JP2011016119A - Adsorption filter membrane module - Google Patents

Adsorption filter membrane module Download PDF

Info

Publication number
JP2011016119A
JP2011016119A JP2009164272A JP2009164272A JP2011016119A JP 2011016119 A JP2011016119 A JP 2011016119A JP 2009164272 A JP2009164272 A JP 2009164272A JP 2009164272 A JP2009164272 A JP 2009164272A JP 2011016119 A JP2011016119 A JP 2011016119A
Authority
JP
Japan
Prior art keywords
membrane
adsorption
hollow fiber
group
filtration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009164272A
Other languages
Japanese (ja)
Inventor
Naoshi Shinohara
直志 篠原
Hironobu Shirataki
浩伸 白瀧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2009164272A priority Critical patent/JP2011016119A/en
Publication of JP2011016119A publication Critical patent/JP2011016119A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow fiber membrane module effectively suppressing the lowering of the degree of effective utilization of adsorption capacity accompanying scaling-up and high-degree integration.SOLUTION: The hollow fiber membrane module 12 includes an adsorption filter membrane in which a graft polymer chain having a weak electrolytic ion exchange group is formed to the pore surface of a porous membrane and the effective membrane length of the adsorption filter membrane is 10 cm or above.

Description

本発明は、吸着ろ過膜モジュールに関する。   The present invention relates to an adsorption filtration membrane module.

従来から、液相に溶解している物質を分離する手段として、吸着法を適用した物質分離技術が、様々な分野において広く用いられている。
例えば、バイオテクノロジー、遺伝子工学、製薬工業、化学工業、飲料工業、食品工
業、環境保護、及び資源リサイクル等の様々な分野において、吸着式物質分離技術が用いられている。
なお、吸着法を適用した物質分離技術における被吸着物質は、利用分野によって異なり、例えば、生体特有の分子、タンパク質、酵素、ウイルス、イオン性物質、金属イオン、貴金属イオン、重金属イオン等、多岐に亘る。
Conventionally, as a means for separating a substance dissolved in a liquid phase, a substance separation technique using an adsorption method has been widely used in various fields.
For example, adsorptive substance separation techniques are used in various fields such as biotechnology, genetic engineering, pharmaceutical industry, chemical industry, beverage industry, food industry, environmental protection, and resource recycling.
In addition, the substance to be adsorbed in the substance separation technology to which the adsorption method is applied varies depending on the field of use, for example, biological molecules, proteins, enzymes, viruses, ionic substances, metal ions, noble metal ions, heavy metal ions, etc. It spans.

上記被吸着物質を工業的に効率よく分離するための吸着式物質分離装置として、一般的なものとして、カラムクロマトグラフィーが知られている。
カラムクロマトグラフィーは、選択的吸着性を有する多孔質樹脂をパッキングした構成を有している。
カラムクロマトグラフィーへの吸着は、液相に含有されている被吸着物質が、拡散により多孔質樹脂の細孔内に移動し、細孔表面に存在する官能基に接触し吸着するという拡散の原理に基づいている。
そのため、多孔質樹脂の比表面積が大きくなるとこれに対応して吸着量が顕著に増大するという利点があるが、吸着能力は拡散律速の影響を受けるため、処理速度を高めるほど吸着能力が低下するという欠点を有している。
Column chromatography is known as a general apparatus as an adsorptive substance separation apparatus for industrially separating the adsorbed substance efficiently.
Column chromatography has a configuration in which a porous resin having selective adsorptivity is packed.
Adsorption to column chromatography is the principle of diffusion in which the adsorbed substance contained in the liquid phase moves into the pores of the porous resin by diffusion and contacts and adsorbs the functional groups present on the surface of the pores. Based on.
Therefore, when the specific surface area of the porous resin increases, there is an advantage that the amount of adsorption increases correspondingly, but the adsorption capacity is affected by diffusion rate limiting, so the adsorption capacity decreases as the processing speed is increased. Has the disadvantages.

一方、処理速度を高めても吸着能力が低下しない吸着式物質分離装置として、吸着膜を用いたものが知られている。
吸着膜とは、選択的な吸着性能を有するろ過膜のことを言い、精製工程の現場では吸着膜を所定の外筒に収納した構造の吸着膜モジュールが用いられている。
この吸着膜モジュールを構成する吸着膜においては、多孔質となっているろ過膜に作用するろ過差圧を駆動力にする細孔内の強制流が発生し、物質の運搬と吸着とは、共に強制流の原理に基づいてなされる。
そのため、吸着膜の比表面積は上述したカラムクロマトグラフィーに比べて小さく吸着量も少ないという欠点があるが、この反面、処理速度を高めても吸着能力が低下しないという利点がある。
On the other hand, as an adsorptive substance separation apparatus in which the adsorption capacity does not decrease even if the processing speed is increased, an apparatus using an adsorption membrane is known.
The adsorption membrane refers to a filtration membrane having selective adsorption performance, and an adsorption membrane module having a structure in which the adsorption membrane is housed in a predetermined outer cylinder is used in the field of the purification process.
In the adsorption membrane constituting this adsorption membrane module, a forced flow is generated in the pores using the filtration differential pressure acting on the porous filtration membrane as a driving force. It is based on the principle of forced flow.
For this reason, the specific surface area of the adsorption film is smaller than that of the column chromatography described above, and the amount of adsorption is small, but on the other hand, there is an advantage that even if the treatment speed is increased, the adsorption capacity does not decrease.

上記吸着膜モジュールを構成する吸着膜の具体的な例として、タンパク質吸着膜が挙げられる。
これにおいては、タンパク質含有の水溶液を高流速で通液した場合においてもタンパク質の吸着がなされ、迅速な処理を行うためには有効であるが、タンパク質の吸着が膜表面でのみ行われるため、吸着量は比表面積に依存し、上記多孔質樹脂を用いたカラムクロマトグラフィーに比べて吸着量は著しく低くなる(例えば、特許文献1、2参照。)。
A protein adsorption membrane is mentioned as a specific example of the adsorption membrane which comprises the said adsorption membrane module.
In this method, even when a protein-containing aqueous solution is passed at a high flow rate, the protein is adsorbed and effective for rapid processing, but the protein is adsorbed only on the membrane surface. The amount depends on the specific surface area, and the amount of adsorption is significantly lower than that of column chromatography using the porous resin (see, for example, Patent Documents 1 and 2).

一方、多孔質膜へのタンパク質の吸着処理速度と吸着量との両立を図った技術の検討もなされており、官能基をグラフト鎖に固定し、このグラフト鎖を多孔質基材に固定した多孔質膜が開示されている(例えば、非特許文献1〜3参照。)。
このような多孔質膜においては、1本のグラフト鎖に多数の官能基が固定されているため、タンパク質が多孔質膜の表面だけでなく細孔内でも立体的に吸着し、上述したように表面のみにおいて吸着が行われる場合に比して吸着量は大きく増大する。
On the other hand, a technique for achieving both the rate of adsorption of protein to the porous membrane and the amount of adsorption has also been studied. A porous material in which a functional group is fixed to a graft chain and the graft chain is fixed to a porous substrate. A membrane is disclosed (for example, see Non-Patent Documents 1 to 3).
In such a porous membrane, since a large number of functional groups are fixed to one graft chain, proteins adsorb three-dimensionally not only on the surface of the porous membrane but also in the pores, as described above. Compared with the case where adsorption is performed only on the surface, the amount of adsorption is greatly increased.

特表2003−532746公報Special table 2003-532746 特表2002−537106公報Special table 2002-537106 gazette

Journal of Chromatography A, 689 (1995) 212-218Journal of Chromatography A, 689 (1995) 212-218 Biotechol. Prog. 1994, 10, 76-81Biotechol. Prog. 1994, 10, 76-81 Biotechol. Prog. 1997, 13, 89-95Biotechol. Prog. 1997, 13, 89-95

近年、前述の様々な分野において、吸着式物質分離装置の処理能力に対する要求が高まっている。
特に、抗体医薬品の精製工程においては、大量処理および高速度処理との両立を図る技術への期待の高まりから、より能力の高い吸着ろ過膜モジュールが望まれている。以下に、大量処理ならびに高速度処理を達成するための手段を記す。
In recent years, in the various fields described above, there is an increasing demand for the processing capacity of the adsorptive substance separation device.
In particular, in the purification process of antibody pharmaceuticals, an adsorption filtration membrane module with higher capacity is desired because of the growing expectation for a technique for achieving both mass processing and high-speed processing. The following describes means for achieving mass processing as well as high speed processing.

先ず、大量処理を達成するための手段としては、吸着ろ過膜モジュール内の吸着膜の体積を増やす方法が考えられる。具体的には吸着ろ過膜モジュールの外筒径寸法や外筒長寸法を増大させる大型化の手段や、外筒内の吸着膜の充填率を上げる高集積化の手段が考えられる。しかしながら、外筒径寸法や外筒長寸法を増大させた場合には、吸着膜モジュール成形上の難易度が極端に上がったり、精製現場の室内容積に収まりにくくなったり、取扱作業が困難になるなど、寸法増大に対する上限が存在する。
一方、吸着膜の充填率を上げた場合や、外筒長寸法を増大させた場合には、吸着膜モジュール内の流体流路構造が細くかつ長くなるために、圧力損失が増大する。吸着ろ過膜モジュールの形状が平膜タイプであっても中空糸タイプであっても、圧力損失が増大すると、流体流路の長手方向において局所的に膜面差圧の高い箇所と低い箇所の分布が増大する。
First, as a means for achieving mass processing, a method for increasing the volume of the adsorption membrane in the adsorption filtration membrane module can be considered. Specifically, means for increasing the outer cylinder diameter and outer cylinder length of the adsorption filtration membrane module and means for increasing the integration of the adsorption membrane in the outer cylinder can be considered. However, when the outer cylinder diameter and outer cylinder length are increased, the difficulty of forming the adsorption membrane module is extremely increased, it becomes difficult to fit in the indoor volume of the purification site, and handling work becomes difficult. There is an upper limit to the dimensional increase.
On the other hand, when the filling rate of the adsorption membrane is increased or when the outer cylinder length is increased, the fluid flow path structure in the adsorption membrane module is thin and long, so that the pressure loss increases. Regardless of whether the shape of the adsorption filtration membrane module is a flat membrane type or a hollow fiber type, if pressure loss increases, the distribution of locations with high and low membrane differential pressure locally in the longitudinal direction of the fluid flow path Will increase.

次に、高速度処理を達成させるための手段としては、吸着膜の膜厚を小さくし、膜面積当たりの透水速度を増加させる高集積化の方法が考えられる。しかしながら、透水速度の増加は、吸着膜モジュールの長手方向の圧力損失を増大させることになり、これは平膜モジュールであっても中空糸膜モジュールであっても共通で発生する。一方、中空糸膜モジュール特有の問題として、モジュール内の総膜体積を高く保ち、圧力負荷に耐えうる強度を維持させるためには、中空糸膜の内外径の比率一定のままで寸法を小さくすることが必要となる。この場合は、必然的に中空糸膜の内径寸法が小さくせざるを得ず、その結果極端に高い圧力損失が発生することになる。   Next, as a means for achieving high-speed processing, a highly integrated method for reducing the film thickness of the adsorption film and increasing the water permeation speed per film area can be considered. However, the increase in the water permeation rate increases the pressure loss in the longitudinal direction of the adsorption membrane module, and this occurs in both the flat membrane module and the hollow fiber membrane module. On the other hand, as a problem peculiar to the hollow fiber membrane module, in order to keep the total membrane volume in the module high and maintain the strength that can withstand the pressure load, the size of the hollow fiber membrane is reduced while keeping the ratio of the inner and outer diameters constant. It will be necessary. In this case, the hollow fiber membrane inevitably has a small inner diameter, and as a result, extremely high pressure loss occurs.

すなわち、大量処理または高速度処理を達成させるための前述の大型化あるいは高集積化の手段をとることは、吸着ろ過膜モジュール内部の圧力損失を増大させる方向に作用する。この圧力損失の増大により、吸着ろ過膜モジュールは液流の長手方向において、吸着の進行度に分布を生じさせる。その結果、極端な例では吸着が始まったばかりの局所と、吸着が進行し被吸着物質の漏洩が始まった局所が同時に存在する状態となり、その場合モジュール全体の吸着能力は期待するほどに高くならないことになる。   That is, taking the above-mentioned means of increasing the size or increasing the integration to achieve a large-scale process or a high-speed process acts in the direction of increasing the pressure loss inside the adsorption filtration membrane module. Due to this increase in pressure loss, the adsorption filtration membrane module causes a distribution in the degree of progress of adsorption in the longitudinal direction of the liquid flow. As a result, in an extreme example, the local area where adsorption has just started and the local area where adsorption has progressed and leakage of the substance to be adsorbed exist at the same time. In this case, the adsorption capacity of the entire module does not increase as expected. become.

ゆえに、吸着ろ過膜モジュールの大型化および高集積化の手段は、吸着ろ過膜が本来持つ吸着能力を十分に発揮できない、すなわち吸着能力の利用度が低下するという望ましくない結果に至る。そこで本発明においては、かかる状況に鑑み、大型化および高集積化に伴う吸着能力の有効利用度の低下を効果的に抑制した吸着ろ過膜モジュールを提供することを目的とする。   Therefore, the means for increasing the size and integration of the adsorption filtration membrane module leads to an undesirable result that the adsorption capability inherent to the adsorption filtration membrane cannot be sufficiently exhibited, that is, the utilization of the adsorption capability is reduced. In view of this situation, an object of the present invention is to provide an adsorption filtration membrane module that effectively suppresses a decrease in the effective utilization of adsorption capacity associated with an increase in size and integration.

本発明者等は、鋭意研究の結果、吸着の進行とともにFLUXが低下する機能を有する吸着ろ過膜を用いることにより、大型化および高集積化に伴う吸着能力の有効利用度の低下が効果的に抑制できることを見出し、この知見にもとづいて本発明を完成させるに至った。
すなわち本発明は、大型化および高集積化に伴う吸着能力の有効利用度の低下が少ない中空糸膜モジュールに関する。
[1] 多孔質膜の細孔表面に弱電解性イオン交換基を有するグラフト高分子鎖が形成されている吸着ろ過膜を具備し、当該吸着ろ過膜の有効膜長が10cm以上である吸着ろ過膜モジュール
[2] 前記弱電解性イオン交換基が、3級アミノ基、2級アミノ基、1級アミノ基、カルボン酸基、りん酸基からなる群から選ばれるいずれか一以上である[1]記載の吸着ろ過膜モジュール
[3] 前記弱電解性リガンドがジエチルアミノ基である請[1]又は[2]記載の吸着ろ過膜モジュール
[4] 前記グラフト高分子鎖が非架橋構造である[1]〜[3]のいずれか一項に記載の吸着ろ過膜モジュール
[5] 前記吸着ろ過膜の有効膜長が10cm以上20cm以内であり、中空糸内径が0.28mm以上である、[1]〜[4]のいずれか一項に記載の吸着ろ過膜モジュール
[6] 前記吸着ろ過膜の有効膜長が20cmを超え50cm以内の範囲であり、中空糸内径が0.43mm以上である、[1]〜[4]のいずれか一項に記載の吸着ろ過膜モジュール
[7] 前記吸着ろ過膜の有効膜長が50cmを超え100cm以内の範囲であり、中空糸内径が0.60mm以上である、[1]〜[4]のいずれか一項に記載の吸着ろ過膜モジュール
[8] 前記吸着ろ過膜の有効膜長が100cmを超え150cm以内の範囲であり、中空糸内径が0.76mm以上である、[1]〜[4]のいずれか一項に記載の吸着ろ過膜モジュール
[9] 前記吸着ろ過膜の有効膜長が150cmを超え200cm以内の範囲であり、中空糸内径が0.86mm以上である、[1]〜[4]のいずれか一項に記載の吸着ろ過膜モジュール
[10] 前記吸着ろ過膜が中空糸膜である、[1]〜[9]のいずれか一項に記載の吸着ろ過膜モジュール
As a result of earnest research, the present inventors have effectively reduced the effective utilization of the adsorption capacity associated with the increase in size and integration by using an adsorption filtration membrane having a function of reducing FLUX as the adsorption proceeds. Based on this finding, the present inventors have found that the present invention can be suppressed.
That is, the present invention relates to a hollow fiber membrane module in which the decrease in the effective utilization of the adsorption capacity accompanying the increase in size and integration is small.
[1] An adsorption filtration comprising an adsorption filtration membrane in which a graft polymer chain having a weak electrolytic ion exchange group is formed on the pore surface of a porous membrane, and the effective membrane length of the adsorption filtration membrane is 10 cm or more Membrane module
[2] The weak electrolytic ion exchange group is any one or more selected from the group consisting of a tertiary amino group, a secondary amino group, a primary amino group, a carboxylic acid group, and a phosphoric acid group. Adsorption filtration membrane module
[3] The adsorption filtration membrane module according to [1] or [2], wherein the weakly electrolytic ligand is a diethylamino group.
[4] The adsorption filtration membrane module according to any one of [1] to [3], wherein the graft polymer chain has a non-crosslinked structure.
[5] The adsorption filtration membrane module according to any one of [1] to [4], wherein an effective membrane length of the adsorption filtration membrane is 10 cm or more and 20 cm or less, and an inner diameter of the hollow fiber is 0.28 mm or more.
[6] The adsorption filtration according to any one of [1] to [4], wherein an effective membrane length of the adsorption filtration membrane is in a range exceeding 20 cm and within 50 cm, and an inner diameter of the hollow fiber is 0.43 mm or more. Membrane module
[7] The adsorption filtration according to any one of [1] to [4], wherein an effective membrane length of the adsorption filtration membrane is in a range exceeding 50 cm and within 100 cm, and an inner diameter of the hollow fiber is 0.60 mm or more. Membrane module
[8] The adsorption filtration according to any one of [1] to [4], wherein an effective membrane length of the adsorption filtration membrane is in a range of more than 100 cm and within 150 cm, and an inner diameter of the hollow fiber is 0.76 mm or more. Membrane module
[9] The adsorptive filtration according to any one of [1] to [4], wherein an effective membrane length of the adsorptive filtration membrane is in a range exceeding 150 cm and within 200 cm, and an inner diameter of the hollow fiber is 0.86 mm or more. Membrane module
[10] The adsorption filtration membrane module according to any one of [1] to [9], wherein the adsorption filtration membrane is a hollow fiber membrane.

