JP2010533833A - Plasma ignition burner - Google Patents

Plasma ignition burner Download PDF

Info

Publication number
JP2010533833A
JP2010533833A JP2010516350A JP2010516350A JP2010533833A JP 2010533833 A JP2010533833 A JP 2010533833A JP 2010516350 A JP2010516350 A JP 2010516350A JP 2010516350 A JP2010516350 A JP 2010516350A JP 2010533833 A JP2010533833 A JP 2010533833A
Authority
JP
Japan
Prior art keywords
burner
cylinder
stage
pulverized coal
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010516350A
Other languages
Japanese (ja)
Inventor
ペン リウ,
ザン,シャオヨン
キアン,インエ
ワン,シンガン
ユ,ウェンボ
カイ,フェイ
ミャオ,ユワン
ニウ,タオ
ワン,ユペン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Longyuan Power Technology Co Ltd
Original Assignee
Yantai Longyuan Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CNU2007201462446U external-priority patent/CN201126192Y/en
Priority claimed from CN2007101370082A external-priority patent/CN101349435B/en
Application filed by Yantai Longyuan Power Technology Co Ltd filed Critical Yantai Longyuan Power Technology Co Ltd
Publication of JP2010533833A publication Critical patent/JP2010533833A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q13/00Igniters not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/10Nozzle tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/20Fuel flow guiding devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2207/00Ignition devices associated with burner

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

本発明はプラズマ点火バーナーに関する。該プラズマ発生バーナーは、少なくとも二段のバーナー筒と、該少なくとも二段のバーナー筒の第一段バーナー筒で粉炭を点火するプラズマ発生装置を含み、前段のバーナー筒の燃焼炎は次段のバーナー筒の粉炭を点火するか、又は次段のバーナー筒で補足空気とともに更に燃焼し、該プラズマ発生装置の軸線方向と、粉炭含有空気流の第一段バーナー筒に流入する方向が平行で、同時にバーナー筒軸線と平行であるという特徴を有する。  The present invention relates to a plasma ignition burner. The plasma generation burner includes at least a two-stage burner cylinder and a plasma generator for igniting pulverized coal with the first-stage burner cylinder of the at least two-stage burner cylinder, and the combustion flame of the previous-stage burner cylinder is the next-stage burner Either ignite the pulverized coal in the cylinder or further combust with the supplementary air in the burner cylinder of the next stage, the direction of the axis of the plasma generator and the direction of flowing into the first stage burner cylinder of the pulverized coal-containing air flow are parallel and simultaneously It is characterized by being parallel to the burner cylinder axis.

Description

本発明は粉炭燃焼の技術分野、特にプラズマ点火バーナーに関する。   The present invention relates to the technical field of pulverized coal combustion, in particular to a plasma ignition burner.

石炭火力発電は多くの国で現在採用されている主要な発電法である。点火はボイラー燃焼プロセスの主な要件である。ボイラー容量が拡大した場合に、ボイラー起動過程を如何に早く経済的に達成するかは、直ちに解決されるべき重要な問題である。   Coal-fired power generation is the main power generation method currently used in many countries. Ignition is the main requirement of the boiler combustion process. How quickly and economically the boiler start-up process is achieved when the boiler capacity increases is an important issue to be solved immediately.

大量の燃料油を消費する油点火法に取って代わるプラズマ点火技術が最近開発された。   Plasma ignition technology has recently been developed to replace oil ignition methods that consume large amounts of fuel oil.

従来のプラズマ点火システムは、粗悪炭の点火が可能なように所謂「予燃室」技術を採用する。この予燃室は、通常耐火材料層を火室内部に取り付けてバーナー筒温度を維持するように構成される。予燃室の壁は初期加熱により非常に高温になり、燃料の点火を(独立にでも)助ける。予燃室の長さは長く(約2メートル)、プラズマ作用により粉炭を粉炭含有空気流中でガス化し予燃室に流入させ、それにより大量の可燃性ガス、主として一酸化炭素などを発生する。次いでこの可燃性ガスの燃焼により放出される熱エネルギーを用いて、後続の粉炭を点火する。これは階層的点火法であるが、予燃室の温度が高すぎるため粉炭は内部で容易にクリンカー化し、その結果それ以上使用できなくなる。   Conventional plasma ignition systems employ a so-called “pre-combustion chamber” technique so that poor charcoal can be ignited. This pre-combustion chamber is usually configured to attach a refractory material layer to the inside of the fire chamber to maintain the burner tube temperature. The walls of the pre-combustion chamber become very hot due to the initial heating and help fuel ignition (even independently). The length of the pre-combustion chamber is long (about 2 meters), and the powdered coal is gasified in the air flow containing pulverized coal by the plasma action and flows into the pre-combustion chamber, thereby generating a large amount of combustible gas, mainly carbon monoxide. . The subsequent pulverized coal is then ignited using the thermal energy released by the combustion of the combustible gas. This is a hierarchical ignition method, but because the temperature of the pre-combustion chamber is too high, the pulverized coal is easily clinkered internally, so that it cannot be used any more.

