en) Driving circuit having voltage dividing circuits and coupling circuit for controlling duty cycle of transistor and related circuit driving method thereof
CN103379711A (en) LED lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001