本発明によれば、大型化および高集積化に伴う吸着能力の低下が効果的に抑制された中空糸膜モジュールが得られる。   ADVANTAGE OF THE INVENTION According to this invention, the hollow fiber membrane module by which the fall of the adsorption capability accompanying enlargement and high integration was suppressed effectively is obtained.

本実施形態における中空糸膜モジュールの一例の概略構成図を示す。The schematic block diagram of an example of the hollow fiber membrane module in this embodiment is shown. 本実施形態における中空糸膜モジュールの第2の例の概略構成図を示す。The schematic block diagram of the 2nd example of the hollow fiber membrane module in this embodiment is shown. 本実施形態における中空糸膜モジュールの第3の例の概略構成図を示す。The schematic block diagram of the 3rd example of the hollow fiber membrane module in this embodiment is shown. 本実施形態における中空糸膜モジュールの第4の例の概略構成図を示す。The schematic block diagram of the 4th example of the hollow fiber membrane module in this embodiment is shown. 本実施形態における中空糸膜モジュールの第5の例の概略構成図を示す。The schematic block diagram of the 5th example of the hollow fiber membrane module in this embodiment is shown. 本実施形態における中空糸膜モジュールの第6の例の概略構成図を示す。The schematic block diagram of the 6th example of the hollow fiber membrane module in this embodiment is shown. 本実施形態における弱電解性イオン交換基を有するグラフト高分子鎖を細孔表面に持つ吸着ろ過膜の吸着と圧力変化の状況を示すグラフ。The graph which shows the condition of adsorption | suction and a pressure change of the adsorption filtration membrane which has the graft | grafting polymer chain which has a weak electrolysis ion exchange group in this embodiment on the pore surface. 本実施形態の弱電解性イオン交換基を有するグラフト高分子鎖を細孔表面に持つ吸着ろ過膜の吸着と圧力変化の状況を示すグラフThe graph which shows the condition of adsorption | suction and the pressure change of the adsorption filtration membrane which has the graft polymer chain which has a weakly electrolyzed ion exchange group of this embodiment on the pore surface 比較例の強電解性アニオン交換基を有するグラフト高分子鎖を細孔表面に持つ吸着ろ過膜の吸着と圧力変化の状況を示すグラフA graph showing the state of adsorption and pressure change of an adsorption filtration membrane having a graft polymer chain having a strong electrolytic anion exchange group on the pore surface of a comparative example 比較例の強電解性カチオン交換基を有するグラフト高分子鎖を細孔表面に持つ吸着ろ過膜の吸着と圧力変化の状況を示すグラフA graph showing the state of adsorption and pressure change of an adsorption filtration membrane having a graft polymer chain having a strong electrolytic cation exchange group on the pore surface of a comparative example

本発明を実施するための形態(以下、「本実施形態」と言う。)について、図を参照して説明する。
本発明は、以下の記載に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。
なお、図面中、同一の要素には同一の符号を付し、重複する説明を省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとし、さらに図面の寸法比率は、図示の比率に限定されるものではない。
A mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described with reference to the drawings.
The present invention is not limited to the following description, and various modifications can be made within the scope of the gist thereof.
In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left, and right is based on the positional relationship shown in the drawings unless otherwise specified, and the dimensional ratio in the drawing is not limited to the illustrated ratio.

〔吸着ろ過膜モジュール〕
本実施形態の吸着ろ過膜モジュールの形態には特に限定はなく、中空糸膜からなるろ過膜モジュールであっても良く、平膜からなるプリーツ型ろ過モジュールであっても良く、平膜からなるスパイラル状のろ過膜モジュールであっても良い。
[Adsorption filtration membrane module]
The form of the adsorption filtration membrane module of the present embodiment is not particularly limited, and may be a filtration membrane module made of a hollow fiber membrane, a pleated filtration module made of a flat membrane, or a spiral made of a flat membrane. It may be a filter membrane module.

本実施形態における吸着ろ過膜モジュールについて、中空糸膜タイプの吸着ろ過膜モジュールを例として、図1〜6を用いてその構造を説明する。また図の形状は代表例であり、本発明の範囲を限定するものではない。   About the adsorption filtration membrane module in this embodiment, the structure is demonstrated using FIGS. 1-6 by making a hollow fiber membrane type adsorption filtration membrane module into an example. Moreover, the shape of a figure is a representative example and does not limit the scope of the present invention.

本実施形態の吸着ろ過膜モジュールは、中空糸膜タイプの吸着ろ過膜モジュールの場合、中空糸膜の両端又は片端が、所定の封止樹脂により直接、あるいは所定の間接部材、固定治具を介して間接的に、外筒又は外部の配管接続材等に固定されていることが望ましい。   When the adsorption filtration membrane module of this embodiment is a hollow fiber membrane type adsorption filtration membrane module, both ends or one end of the hollow fiber membrane are either directly by a predetermined sealing resin, or via a predetermined indirect member or fixing jig. Indirectly, it is desirable to be fixed to an outer cylinder or an external pipe connecting material.

(第1の構成例)
図1に示す構成の中空糸膜モジュール12は、中空糸膜2の両端が、所定の封止樹脂3により外筒1に直接固定されており、接着端面5において開口部が露出され、中空部が開放された状態となっている。
中空糸膜2の開口部は、固定治具10を介して配管接続部材9と連結しており、外部配管(図示せず)に連通するようになされている。
(First configuration example)
In the hollow fiber membrane module 12 having the configuration shown in FIG. 1, both ends of the hollow fiber membrane 2 are directly fixed to the outer cylinder 1 by a predetermined sealing resin 3, and the opening is exposed at the bonding end surface 5. Is open.
The opening of the hollow fiber membrane 2 is connected to a pipe connecting member 9 via a fixing jig 10 and communicates with an external pipe (not shown).

(第2の構成例)
図2に示す構成の中空糸膜モジュール12は、中空糸膜2の一の片端が所定の封止樹脂3により外筒1に直接固定されており、接着端面5において開口部が露出され、中空部が開放された状態となっている。中空糸膜2の開口部は、固定治具10を介して配管接続部材9と連結しており、外部配管(図示せず)に連通するようになされている。
他の一の片端は、封止樹脂4により接着端面6が閉塞されており、外筒1とは固定されていない状態となっている。ここでこの接着端面6の中空糸束は封止樹脂4によって中空部が閉塞されている必要があるが、封止樹脂4によって束がまとまって固定された状態となっていてもよく、また中空糸一本一本がばらばらの状態であってもよい。
(Second configuration example)
In the hollow fiber membrane module 12 having the configuration shown in FIG. 2, one end of the hollow fiber membrane 2 is directly fixed to the outer cylinder 1 with a predetermined sealing resin 3, and the opening is exposed at the bonding end surface 5. The part is open. The opening of the hollow fiber membrane 2 is connected to a pipe connecting member 9 via a fixing jig 10 and communicates with an external pipe (not shown).
The other one end is in a state where the adhesive end surface 6 is closed by the sealing resin 4 and is not fixed to the outer cylinder 1. Here, the hollow fiber bundle of the bonding end surface 6 needs to be closed by the sealing resin 4, but the bundle may be bundled and fixed by the sealing resin 4. Each thread may be in a disjoint state.

(第3の構成例)
図3に示す構成の中空糸膜モジュール12は、中空糸膜2の一の片端が所定の封止樹脂3により外筒1に直接固定されており、接着端面5において開口部が露出され、中空部が開放された状態となっている。中空糸膜2の開口部は、固定治具10を介して配管接続部材9と連結しており、外部配管(図示せず)に連通するようになされている。
他の一の片端においては、封止樹脂3により接着端面6が閉塞されており、外筒1に固定されており、かつ中空部は閉塞した状態となっている。
(Third configuration example)
In the hollow fiber membrane module 12 having the configuration shown in FIG. 3, one end of the hollow fiber membrane 2 is directly fixed to the outer cylinder 1 by a predetermined sealing resin 3, and the opening is exposed at the bonding end surface 5. The part is open. The opening of the hollow fiber membrane 2 is connected to a pipe connecting member 9 via a fixing jig 10 and communicates with an external pipe (not shown).
At the other one end, the adhesion end face 6 is closed by the sealing resin 3, is fixed to the outer cylinder 1, and the hollow portion is closed.

(第4の構成例)
図4に示す構成の中空糸膜モジュール12は、中空糸膜2の一の片端が所定の封止樹脂3により外筒1に直接固定されており、接着端面5において開口部が露出され、中空部が開放された状態となっている。中空糸膜2の開口部は、固定治具10を介して配管接続部材9と連結しており、外部配管(図示せず)に連通するようになされている。
中空糸膜2の他の片端は、所定の封止樹脂3により外筒1に直接固定されており、接着端面6が閉塞された状態になっている。
接着端面6においては、中空糸膜2の束を束ねている封止樹脂3を貫通するスリット7が設けられている。このスリット7を介して、中空糸膜モジュール12の下部の導入口からも液を供給できるようになされている。
(Fourth configuration example)
In the hollow fiber membrane module 12 having the configuration shown in FIG. 4, one end of the hollow fiber membrane 2 is directly fixed to the outer cylinder 1 by a predetermined sealing resin 3, and an opening is exposed at the bonding end surface 5. The part is open. The opening of the hollow fiber membrane 2 is connected to a pipe connecting member 9 via a fixing jig 10 and communicates with an external pipe (not shown).
The other end of the hollow fiber membrane 2 is directly fixed to the outer cylinder 1 with a predetermined sealing resin 3, and the bonded end face 6 is closed.
In the bonding end face 6, a slit 7 that penetrates the sealing resin 3 that bundles the bundle of hollow fiber membranes 2 is provided. The liquid can also be supplied from the lower inlet of the hollow fiber membrane module 12 through the slit 7.

(第5の構成例)
図5に示す構成の中空糸膜モジュール12においては、中空糸膜2が封止樹脂4により束ねられており、接着端面5において開口部が露出され、中空部が開放された状態となっている。封止樹脂4と外筒1とは固定されておらず、中空糸膜2は封止樹脂4により間接部材11に固定されており、当該間接部材11は前記外筒1から着脱自在に設けられている。
中空糸膜2の開口部は、固定治具10を介して配管接続部材9と連結しており、外部配管(図示せず)に連通するようになされている。
他の一の片端においては、封止樹脂4により接着端面6が閉塞されている。なお外筒1とは固定されていない状態となっている。
(Fifth configuration example)
In the hollow fiber membrane module 12 having the configuration shown in FIG. 5, the hollow fiber membranes 2 are bundled with the sealing resin 4, the opening is exposed at the bonding end surface 5, and the hollow portion is open. . The sealing resin 4 and the outer cylinder 1 are not fixed, and the hollow fiber membrane 2 is fixed to the indirect member 11 by the sealing resin 4, and the indirect member 11 is provided detachably from the outer cylinder 1. ing.
The opening of the hollow fiber membrane 2 is connected to a pipe connecting member 9 via a fixing jig 10 and communicates with an external pipe (not shown).
At the other one end, the adhesive end surface 6 is closed by the sealing resin 4. The outer cylinder 1 is not fixed.

(第6の構成例)
図6に示す構成の中空糸膜モジュール12は、中空糸膜2が封止樹脂4により束ねられており、接着端面5において開口部が露出され、中空部が開放された状態で間接部材11に固定されておる。当該間接部材11は固定治具10を介して接着端面5において外部配管(図示せず)と連通するようになされている。
他の一の片端においては、封止樹脂4により接着端面6は閉塞されている。なお、外筒は存在せず、液タンク8に直接中空糸膜2が浸漬されている。
接着端面6側においては、封止樹脂4を貫通するスリット7が設けられている。
このスリット7を通じ、図6中、中空糸膜モジュール12の下部側からも液が供給されるようになされている。
(Sixth configuration example)
In the hollow fiber membrane module 12 having the configuration shown in FIG. 6, the hollow fiber membrane 2 is bundled with a sealing resin 4, the opening is exposed at the bonding end face 5, and the hollow member is opened to the indirect member 11. It is fixed. The indirect member 11 communicates with an external pipe (not shown) on the bonding end surface 5 via the fixing jig 10.
At the other one end, the adhesive end surface 6 is closed by the sealing resin 4. Note that there is no outer cylinder, and the hollow fiber membrane 2 is immersed directly in the liquid tank 8.
On the adhesion end face 6 side, a slit 7 that penetrates the sealing resin 4 is provided.
Through this slit 7, the liquid is also supplied from the lower side of the hollow fiber membrane module 12 in FIG. 6.

本実施形態の中空糸膜モジュールにおいては、内圧ろ過方式と外圧ろ過方式のいずれの方式も選択できる。
上記いずれに方式でも吸着能力には差が無いが、ろ過差圧による膜の変形が懸念される場合には内圧ろ過方式を選択することが好ましい。
In the hollow fiber membrane module of this embodiment, either an internal pressure filtration system or an external pressure filtration system can be selected.
There is no difference in the adsorption capacity in any of the above methods, but it is preferable to select the internal pressure filtration method when there is a concern about membrane deformation due to the differential pressure of filtration.

図1に示す構成の中空糸膜モジュールの利点は、内圧ろ過方式を選択した場合にはクロスフロー式の原液供給が可能であり、原液に膜面に堆積しやすい夾雑物や汚染物質が存在している場合には有利に機能する点である。
また、内圧ろ過方式時には両端供給を、外圧ろ過方式時には両端排出を行うことが可能であり、中空部を流れる液の管内圧損をより小さく保つ運転も可能であるという利点もある。
図5及び図6に示す構成の中空糸膜モジュールの利点は、外筒1又はタンク8と中空糸膜2との切り離しが可能である構造であることから、吸着ろ過膜の更新のためのコスト低減化を図ることができるという点である。
図4及び図6に示す構成の中空糸膜モジュールにおいては、封止樹脂3、4にスリット7が設けられており、外圧ろ過方式を用いる場合、スリット7を介して空気泡を下部から供給し、気泡の動きにより中空糸膜を振動させ、中空糸膜外表面に堆積する異物を、エアレーションにより掻き落とすのに便利である。このようなスリット構造は、図4及び図6に示す構造の中空糸膜モジュール以外にも採用可能である。
なお、図1〜図6に示す中空糸膜モジュールはそれぞれが具体的な構成例であり、本発明はこれらに限定されるものではない。
The advantage of the hollow fiber membrane module having the configuration shown in FIG. 1 is that when an internal pressure filtration method is selected, a cross-flow type stock solution can be supplied, and there are impurities and contaminants that easily accumulate on the membrane surface in the stock solution. If it is, it is advantageous to function.
In addition, both ends can be supplied when the internal pressure filtration method is used, and both ends can be discharged when the external pressure filtration method is used.
The advantage of the hollow fiber membrane module having the configuration shown in FIGS. 5 and 6 is that the outer cylinder 1 or the tank 8 and the hollow fiber membrane 2 can be separated from each other. It is a point that reduction can be achieved.
In the hollow fiber membrane module having the configuration shown in FIGS. 4 and 6, the slits 7 are provided in the sealing resins 3 and 4, and when using an external pressure filtration method, air bubbles are supplied from below through the slits 7. It is convenient for vibrating the hollow fiber membrane by the movement of bubbles and scraping off foreign matter deposited on the outer surface of the hollow fiber membrane by aeration. Such a slit structure can be employed in addition to the hollow fiber membrane module having the structure shown in FIGS.
Each of the hollow fiber membrane modules shown in FIGS. 1 to 6 is a specific configuration example, and the present invention is not limited to these.

(外筒)
外筒1の材料としては、例えば、ポリスルホン、ポリカーボネート、塩化ビニル、ABS、テフロン(登録商標)やPVDFを始めとするフッ素系樹脂等の樹脂類、あるいはSUS等の金属類、ガラス類等が挙げられ、使用用途やコストに応じて選択できる。
特に、使用用途により温度的負荷、薬品的負荷、使用圧力や振動等の物理的負荷が発生する場合は、それぞれの用途に適した素材を選定する。
(Outer cylinder)
Examples of the material of the outer cylinder 1 include resins such as polysulfone, polycarbonate, vinyl chloride, ABS, fluorocarbon resins such as Teflon (registered trademark) and PVDF, metals such as SUS, and glasses. And can be selected according to usage and cost.
In particular, when a physical load such as a temperature load, a chemical load, a use pressure or vibration is generated depending on the use application, a material suitable for each use is selected.

(封止樹脂)
封止樹脂3、4としては、特に限定されるものではなく、従来から中空糸膜モジュールに用いられている封止樹脂として公知のものを使用できる。例えば、硬化性注入樹脂として、エポキシ樹脂、ポリウレタン樹脂、シリコンゴムが挙げられる。熱可塑性樹脂としては、例えばポリプロピレン等のサーモプラストが挙げられる。
なお、使用用途により温度的負荷、薬品的負荷、使用圧力や振動等の物理的負荷が発生する場合は、それぞれの用途に適した素材を選定する必要がある。
(Sealing resin)
The sealing resins 3 and 4 are not particularly limited, and known sealing resins conventionally used for hollow fiber membrane modules can be used. For example, epoxy resin, polyurethane resin, and silicon rubber can be used as the curable injection resin. Examples of the thermoplastic resin include thermoplasts such as polypropylene.
In addition, when a physical load such as a temperature load, a chemical load, a use pressure or vibration is generated depending on the use application, it is necessary to select a material suitable for each use.