上記の問題を解決するために、新規構造の階層的バーナー筒が提案された。図1に示すように、プラズマ点火バーナーは第一段バーナー筒104、第二段バーナー筒106、第三段バーナー筒108、第四段バーナー筒110などのような多段バーナー筒を含む(段数は出力やスペースの大きさにより、4段より多くても4段より少なくても良い)。粉炭含有空気流取り入れ口102から流入した粉炭含有空気流(図1の太い矢印で示す)は、スペーサ116により二方向に分割され、それぞれが第一段バーナー筒104と第二段バーナー筒106に入る。プラズマ発生装置は多段バーナー筒の軸線方向に沿って第一段バーナー筒104に挿入され、第一段バーナー筒104に流入する粉炭含有空気流を点火することにより第一段粉炭炎Aを発生する。発生された炎は更に第二段バーナー筒の粉炭含有空気流を点火し、それにより第二段粉炭炎Bを形成する。同時に空気取り入れ口114から流入した空気流(図1の細い矢印)は、第三取り入れ口120を通して第三段バーナー筒108に入り、十分に燃焼しなかった第二段粉炭炎に酸素を補給することにより第三段粉炭炎Cを形成する。この空気は又第四取り入れ口122を通して第四段バーナー筒に入り更に酸素を補給しても良い。同時にこの空気流れは、次段バーナー筒に流入する前に、その前段バーナー筒の外壁とバーナー外筒118間のスペースに流入することにより、クリンカー化を防ぐようバーナー筒を冷却する働きする。   In order to solve the above problems, a new structure hierarchical burner tube has been proposed. As shown in FIG. 1, the plasma ignition burner includes multi-stage burner cylinders such as a first stage burner cylinder 104, a second stage burner cylinder 106, a third stage burner cylinder 108, a fourth stage burner cylinder 110, etc. Depending on the size of the output and space, it may be more or less than 4 stages). The pulverized coal-containing airflow (indicated by the thick arrows in FIG. 1) flowing in from the pulverized coal-containing airflow inlet 102 is divided into two directions by the spacers 116, and each is divided into the first stage burner cylinder 104 and the second stage burner cylinder 106. enter. The plasma generator is inserted into the first stage burner cylinder 104 along the axial direction of the multistage burner cylinder, and generates the first stage pulverized coal flame A by igniting the pulverized coal-containing air flow flowing into the first stage burner cylinder 104. . The generated flame further ignites the pulverized coal-containing air stream in the second stage burner tube, thereby forming the second stage pulverized coal flame B. At the same time, the airflow (thin arrow in FIG. 1) flowing in from the air intake 114 enters the third stage burner cylinder 108 through the third intake 120 and replenishes oxygen to the second stage pulverized coal flame that did not sufficiently burn. Thus, the third stage pulverized coal flame C is formed. This air may also enter the fourth stage burner tube through the fourth intake 122 and further replenish oxygen. At the same time, this air flow acts to cool the burner cylinder so as to prevent clinkering by flowing into the space between the outer wall of the previous stage burner cylinder and the burner outer cylinder 118 before flowing into the next stage burner cylinder.

上記技術において、プラズマ発生装置はバーナー筒の軸線方向に沿って挿入され、粉炭含有空気流取り入れ口と空気流の両者はバーナー筒の軸線に対して垂直になるように配置される。即ち、プラズマ炎の方向は、第一段バーナー筒に流入する空気流の方向に垂直である。従ってこの空気流が平行になるように進路をそらせるガイド板(図示しない)を使用する必要がある。同様に第二段粉炭が第二段バーナー筒に入る方向は、又第一段バーナー筒から注入される炎の方向に垂直なので、方向が平行になるようにガイド板を使用する必要がある。しかしこのガイド板はスペースの制限により完全には空気流の進路を変えることができない。二つの空気流は完全には平行ではないので、流入空気流はプラズマ炎(又は前段炎)を吹いて進路を変える。これは筒壁温度の上昇と粉炭のクリンカー化をもたらす。   In the above technique, the plasma generator is inserted along the axial direction of the burner cylinder, and both the pulverized coal-containing air flow inlet and the air flow are arranged to be perpendicular to the axis of the burner cylinder. That is, the direction of the plasma flame is perpendicular to the direction of the air flow flowing into the first stage burner cylinder. Therefore, it is necessary to use a guide plate (not shown) that deflects the path so that the air flow is parallel. Similarly, since the direction in which the second stage pulverized coal enters the second stage burner cylinder is also perpendicular to the direction of the flame injected from the first stage burner cylinder, it is necessary to use a guide plate so that the directions are parallel. However, this guide plate cannot completely change the course of the air flow due to space limitations. Since the two air flows are not perfectly parallel, the incoming air flow blows a plasma flame (or pre-flame) and changes its path. This leads to an increase in the cylinder wall temperature and clinkering of the pulverized coal.