(吸着ろ過膜)
吸着ろ過膜は、多孔質膜の細孔表面に弱電解性イオン交換基を有するグラフト高分子鎖が形成されている。
ここで、弱電解性イオン交換基とは、弱電解性陽イオン交換基と弱電解性陰イオン交換基を含むものとし、具体的には1級アミノ基、2級アミノ基、3級アミノ基、カルボン酸基、りん酸基などの他、イミジノ酢酸基などのキレート型官能基を用いることができる。2級アミノ基としては、例えばメチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基、ブチルアミノ基、フェニルアミノ基、アリールアミノ基などが挙げられる。3級アミノ基としては、例えばジメチルアミノ基、次エチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、ジブチルアミノ基、次フェニルアミノ基、ジアリールアミノ基、エチルメチルアミノ基、プロピルメチルアミノ基、イソプロピルメチルアミノ基、ブチルメチルアミノ基、フェニルメチルアミノ基、アリールメチルアミノ基、プロピルエチルアミノ基、イソプロピルエチルアミノ基、ブチルメチルエチル基、フェニルエチルアミノ基、アリールエチルアミノ基などが挙げられる。カルボン酸基としては、例えばカルボン酸基、安息香酸基が挙げられる。りん酸基としては、例えばりん酸基の他りん酸エステル基が挙げられる。これらの弱電解性イオン交換基の中でも、グラフト高分子鎖に導入が容易であるカルボン酸、1級アミノ基、2級アミノ基、3級アミノ基が好ましい。カルボン酸基の場合は、ろ過膜にアクリル酸やメタクリル酸をモノマーとして用いてグラフト鎖を重合することで直接的に得ることが可能である点で好ましい。また、1級アミノ基、2級アミノ基および3級アミノ基の場合は、先ずろ過膜にエポキシ基を持つビニルモノマーを導入した後に、エポキシ基をアミノ基に転化することで容易に得ることが可能である。
(Adsorption filtration membrane)
In the adsorption filtration membrane, graft polymer chains having weakly electrolytic ion exchange groups are formed on the pore surfaces of the porous membrane.
Here, the weakly electrolytic ion exchange group includes a weakly electrolytic cation exchange group and a weakly electrolytic anion exchange group, specifically, a primary amino group, a secondary amino group, a tertiary amino group, In addition to carboxylic acid groups, phosphoric acid groups, and the like, chelate type functional groups such as imidinoacetic acid groups can be used. Examples of the secondary amino group include a methylamino group, an ethylamino group, a propylamino group, an isopropylamino group, a butylamino group, a phenylamino group, and an arylamino group. Tertiary amino groups include, for example, dimethylamino, secondary ethylamino, dipropylamino, diisopropylamino, dibutylamino, secondary phenylamino, diarylamino, ethylmethylamino, propylmethylamino, isopropyl Examples include methylamino group, butylmethylamino group, phenylmethylamino group, arylmethylamino group, propylethylamino group, isopropylethylamino group, butylmethylethyl group, phenylethylamino group, arylethylamino group and the like. Examples of the carboxylic acid group include a carboxylic acid group and a benzoic acid group. Examples of the phosphate group include a phosphate group as well as a phosphate group. Among these weakly electrolytic ion exchange groups, carboxylic acids, primary amino groups, secondary amino groups, and tertiary amino groups that can be easily introduced into the graft polymer chain are preferable. In the case of a carboxylic acid group, it is preferable in that it can be obtained directly by polymerizing a graft chain using acrylic acid or methacrylic acid as a monomer for a filtration membrane. In the case of primary amino group, secondary amino group and tertiary amino group, it can be easily obtained by first introducing a vinyl monomer having an epoxy group into a filtration membrane and then converting the epoxy group to an amino group. Is possible.

本実施態様の吸着ろ過膜は、イオン性化学種を吸着可能でありかつイオン性化学種の吸着とともにFLUXが低下する性質を有する。   The adsorptive filtration membrane of this embodiment has the property of being able to adsorb ionic species and reducing FLUX with the adsorption of ionic species.

ここでイオン性化学種とは、水溶液中で解離して荷電状態にある化学種を指し、例えば陽イオン、陰イオンおよび陰イオンと陽イオンを同時に含む両性イオンのいずれかを指す。具体的には、金属イオンのような単原子イオンや、金属酸化物イオンのような複数の原子団からなる多原子イオン、金属錯体イオンのような錯イオン、酢酸やアンモニアやアミノ酸やイオン性界面活性剤のように溶液中で解離して荷電状態になる低分子量有機物、タンパク質やウイルスやDNAやイオン性高分子のように溶液中で解離して荷電状態になる高分子量有機物などが挙げられる。つまり水溶液中で溶解しかつ解離して帯電状態にあれば良く、ここではそのサイズは問わない。   Here, the ionic chemical species refers to a chemical species that is dissociated in an aqueous solution and is in a charged state. Specifically, monoatomic ions such as metal ions, polyatomic ions consisting of multiple atomic groups such as metal oxide ions, complex ions such as metal complex ions, acetic acid, ammonia, amino acids, and ionic interfaces Examples thereof include low molecular weight organic substances that dissociate in a solution as in an active agent, and high molecular weight organic substances that dissociate in a solution in a charged state, such as proteins, viruses, DNA, and ionic polymers. That is, it is sufficient that it is dissolved in an aqueous solution and dissociated to be in a charged state, and the size is not limited here.

本実施態様の吸着ろ過膜は、圧力一定の操作条件下で次第に単位時間当たりのろ液量が低下する。また、ろ過速度一定の操作条件下で次第にろ過圧力が上昇する吸着膜も同じく該当する。ただし、ろ液量低下や圧力上昇はろ過膜の細孔径よりも小さいイオン性化学種の吸着によるものに限られ、例えば懸濁物や粘稠物が膜面を閉塞することに起因するろ液量低下や圧力上昇とは区別しなければならない。   In the adsorption filtration membrane of this embodiment, the amount of filtrate per unit time gradually decreases under operating conditions with a constant pressure. The same applies to an adsorption membrane in which the filtration pressure gradually increases under operating conditions with a constant filtration rate. However, the decrease in the filtrate volume and the increase in pressure are limited to those caused by adsorption of ionic species that are smaller than the pore size of the filtration membrane. For example, the filtrate is caused by suspension or viscous clogging of the membrane surface. A distinction must be made between volume reduction and pressure increase.

本実施形態の多孔質膜の細孔表面に弱電解性イオン交換基を有するグラフト高分子鎖が形成されている吸着ろ過膜を使用した場合の具体的なFLUX挙動について説明をする。   A specific FLUX behavior when using an adsorption filtration membrane in which a graft polymer chain having a weak electrolytic ion exchange group is formed on the pore surface of the porous membrane of this embodiment will be described.

多孔質膜の細孔表面に弱電解性イオン交換基を有するグラフト高分子鎖が形成されている吸着ろ過膜に対して、例えばpH8の緩衝液のなかで負に帯電しているタンパク質である牛血清アルブミン(BSA)や正に帯電しているタンパク質であるリゾチームなどを一定圧力の操作条件下で吸着ろ過させた場合、ろ過の進行により吸着量が増加すると同時にFLUXが次第に低下する。また、ろ過速度一定の操作条件下で吸着ろ過させた場合、ろ過の進行により吸着量が増加すると同時にろ過圧力が増加する。   Cattle which is a protein that is negatively charged in a buffer solution of pH 8, for example, against an adsorption filtration membrane in which a graft polymer chain having a weak electrolytic ion exchange group is formed on the pore surface of the porous membrane When serum albumin (BSA) or lysozyme, which is a positively charged protein, is subjected to adsorption filtration under a constant pressure operating condition, the amount of adsorption increases with the progress of filtration, and FLUX gradually decreases. In addition, when adsorption filtration is performed under an operation condition with a constant filtration rate, the amount of adsorption increases with the progress of filtration, and at the same time, the filtration pressure increases.

上記にように、弱電解性イオン交換基を有するグラフト高分子鎖が細孔表面に形成されている吸着ろ過膜において、イオン性化学種の吸着とともにFLUXが低下する理由は以下のように考えることができる。   As described above, the reason why FLUX decreases with the adsorption of ionic species in an adsorption filtration membrane in which graft polymer chains having weakly electrolytic ion-exchange groups are formed on the pore surface is considered as follows. Can do.

先ず、イオン交換基の種類とグラフト高分子鎖の形態の関係性について説明する。グラフト高分子鎖上のイオン交換基は、イオン交換基同士の反発によりグラフト高分子鎖の形状に影響を与える。この反発は、イオン交換基を取り巻く水和水群の立体反発に由来すると考えられる。   First, the relationship between the type of ion exchange group and the form of the graft polymer chain will be described. The ion exchange group on the graft polymer chain affects the shape of the graft polymer chain due to repulsion between the ion exchange groups. This repulsion is thought to originate from the steric repulsion of the hydrated water group surrounding the ion exchange group.

吸着ろ過膜の吸着能力を高めようとするとイオン交換基密度を高くする必要があるが、ここで、イオン交換基として強電解性イオン交換基を使用した場合には、広いpH範囲でほぼ全てのイオン交換基が解離した状態にあるため、水和水を持つイオン交換基が高密度で存在する状態になる。その結果、細孔表面のグラフト高分子鎖内や隣接グラフト高分子鎖との間での立体反発が必然的に大きくなる結果、グラフト高分子鎖は伸張した状態となる。   In order to increase the adsorption capacity of the adsorption filtration membrane, it is necessary to increase the ion exchange group density. Here, when a strong electrolytic ion exchange group is used as the ion exchange group, almost all of the ion exchange groups are used in a wide pH range. Since the ion exchange groups are in a dissociated state, the ion exchange groups having hydrated water are present at a high density. As a result, the steric repulsion within the graft polymer chain on the pore surface and between adjacent graft polymer chains inevitably increases, resulting in the graft polymer chain in an extended state.

一方イオン交換基として弱電解性のイオン交換基を使用した場合には、吸着ろ過膜の吸着能力を高める目的でイオン交換基密度を高めた場合であっても、中性pH付近では解離状態にあるイオン交換基が少ないため、結果として立体反発は小さく、細孔表面のグラフト高分子は比較的収縮した状態となる。   On the other hand, when a weakly electrolytic ion exchange group is used as the ion exchange group, even if the ion exchange group density is increased for the purpose of increasing the adsorption capacity of the adsorption filtration membrane, it is in a dissociated state near neutral pH. Since there are few ion exchange groups, the steric repulsion is small as a result, and the graft polymer on the pore surface is in a relatively contracted state.

次に、弱電解性イオン交換基を有するグラフト高分子鎖が被吸着物質を吸着した時のグラフト高分子鎖の形態の変化について説明する。弱電解性イオン交換基を有するグラフト高分子鎖を細孔表面に持つろ過膜に対して、イオン性化学種を含む液を一定圧力でろ過した場合、ろ過処理の進行とともに弱電解性イオン交換基を有するグラフト高分子鎖にイオン性化学種が取り込まれていく。イオン性化学種は嵩高い水和水群を持っていたり、それ自体が嵩高い粒子状であるため、吸着以前には比較的収縮した状態であったグラフト高分子鎖は吸着とともに次第にグラフト鎖内や隣接グラフト鎖間での立体反発が大きくなり、やがてグラフト高分子鎖は伸張した状態となる。   Next, the change in the shape of the graft polymer chain when the graft polymer chain having a weak electrolytic ion exchange group adsorbs the adsorbed substance will be described. When a liquid containing an ionic species is filtered at a constant pressure against a filtration membrane having a graft polymer chain having a weakly electrolytic ion-exchange group on the pore surface, the weakly electrolytic ion-exchange group as the filtration process proceeds Ionic chemical species are taken into the graft polymer chain having Since ionic species have bulky hydrated water groups or are themselves bulky particles, the graft polymer chains that were in a relatively contracted state before adsorption gradually become adsorbed within the graft chain. Further, the steric repulsion between adjacent graft chains is increased, and the graft polymer chain is eventually extended.

以上のように、弱電解性イオン交換基を有するグラフト高分子鎖が細孔表面に形成されている吸着ろ過膜では、イオン性化学種が吸着されるに従いグラフト高分子鎖が伸張する事で細孔が閉塞されるため、次第にFLUXが低下(またはろ過圧力が上昇)していくと考える事が可能である。   As described above, in an adsorption filtration membrane in which a graft polymer chain having a weakly electrolytic ion-exchange group is formed on the pore surface, the graft polymer chain expands as the ionic species are adsorbed. Since the pores are blocked, it can be considered that FLUX gradually decreases (or the filtration pressure increases).

従来は、このように次第にFLUXが低下する特長は、吸着ろ過膜の性能としては単に不利であると考えられた。   Conventionally, such a feature that FLUX gradually decreases was considered to be simply disadvantageous as the performance of the adsorption filtration membrane.

本発明が解決しようとする課題は、吸着膜モジュールの「大型化」および「高集積化」による吸着能力の有効利用度が低下するという望ましくない結果を解決する事である。発明者等は、驚くべき事に前述のような吸着の進行とともにFLUXが低下する特徴を有する吸着ろ過膜を構成部材として用いることにより、この課題が改善されることを見出した。   The problem to be solved by the present invention is to solve the undesirable result that the effective utilization of the adsorption capacity decreases due to “upsizing” and “high integration” of the adsorption membrane module. The inventors have surprisingly found that this problem can be improved by using, as a constituent member, an adsorption filtration membrane having a characteristic that FLUX decreases as the adsorption proceeds as described above.

すなわち、従来の技術では、前述の通り吸着ろ過膜モジュールでの「大型化」および「高集積化」は、極端な例では吸着が始まったばかりの局所と吸着が進行し被吸着物質の漏洩が始まった局所が同時に存在する状態となり、その場合モジュール全体の能力は期待するほどに高くならないため、「大型化」および「高集積化」には限界があった。ところが「弱電解性イオン交換基を有するグラフト高分子鎖が細孔表面に形成されている吸着ろ過膜」を構成部材として用いることにより、一方では吸着が進行して被吸着物質の漏洩が始まった局所ではFLUXが低下するために被吸着物質の漏洩量を小さく抑える事が可能となり、他方ではその結果として吸着が始まったばかりの局所に対して被吸着物質が優先的に供給されることになるため、最終的にモジュール全体としては吸着ろ過膜の吸着能力の利用度を高く維持する事が可能となる。   In other words, in the conventional technology, as described above, “upsizing” and “high integration” in the adsorption filtration membrane module are, in an extreme example, the local area where adsorption has just started and the adsorption progresses and the leakage of the adsorbed substance begins. In this case, since the capacity of the entire module does not increase as expected, there is a limit to “upsizing” and “high integration”. However, by using “adsorption filtration membranes with graft polymer chains having weakly electrolytic ion exchange groups formed on the pore surface” as constituent members, on the other hand, adsorption progressed and leakage of adsorbed substances began. Since FLUX decreases locally, it is possible to suppress the amount of leakage of the adsorbed substance, and on the other hand, the adsorbed substance is preferentially supplied to the local area where adsorption has just started. Finally, the module as a whole can maintain a high utilization of the adsorption capacity of the adsorption filtration membrane.

さらにここで「吸着能力」について説明する。
吸着能力を表す用語として、「静的吸着容量」(または「平衡吸着容量」)と「動的吸着容量」とがあり、当該業界では広く用いられている。本発明においては、特に記載がない限り、吸着能力とは動的吸着容量のことを指し、単位はmg/mlで表記する。
静的吸着容量とは、吸着体に対して被吸着物質が飽和状態まで吸着した場合の吸着容量を指す。
これに対して動的吸着容量とは、固定された吸着体に対して被吸着物質を含む流体を導入して排出させる際に、出口から被吸着物質が基準濃度で排出される時点までの吸着量を単位量当たりに換算した数値を指す。この基準濃度を破過点と呼び、一般的に破過点としては導入時の被吸着物質濃度に対する排出時の被吸着物質濃度が5%〜20%の範囲から選ぶが、本発明においては10%濃度を破過点と定義した。
Further, the “adsorption ability” will be described here.
The terms representing the adsorption capacity include “static adsorption capacity” (or “equilibrium adsorption capacity”) and “dynamic adsorption capacity”, which are widely used in the industry. In the present invention, unless otherwise specified, the adsorption capacity refers to the dynamic adsorption capacity, and the unit is expressed in mg / ml.
The static adsorption capacity refers to an adsorption capacity when an adsorbed substance is adsorbed to an adsorbent to a saturated state.
On the other hand, the dynamic adsorption capacity is the adsorption up to the time when the adsorbed substance is discharged at the reference concentration from the outlet when the fluid containing the adsorbed substance is introduced and discharged from the fixed adsorbent. This refers to the numerical value converted per unit amount. This reference concentration is called a breakthrough point. Generally, the breakthrough point is selected from the range of 5% to 20% of the adsorbed substance concentration at the time of discharge with respect to the adsorbed substance concentration at the time of introduction. % Concentration was defined as the breakthrough point.

次に「吸着容量」についての説明を補足する。
吸着体が吸着する被吸着物質の量を「吸着量」と呼び、吸着量を吸着体の単位量当たりの値に換算した数値を「吸着容量」と呼ぶ。
吸着量は重量や体積やモル数などその特性を表すのに適した単位を用いる事ができるが、本発明では重量で規定する。また吸着体の単位量についても単位重量や単位体積や単位充填体積などその特性を表すのに適した単位を用いる事ができるが、本発明では単位膜体積で規定する。
単位膜体積は、平膜の形状の場合と中空糸の形状の場合で算出方法が異なる。本発明においては、平膜の場合の単位膜体積は単純に有効膜面積と膜厚みを掛け合わせた値を採用する。また本発明においては、中空糸膜の形状の場合の単位膜体積は円環断面体積を採用し、円環断面体積とは、中空糸膜の外径をDo、内径をDi、吸着ろ過に寄与する有効膜長をLで表したときに、L×{(Do/2)2−(Di/2)2}×πで定義できる値を指す。
よって、吸着容量は、吸着重量を単位膜体積で除した値で定義され、本発明においては単位はmg/mlで表記する。
Next, the explanation about “adsorption capacity” will be supplemented.
The amount of the substance to be adsorbed by the adsorbent is referred to as “adsorption amount”, and a numerical value obtained by converting the adsorption amount into a value per unit amount of the adsorbent is referred to as “adsorption capacity”.
The adsorbed amount may be a unit suitable for expressing its characteristics such as weight, volume and number of moles, but is defined by weight in the present invention. As the unit amount of the adsorbent, a unit suitable for expressing its characteristics such as a unit weight, a unit volume, and a unit filling volume can be used.
The unit membrane volume is calculated differently depending on the shape of the flat membrane and the shape of the hollow fiber. In the present invention, the unit membrane volume in the case of a flat membrane simply adopts a value obtained by multiplying the effective membrane area and the membrane thickness. In the present invention, the unit membrane volume in the case of the shape of the hollow fiber membrane adopts an annular cross-sectional volume, and the annular cross-sectional volume means the outer diameter of the hollow fiber membrane Do, the inner diameter Di, and contributes to adsorption filtration. When the effective film length to be expressed is represented by L, it indicates a value that can be defined by L × {(Do / 2) 2− (Di / 2) 2} × π.
Therefore, the adsorption capacity is defined as a value obtained by dividing the adsorption weight by the unit membrane volume, and in the present invention, the unit is expressed in mg / ml.

すなわち、前出の吸着膜モジュールの吸着能力の有効利用度とは、吸着ろ過膜が本来持つ吸着能力がモジュール形状にした時にどの程度発揮されているかを示す尺度であり、基準寸法の吸着ろ過膜で測定した時の吸着能力に対する、モジュール形状で測定した時の吸着ろ過膜の吸着能力の比率で定義する。本発明では、基準寸法とは、例えば中空糸膜の場合は膜長7cmを基準寸法とし、平膜の場合は直径2.5cmを基本寸法とした。   That is, the above-mentioned effective utilization of the adsorption capacity of the adsorption membrane module is a measure of how much the adsorption capacity inherent in the adsorption filtration membrane is exerted when it is made into a module shape. It is defined as the ratio of the adsorption capacity of the adsorption filtration membrane when measured in the module shape to the adsorption capacity when measured with. In the present invention, the standard dimension is, for example, a membrane length of 7 cm in the case of a hollow fiber membrane, and a basic dimension of a diameter of 2.5 cm in the case of a flat membrane.

このような吸着ろ過膜の組成や微細構造については制限が無く、イオン性化学種の吸着によりFLUXが低下するものであればよい。具体的に述べてきたように、このような吸着ろ過膜の一例としては、細孔表面に弱電解性イオン交換基を有するグラフト高分子鎖が形成されている吸着ろ過膜であれば好適に用いることができる。   There is no restriction on the composition and the fine structure of such an adsorption filtration membrane, as long as FLUX is lowered by adsorption of ionic chemical species. As specifically described, as an example of such an adsorption filtration membrane, an adsorption filtration membrane in which a graft polymer chain having a weak electrolytic ion exchange group is formed on the pore surface is suitably used. be able to.

グラフト高分子鎖の構造は、前述のようにイオン性化学種の吸着とともにFLUXが低下するものであれば限定しないが、相互に架橋した構造の高分子鎖よりも非架橋構造の高分子鎖であるほうが容易に伸張できることから吸着に伴うFLUX低下が大きくなるためにより好ましい。
よって、グラフト高分子鎖を重合法で形成する場合には、架橋剤を用いない製法が好ましい。
The structure of the graft polymer chain is not limited as long as FLUX decreases with the adsorption of ionic species as described above. However, the structure of the graft polymer chain is a polymer chain with a non-crosslinked structure rather than a polymer chain with a cross-linked structure. Some are more preferable because they can be easily stretched, so that the decrease in FLUX accompanying adsorption becomes larger.
Therefore, when the graft polymer chain is formed by a polymerization method, a production method using no crosslinking agent is preferred.

このような吸着ろ過膜の形態は、溶液の通液が可能な形態であれば特に限定されず、例えば平膜、不織布、中空糸膜、モノリス、キャピラリーなどが挙げられる。これらの形態の中でも、製造しやすさ、スケールアップ性、モジュール成型した際のパッキング性などの観点から、吸着ろ過膜は中空糸膜であることが好ましい。中空糸膜とは、中空部分を有する円筒状または繊維状の多孔質膜であり、中空糸の内層と外層が貫通孔である細孔によって連続しており、その細孔によって内層から外層あるいは外層から内層に、液体が透過する性質を有する多孔質体を意味する。中空糸膜素材としては、一般的に中空糸膜に使用する素材を使用することができる。ただし、中空糸膜に対する化学的処理または物理的処理により後加工により吸着機能を付与する場合には、その加工条件による変質や分解の発生しない素材を選定する必要があるし、また必然的に加工可能な素材が限定される場合もある。さらに、使用用途により温度的負荷、薬品的負荷、使用圧力や振動等の物理的負荷が発生する場合は、それぞれの用途に適した素材を選定する必要がある。ポリオレフィン系重合体を用いて中空糸多孔質膜を製造する方法は、当事者にとって公知であり、例えば、特開平3−42025号公報に開示される方法などが挙げられる。   The form of such an adsorption filtration membrane is not particularly limited as long as the solution can be passed therethrough, and examples thereof include a flat membrane, a nonwoven fabric, a hollow fiber membrane, a monolith, and a capillary. Among these forms, the adsorption filtration membrane is preferably a hollow fiber membrane from the viewpoints of ease of production, scale-up property, packing property upon module molding, and the like. The hollow fiber membrane is a cylindrical or fibrous porous membrane having a hollow portion, and the inner layer and the outer layer of the hollow fiber are continuous by pores that are through holes, and the inner layer to the outer layer or the outer layer by the pores. Means a porous body having a property of allowing liquid to permeate into the inner layer. As the hollow fiber membrane material, a material generally used for a hollow fiber membrane can be used. However, when an adsorption function is imparted by post-processing by chemical processing or physical processing on the hollow fiber membrane, it is necessary to select a material that does not change or decompose due to the processing conditions, and inevitably processing. In some cases, possible materials are limited. Furthermore, when a physical load such as a temperature load, a chemical load, a use pressure, or a vibration is generated depending on the use application, it is necessary to select a material suitable for each use. A method for producing a hollow fiber porous membrane using a polyolefin polymer is known to those skilled in the art, and examples thereof include a method disclosed in JP-A-3-42025.

中空糸膜の有効膜長は、ラボレベルの使用に適しているため5cm以上10cm未満が好ましく、ラボレベルから小中大規模へのスケールアップにおける確認精度が高いため10cm以上20cm未満が好ましく、小〜中規模の精製現場の使用に適しているため20cm以上50cm未満が好ましく、大規模の精製現場の使用に適しておりかつ、ハンドリング性に優れるため50cm以上100cm以下が好ましく、大規模の精製現場の使用に適しておりかつ、大容量の処理ができるため100cmを超え250cm未満が好ましい。
ここで、中空糸膜の有効膜長とは、モジュール内に設置された中空糸膜1本当たりの平均長であり、かつろ過に寄与する部分の長さであり、モジュールの全長をさすものではない。
The effective membrane length of the hollow fiber membrane is preferably 5 cm or more and less than 10 cm because it is suitable for use at the laboratory level, and is preferably 10 cm or more and less than 20 cm because the accuracy of confirmation in scale-up from the laboratory level to small, medium, and large scales is high. ~ Suitable for use in medium-scale purification sites, preferably 20 cm or more and less than 50 cm. Suitable for use in large-scale purification sites, and excellent handling, preferably 50 cm or more and 100 cm or less. Large-scale purification sites And more than 100 cm and less than 250 cm are preferable.
Here, the effective membrane length of the hollow fiber membrane is the average length per one hollow fiber membrane installed in the module, and is the length of the portion that contributes to filtration, and does not indicate the total length of the module. Absent.

中空糸膜の外径と内径との比率については、中空糸膜素材の強度面とろ過透水速度のバランスを適宜考慮することが好ましい。例えば、中空糸膜の外径/内径の比は1.3〜10.0の間で選択することが好ましい。
中空糸膜の外径/内径の比が小さい場合、ろ過圧力の負荷に耐え切れずに、破裂又は潰れを招くおそれがある。 逆に、中空糸膜の外径/内径の比が大きすぎる場合には、ろ過透水速度が低下するおそれがある。
上述したことから、中空糸膜の外径/内径の比は、1.3〜10.0が好ましく、1.3〜3.0がより好ましく、1.5〜2.0が更に好ましい。
Regarding the ratio between the outer diameter and the inner diameter of the hollow fiber membrane, it is preferable to appropriately consider the balance between the strength of the hollow fiber membrane material and the filtration water transmission rate. For example, the outer diameter / inner diameter ratio of the hollow fiber membrane is preferably selected between 1.3 and 10.0.
When the ratio of the outer diameter / inner diameter of the hollow fiber membrane is small, the hollow fiber membrane may not endure the load of filtration pressure and may be ruptured or crushed. On the other hand, when the ratio of the outer diameter / inner diameter of the hollow fiber membrane is too large, the filtration water transmission rate may be reduced.
From the above, the outer diameter / inner diameter ratio of the hollow fiber membrane is preferably 1.3 to 10.0, more preferably 1.3 to 3.0, and still more preferably 1.5 to 2.0.

一方、中空糸膜の内径寸法は、中空部を流れる流体の管内圧力損失に大きく影響を及ぼす可能性がある。この管内圧力損失は、可能な限り低減化を図ることが必要である。圧力損失は、中空糸膜2の長手方向に局所的なろ過透水速度の分布を発生させる要因となり、その結果、中空糸膜2の長手方向に吸着破過のタイミングの差を誘起することになるからである。すなわち、一方では吸着が始まった直後の局部が存在するのに対し、他方では既に吸着が終了した局部が存在する状態が発生し、吸着ろ過膜の吸着能力の有効利用度が著しく低下する。しかしながら発明者等は鋭意検討を行った結果、吸着の進行とともにFLUXが低下する特徴を有する吸着ろ過膜を構成部材として用いることにより、吸着ろ過膜の吸着能力の有効利用度を高く維持する事が可能となる最適な中空糸膜の内径とモジュールの膜有効長の関係を見出した。   On the other hand, the inner diameter of the hollow fiber membrane may greatly affect the pressure loss in the pipe of the fluid flowing through the hollow portion. It is necessary to reduce the in-pipe pressure loss as much as possible. The pressure loss becomes a factor that causes a local filtration permeation rate distribution in the longitudinal direction of the hollow fiber membrane 2, and as a result, induces a difference in the timing of adsorption breakthrough in the longitudinal direction of the hollow fiber membrane 2. Because. That is, on the one hand, there is a local part immediately after the start of adsorption, while on the other hand, there is a state where there is a local part that has already been adsorbed, and the effective utilization of the adsorption capacity of the adsorption filtration membrane is significantly reduced. However, as a result of intensive studies, the inventors have been able to maintain an effective utilization of the adsorption capacity of the adsorption filtration membrane by using an adsorption filtration membrane having a feature that FLUX decreases as the adsorption proceeds. The relationship between the optimum inner diameter of the hollow fiber membrane and the effective membrane length of the module was found.

実用的には、中空糸膜2をモジュール構造にしたときの吸着能力の有効利用度が、0.60以上の範囲になるように、中空糸膜を選定することが好ましい。より好ましくは、0.80以上の範囲であり、さらに好ましくは0.90以上の範囲である。特に好ましくは、0.95以上1.00以下の範囲である。
以下に、吸着ろ過膜の有効膜長と中空糸内径と吸着能力の有効利用度の関係を記す。
Practically, it is preferable to select the hollow fiber membrane so that the effective utilization of the adsorption capacity when the hollow fiber membrane 2 has a modular structure is in the range of 0.60 or more. More preferably, it is the range of 0.80 or more, More preferably, it is the range of 0.90 or more. Especially preferably, it is the range of 0.95 or more and 1.00 or less.
Below, the relationship between the effective membrane length of the adsorption filtration membrane, the hollow fiber inner diameter, and the effective utilization of the adsorption capacity is described.

吸着の進行とともにFLUXが低下する特徴を有する吸着ろ過膜を構成部材とする吸着ろ過膜の膜有効長が10cm20以上cm以内である場合、吸着ろ過膜の内径寸法は0.28mm以上であることが好ましく、0.43mm以上であればより好ましい。吸着ろ過膜の膜有効長が20cmで内径寸法が0.28mmの場合は吸着能力の有効利用度を0.63とすることができた。また吸着ろ過膜の膜有効長が20cmで内径寸法が0.43mmの場合は吸着能力の有効利用度を0.90とすることができた。さらに吸着ろ過膜の膜有効長が20cmで内径寸法が2.20mmの場合は吸着能力の有効利用度を1.00とすることができた。   When the effective membrane length of an adsorption filtration membrane comprising an adsorption filtration membrane having a feature that FLUX decreases with the progress of adsorption is 10 cm or more and 20 cm or less, the inner diameter dimension of the adsorption filtration membrane may be 0.28 mm or more. Preferably, 0.43 mm or more is more preferable. When the effective length of the adsorption filtration membrane was 20 cm and the inner diameter was 0.28 mm, the effective utilization of the adsorption capacity could be 0.63. Moreover, when the effective membrane length of the adsorption filtration membrane was 20 cm and the inner diameter dimension was 0.43 mm, the effective utilization of the adsorption capacity could be 0.90. Furthermore, when the effective membrane length of the adsorption filtration membrane was 20 cm and the inner diameter dimension was 2.20 mm, the effective utilization of the adsorption capacity could be 1.00.

吸着の進行とともにFLUXが低下する特徴を有する吸着ろ過膜を構成部材とする吸着ろ過膜の有効膜長が20cmを超え50cm以内である場合、吸着ろ過膜の内径寸法は0.43mm以上であることが好ましく、0.60mm以上であればさらに好ましく。0.76mm以上であればより好ましい。吸着ろ過膜の膜有効長が50cmで内径寸法が0.43mmの場合は吸着能力の有効利用度を0.64とすることができた。また吸着ろ過膜の膜有効長が50cmで内径寸法が0.60mmの場合は吸着能力の有効利用度を0.83とすることができた。さらに吸着ろ過膜の膜有効長が50cmで内径寸法が0.76mmの場合は吸着能力の有効利用度を0.94とすることができた。さらには吸着ろ過膜の有効長が50cmで内径寸法が2.2mmの場合は吸着能力の有効利用度0.98を達成した。   When the effective membrane length of an adsorption filtration membrane comprising an adsorption filtration membrane having a characteristic that FLUX decreases with the progress of adsorption is more than 20 cm and within 50 cm, the inner diameter of the adsorption filtration membrane is 0.43 mm or more. Is preferable, and more preferably 0.60 mm or more. More preferably, it is 0.76 mm or more. When the effective length of the adsorption filtration membrane was 50 cm and the inner diameter dimension was 0.43 mm, the effective utilization of the adsorption capacity could be 0.64. Moreover, when the effective membrane length of the adsorption filtration membrane was 50 cm and the inner diameter dimension was 0.60 mm, the effective utilization of the adsorption capacity could be 0.83. Furthermore, when the effective membrane length of the adsorption filtration membrane was 50 cm and the inner diameter dimension was 0.76 mm, the effective utilization of the adsorption capacity could be 0.94. Furthermore, when the effective length of the adsorption filtration membrane was 50 cm and the inner diameter dimension was 2.2 mm, an effective utilization of the adsorption capacity of 0.98 was achieved.

吸着の進行とともにFLUXが低下する特徴を有する吸着ろ過膜を構成部材とする吸着ろ過膜の有効膜長が50cmを超え100cm以内である場合、吸着ろ過膜の内径寸法は0.60mm以上であることが好ましく、0.76mm以上であればさらに好ましく。1.02mm以上であればより好ましい。吸着ろ過膜の膜有効長が100cmで内径寸法が0.60mmの場合は吸着能力の有効利用度を0.68とすることができた。また吸着ろ過膜の膜有効長が100cmで内径寸法が0.76mmの場合は吸着能力の利用度を0.80とすることができた。さらに吸着ろ過膜の膜有効長が100cmで内径寸法が1.02mmの場合は吸着能力の有効利用度を0.919とすることができた。さらには吸着ろ過膜の膜有効長が100cmで内径寸法が2.2mmの場合は吸着能力の有効利用度0.98を達成した。   When the effective membrane length of the adsorption filtration membrane comprising the adsorption filtration membrane having the characteristic that FLUX decreases with the progress of adsorption is more than 50 cm and within 100 cm, the inner diameter dimension of the adsorption filtration membrane is 0.60 mm or more. Is more preferable, and 0.76 mm or more is more preferable. 1.02 mm or more is more preferable. When the effective length of the adsorption filtration membrane was 100 cm and the inner diameter was 0.60 mm, the effective utilization of the adsorption capacity could be 0.68. Moreover, when the effective membrane length of the adsorption filtration membrane was 100 cm and the inner diameter dimension was 0.76 mm, the utilization of the adsorption capacity could be 0.80. Furthermore, when the effective length of the adsorption filtration membrane was 100 cm and the inner diameter was 1.02 mm, the effective utilization of the adsorption capacity could be 0.919. Furthermore, when the effective membrane length of the adsorption filtration membrane was 100 cm and the inner diameter dimension was 2.2 mm, an effective utilization rate of adsorption capacity of 0.98 was achieved.

吸着の進行とともにFLUXが低下する特徴を有する吸着ろ過膜を構成部材とする吸着ろ過膜の有効膜長が100cmを超え150cm以内である場合、吸着ろ過膜の内径寸法は0.76mm以上であることが好ましく、1.02mm以上であればさらに好ましく。1.22mm以上であればより好ましい。吸着ろ過膜の膜有効長が150cmで内径寸法が0.76mmの場合は吸着能力の有効利用度を0.63とすることができた。また吸着ろ過膜の膜有効長が150cmで内径寸法が1.02mmの場合は吸着能力の有効利用度を0.85とすることができた。さらに吸着ろ過膜の膜有効長が150cmで内径寸法が1.22mmの場合は吸着能力の有効利用度を0.92とすることができた。さらには吸着ろ過膜の膜有効長が150cmで内径寸法が2.2mmの場合には吸着能力の有効利用度0.98を達成した。   When the effective membrane length of an adsorption filtration membrane comprising an adsorption filtration membrane having a characteristic that FLUX decreases with the progress of adsorption is more than 100 cm and within 150 cm, the inner diameter of the adsorption filtration membrane is 0.76 mm or more. Is more preferable, and 1.02 mm or more is more preferable. More preferably, it is 1.22 mm or more. When the effective length of the adsorption filtration membrane was 150 cm and the inner diameter dimension was 0.76 mm, the effective utilization of the adsorption capacity could be 0.63. Further, when the effective length of the adsorption filtration membrane was 150 cm and the inner diameter dimension was 1.02 mm, the effective utilization of the adsorption capacity could be 0.85. Furthermore, when the effective membrane length of the adsorption filtration membrane was 150 cm and the inner diameter dimension was 1.22 mm, the effective utilization of the adsorption capacity could be 0.92. Furthermore, when the effective membrane length of the adsorption filtration membrane was 150 cm and the inner diameter dimension was 2.2 mm, an effective utilization rate of adsorption capacity of 0.98 was achieved.