更に本技術では、粉炭含有空気流と空気流の両者はバーナー筒に対して直角方向に流入し、バーナー筒に対し直角な断面では粉炭濃度と空気流速度などが均一でないため、燃焼特性に影響を及ぼす。   Furthermore, in this technology, both the pulverized coal-containing air flow and the air flow flow in a direction perpendicular to the burner cylinder, and the cross-section perpendicular to the burner cylinder does not have a uniform pulverized coal concentration and air flow velocity. Effect.

その後、現場での配置を容易にするために、図2に示す構成のプラズマ点火バーナーが使用された。簡略化のために図には粉炭含有空気流取り入れ口102、第一段バーナー筒104及び第二段バーナー筒106だけを示し、図1の空気取り入れ口114、バーナー外筒118、第三段バーナー筒、及び第四段バーナー筒に相当する構造物は示さない。取り入れ口102から流入する粉炭含有空気流は、第一段バーナー筒の筒壁により二つに分割され、中央部は第一段バーナー筒104に流入し、周辺部は第一段バーナー筒と外筒202(その上に粉炭含有空気流取り入れ口102が備えられる)間のスペースに沿って進み、第二段バーナー筒の第二取り入れ口204から第二段バーナー筒に入る。図に示すようにプラズマ発生装置はバーナーの半径方向に沿って挿入され、粉炭含有空気流はバーナー筒軸線方向に沿って吹き込まれる。これらの2つの方向は垂直に保たれたままである。粉炭含有空気流の作用によりプラズマ炎が進路を変えて吹き込まれ、プラズマ炎が曲げられた側の温度を特に高くし、その結果クリンカーを形成する。   Thereafter, a plasma ignition burner having the configuration shown in FIG. 2 was used to facilitate on-site placement. For the sake of simplicity, the figure shows only the pulverized coal-containing air flow inlet 102, the first stage burner cylinder 104 and the second stage burner cylinder 106, and the air inlet 114, the burner outer cylinder 118, and the third stage burner of FIG. The cylinder and the structure corresponding to the fourth stage burner cylinder are not shown. The pulverized coal-containing air flow flowing in from the intake 102 is divided into two parts by the cylindrical wall of the first-stage burner cylinder, the central part flows into the first-stage burner cylinder 104, and the peripheral part is separated from the first-stage burner cylinder. Proceed along the space between the cylinders 202 (on which the pulverized coal-containing airflow intake 102 is provided) and enter the second stage burner cylinder from the second intake 204 of the second stage burner cylinder. As shown in the figure, the plasma generator is inserted along the radial direction of the burner, and the pulverized coal-containing air flow is blown along the axial direction of the burner cylinder. These two directions remain vertical. Due to the action of the pulverized coal-containing air stream, the plasma flame is blown in a different path, and the temperature on the bent side of the plasma flame is particularly increased, resulting in the formation of a clinker.

従って粉炭がバーナー筒壁上にクリンカーを形成することを更に抑制する新技術が必要である。   Therefore, there is a need for a new technique that further inhibits pulverized coal from forming clinker on the burner cylinder wall.

本発明の目的は、クリンカー化問題が緩和できるプラズマ発生装置を提供することである。先行技術に関する上記の記述から、プラズマ発生装置の挿入方向(即ち、プラズマ炎の方向)と、粉炭含有空気流方向の間に角度が存在すると言う事実が、クリンカー化問題の原因であることが分かる。従って上記の目的に関して、本発明の要点は粉炭含有空気の第一段バーナー筒への流入方向をプラズマ炎の方向と一致するように、粉炭含有空気流取り入れ口とプラズマ発生装置を再配置することである。   An object of the present invention is to provide a plasma generator that can alleviate the clinkerization problem. From the above description regarding the prior art, it can be seen that the fact that there is an angle between the direction of insertion of the plasma generator (ie, the direction of the plasma flame) and the direction of the flow of air containing the pulverized coal is responsible for the clinkering problem. . Therefore, with regard to the above object, the main point of the present invention is to rearrange the pulverized coal-containing air flow inlet and the plasma generator so that the direction of the flow of the pulverized coal-containing air into the first stage burner cylinder coincides with the direction of the plasma flame. It is.

クリンカー化の問題を更に解決するために、粉炭含有空気流又は次段の空気流を、前段の粉炭炎と出来るだけ一致させる必要がある。   In order to further solve the clinkering problem, it is necessary to match the air flow containing pulverized coal or the air flow of the next stage as much as possible with the pulverized coal flame of the previous stage.