吸着の進行とともにFLUXが低下する特徴を有する吸着ろ過膜を構成部材とする吸着ろ過膜の有効膜長が150cmを超え200cm以内である場合、中空糸ろ過膜の内径寸法は0.86mm以上であることが好ましく、1.22mm以上であればさらに好ましい。吸着ろ過膜の膜有効長が200cmで内径寸法が0.86mmの場合は吸着能力の有効利用度を0.63とすることができた。また吸着ろ過膜の膜有効長が200cmで内径寸法が1.22mmの場合は吸着能力の有効利用度を0.86とすることができた。さらには吸着ろ過膜の有効長が200cmで内径寸法が2.2mmの場合には吸着能力の有効利用度0.98を達成した。   When the effective membrane length of the adsorption filtration membrane comprising the adsorption filtration membrane having the characteristic that FLUX decreases with the progress of adsorption is more than 150 cm and within 200 cm, the inner diameter of the hollow fiber filtration membrane is 0.86 mm or more. It is more preferable that it is 1.22 mm or more. When the effective length of the adsorption filtration membrane was 200 cm and the inner diameter was 0.86 mm, the effective utilization of the adsorption capacity could be 0.63. When the effective membrane length of the adsorption filtration membrane was 200 cm and the inner diameter dimension was 1.22 mm, the effective utilization of the adsorption capacity could be 0.86. Furthermore, when the effective length of the adsorption filtration membrane was 200 cm and the inner diameter dimension was 2.2 mm, an effective utilization of the adsorption capacity of 0.98 was achieved.

以下、本発明の具体的な実施例及び比較例について説明する。
本発明は、下記の実施例等に限定されるものではない。
Hereinafter, specific examples and comparative examples of the present invention will be described.
The present invention is not limited to the following examples.

[製造例1]基材となる中空糸多孔質膜の製造
微粉ケイ酸(アエロジルR972グレード)27.2質量部、ジブチルフタレート(DBP)54.3質量部、ポリエチレン樹脂粉末(旭化成サンファインSH−800グレード)18.5質量部を、予備混合し、その後、2軸押出し機内で中空糸状に押し出した。
次に、ジブチルフタレート(DBP)及び微粉ケイ酸を、それぞれ塩化メチレン及び引き続きNaOH水溶液中に浸漬して抽出した後、水洗、乾燥処理を施し、ポリエチレン製の中空糸多孔膜を得た。
[Production Example 1] Production of hollow fiber porous membrane as base material 27.2 parts by mass of finely divided silicic acid (Aerosil R972 grade), 54.3 parts by mass of dibutyl phthalate (DBP), polyethylene resin powder (Asahi Kasei Sun Fine SH- (800 grade) 18.5 parts by mass were premixed and then extruded into a hollow fiber in a twin screw extruder.
Next, dibutyl phthalate (DBP) and finely divided silicic acid were extracted by immersing in methylene chloride and subsequently in an aqueous NaOH solution, respectively, and then washed with water and dried to obtain a hollow fiber porous membrane made of polyethylene.

[製造例2]吸着機能を有する中空糸多孔膜の製造
上記[製造例1]により製造したポリエチレン製中空糸多孔膜を密閉容器に入れて、当該密閉容器内の空気を窒素で置換した。
その後、密閉容器の外側からドライアイスを用いて冷却しながら、γ線200kGyを照射し、ラジカルを発生させ、ラジカルを有するポリエチレン製中空糸多孔膜を得た。
上記のようにして得られたラジカルを有するポリエチレン製中空糸多孔膜を反応容器に入れて、200Pa以下に減圧することにより、反応容器内の酸素を除いた状態とした。
一方、40℃に調整したグリシジルメタクリレート(GMA)3体積部と、メタノール97体積部よりなる反応液を窒素でバブリングして、当該反応液内の酸素を取り除いた状態とした。
上記ポリエチレン製中空糸多孔膜を入れた酸素を除いた反応容器に、上記酸素を取り除いた反応液を注入した。その後、後述する実施例及び比較例において記載されている時間に従い、密閉静置状態を維持し、反応温度40℃でグラフト重合反応をポリエチレン製中空糸多孔膜に施した。
その後、メタノールで十分に洗浄し、乾燥することにより、GMAグラフト中空糸膜を得た。
その後、後述する実施例及び比較例において記載されている方法により、GMAグラフト中空糸膜のGMAグラフト鎖のエポキシ基に対して試薬を作用させることにより、吸着機能を有する官能基に転化した。これにより、官能基を有するGMAグラフト中空糸膜を得た。
[Production Example 2] Production of Hollow Fiber Porous Membrane Having Adsorption Function The polyethylene hollow fiber porous membrane produced in [Production Example 1] was placed in a sealed container, and the air in the sealed container was replaced with nitrogen.
Thereafter, while cooling with dry ice from the outside of the sealed container, irradiation with 200 gGy of γ rays was performed to generate radicals, thereby obtaining a polyethylene hollow fiber porous membrane having radicals.
The polyethylene hollow fiber porous membrane having radicals obtained as described above was put in a reaction vessel, and the pressure in the reaction vessel was reduced to 200 Pa or less to remove oxygen in the reaction vessel.
On the other hand, a reaction solution consisting of 3 parts by volume of glycidyl methacrylate (GMA) adjusted to 40 ° C. and 97 parts by volume of methanol was bubbled with nitrogen to remove oxygen from the reaction solution.
The reaction liquid from which the oxygen was removed was poured into a reaction vessel from which the polyethylene hollow fiber porous membrane had been removed. Then, according to the time described in the examples and comparative examples described later, the sealed stationary state was maintained, and a graft polymerization reaction was performed on the polyethylene hollow fiber porous membrane at a reaction temperature of 40 ° C.
Then, it washed thoroughly with methanol and dried to obtain a GMA graft hollow fiber membrane.
Then, by the method described in the Example and comparative example which are mentioned later, it was converted into the functional group which has an adsorption function by making a reagent act on the epoxy group of the GMA graft chain of a GMA graft hollow fiber membrane. Thereby, a GMA graft hollow fiber membrane having a functional group was obtained.

[製造例3]グラフト率の定義
上記[製造例2]で製造した官能基を有するGMAグラフト中空糸膜におけるグラフト率は、下記の式(1)で表される。
[Production Example 3] Definition of Graft Rate The graft rate in the GMA graft hollow fiber membrane having a functional group produced in the above [Production Example 2] is represented by the following formula (1).

Figure 2011016119
Figure 2011016119

W0:基材膜の重量 [g]
W1:グラフト重合後のGMAグラフト中空糸膜の重量 [g]
W0: Weight of base film [g]
W1: Weight of GMA graft hollow fiber membrane after graft polymerization [g]

[製造例4]官能基置換率の定義
上記〔製造例2〕で製造した官能基を有するGMAグラフト中空糸膜における官能基転化率は、下記式(2)により表される。
[Production Example 4] Definition of Functional Group Substitution Rate The functional group conversion rate in the GMA grafted hollow fiber membrane having the functional group produced in [Production Example 2] is represented by the following formula (2).

Figure 2011016119
Figure 2011016119

W2:官能基を有するGMAグラフト中空糸膜の重量 [g]
M1: GMAの分子量(142.15)
M2: 吸着機能を有する官能基の分子量
W2: Weight of GMA-grafted hollow fiber membrane having a functional group [g]
M1: Molecular weight of GMA (142.15)
M2: Molecular weight of functional group having adsorption function

[評価方法例1]吸着機能を有する中空糸膜の測定装置
上記[製造例2]で製造した官能基を有するGMAグラフト中空糸膜が、有効膜長7cmとなるように、当該官能基を有するGMAグラフト中空糸膜の両端を、配管に接続し、その片端を、圧力計を介してチューブポンプに接続し、反対の片端にコックを接続し、中空糸膜の測定装置とした。
[Evaluation Method Example 1] Measuring Device for Hollow Fiber Membrane Having Adsorption Function The GMA grafted hollow fiber membrane having a functional group produced in [Production Example 2] has the functional group so that the effective membrane length is 7 cm. Both ends of the GMA graft hollow fiber membrane were connected to a pipe, one end of the GMA graft hollow fiber membrane was connected to a tube pump via a pressure gauge, and a cock was connected to the other end to provide a hollow fiber membrane measuring device.

[評価方法例2]吸着機能を有する中空糸ろ過膜の吸着能力の測定
上記[評価方法例1]の測定装置に取り付けた、有効膜長7cmの吸着ろ過膜に対して、被吸着物質として指標タンパク質を用いた吸着能力の測定を行った。
被吸着物質として精製されたタンパク質の市販品を用いることは、バイオテクノロジーの精製装置の性能表示を行う際に一般に用いられている。モデル物質としては、精製装置の性能を示すために最も適したタンパク質を用いることが好ましいが、一般に用いられるタンパク質としては、BSA(牛血清アルブミン)やリゾチームがある。これら指標タンパク質としてBSAはSIGMA社製A7906−100Gを、リゾチームはSIGMA社製L6876−10Gを用いて次の測定を行い、下記のように吸着能力を定義した。
上記[評価方法例1]の測定装置に取り付けた有効膜長7cmの吸着ろ過膜に対して、トリス塩酸緩衝液を中空糸膜の中空部に供給して中空部の残留空気を排除した後に供給側と反対側のコックを閉じた。引き続き所定の流速設定にてろ過圧力が安定化するまでトリス塩酸緩衝液を内圧式でろ過した。指標タンパク質をトリス塩酸緩衝液に溶解して1g/Lの濃度に調製をし、上記ろ過圧を安定化させた有効膜長7cmの吸着ろ過膜に対して20℃にて供給し、所定の一定流速にてろ過を続けた。ろ過液側へのタンパク質の漏洩動向を、波長280nmにおける吸光度で追跡し、指標タンパク水溶液の吸光度に対するろ過液の吸光度の比が10%になる時点のろ液量[ml]を確認した。このろ液量を1g/Lの関係からタンパク質の重量に換算することで、吸光度比が10%になる時点のタンパク質吸着量[mg]を導出した。
このタンパク質吸着量[mg]を、ろ過に用いた中空糸膜の円環膜体積[ml]で割ることによって、単位膜体積当たりのタンパク質吸着量[mg/ml]とした。
この吸光度比が10%になる時点での単位膜体積当たりのタンパク質吸着量を、「膜固有の動的吸着容量」と定義した。
なお、バイオテクノロジーの精製の分野等では、「動的吸着容量」は一般的に用いられる用語である。
[Evaluation Method Example 2] Measurement of Adsorption Capacity of Hollow Fiber Filtration Membrane Having Adsorption Function For an adsorption filtration membrane having an effective membrane length of 7 cm attached to the measurement apparatus of [Evaluation Method Example 1], an index as an adsorbed substance The adsorption ability using protein was measured.
The use of a purified protein commercial product as an adsorbed substance is generally used when displaying the performance of a biotechnology purification apparatus. As the model substance, it is preferable to use the most suitable protein for showing the performance of the purification apparatus, but generally used proteins include BSA (bovine serum albumin) and lysozyme. As these index proteins, BSA used A7906-100G manufactured by SIGMA, and lysozyme used L6876-10G manufactured by SIGMA, and the adsorption capacity was defined as follows.
Supplied after the Tris-HCl buffer is supplied to the hollow part of the hollow fiber membrane and the residual air in the hollow part is eliminated with respect to the adsorption filtration membrane having an effective membrane length of 7 cm attached to the measuring apparatus of [Evaluation Method Example 1]. The cock on the opposite side was closed. Subsequently, the Tris-HCl buffer was filtered by the internal pressure method until the filtration pressure was stabilized at a predetermined flow rate setting. An indicator protein is dissolved in Tris-HCl buffer to prepare a concentration of 1 g / L, and supplied to an adsorption filtration membrane having an effective membrane length of 7 cm with the filtration pressure stabilized at 20 ° C. Filtration continued at the flow rate. The trend of protein leakage to the filtrate side was followed by absorbance at a wavelength of 280 nm, and the filtrate amount [ml] at the time when the ratio of the absorbance of the filtrate to the absorbance of the indicator protein aqueous solution reached 10% was confirmed. By converting the amount of this filtrate into the protein weight from the relationship of 1 g / L, the protein adsorption amount [mg] at the time when the absorbance ratio reached 10% was derived.
The protein adsorption amount [mg] was divided by the annular membrane volume [ml] of the hollow fiber membrane used for filtration to obtain the protein adsorption amount [mg / ml] per unit membrane volume.
The protein adsorption amount per unit membrane volume when the absorbance ratio reached 10% was defined as “membrane-specific dynamic adsorption capacity”.
In the field of biotechnology purification, etc., “dynamic adsorption capacity” is a commonly used term.

[評価方法例3]中空糸膜モジュールの吸着能力の測定装置
中空糸膜モジュールの吸着能力を、高速液体クロマトグラフィー(HPLC)システムを用いて測定した。
HPLCとしては、GEヘルスケア バイオサイエンス株式会社のAKTAexplorer100、または株式会社ワイエムシィの中圧クロマト装置BP−5000S−Lを使用した。
[Evaluation Method Example 3] Apparatus for Measuring Adsorption Capacity of Hollow Fiber Membrane Module The adsorption capacity of the hollow fiber membrane module was measured using a high performance liquid chromatography (HPLC) system.
As HPLC, AKTAexplorer100 of GE Healthcare Bioscience Co., Ltd. or medium pressure chromatograph BP-5000S-L of YMC Co., Ltd. was used.

[評価方法例4]吸着機能を有する中空糸ろ過膜モジュールの吸着能力の測定
上記[評価方法例3]記載のHPLCと中空糸ろ過膜モジュールを、HPLCの供給配管をモジュールの中空糸膜内表面側に接続し、HPLCの排出配管をモジュールの中空糸膜外表面側に接続した。その後中空糸膜内表面側および外表面側に残留空気が無いようにトリス塩酸緩衝液を供給し内圧式のろ過操作を行いセットアップをした。
トリス塩酸緩衝液に1g/Lの濃度になるように調製した指標タンパク質水溶液(上記BSAまたはリゾチーム)を中空糸ろ過膜モジュールに対して20℃にて供給し、所定の一定流速にて内圧式のろ過を続けた。なお供給流速は、上記[評価方法例2]での測定と本測定との単位膜面積あたりのろ過透水量負荷を一致させるために、有効膜長比例の流速に設定した。
ろ過液側へのタンパク質の漏洩動向を、波長280nmにおける吸光度で追跡し、指標タンパク水溶液の吸光度に対するろ過液の吸光度の比が10%になる時点のろ液量[ml]を確認した。このろ液量[ml]を1g/Lの関係からタンパク質の重量[mg]に換算することで、吸光度比が10%になる時点のタンパク質吸着量[mg]を導出した。
このタンパク質吸着量[mg]を、測定した中空糸ろ過膜モジュールを構成する全中空糸膜の総円環膜体積[ml]で割ることによって、単位膜体積当たりのタンパク質吸着量[mg/ml]に換算した。
この吸光度比が10%時点での単位膜体積当たりのタンパク質吸着量を、「モジュール形態での動的吸着容量」と定義した。
[Evaluation Method Example 4] Measurement of Adsorption Capacity of Hollow Fiber Filtration Membrane Module Having Adsorption Function The HPLC and hollow fiber filtration membrane module described in [Evaluation Method Example 3] above, and the supply pipe of HPLC as the hollow fiber membrane inner surface of the module The HPLC discharge piping was connected to the outer surface side of the hollow fiber membrane of the module. Thereafter, Tris-HCl buffer was supplied so that there was no residual air on the inner surface side and the outer surface side of the hollow fiber membrane, and an internal pressure filtration operation was performed for setup.
An indicator protein aqueous solution (BSA or lysozyme) prepared to a concentration of 1 g / L in Tris-HCl buffer is supplied to the hollow fiber filtration membrane module at 20 ° C., and the internal pressure type is supplied at a predetermined constant flow rate. Filtration continued. The supply flow rate was set to a flow rate proportional to the effective membrane length in order to match the filtration water permeability load per unit membrane area between the measurement in [Evaluation Method Example 2] and the main measurement.
The trend of protein leakage to the filtrate side was followed by absorbance at a wavelength of 280 nm, and the filtrate amount [ml] at the time when the ratio of the absorbance of the filtrate to the absorbance of the indicator protein aqueous solution reached 10% was confirmed. By converting the filtrate amount [ml] into the protein weight [mg] from the relationship of 1 g / L, the protein adsorption amount [mg] when the absorbance ratio reached 10% was derived.
The protein adsorption amount [mg / ml] per unit membrane volume is obtained by dividing the protein adsorption amount [mg] by the total annular membrane volume [ml] of all the hollow fiber membranes constituting the measured hollow fiber filtration membrane module. Converted into
The protein adsorption amount per unit membrane volume when the absorbance ratio was 10% was defined as “dynamic adsorption capacity in module form”.

[実施例1]
弱電解性イオン交換基としてジエチルアミノ基をグラフト高分子鎖に有する中空糸タイプの吸着ろ過膜に関して説明する。弱電解性イオン交換基を有するろ過膜においては、吸着とともにろ過圧力が上昇する(FLUXが低下する)ことを示す例である。
[Example 1]
A hollow fiber type adsorption filtration membrane having a diethylamino group as a weakly electrolytic ion exchange group in the graft polymer chain will be described. In a filtration membrane having weakly electrolytic ion exchange groups, this is an example showing that the filtration pressure increases (FLUX decreases) with adsorption.