この目的のために本発明は、少なくとも二段のバーナー筒と、該少なくとも二段のバーナー筒の第一段バーナー筒内で粉炭を点火するためのプラズマ発生装置を含み、前段バーナー筒の燃焼炎は次段のバーナー筒内の粉炭を点火するか、又は次段バーナー筒内で補足空気とさらに燃焼し、該プラズマ発生装置の軸線方向は粉炭含有空気流の第一段バーナー筒への流入方向に平行で、同時に前記バーナー筒の軸線に平行であることを特徴とするプラズマ点火バーナーを提供する。   For this purpose, the present invention includes at least a two-stage burner cylinder and a plasma generator for igniting pulverized coal in the first-stage burner cylinder of the at least two-stage burner cylinder, Ignites the pulverized coal in the next stage burner cylinder, or further combusts with supplementary air in the next stage burner cylinder, and the axial direction of the plasma generator is the inflow direction of the pulverized coal-containing air flow into the first stage burner cylinder The plasma ignition burner is characterized in that it is parallel to the axis of the burner cylinder at the same time.

本発明を添付図面に従い詳細に説明する。これらの図面では同一又は相当する技術的特徴に対して同一の引用符号を用いる。   The present invention will be described in detail with reference to the accompanying drawings. In these drawings, the same reference signs are used for the same or corresponding technical features.

図1は先行技術のプラズマ点火バーナーを模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a prior art plasma ignition burner. 図2は先行技術の別のプラズマ点火バーナーを模式的に示す部分断面図である。FIG. 2 is a partial sectional view schematically showing another prior art plasma ignition burner. 図3は本発明にかかるプラズマ点火バーナーの第一実施態様を模式的に示す部分断面図である。FIG. 3 is a partial sectional view schematically showing a first embodiment of the plasma ignition burner according to the present invention. 図4は図3の線A−Aでの断面図である。4 is a cross-sectional view taken along line AA in FIG. 図5は本発明にかかるプラズマ点火バーナーの第二実施態様を模式的に示す部分断面図である。FIG. 5 is a partial sectional view schematically showing a second embodiment of the plasma ignition burner according to the present invention. 図6は先行技術の軸線方向旋回型粉炭バーナーの構造を示す断面図である。FIG. 6 is a sectional view showing the structure of a prior art axially swirling pulverized coal burner.

発明の詳細な説明Detailed Description of the Invention

図3に本発明のプラズマ点火バーナーの第一実施態様を模式的に示す部分断面図を示す。簡略化のために本図は、図2と同様に粉炭含有空気流取り入れ口102、第一段バーナー筒104及び第二段バーナー筒106だけを示す。多段構造バーナー筒の構造は上に記載したので、ここには繰り返さない。留意すべきことは、「背景技術」の項で記述したように、粉炭含有空気流が流入するバーナー筒の段数、空気が直接流入するバーナー筒の段数、及びこのバーナー筒の全段数には制限はなく、要求出力とスペースの大きさにより決定される。この全段数は二段から三段、四段またはそれ以上でも良く、図1に示す空気流は使用状況によっては又粉炭含有空気流でも良い。   FIG. 3 is a partial sectional view schematically showing the first embodiment of the plasma ignition burner of the present invention. For the sake of simplicity, this figure shows only the pulverized coal-containing air flow inlet 102, the first stage burner cylinder 104, and the second stage burner cylinder 106, as in FIG. The structure of the multistage burner cylinder has been described above and will not be repeated here. It should be noted that as described in the “Background Art” section, there are restrictions on the number of stages of the burner cylinder into which the air flow containing pulverized coal flows, the number of stages of the burner cylinder into which air directly flows, and the total number of stages of this burner cylinder Rather, it is determined by the required output and the size of the space. The total number of stages may be two to three, four or more, and the air flow shown in FIG.

本発明の要点は、プラズマ発生装置302の挿入方向を粉炭含有空気流が第一段バーナー筒104に流入する方向と平行にし、同時にバーナー筒の軸線と平行にすることである。これにより粉炭含有空気流の慣性によりバーナー筒断面上で粉炭の分布が非対称になることなしに、この粉炭含有空気流がバーナー筒軸線に平行にバーナー筒に流入する。更にプラズマ発生装置のプラズマ炎の注入方向は粉炭含有空気流がバーナー筒に流入する方向と一致するので、プラズマ炎は進路を変えてバーナー筒壁に向かって吹かれない。   The main point of the present invention is to make the insertion direction of the plasma generator 302 parallel to the direction in which the pulverized coal-containing air flow flows into the first stage burner cylinder 104 and simultaneously to the axis of the burner cylinder. Thus, the pulverized coal-containing airflow flows into the burner cylinder parallel to the burner cylinder axis without causing the distribution of the pulverized coal to be asymmetric on the burner cylinder cross section due to the inertia of the pulverized coal-containing airflow. Further, the plasma flame injection direction of the plasma generator coincides with the direction in which the pulverized coal-containing air flow flows into the burner cylinder, so that the plasma flame is not blown toward the burner cylinder wall by changing the course.

図3に示す第一実施態様では、粉炭含有空気流を導く湾曲管308を提供し、プラズマ発生装置302を該湾曲管を貫通してバーナー筒の軸線方向に沿って第一段バーナー筒104に挿入することにより、上記の技術的な解決が得られる。粉炭含有空気流が断面A−A位置で真っ直ぐのバーナー筒に流入する時に、遠心力により片側に偏向すること無しに断面上に出来るだけ均一に分布するように、湾曲管308の弧度を出来るだけ緩やかにする必要がある。しかし弧度が存在する限り遠心力は避けられず、粉炭はバーナー筒の片側へ進路が変えられる。この問題を避けるために、一つの好ましい実施態様ではガイド板306を湾曲管308の軸線に沿って配置し、バーナー筒側上のガイド板の一端をプラズマ発生装置の軸線と平行にし、第一段バーナー筒104の取り入れ口310近辺まで延長する。同時にプラズマ発生装置302とガイド板306末端の両者をバーナー筒の軸線上に配置する(勿論、ガイド板306末端の位置は、バーナー筒の軸線に対してある程度変えられてもよい)。これによりガイド板306は、粉炭含有空気流の流れ方向をプラズマ炎と平行になるように変化するだけでなく、又筒中央部に入る粉炭の濃度を増加するように遠心分離効果により粉炭の一部をバーナー筒の中心軸線とプラズマ炎近辺に集中させ、点火を助ける。図1に示す構造に比べ、一個のガイド板を用いるだけで各段のバーナー筒に流入する粉炭含有空気流の流れ方向を同時に変えられ、その構造は簡単で、抵抗も比較的小さい。湾曲先端内部のスペースが大きいため、筒中央部に入る粉炭濃度を更に増加するために湾曲板の形状は平坦面であっても良く、種々の湾曲面であっても良い(実施例を図4に示す)。   In the first embodiment shown in FIG. 3, a curved pipe 308 that guides the pulverized coal-containing air flow is provided, and the plasma generator 302 is passed through the curved pipe to the first stage burner cylinder 104 along the axial direction of the burner cylinder. By inserting, the above technical solution is obtained. When the air flow containing pulverized coal flows into the straight burner cylinder at the position of the cross section AA, the arcing of the curved pipe 308 is as much as possible so that it is distributed as evenly as possible on the cross section without being deflected to one side by centrifugal force. It needs to be relaxed. However, centrifugal force is inevitable as long as the arc is present, and the course of pulverized coal is changed to one side of the burner tube. In order to avoid this problem, in one preferred embodiment, the guide plate 306 is disposed along the axis of the curved tube 308, one end of the guide plate on the burner tube side is parallel to the axis of the plasma generator, and the first stage It extends to the vicinity of the intake 310 of the burner tube 104. At the same time, both the plasma generator 302 and the guide plate 306 end are arranged on the axis of the burner tube (of course, the position of the end of the guide plate 306 may be changed to some extent with respect to the axis of the burner tube). As a result, the guide plate 306 not only changes the flow direction of the pulverized coal-containing air flow so as to be parallel to the plasma flame, but also increases the concentration of the pulverized coal entering the center of the cylinder so as to increase the concentration of the pulverized coal. Concentrate the part around the central axis of the burner tube and near the plasma flame to assist ignition. Compared to the structure shown in FIG. 1, the flow direction of the pulverized coal-containing air flow flowing into the burner cylinders at each stage can be changed simultaneously by using only one guide plate, and the structure is simple and the resistance is relatively small. Since the space inside the curved tip is large, the shape of the curved plate may be a flat surface or various curved surfaces in order to further increase the concentration of pulverized coal entering the center portion of the cylinder (Example 4 in FIG. 4). To show).

図3に示すように、プラズマ発生装置302の大部分は粉炭含有空気流に曝される。プラズマ発生装置が粉炭含有空気流により摩耗するのを抑制するために、耐摩耗用保護スリーブ(たとえばセラミックスリーブ)を用いてプラズマ発生装置を保護できる。更に抵抗を減らすために風上のスリーブ表面をV型にしても良い。   As shown in FIG. 3, most of the plasma generator 302 is exposed to a pulverized coal-containing air stream. In order to prevent the plasma generator from being worn by the pulverized coal-containing air stream, the plasma generator can be protected by using an anti-wear sleeve (for example, a ceramic sleeve). In order to further reduce resistance, the windward sleeve surface may be V-shaped.

図2の半径方向に沿って挿入されたバーナーに比べ、このバーナーはクリンカー化の問題を解決する上に、より大きい点火能を有する。具体的にはその理由は以下の通りである。プラズマ炎はバーナーの中心線に位置し、筒中央部は円形なのでプラズマ炎の点火能は各方向で同じであり、炎は均一であり、伝播能が高い。一方プラズマ炎がバーナー筒中央部の片側に配置されると、プラズマ炎片側の炎温度が高く、反対側の炎温度は低い。この場合には粗悪炭を燃すと、点火は失敗する。   Compared to the burner inserted along the radial direction of FIG. 2, this burner has a higher ignitability in solving the clinkering problem. Specifically, the reason is as follows. Since the plasma flame is located at the center line of the burner and the center part of the cylinder is circular, the ignition ability of the plasma flame is the same in each direction, the flame is uniform, and the propagation ability is high. On the other hand, when the plasma flame is disposed on one side of the central portion of the burner cylinder, the flame temperature on one side of the plasma flame is high and the flame temperature on the opposite side is low. In this case, ignition will fail if the crude charcoal is burned.