上記[製造例1]の方法に従い内径2.0mm、外径3.1mmのポリエチレン製中空糸多孔膜を得た。
グリシジルメタクリレート(GMA)3体積部とイソプロピルアルコール97体積部よりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4質量部に対し酸素を取り除いた反応液を96質量部注入し15分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率53%で得た。
その後、ジエチルアミン50体積部と純水50体積部からなる反応液をGMAグラフト中空糸膜に30℃で23時間作用させた。これにより、ジエチルアミノ基(M2=73.14)を官能基転化率93%で有し、内径2.20mm、外径3.54mmであるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
A polyethylene hollow fiber porous membrane having an inner diameter of 2.0 mm and an outer diameter of 3.1 mm was obtained according to the method of [Production Example 1].
A polyethylene hollow fiber porous membrane 4 from which a reaction solution comprising 3 parts by volume of glycidyl methacrylate (GMA) and 97 parts by volume of isopropyl alcohol was used, and the other conditions were the same as in [Production Example 2] above, except that oxygen was removed. By injecting 96 parts by mass of the reaction liquid from which oxygen was removed with respect to parts by mass and maintaining a reaction time of 15 minutes, a GMA graft hollow fiber membrane was obtained with a graft rate of 53%.
Thereafter, a reaction solution consisting of 50 parts by volume of diethylamine and 50 parts by volume of pure water was allowed to act on the GMA graft hollow fiber membrane at 30 ° C. for 23 hours. Thus, a GMA graft hollow having a diethylamino group (M2 = 73.14) having a functional group conversion of 93%, a diethylamino group (weakly electrolytic ion exchange group) having an inner diameter of 2.20 mm and an outer diameter of 3.54 mm. A yarn membrane was obtained.

上記[評価方法例2]の方法にて、前記ジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜に2.0mL/minの送液速度にて内表面側へBSA溶液を送液し外表面側へろ過する操作を行い、供給するBSA水溶液の吸光度に対するろ過液の吸光度の比が10%になり、さらに90%を超えるまでろ過操作を続け、ろ液重量と吸光度とろ過圧力とを監視した。
吸光度比が10%に到達するまでに20.5mLを要した。これよりこの膜の動的吸着容量は、BSAの吸着量で48.5mg/mLと算出された。また、ろ過液の吸光度比が90%を超えるまでのろ液量と吸光度とろ過圧力の関係は図7に記すとおりであるが、本ジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜は、吸着の進行とともにろ過圧力が上昇する、すなわちFLUXが低下する特徴を有する膜であることは明らかである。
The BSA solution was fed to the inner surface side at a feeding rate of 2.0 mL / min to the GMA grafted hollow fiber membrane having the diethylamino group (weakly electrolytic ion exchange group) by the method of [Evaluation Method Example 2]. The liquid is filtered to the outer surface side, and the ratio of the absorbance of the filtrate to the absorbance of the BSA aqueous solution to be supplied becomes 10%, and the filtration operation is continued until it exceeds 90%, and the filtrate weight, absorbance, and filtration pressure are continued. And monitored.
It took 20.5 mL to reach an absorbance ratio of 10%. From this, the dynamic adsorption capacity of this membrane was calculated to be 48.5 mg / mL in terms of the amount of BSA adsorption. Moreover, the relationship between the filtrate amount, the absorbance and the filtration pressure until the absorbance ratio of the filtrate exceeds 90% is as shown in FIG. 7, but the GMA graft hollow having the present diethylamino group (weakly electrolytic ion exchange group) It is clear that the yarn membrane has a characteristic that the filtration pressure increases with the progress of adsorption, that is, FLUX decreases.

[実施例2]
実施例1と同じく、弱電解性イオン交換基としてジエチルアミノ基をグラフト高分子鎖に有する中空糸タイプの吸着ろ過膜に関して説明する。実施例1と同じく吸着とともにろ過圧力が上昇する(FLUXが低下する)ことを示す例である。
[Example 2]
As in Example 1, a hollow fiber type adsorption filtration membrane having a diethylamino group as a weakly electrolytic ion exchange group in the graft polymer chain will be described. It is an example which shows that filtration pressure rises with adsorption similarly to Example 1 (FLUX falls).

上記[製造例1]の方法に従い内径2.0mm、外径3.1mmのポリエチレン製中空糸多孔膜を得た。
グリシジルメタクリレート(GMA)10体積部とメタノール90体積部なる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4質量部に対し酸素を取り除いた反応液を96質量部注入し11分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率158%で得た。
その後、ジエチルアミン50体積部と純水50体積部からなる反応液をGMAグラフト中空糸膜に30℃で2.3時間作用させた。これにより、ジエチルアミノ基(M2=73.14)を官能基転化率82%で有し、内径2.37mm、外径3.96mmであるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
A polyethylene hollow fiber porous membrane having an inner diameter of 2.0 mm and an outer diameter of 3.1 mm was obtained according to the method of [Production Example 1].
A reaction liquid consisting of 10 parts by volume of glycidyl methacrylate (GMA) and 90 parts by volume of methanol was used, and the other conditions were the same as in [Production Example 2] above. 96 mass parts of the reaction solution from which oxygen was removed was injected to maintain a reaction time of 11 minutes, whereby a GMA graft hollow fiber membrane was obtained at a graft rate of 158%.
Thereafter, a reaction solution composed of 50 parts by volume of diethylamine and 50 parts by volume of pure water was allowed to act on the GMA graft hollow fiber membrane at 30 ° C. for 2.3 hours. Thus, a GMA graft hollow having a diethylamino group (M2 = 73.14) at a functional group conversion of 82%, a diethylamino group (weakly electrolytic ion exchange group) having an inner diameter of 2.37 mm and an outer diameter of 3.96 mm. A yarn membrane was obtained.

上記[評価方法例2]の方法にて、前記ジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜に2.0mL/minの送液速度にて内表面側へBSA溶液を送液し外表面側へろ過する操作を行い、供給するBSA水溶液の吸光度に対するろ過液の吸光度の比が10%になり、さらに90%を超えるまでろ過操作を続け、ろ液重量と吸光度とろ過圧力とを監視した。
吸光度比が10%に到達するまでに55.3mLを要した。これよりこの膜の動的吸着容量は、BSAの吸着量で99.6mg/mLと算出された。また、吸光度比が90%を超えるまでのろ液量と吸光度とろ過圧力の関係は図8に記すとおりであるが、本ジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜は、吸着の進行とともにろ過圧力が上昇する、すなわちFLUXが低下する特徴を有する膜であることは明らかである。
The BSA solution was fed to the inner surface side at a feeding rate of 2.0 mL / min to the GMA grafted hollow fiber membrane having the diethylamino group (weakly electrolytic ion exchange group) by the method of [Evaluation Method Example 2]. The liquid is filtered to the outer surface side, and the ratio of the absorbance of the filtrate to the absorbance of the BSA aqueous solution to be supplied becomes 10%, and the filtration operation is continued until it exceeds 90%, and the filtrate weight, absorbance, and filtration pressure are continued. And monitored.
It took 55.3 mL to reach an absorbance ratio of 10%. From this, the dynamic adsorption capacity of this membrane was calculated as 99.6 mg / mL in terms of the amount of BSA adsorbed. Further, the relationship between the filtrate amount, the absorbance, and the filtration pressure until the absorbance ratio exceeds 90% is as shown in FIG. 8, but the GMA graft hollow fiber membrane having the present diethylamino group (weakly electrolytic ion exchange group) is It is clear that the membrane has a characteristic that the filtration pressure increases as the adsorption proceeds, that is, FLUX decreases.

[比較例1]
強電解性アニオン交換基としてトリメチルアンモニウム基をグラフト高分子鎖に有する中空糸タイプの吸着ろ過膜に関して説明する。強電解性アニオン交換基を有するろ過膜においては、吸着とともにろ過圧力し上昇がない(FLUXが低下しない)ことを示す例である。
[Comparative Example 1]
A hollow fiber type adsorption filtration membrane having a trimethylammonium group as a strong electrolytic anion exchange group in a graft polymer chain will be described. In a filtration membrane having a strong electrolytic anion exchange group, it is an example showing that there is no increase due to filtration pressure with adsorption (FLUX does not decrease).

上記[製造例1]の方法に従い内径2.0mm、外径3.1mmのポリエチレン製中空糸多孔膜を得た。
グリシジルメタクリレート(GMA)1体積部とメタノール99体積部よりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し12分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率12%で得た。
その後、NaOHを用いてpH12に調整した0.5Mのトリメチルアンモニウムクロリド水溶液を反応液として、GMAグラフト中空糸膜に60℃で30分間作用させることで、トリメチルアンモニウム・Cl基(M2=95.57)を官能基転化率99%で有し、内径2.00mm、外径3.18mmであるトリメチルアンモニウム基(強電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
A polyethylene hollow fiber porous membrane having an inner diameter of 2.0 mm and an outer diameter of 3.1 mm was obtained according to the method of [Production Example 1].
Using a reaction solution consisting of 1 part by volume of glycidyl methacrylate (GMA) and 99 parts by volume of methanol, the other conditions were the same as in [Production Example 2], except that oxygen was removed and the hollow fiber porous membrane made of polyethylene 4 wt. 96 parts by weight of the reaction liquid from which oxygen had been removed was injected into the part, and the reaction time was maintained for 12 minutes, whereby a GMA graft hollow fiber membrane was obtained at a graft rate of 12%.
Thereafter, a 0.5 M trimethylammonium chloride aqueous solution adjusted to pH 12 with NaOH was used as a reaction solution, and allowed to act on the GMA graft hollow fiber membrane at 60 ° C. for 30 minutes, whereby trimethylammonium · Cl group (M2 = 95.57). A GMA graft hollow fiber membrane having a trimethylammonium group (strongly electrolytic ion exchange group) having a functional group conversion of 99%, an inner diameter of 2.00 mm, and an outer diameter of 3.18 mm.

上記[評価方法例2]の方法にて、前記トリメチルアンモニウム基(強電解性イオン交換基)を有するGMAグラフト中空糸膜に2.0mL/minの送液速度にて内表面側へBSA溶液を送液し外表面側へろ過する操作を行い、供給するBSA水溶液の吸光度に対するろ過液の吸光度の比が10%になり、さらに90%を超えるまでろ過操作を続け、ろ液重量と吸光度とろ過圧力とを監視した。
吸光度比が10%に到達するまでに9.6mLを要した。これよりこの膜の動的吸着容量は、BSAの吸着量で29.0mg/mLと算出された。また、吸光度比が90%を超えるまでのろ液量と吸光度とろ過圧力の関係は図9に記すとおりであるが、本トリメチルアンモニウム基(強電解性イオン交換基)を有するGMAグラフト中空糸膜は、吸着の進行とともにろ過圧力の上昇が見られない、すなわちFLUXの低下が見られない膜であることは明らかである。
By the method of [Evaluation Method Example 2], the BSA solution was applied to the inner surface side at a liquid feed rate of 2.0 mL / min onto the GMA graft hollow fiber membrane having the trimethylammonium group (strongly electrolytic ion exchange group). The liquid was fed and filtered to the outer surface side, and the ratio of the absorbance of the filtrate to the absorbance of the BSA aqueous solution to be supplied reached 10%, and the filtration operation was continued until it exceeded 90%, and the filtrate weight, absorbance, and filtration were continued. The pressure was monitored.
It took 9.6 mL until the absorbance ratio reached 10%. From this, the dynamic adsorption capacity of this membrane was calculated to be 29.0 mg / mL in terms of the amount of BSA adsorbed. Further, the relationship between the filtrate amount, the absorbance and the filtration pressure until the absorbance ratio exceeds 90% is as shown in FIG. 9, but the GMA grafted hollow fiber membrane having the present trimethylammonium group (strongly electrolytic ion exchange group). It is clear that the membrane does not show an increase in filtration pressure with the progress of adsorption, that is, does not show a decrease in FLUX.

[比較例2]
強電解性カチオン交換基としてスルホン酸基をグラフト高分子鎖に有する中空糸タイプの吸着ろ過膜に関して説明する。強電解性カチオン交換基を有するろ過膜においては、吸着とともにろ過圧力が上昇しない(FLUXが低下しない)ことを示す例である。
[Comparative Example 2]
A hollow fiber type adsorption filtration membrane having a sulfonic acid group in the graft polymer chain as a strong electrolytic cation exchange group will be described. In a filtration membrane having a strong electrolytic cation exchange group, this is an example showing that the filtration pressure does not increase (FLUX does not decrease) with adsorption.

上記[製造例1]の方法に従い内径2.0mm、外径3.1mmのポリエチレン製中空糸多孔膜を得た。
グリシジルメタクリレート(GMA)2体積部とメタノール98体積部よよりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し12分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率23%で得た。
その後、亜硫酸ナトリウム10重量部とイソプロピルアルコール15重量部と純水75重量部の混合液を反応液として、GMAグラフト中空糸膜に80℃で10分間作用させることで、スルホン酸・Na基(M2=103.05)を官能基転化率3.9%の吸着膜を得た。この後、残りのGMAグラフト鎖中のエポキシ基をジオール化するために0.5M硫酸水溶液を反応液として80℃で3時間作用させ、最終的に内径2.18mm、外径3.54mmであるスルホン酸基(強電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
A polyethylene hollow fiber porous membrane having an inner diameter of 2.0 mm and an outer diameter of 3.1 mm was obtained according to the method of [Production Example 1].
A polyethylene hollow fiber porous membrane 4 from which a reaction liquid consisting of 2 parts by volume of glycidyl methacrylate (GMA) and 98 parts by volume of methanol was used, and oxygen was removed by the same method as in [Production Example 2] above. By injecting 96 parts by weight of the reaction liquid from which oxygen was removed with respect to parts by weight and maintaining a reaction time of 12 minutes, a GMA graft hollow fiber membrane was obtained with a graft rate of 23%.
Thereafter, a mixed solution of 10 parts by weight of sodium sulfite, 15 parts by weight of isopropyl alcohol, and 75 parts by weight of pure water was used as a reaction solution and allowed to act on the GMA graft hollow fiber membrane at 80 ° C. for 10 minutes, thereby sulfonic acid / Na group (M2 = 103.05), an adsorption film having a functional group conversion of 3.9% was obtained. Thereafter, in order to diolate the epoxy groups in the remaining GMA graft chains, 0.5 M sulfuric acid aqueous solution was allowed to act as a reaction solution at 80 ° C. for 3 hours, and finally the inner diameter was 2.18 mm and the outer diameter was 3.54 mm. A GMA graft hollow fiber membrane having a sulfonic acid group (strongly electrolytic ion exchange group) was obtained.

上記[評価方法例2]の方法にて、前記スルホン酸基(強電解性イオン交換基)を有するGMAグラフト中空糸膜に2.0mL/minの送液速度にて内表面側へBSA溶液を送液し外表面側へろ過する操作を行い、供給するBSA水溶液の吸光度に対するろ過液の吸光度の比が10%になり、さらに90%を超えるまでろ過操作を続け、ろ液重量と吸光度とろ過圧力とを監視した。
吸光度比が10%に到達するまでに8.9mLを要した。これよりこの膜の動的吸着容量は、BSAの吸着量で25.2mg/mLと算出された。また、吸光度比が90%を超えるまでのろ液量と吸光度とろ過圧力の関係は図10に記すとおりであるが、本スルホン酸基(強電解性イオン交換基)を有するGMAグラフト中空糸膜は、吸着の進行とともにろ過圧力の上昇が見られない、すなわちFLUXの低下が見られない膜であることは明らかである。
By the method of [Evaluation Method Example 2], the BSA solution was applied to the inner surface side at a liquid feed rate of 2.0 mL / min onto the GMA grafted hollow fiber membrane having the sulfonic acid group (strongly electrolytic ion exchange group). The liquid was fed and filtered to the outer surface side, and the ratio of the absorbance of the filtrate to the absorbance of the BSA aqueous solution to be supplied reached 10%, and the filtration operation was continued until it exceeded 90%, and the filtrate weight, absorbance, and filtration were continued. The pressure was monitored.
It took 8.9 mL to reach an absorbance ratio of 10%. From this, the dynamic adsorption capacity of this membrane was calculated as 25.2 mg / mL in terms of the amount of BSA adsorbed. Further, the relationship between the filtrate amount, the absorbance and the filtration pressure until the absorbance ratio exceeds 90% is as shown in FIG. 10, but the GMA grafted hollow fiber membrane having the present sulfonic acid group (strongly electrolytic ion exchange group). It is clear that the membrane does not show an increase in filtration pressure with the progress of adsorption, that is, does not show a decrease in FLUX.

[実施例3]
上記[製造例1]の方法に従い内径1.1mm、外径1.7mmのポリエチレン製中空糸多孔膜を得た。グリシジルメタクリレート(GMA)3体積部とメタノール97体積部よりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し15分間の反応時間を保持することで、GMAグラフト中空糸膜を、をグラフト率55%で得た。
その後、ジエチルアミン50体積部と純水50体積部からなる反応液をGMAグラフト中空糸膜に30℃で2.3時間作用させた。これにより、ジエチルアミノ基(M2=73.14)を官能基転化率92%で有し、内径1.22mm、外径1.95mmであるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
[Example 3]
A polyethylene hollow fiber porous membrane having an inner diameter of 1.1 mm and an outer diameter of 1.7 mm was obtained according to the method of [Production Example 1]. Using a reaction solution consisting of 3 parts by volume of glycidyl methacrylate (GMA) and 97 parts by volume of methanol, the other conditions were the same as in [Production Example 2], except that oxygen was removed and the hollow fiber porous membrane made of polyethylene 4 wt. 96 parts by weight of the reaction liquid from which oxygen had been removed was injected into the part, and the reaction time was maintained for 15 minutes, whereby a GMA graft hollow fiber membrane was obtained at a graft rate of 55%.
Thereafter, a reaction solution composed of 50 parts by volume of diethylamine and 50 parts by volume of pure water was allowed to act on the GMA graft hollow fiber membrane at 30 ° C. for 2.3 hours. Thus, a GMA graft hollow having a diethylamino group (M2 = 73.14) having a functional group conversion of 92%, an diethylamino group (weakly electrolytic ion exchange group) having an inner diameter of 1.22 mm and an outer diameter of 1.95 mm. A yarn membrane was obtained.