上述の第一実施様態では、粉体がバーナーの筒中央部に集中するのは、湾曲管308内のガイド板306の集中化作用による。しかしスペースの制限により筒中央部での集中化は無制限に増加できず、点火効力に影響する。この目的のために、図5に示すような本発明にかかる第二実施態様が提供される。   In the first embodiment described above, the concentration of the powder in the center portion of the cylinder of the burner is due to the concentration action of the guide plate 306 in the bending tube 308. However, due to space limitations, the concentration at the center of the cylinder cannot be increased without limit, which affects the ignition efficiency. For this purpose, a second embodiment according to the present invention as shown in FIG. 5 is provided.

簡略化のために図5は図2と図3に示した構成要素に相当する構成要素のみ、即ち第一段バーナー筒104とバーナー内筒202を示す。上記実施態様に記載のように、バーナー内筒202の内側には、より多くの段のバーナー筒が第一段バーナー筒104に続いて配置できる。バーナー内筒202の外側には、バーナー外筒118に相当する構成要素が存在しても良く、バーナー内筒に続いてバーナー外筒118の内側に多くの段のバーナー筒を備えても良い。   For simplicity, FIG. 5 shows only the components corresponding to those shown in FIGS. 2 and 3, ie, the first stage burner cylinder 104 and the burner inner cylinder 202. As described in the above embodiment, more stages of burner cylinders can be arranged inside the burner inner cylinder 202 following the first stage burner cylinder 104. Components corresponding to the burner outer cylinder 118 may exist on the outside of the burner inner cylinder 202, and a number of stages of burner cylinders may be provided inside the burner outer cylinder 118 following the burner inner cylinder.

本実施態様では、粉炭含有空気流を供給するパイプは二個のパイプ、即ち主パイプ508と分岐パイプ502に分岐する。主パイプ508は公知の方法によるか、または第一実施様態の湾曲管308を用いてバーナー内筒202に接続しても良い。同時に中央筒510は、第一段バーナー筒104から導かれて分岐パイプ502に連結される。同様に分岐パイプ502と中央筒510間の接続は、公知の方法を用いても、第一実施様態の湾曲管308と同様に第二湾曲管512を用いても良く、この場合第一実施様態のガイド板306(図5に図示しない)が又使用できる。プラズマ発生装置302の配置法は第一実施様態と同様でも良い。   In this embodiment, the pipe supplying the pulverized coal-containing air stream branches into two pipes, namely a main pipe 508 and a branch pipe 502. The main pipe 508 may be connected to the burner inner cylinder 202 by a known method or using the curved pipe 308 of the first embodiment. At the same time, the central cylinder 510 is guided from the first stage burner cylinder 104 and connected to the branch pipe 502. Similarly, the connection between the branch pipe 502 and the central cylinder 510 may be performed by using a known method or by using the second bending pipe 512 similarly to the bending pipe 308 of the first embodiment. A guide plate 306 (not shown in FIG. 5) can also be used. The arrangement method of the plasma generator 302 may be the same as in the first embodiment.

このようにして筒中央部に入り、更には第一段バーナー筒に入る粉炭の濃度は、点火を助けるように、分岐管を用いて粉炭含有空気流を筒中央部に直接導くことにより比較的高くできる。好ましい実施形態としては、流入粉炭含有空気流の量を調節し、及び/又はプラズマ点火バーナーに流入する粉炭含有空気流中の粉炭濃度をできるだけ高く増加させる必要がある。この目的のために分岐管に入る粉炭量を柔軟に調節するように、主パイプと分岐パイプの分岐点に調節装置を配置しても良い。   In this way, the concentration of pulverized coal entering the center of the cylinder and further entering the first stage burner cylinder can be relatively controlled by directing the pulverized coal-containing air flow directly to the center of the cylinder using a branch pipe to assist ignition. Can be high. In a preferred embodiment, it is necessary to adjust the amount of incoming pulverized coal-containing air stream and / or increase the pulverized coal concentration in the pulverized coal-containing air stream entering the plasma ignition burner as high as possible. For this purpose, an adjusting device may be arranged at the branch point of the main pipe and the branch pipe so as to flexibly adjust the amount of pulverized coal entering the branch pipe.

上述の解決法の変形として、バーナー内の粉炭含有空気流を導くバーナー筒が三段以上の場合には、バーナー筒のそれぞれの段は中央筒とバーナー内筒の間に分配されても良い。例えば三段のバーナー筒の場合には、プラズマ点火バーナーの第一段バーナー筒と第二段バーナー筒内の粉炭を、中央筒と分岐パイプを通して(この場合、中央筒とその内部構造は図2のものと類似であり、図2のバーナー内筒が図5の中央筒に変わる)同時に導き、第三段バーナー筒の粉炭は主パイプから入るようにすることができる。逆にプラズマ点火バーナーの第一段バーナー筒の粉炭が中央筒と分岐パイプを通して導かれ、第二段バーナー筒と第三段バーナー筒の粉炭が主パイプから入っても良い。   As a variant of the above-mentioned solution, if there are more than three stages of burner cylinders that guide the pulverized coal-containing air flow in the burner, each stage of the burner cylinder may be distributed between the central cylinder and the burner inner cylinder. For example, in the case of a three-stage burner cylinder, the first stage burner cylinder and the second stage burner cylinder of the plasma ignition burner are passed through the center cylinder and the branch pipe (in this case, the center cylinder and its internal structure are shown in FIG. The burner inner cylinder of FIG. 2 is changed to the central cylinder of FIG. 5), and the pulverized coal of the third stage burner cylinder can enter from the main pipe. Conversely, the pulverized coal in the first stage burner cylinder of the plasma ignition burner may be guided through the center cylinder and the branch pipe, and the pulverized coal in the second stage burner cylinder and the third stage burner cylinder may enter from the main pipe.

好ましい実施態様では、分岐パイプはバルブ504を備えても良く、バルブはバーナーの点火開始段階と低負荷で安定な燃焼段階に開け、点火が完了しバーナーの燃焼が安定になった後に閉じる。本バルブ504は又調節装置506に組み込むように設計し、この調節装置が調節装置と分岐管バルブとして同時に働くようにしても良い。   In a preferred embodiment, the branch pipe may comprise a valve 504, which opens to the burner ignition start phase and the low load and stable combustion phase and closes after ignition is complete and burner combustion is stable. The valve 504 may also be designed to be incorporated into the regulator 506 so that the regulator acts as a regulator and a branch pipe valve simultaneously.

第二の実施態様の上記の説明から、本実施様態の要点は分岐管を用いて第一段バーナー筒の粉炭濃度を増加することであることが分かる。点火にプラズマ発生装置を用いるとは限られず、プラズマ発生装置をバーナー筒の軸線方向に備えるとは限らない。従って第二実施態様の種々様態の細部は、第一実施態様のものと組み合わせても組み合わさなくても良い。具体的には点火装置はプラズマ発生装置以外にオイルガンでも良く、その配置法は軸線方向挿入以外に、半径方向への挿入や傾斜挿入を含む任意方向への挿入が可能である。   From the above description of the second embodiment, it can be seen that the main point of this embodiment is to increase the pulverized coal concentration of the first stage burner cylinder using a branch pipe. A plasma generator is not necessarily used for ignition, and the plasma generator is not necessarily provided in the axial direction of the burner cylinder. Accordingly, the details of the various aspects of the second embodiment may or may not be combined with those of the first embodiment. Specifically, the ignition device may be an oil gun in addition to the plasma generator, and the arrangement method is not limited to axial insertion, but can be inserted in an arbitrary direction including insertion in the radial direction and inclined insertion.

上述の解決法では、分岐管を配置し調節装置を取り付けたので、バーナー筒中央部の粉炭含有空気流の流速と粉炭濃度は別々に調節できるので、点火の最適作動条件が得られる。   In the above-mentioned solution, since the branch pipe is arranged and the adjusting device is attached, the flow velocity and the pulverized coal concentration of the pulverized coal-containing air flow at the center of the burner cylinder can be adjusted separately, so that the optimum operating condition of ignition can be obtained.

更に現場に設置された旧型バーナーに対して、上述の第二実施態様を用いて簡便で安価な再構築手段が提供でき、本発明を適用できる、   Furthermore, it is possible to provide a simple and inexpensive reconstruction means using the second embodiment described above for the old burner installed at the site, and the present invention can be applied.