[実施例4]
上記[製造例1]の方法に従い内径0.8mm、外径1.3mmのポリエチレン製中空糸多孔膜を得た。グリシジルメタクリレート(GMA)10体積部とメタノール90体積部よりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し11分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率160%で得た。その後、ジエチルアミン50体積部と純水50体積部からなる反応液をGMAグラフト中空糸膜に30℃で2.3時間作用させることで、ジエチルアミノ基(M2=73.14)を官能基転化率94%で有し、内径1.02mm、外径1.63mmであるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
[Example 4]
A polyethylene hollow fiber porous membrane having an inner diameter of 0.8 mm and an outer diameter of 1.3 mm was obtained according to the method of [Production Example 1]. Using a reaction solution consisting of 10 parts by volume of glycidyl methacrylate (GMA) and 90 parts by volume of methanol, the other conditions were the same as in [Production Example 2], except that oxygen was removed from the hollow fiber porous polyethylene film 4 weight 96 parts by weight of the reaction liquid from which oxygen was removed was injected into the part, and the reaction time of 11 minutes was maintained, whereby a GMA graft hollow fiber membrane was obtained at a graft rate of 160%. Thereafter, a reaction solution comprising 50 parts by volume of diethylamine and 50 parts by volume of pure water is allowed to act on the GMA graft hollow fiber membrane at 30 ° C. for 2.3 hours, thereby converting the diethylamino group (M2 = 73.14) to a functional group conversion rate of 94. %, A GMA graft hollow fiber membrane having a diethylamino group (weakly electrolytic ion exchange group) having an inner diameter of 1.02 mm and an outer diameter of 1.63 mm was obtained.

[実施例5]
上記[製造例1]の方法に従い内径0.8mm、外径1.3mmのポリエチレン製中空糸多孔膜を得た。グリシジルメタクリレート(GMA)3体積部とメタノール97体積部よりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し15分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率49%で得た。
その後、ジエチルアミン50体積部と純水50体積部からなる反応液をGMAグラフト中空糸膜に30℃で2.3時間作用させた。これにより、ジエチルアミノ基(M2=73.14)を官能基転化率95%で有し、内径0.86mm、外径1.38mmであるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
[Example 5]
A polyethylene hollow fiber porous membrane having an inner diameter of 0.8 mm and an outer diameter of 1.3 mm was obtained according to the method of [Production Example 1]. Using a reaction solution consisting of 3 parts by volume of glycidyl methacrylate (GMA) and 97 parts by volume of methanol, the other conditions were the same as in [Production Example 2], except that oxygen was removed and the hollow fiber porous membrane made of polyethylene 4 wt. 96 parts by weight of the reaction solution from which oxygen had been removed was injected into the part, and the reaction time was maintained for 15 minutes, whereby a GMA graft hollow fiber membrane was obtained with a graft rate of 49%.
Thereafter, a reaction solution composed of 50 parts by volume of diethylamine and 50 parts by volume of pure water was allowed to act on the GMA graft hollow fiber membrane at 30 ° C. for 2.3 hours. Thus, a GMA graft hollow having a diethylamino group (M2 = 73.14) having a functional group conversion of 95%, an diethylamino group (weakly electrolytic ion exchange group) having an inner diameter of 0.86 mm and an outer diameter of 1.38 mm. A yarn membrane was obtained.

[実施例6]
上記[製造例1]の方法に従い内径0.7mm、外径1.1mmのポリエチレン製中空糸多孔膜を得た。グリシジルメタクリレート(GMA)3体積部とメタノール97体積部よりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し15分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率55%で得た。
その後、ジエチルアミン50体積部と純水50体積部からなる反応液をGMAグラフト中空糸膜に30℃で2.3時間作用させた。これにより、ジエチルアミノ基(M2=73.14)を官能基転化率90%で有し、内径0.76mm、外径1.22mmであるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
[Example 6]
A polyethylene hollow fiber porous membrane having an inner diameter of 0.7 mm and an outer diameter of 1.1 mm was obtained according to the method of [Production Example 1]. Using a reaction solution consisting of 3 parts by volume of glycidyl methacrylate (GMA) and 97 parts by volume of methanol, the other conditions were the same as in [Production Example 2], except that oxygen was removed and the hollow fiber porous membrane made of polyethylene 4 wt. 96 parts by weight of the reaction solution from which oxygen had been removed was injected into the part, and the reaction time was maintained for 15 minutes, whereby a GMA graft hollow fiber membrane was obtained at a graft rate of 55%.
Thereafter, a reaction solution composed of 50 parts by volume of diethylamine and 50 parts by volume of pure water was allowed to act on the GMA graft hollow fiber membrane at 30 ° C. for 2.3 hours. As a result, a GMA graft hollow having a diethylamino group (M2 = 73.14) having a functional group conversion of 90%, an diethylamino group (weakly electrolytic ion exchange group) having an inner diameter of 0.76 mm and an outer diameter of 1.22 mm. A yarn membrane was obtained.

[実施例7]
上記[製造例1]の方法に従い内径0.54mm、外径0.85mmのポリエチレン製中空糸多孔膜を得た。グリシジルメタクリレート(GMA)3体積部とメタノール97体積部よりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し15分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率54%で得た。
その後、ジエチルアミン50体積部と純水50体積部からなる反応液をGMAグラフト中空糸膜に30℃で2.3時間作用させた。これにより、ジエチルアミノ基(M2=73.14)を官能基転化率92%で有し、内径0.60mm、外径0.96mmであるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
[Example 7]
A polyethylene hollow fiber porous membrane having an inner diameter of 0.54 mm and an outer diameter of 0.85 mm was obtained according to the method of [Production Example 1]. Using a reaction solution consisting of 3 parts by volume of glycidyl methacrylate (GMA) and 97 parts by volume of methanol, the other conditions were the same as in [Production Example 2], except that oxygen was removed and the hollow fiber porous membrane made of polyethylene 4 wt. 96 parts by weight of the reaction liquid from which oxygen was removed was injected into the part, and the reaction time was maintained for 15 minutes, whereby a GMA graft hollow fiber membrane was obtained at a graft rate of 54%.
Thereafter, a reaction solution composed of 50 parts by volume of diethylamine and 50 parts by volume of pure water was allowed to act on the GMA graft hollow fiber membrane at 30 ° C. for 2.3 hours. Thus, a GMA graft hollow having a diethylamino group (M2 = 73.14) having a functional group conversion of 92%, an inner diameter of 0.60 mm, and an outer diameter of 0.96 mm (diethylamino group (weakly electrolytic ion exchange group)) A yarn membrane was obtained.

[実施例8]
上記〔製造例1]の方法から内径0.37mm、外径0.62mmのポリエチレン製中空糸多孔膜を得た。グリシジルメタクリレート(GMA)3体積部とメタノール97体積部よりなる反応液を使用した以外は上記〔製造例2]と同一の方法にて、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し15分間の反応時間を保持することで、GMA膜をグラフト率50%で得た。その後、ジエチルアミン50体積部と純水50体積部からなる反応液をGMAグラフト中空糸膜に30℃で2.3時間作用させることで、ジエチルアミノ基(M2=73.14)を官能基転化率94%で有し、内径0.43mm、外径0.69mmであるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
[Example 8]
A polyethylene hollow fiber porous membrane having an inner diameter of 0.37 mm and an outer diameter of 0.62 mm was obtained from the above [Production Example 1]. Except for using a reaction solution consisting of 3 parts by volume of glycidyl methacrylate (GMA) and 97 parts by volume of methanol, in the same manner as in [Production Example 2], 4 parts by weight of the polyethylene hollow fiber porous membrane from which oxygen was removed By injecting 96 parts by weight of the reaction liquid from which oxygen was removed and maintaining the reaction time for 15 minutes, a GMA film was obtained with a graft ratio of 50%. Thereafter, a reaction solution comprising 50 parts by volume of diethylamine and 50 parts by volume of pure water is allowed to act on the GMA graft hollow fiber membrane at 30 ° C. for 2.3 hours, thereby converting the diethylamino group (M2 = 73.14) to a functional group conversion rate of 94. %, And a GMA graft hollow fiber membrane having a diethylamino group (weakly electrolytic ion exchange group) having an inner diameter of 0.43 mm and an outer diameter of 0.69 mm was obtained.

[実施例9]
上記[製造例1]の方法に従い内径0.25mm、外径0.40mmのポリエチレン製中空糸多孔膜を得た。グリシジルメタクリレート(GMA)3体積部とメタノール97体積部よりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し15分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率49%で得た。
その後、ジエチルアミン50体積部と純水50体積部からなる反応液をGMAグラフト中空糸膜に30℃で2.3時間作用させた。これにより、ジエチルアミノ基(M2=73.14)を官能基転化率93%で有し、内径0.28mm、外径0.45mmであるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
[Example 9]
A polyethylene hollow fiber porous membrane having an inner diameter of 0.25 mm and an outer diameter of 0.40 mm was obtained according to the method of [Production Example 1]. Using a reaction solution consisting of 3 parts by volume of glycidyl methacrylate (GMA) and 97 parts by volume of methanol, the other conditions were the same as in [Production Example 2], except that oxygen was removed and the hollow fiber porous membrane made of polyethylene 4 wt. 96 parts by weight of the reaction solution from which oxygen had been removed was injected into the part, and the reaction time was maintained for 15 minutes, whereby a GMA graft hollow fiber membrane was obtained with a graft rate of 49%.
Thereafter, a reaction solution composed of 50 parts by volume of diethylamine and 50 parts by volume of pure water was allowed to act on the GMA graft hollow fiber membrane at 30 ° C. for 2.3 hours. As a result, a GMA graft hollow having a diethylamino group (M2 = 73.14) having a functional group conversion of 93%, a diethylamino group (weakly electrolytic ion exchange group) having an inner diameter of 0.28 mm and an outer diameter of 0.45 mm. A yarn membrane was obtained.

[実施例10]
実施例1、3〜9の吸着ろ過膜を[評価方法例1]の装置に取り付け、それぞれの膜の動的吸着容量を測定した。この時、[評価方法例1]の装置に取り付けた中空糸の本数は、実施例1の膜では1本、実施例3の膜では3本、実施例4の膜では5本、実施例5の膜では7本、実施例6の膜では10本、実施例7の膜では15本、実施例8の膜では25本、実施例9の膜では60本とした。
これらの中空糸膜を[評価方法例2]の方法に従い、被吸着物質としては、指標タンパク質であるBSAの水溶液(1g/L)を使用し、供給流速を2.0ml/minに設定して、動的吸着容量を求めた。表1にはこれら吸着ろ過膜の構造と吸着能力評価の結果を記す。
[Example 10]
The adsorption filtration membranes of Examples 1 and 3 to 9 were attached to the apparatus of [Evaluation Method Example 1], and the dynamic adsorption capacity of each membrane was measured. At this time, the number of hollow fibers attached to the apparatus of [Evaluation Method Example 1] was 1 for the membrane of Example 1, 3 for the membrane of Example 3, 5 for the membrane of Example 4, and Example 5 7 films, 10 films of Example 6, 15 films of Example 7, 25 films of Example 8, and 60 films of Example 9.
Using these hollow fiber membranes in accordance with the method of [Evaluation Method Example 2], as an adsorbed substance, an aqueous solution (1 g / L) of BSA as an indicator protein was used, and the supply flow rate was set to 2.0 ml / min. The dynamic adsorption capacity was determined. Table 1 shows the structures of these adsorption filtration membranes and the results of adsorption capacity evaluation.

[実施例11]
実施例1、3〜9の吸着ろ過膜を用いて吸着ろ過膜モジュールを作成した。この時、実施例1の膜では1本を、実施例で3の膜は3本を、実施例4の膜は5本を、実施例5の膜は7本を、実施例6の膜では10本を、実施例7の膜では15本を、実施例8の膜では25本を、実施例9の膜では60本を、内径1cmの外筒に対して挿入して作成した。吸着膜モジュールの膜有効長については、実施例1の膜では、膜有効長を20cm、50cm、100cm、150cm、200cmになるように加工した。実施例3の膜では150cm、200cmになるように加工した。実施例4の膜では100cm、150cmになるように加工した。実施例5の膜では200mになるように加工した。実施例6の膜では50cm、100cm、150cmになるように加工した。実施例7の膜では50cm、100cmになるように加工した。実施例8の膜では20cm、50cmになるように加工した。実施例9の膜では20cmになるように加工した。
これらの吸着ろ過膜モジュールは、[評価方法例4]に従い吸着能力を評価した。被吸着物質は指標タンパク質であるBSAの水溶液(1g/L)を使用した。表2には吸着膜モジュールの吸着能力評価の結果を記す。いずれの吸着ろ過膜モジュールにおいても、実施例10の膜有効長7cmの場合と比較した動的吸着容量の保持率、すなわち吸着能力の有効利用率は0.6を上回る結果であった。
[Example 11]
An adsorption filtration membrane module was prepared using the adsorption filtration membranes of Examples 1 and 3-9. At this time, the film of Example 1 is 1, the film of Example 3 is 3, the film of Example 4 is 5, the film of Example 5 is 7, the film of Example 6 is Ten pieces were prepared by inserting 15 pieces in the film of Example 7, 25 pieces in the film of Example 8, and 60 pieces in the film of Example 9 into an outer cylinder having an inner diameter of 1 cm. Regarding the effective membrane length of the adsorption membrane module, the membrane of Example 1 was processed so that the effective membrane length was 20 cm, 50 cm, 100 cm, 150 cm, and 200 cm. The film of Example 3 was processed to 150 cm and 200 cm. The film of Example 4 was processed to be 100 cm and 150 cm. The film of Example 5 was processed to 200 m. The film of Example 6 was processed to be 50 cm, 100 cm, and 150 cm. The film of Example 7 was processed to be 50 cm and 100 cm. The film of Example 8 was processed to 20 cm and 50 cm. The film of Example 9 was processed to 20 cm.
These adsorption filtration membrane modules were evaluated for adsorption capacity according to [Evaluation Method Example 4]. As an adsorbed substance, an aqueous solution (1 g / L) of BSA which is an indicator protein was used. Table 2 shows the results of the adsorption capacity evaluation of the adsorption membrane module. In any of the adsorption filtration membrane modules, the retention rate of the dynamic adsorption capacity, that is, the effective utilization rate of the adsorption capacity compared with the case of the membrane effective length of 7 cm in Example 10, was a result exceeding 0.6.

[比較例3]
上記[製造例1]の方法に従い内径0.54mm、外径0.85mmのポリエチレン製中空糸多孔膜を得た。グリシジルメタクリレート(GMA)3体積部とメタノール97体積部よりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し15分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率54%で得た。
その後、NaOHを用いてpH12に調整した0.5Mのトリメチルアンモニウムクロリド水溶液を反応液として、GMAグラフト中空糸膜に60℃で30分間作用させることで、トリメチルアンモニウム・Cl基(M2=95.57)を官能基転化率98%で有し、内径0.62mm、外径0.99mmであるトリメチルアンモニウム基(強電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
[Comparative Example 3]
A polyethylene hollow fiber porous membrane having an inner diameter of 0.54 mm and an outer diameter of 0.85 mm was obtained according to the method of [Production Example 1]. Using a reaction solution consisting of 3 parts by volume of glycidyl methacrylate (GMA) and 97 parts by volume of methanol, the other conditions were the same as in [Production Example 2], except that oxygen was removed and the hollow fiber porous membrane made of polyethylene 4 wt. 96 parts by weight of the reaction liquid from which oxygen was removed was injected into the part, and the reaction time was maintained for 15 minutes, whereby a GMA graft hollow fiber membrane was obtained at a graft rate of 54%.
Thereafter, a 0.5 M trimethylammonium chloride aqueous solution adjusted to pH 12 with NaOH was used as a reaction solution, and allowed to act on the GMA graft hollow fiber membrane at 60 ° C. for 30 minutes, whereby trimethylammonium · Cl group (M2 = 95.57). A GMA graft hollow fiber membrane having a trimethylammonium group (strongly electrolytic ion exchange group) having a functional group conversion of 98%, an inner diameter of 0.62 mm, and an outer diameter of 0.99 mm.

[比較例4]
上記[製造例1]の方法に従い内径0.54mm、外径0.85mmのポリエチレン製中空糸多孔膜を得た。グリシジルメタクリレート(GMA)3体積部とメタノール97体積部よりなる反応液を使用し、その他の条件は、上記[製造例2]と同様の方法により、酸素を取り除いたポリエチレン製中空糸多孔膜4重量部に対し酸素を取り除いた反応液を96重量部注入し15分間の反応時間を保持することで、GMAグラフト中空糸膜を、グラフト率54%で得た。
その後、亜硫酸ナトリウム10重量部とイソプロピルアルコール15重量部と純水75重量部の混合液を反応液として、GMAグラフト中空糸膜に80℃で10分間作用させることで、スルホン酸・Na基(M2=103.05)を官能基転化率4.2%の吸着膜を得た。この後、残りのGMAグラフト鎖中のエポキシ基をジオール化するために0.5M硫酸水溶液を反応液として80℃で3時間作用させ、最終的に内径0.61mm、外径0.98mmであるスルホン酸基(強電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
[Comparative Example 4]
A polyethylene hollow fiber porous membrane having an inner diameter of 0.54 mm and an outer diameter of 0.85 mm was obtained according to the method of [Production Example 1]. Using a reaction solution consisting of 3 parts by volume of glycidyl methacrylate (GMA) and 97 parts by volume of methanol, the other conditions were the same as in [Production Example 2], except that oxygen was removed and the hollow fiber porous membrane made of polyethylene 4 wt. 96 parts by weight of the reaction liquid from which oxygen was removed was injected into the part, and the reaction time was maintained for 15 minutes, whereby a GMA graft hollow fiber membrane was obtained at a graft rate of 54%.
Thereafter, a mixed solution of 10 parts by weight of sodium sulfite, 15 parts by weight of isopropyl alcohol, and 75 parts by weight of pure water was used as a reaction solution and allowed to act on the GMA graft hollow fiber membrane at 80 ° C. for 10 minutes, thereby sulfonic acid / Na group (M2 = 103.05), an adsorption film having a functional group conversion of 4.2% was obtained. Thereafter, in order to diolify the epoxy groups in the remaining GMA graft chains, 0.5 M sulfuric acid aqueous solution was allowed to act as a reaction solution at 80 ° C. for 3 hours, and finally the inner diameter was 0.61 mm and the outer diameter was 0.98 mm. A GMA graft hollow fiber membrane having a sulfonic acid group (strongly electrolytic ion exchange group) was obtained.

[比較例5]
比較例3,4の吸着ろ過膜を[評価方法例1]の装置に取り付け、それぞれの膜の動的吸着容量を測定した。この時、[評価方法例1]の装置に取り付けた中空糸の本数は共に15本とした。
これらの中空糸膜を[評価方法例2]の方法に従い、被吸着物質としては比較例3の膜に対してはBSAの水溶液(1g/L)を、比較例4の膜に対してはリゾチームの水溶液(1g/L)を使用し、供給流速を2.0ml/minに設定して、動的吸着容量を求めた。表2にはこれら吸着ろ過膜の構造と吸着能力評価の結果を記す。
[Comparative Example 5]
The adsorption filtration membranes of Comparative Examples 3 and 4 were attached to the apparatus of [Evaluation Method Example 1], and the dynamic adsorption capacity of each membrane was measured. At this time, the number of hollow fibers attached to the apparatus of [Evaluation Method Example 1] was 15 in both cases.
These hollow fiber membranes were subjected to the method of [Evaluation Method Example 2]. As an adsorbed substance, an aqueous solution of BSA (1 g / L) was used for the membrane of Comparative Example 3, and lysozyme was used for the membrane of Comparative Example 4. A dynamic adsorption capacity was determined using an aqueous solution (1 g / L) and a supply flow rate of 2.0 ml / min. Table 2 shows the structures of these adsorption filtration membranes and the results of adsorption capacity evaluation.

Figure 2011016119
Figure 2011016119

[比較例6]
比較例3,4の吸着ろ過膜を用いて吸着ろ過膜モジュールを作成した。この時、比較例3,4の膜は共に15本を、内径1cmで100cmの有効長を取れる外筒に対して挿入して作成した。
これらの吸着ろ過膜モジュールは、[評価方法例4]に従い吸着能力を評価した。被吸着物質は、実施例3からなる吸着ろ過膜モジュールの場合はBSAの水溶液(1g/L)を使用し、実施例4からなる吸着ろ過膜モジュールの場合はリゾチームの水溶液(1g/L)を使用した。表2には吸着ろ過膜モジュールの吸着能力評価の結果を記す。いずれの吸着ろ過膜モジュールにおいても、比較例5の膜有効長7cmの吸着膜モジュールと比較した動的吸着容量の保持率、すなわち吸着能力の有効利用率は0.6を下回る結果であった。
[Comparative Example 6]
An adsorption filtration membrane module was prepared using the adsorption filtration membranes of Comparative Examples 3 and 4. At this time, 15 films of Comparative Examples 3 and 4 were both inserted into an outer cylinder having an inner diameter of 1 cm and an effective length of 100 cm.
These adsorption filtration membrane modules were evaluated for adsorption capacity according to [Evaluation Method Example 4]. As the substance to be adsorbed, an aqueous BSA solution (1 g / L) is used in the case of the adsorption filtration membrane module of Example 3, and an aqueous lysozyme solution (1 g / L) is used in the case of the adsorption filtration membrane module of Example 4. used. Table 2 shows the results of the adsorption capacity evaluation of the adsorption filtration membrane module. In any of the adsorption filtration membrane modules, the retention rate of the dynamic adsorption capacity, that is, the effective utilization rate of the adsorption capacity, compared with the adsorption membrane module having a membrane effective length of 7 cm in Comparative Example 5, was less than 0.6.

Figure 2011016119
Figure 2011016119

[実施例12]
上記[製造例1]の方法に従い内径1.9mm、外径3.2mmのポリエチレン製中空糸多孔膜を得た。
上記[製造例2]と同様の方法により、酸素を取り除いた長さ1.3mで970本のポリエチレン製中空糸多孔膜8質量部に対し、酸素を取り除いた反応液を92質量部注入し、18時間の反応時間を保持することにより、GMAグラフト中空糸膜を、グラフト率56.0%で得た。
その後、ジエチルアミン50体積部と純水50体積部とからなる反応液を、GMAグラフト中空糸膜に30℃で20時間作用させ、ジエチルアミノ基(M2=73.14)を官能基転化率96%で有し、平均内径2.44mm、平均外径3.62mmであるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を得た。
[Example 12]
A polyethylene hollow fiber porous membrane having an inner diameter of 1.9 mm and an outer diameter of 3.2 mm was obtained according to the method of [Production Example 1].
In the same manner as in [Production Example 2], 92 parts by mass of the reaction solution from which oxygen was removed was injected into 8 parts by mass of 970 polyethylene hollow fiber porous membranes having a length of 1.3 m from which oxygen was removed, By maintaining the reaction time of 18 hours, a GMA graft hollow fiber membrane was obtained with a graft rate of 56.0%.
Thereafter, a reaction solution consisting of 50 parts by volume of diethylamine and 50 parts by volume of pure water was allowed to act on the GMA graft hollow fiber membrane at 30 ° C. for 20 hours to convert the diethylamino group (M2 = 73.14) to a functional group conversion of 96%. Thus, a GMA graft hollow fiber membrane having a diethylamino group (weakly electrolytic ion exchange group) having an average inner diameter of 2.44 mm and an average outer diameter of 3.62 mm was obtained.

上記[評価方法例2]の方法にて、前記ジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜に2.0mL/minの送液速度にて内表面側へBSA溶液を送液し外表面側へろ過する操作を行い、供給するBSA水溶液の吸光度に対するろ過液の吸光度の比が10%を超えるまでろ過操作を続け、ろ液重量と吸光度とろ過圧力とを監視した。
吸光度比が10%に到達するまでに22.6mLを要した。これよりこの膜の動的吸着容量は、BSAの吸着量で57.5mg/mLと算出された。
The BSA solution was fed to the inner surface side at a feeding rate of 2.0 mL / min to the GMA grafted hollow fiber membrane having the diethylamino group (weakly electrolytic ion exchange group) by the method of [Evaluation Method Example 2]. The liquid was filtered and filtered to the outer surface side, and the filtration operation was continued until the ratio of the absorbance of the filtrate to the absorbance of the BSA aqueous solution supplied exceeded 10%, and the filtrate weight, absorbance, and filtration pressure were monitored.
It took 22.6 mL to reach an absorbance ratio of 10%. From this, the dynamic adsorption capacity of this membrane was calculated to be 57.5 mg / mL in terms of BSA adsorption.

内径が13cmで、有効長が94cmの外筒を使用し、上記ジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜920本の糸束からなる大型の弱電解性アニオン交換型の中空糸膜モジュールを作製した。
この例における、大型の弱電解性アニオン交換型の中空糸膜モジュールは、中空糸膜の束の両端を封止樹脂で固定し、両端において開口部を露出した形態とした。 外筒の素材には、ポリスルホンを使用した。封止樹脂にはエポキシ接着剤を使用した。
上記[評価方法例4]の方法に従い、HPLCシステムとしてBP−5000S−Lを使用して、吸着能力を評価した。ただし、供給流速を4.5L/minとした。なお、被吸着物質としては、指標タンパク質であるBSAの水溶液(1g/L)を使用した。中空糸膜モジュールのろ過液の吸光度が、BSA水溶液の吸光度の10%に到達するまでに270L要した。
これにより、実施例12におけるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜の動的吸着容量は、BSAの吸着量で55.6mg/mLと算出された。
Using an outer cylinder with an inner diameter of 13 cm and an effective length of 94 cm, a large weak electrolytic anion exchange type comprising a bundle of 920 GMA grafted hollow fiber membranes having the diethylamino group (weak electrolytic ion exchange group). A hollow fiber membrane module was produced.
In this example, the large weak-electrolyte anion exchange type hollow fiber membrane module was configured such that both ends of a bundle of hollow fiber membranes were fixed with a sealing resin, and openings were exposed at both ends. Polysulfone was used for the material of the outer cylinder. An epoxy adhesive was used as the sealing resin.
According to the method of [Evaluation Method Example 4], adsorption capacity was evaluated using BP-5000SL as an HPLC system. However, the supply flow rate was 4.5 L / min. As an adsorbed substance, an aqueous solution (1 g / L) of BSA which is an indicator protein was used. It took 270 L for the absorbance of the filtrate of the hollow fiber membrane module to reach 10% of the absorbance of the BSA aqueous solution.
As a result, the dynamic adsorption capacity of the GMA grafted hollow fiber membrane having a diethylamino group (weakly electrolytic ion exchange group) in Example 12 was calculated to be 55.6 mg / mL in terms of the amount of BSA adsorbed.

上記実施例12におけるジエチルアミノ基(弱電解性イオン交換基)を有するGMAグラフト中空糸膜を構成部材とする大型の弱電解性アニオン交換型の中空糸膜モジュールでは、吸着能力の有効利用度が0.99であることが確認された。   In the large weak electrolytic anion exchange type hollow fiber membrane module comprising the GMA grafted hollow fiber membrane having a diethylamino group (weak electrolytic ion exchange group) in Example 12 as described above, the effective utilization of the adsorption capacity is 0. .99 was confirmed.

本発明の中空糸膜モジュールは、バイオテクノロジー、遺伝子工学、製薬工業、化学工業、飲料工業、食品工業、環境保護及び資源リサイクルの分野において、液相から目的物質を吸着法により分離精製する装置として産業上の利用可能性がある。   The hollow fiber membrane module of the present invention is an apparatus for separating and purifying a target substance from a liquid phase by an adsorption method in the fields of biotechnology, genetic engineering, pharmaceutical industry, chemical industry, beverage industry, food industry, environmental protection and resource recycling. There is industrial applicability.

1 外筒
2 中空糸膜
3 外筒に固定された封止樹脂
4 外筒に固定されていない封止樹脂
5 中空部が開放した接着端面
6 中空部が閉塞した接着端面
7 封止樹脂に存在するスリット
8 液タンク
9 配管接続部材
10 固定治具
11 間接部材
12 中空糸膜モジュール
DESCRIPTION OF SYMBOLS 1 Outer cylinder 2 Hollow fiber membrane 3 Sealing resin fixed to the outer cylinder 4 Sealing resin not fixed to the outer cylinder 5 Adhesive end face 6 in which the hollow part is opened 6 Adhesive end face 7 in which the hollow part is closed Exist in the sealing resin Slit 8 Liquid tank 9 Pipe connecting member 10 Fixing jig 11 Indirect member 12 Hollow fiber membrane module

Claims (10)

多孔質膜の細孔表面に弱電解性イオン交換基を有するグラフト高分子鎖が形成されている吸着ろ過膜を具備し、当該吸着ろ過膜の有効膜長が10cm以上である吸着ろ過膜モジュール   An adsorption filtration membrane module comprising an adsorption filtration membrane in which a graft polymer chain having a weak electrolytic ion exchange group is formed on the pore surface of the porous membrane, and the effective membrane length of the adsorption filtration membrane is 10 cm or more 前記弱電解性イオン交換基が、3級アミノ基、2級アミノ基、1級アミノ基、カルボン酸基、りん酸基からなる群から選ばれるいずれか一以上である請求項1記載の吸着ろ過膜モジュール   The adsorptive filtration according to claim 1, wherein the weakly electrolytic ion exchange group is at least one selected from the group consisting of a tertiary amino group, a secondary amino group, a primary amino group, a carboxylic acid group, and a phosphoric acid group. Membrane module 前記弱電解性イオン交換基がジエチルアミノ基である請求項1又は2記載の吸着ろ過膜モジュール   The adsorption filtration membrane module according to claim 1 or 2, wherein the weakly electrolytic ion exchange group is a diethylamino group. 前記グラフト高分子鎖が非架橋構造である請求項1〜3のいずれか一項に記載の吸着ろ過膜モジュール   The adsorption filtration membrane module according to any one of claims 1 to 3, wherein the graft polymer chain has a non-crosslinked structure. 前記吸着ろ過膜の有効膜長が10cm以上20cm以内であり、中空糸内径が0.28mm以上である、請求項1〜4のいずれか一項に記載の吸着ろ過膜モジュール   The adsorption filtration membrane module according to any one of claims 1 to 4, wherein an effective membrane length of the adsorption filtration membrane is 10 cm or more and 20 cm or less, and an inner diameter of the hollow fiber is 0.28 mm or more. 前記吸着ろ過膜の有効膜長が20cmを超え50cm以内の範囲であり、中空糸内径が0.43mm以上である、請求項1〜4のいずれか一項に記載の吸着ろ過膜モジュール   The adsorption filtration membrane module according to any one of claims 1 to 4, wherein an effective membrane length of the adsorption filtration membrane is in a range exceeding 20 cm and within 50 cm, and an inner diameter of the hollow fiber is 0.43 mm or more. 前記吸着ろ過膜の有効膜長が50cmを超え100cm以内の範囲であり、中空糸内径が0.60mm以上である、請求項1〜4のいずれか一項に記載の吸着ろ過膜モジュール   The adsorption filtration membrane module according to any one of claims 1 to 4, wherein an effective membrane length of the adsorption filtration membrane is in a range exceeding 50 cm and within 100 cm, and an inner diameter of the hollow fiber is 0.60 mm or more. 前記吸着ろ過膜の有効膜長が100cmを超え150cm以内の範囲であり、中空糸内径が0.76mm以上である、請求項1〜4のいずれか一項に記載の吸着ろ過膜モジュール   The adsorption filtration membrane module according to any one of claims 1 to 4, wherein an effective membrane length of the adsorption filtration membrane is in a range exceeding 100 cm and within 150 cm, and an inner diameter of the hollow fiber is 0.76 mm or more. 前記吸着ろ過膜の有効膜長が150cmを超え200cm以内の範囲であり、中空糸内径が0.86mm以上である、請求項1〜4のいずれか一項に記載の吸着ろ過膜モジュール   The adsorption filtration membrane module according to any one of claims 1 to 4, wherein an effective membrane length of the adsorption filtration membrane is in a range exceeding 150 cm and within 200 cm, and an inner diameter of the hollow fiber is 0.86 mm or more. 前記吸着ろ過膜が中空糸膜である、請求項1〜9のいずれか一項に記載の吸着ろ過膜モジュール   The adsorption filtration membrane module according to any one of claims 1 to 9, wherein the adsorption filtration membrane is a hollow fiber membrane.
JP2009164272A 2009-07-10 2009-07-10 Adsorption filter membrane module Pending JP2011016119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164272A JP2011016119A (en) 2009-07-10 2009-07-10 Adsorption filter membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164272A JP2011016119A (en) 2009-07-10 2009-07-10 Adsorption filter membrane module

Publications (1)

Publication Number Publication Date
JP2011016119A true JP2011016119A (en) 2011-01-27

Family

ID=43594333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164272A Pending JP2011016119A (en) 2009-07-10 2009-07-10 Adsorption filter membrane module

Country Status (1)

Country Link
JP (1) JP2011016119A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091070A1 (en) 2010-12-27 2012-07-05 旭化成ケミカルズ株式会社 Adsorption/separation membrane module, method for producing adsorption/separation membrane module, and partition member
WO2013047731A1 (en) * 2011-09-30 2013-04-04 旭化成ケミカルズ株式会社 Method for purifying protein
US10688441B2 (en) 2017-04-19 2020-06-23 Mann+Hummel Gmbh Integrated ultrafiltration membrane and ion-exchange filtration system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012091070A1 (en) 2010-12-27 2012-07-05 旭化成ケミカルズ株式会社 Adsorption/separation membrane module, method for producing adsorption/separation membrane module, and partition member
WO2013047731A1 (en) * 2011-09-30 2013-04-04 旭化成ケミカルズ株式会社 Method for purifying protein
JPWO2013047731A1 (en) * 2011-09-30 2015-03-26 旭化成ケミカルズ株式会社 Protein purification method
US9428544B2 (en) 2011-09-30 2016-08-30 Asahi Kasei Chemicals Corporation Method for purifying protein
US10688441B2 (en) 2017-04-19 2020-06-23 Mann+Hummel Gmbh Integrated ultrafiltration membrane and ion-exchange filtration system

Similar Documents

Publication Publication Date Title
Sirkar Membranes, Phase Interfaces, and Separations: Novel Techniques and Membranes An Overview
Safarpour et al. Polyvinyl chloride-based membranes: A review on fabrication techniques, applications and future perspectives
Scott et al. Industrial membrane separation technology
JP5326572B2 (en) Ultrapure water purification method and ultrapure water production system
JP2008514424A5 (en)
JP2011016116A (en) Hollow fiber membrane module
AU3837900A (en) Method for purifying turbid water
CA2823157A1 (en) Adsorption/separation membrane module, method for producing adsorption/separation membrane module, and partition member
KR102646311B1 (en) Ligand-Modified Filters and Methods for Reducing Metals from Liquid Compositions
JP2020507462A (en) Method for producing ultrapure water
CN110248899A (en) Method for producing ultrapure water
JP2020506050A (en) Method for producing ultrapure water
JP5756328B2 (en) Method for introducing graft chain, porous adsorption membrane, and protein purification method
CN113694745A (en) UPE porous membrane with high specific surface area, and preparation method and application thereof
Zahoor Removal of pesticides from water using granular activated carbon and ultrafiltration membrane—a pilot plant study
WO2003040166A2 (en) Membrane adsorber device
JP2011016119A (en) Adsorption filter membrane module
Ghofrani et al. Fabrication and characterization of novel PES-based nanocomposite hollow fiber membranes for the hemodialysis process
JP6422032B2 (en) Flow separation type pore diffusion membrane separation module for concentration
EP2762486B1 (en) Method for purifying protein
Guo et al. The alternate temperature-change cleaning behaviors of PNIPAAm grafted porous polyethylene membrane fouled by proteins
US20220040641A1 (en) Multiple membrane separation capsule
JP5295036B2 (en) Hollow fiber porous membrane module with high utilization efficiency of hollow fiber porous membrane
KR20180125945A (en) Wet cleaning device and wet cleaning method
EP1231992A1 (en) Method for separating cells and biomolecules using counter-current chromatography