例えば、多くの石炭燃焼火力発電機で採用されている旋回型粉炭バーナーは中央部の筒を有し、粉炭と空気の混合物を筒中央部の外側から炉に送る。例えば、1980年代に三井バブコックエネルギー社により開発されたLNASB軸線方向旋回型粉炭バーナー(図6参照)は、この種の構造を採用している。この構造では、オイルガンを中央筒602に挿入し、中央筒の外側から炉に送られた粉炭をオイルガンの炎により点火する。この種のバーナーに対してプラズマ点火技術で直接再構築するには中央筒602の構造物を除去する必要がある。これはバーナー内の粉炭濃度分布と空気速度に大きな変化が起こり、バーナーの初期性能に影響する。しかし本発明の第二実施態様を採用することでこの問題は解決できる。プラズマ技術再構築に際して必要なのは、図5に示すように中央筒602を、第一段バーナー筒104、中央筒510、点火装置(たとえばプラズマ発生装置302)、及びそれに接続した分岐管502に再構築するだけである。粉炭含有空気流バーナーの初期構造(即ち、図6に示す一次空気から三次空気管までの構造物)を何ら再構築する必要はなく、その結果最初のバーナーの性能とできるだけ一致させることができる。   For example, a swirl type pulverized coal burner employed in many coal-fired thermal power generators has a central cylinder, and sends a mixture of pulverized coal and air to the furnace from the outside of the central cylinder. For example, an LNASB axially swirl type pulverized coal burner (see FIG. 6) developed by Mitsui Babcock Energy Co., Ltd. in the 1980s employs this type of structure. In this structure, the oil gun is inserted into the central cylinder 602, and the pulverized coal sent to the furnace from the outside of the central cylinder is ignited by the flame of the oil gun. To directly rebuild this type of burner with plasma ignition technology, the structure of the central tube 602 needs to be removed. This greatly changes the pulverized coal concentration distribution and air velocity in the burner, which affects the initial performance of the burner. However, this problem can be solved by adopting the second embodiment of the present invention. As shown in FIG. 5, it is necessary to reconstruct the central cylinder 602 into a first stage burner cylinder 104, a central cylinder 510, an ignition device (for example, a plasma generator 302), and a branch pipe 502 connected thereto, as shown in FIG. Just do it. There is no need to reconstruct the initial structure of the pulverized coal-containing airflow burner (ie, the structure from the primary air to the tertiary air tube shown in FIG. 6), so that it can be matched as closely as possible to the performance of the initial burner.

上述の再構築法により、三段バーナーが形成される(即ち、第一段バーナー筒、中央筒、及び外筒)。実際には、できれば第一段バーナー筒を加えることなしに、中央筒と外筒だけで二段式バーナーを形成することができる。更により多段のバーナー筒を中央筒に加えても良く、又より多段のバーナー筒を外筒に加えても良い。   By the above reconstruction method, a three-stage burner is formed (that is, the first-stage burner cylinder, the center cylinder, and the outer cylinder). In practice, it is possible to form a two-stage burner with only the central cylinder and the outer cylinder without adding a first-stage burner cylinder if possible. Further, a multistage burner cylinder may be added to the central cylinder, and a multistage burner cylinder may be added to the outer cylinder.

更に点火装置は、オイルガンやプラズマ点火装置などを含む、最初のバーナーのものでも、再構築バーナーのものでも、任意の種類の点火装置であることができる。   Further, the igniter can be any kind of igniter, whether of the initial burner or of the rebuilt burner, including oil guns, plasma igniters and the like.

本発明の好ましい実施態様は、上記の添付図面を参照して説明した。明らかに本発明は上述の特定の説明には限定されず、種々の変更や置換が可能であり、それらは又本発明の保護範囲に入る。   The preferred embodiments of the present invention have been described with reference to the accompanying drawings. Obviously, the present invention is not limited to the above specific description, and various modifications and substitutions are possible, and they are also within the protection scope of the present invention.

Claims (9)

少なくとも二段のバーナー筒、該少なくとも二段のバーナー筒の第一段バーナー筒内の粉炭を点火するためのプラズマ発生装置を含むプラズマ点火バーナーであって、前段のバーナー筒の燃焼炎は次段のバーナー筒の粉炭を点火するか、又は次段のバーナー筒で補足空気とともに更に燃焼し、該プラズマ発生装置の軸線方向が、粉炭含有空気流が該第一段バーナー筒に流入する方向に平行で、同時に該バーナー筒軸線と平行であることを特徴とする、プラズマ点火バーナー。   A plasma ignition burner comprising at least a two-stage burner cylinder and a plasma generator for igniting the pulverized coal in the first-stage burner cylinder of the at least two-stage burner cylinder, wherein the combustion flame of the preceding burner cylinder is the next stage The pulverized coal in the burner cylinder is ignited or further combusted with supplementary air in the next stage burner cylinder, and the axial direction of the plasma generator is parallel to the direction in which the pulverized coal-containing air flow flows into the first stage burner cylinder At the same time, the plasma ignition burner is parallel to the burner cylinder axis. 該粉炭含有空気流を前記の少なくとも二段のバーナー筒に導く湾曲管をさらに含み、該バーナー筒側の湾曲管の一端が該バーナー筒軸線と平行で、該プラズマ発生装置が該湾曲管壁を貫通して該バーナー筒の軸線方向に沿って該第一段バーナー筒に挿入される、請求項1に記載のプラズマ点火バーナー。   A curved pipe for guiding the air flow containing pulverized coal to the at least two-stage burner cylinder; one end of the curved pipe on the burner cylinder side is parallel to the axis of the burner cylinder; and the plasma generator The plasma ignition burner according to claim 1, wherein the plasma ignition burner is inserted into the first stage burner cylinder along the axial direction of the burner cylinder. 該湾曲管の軸線に沿って配置されたガイド板をさらに含み、該バーナー筒側の該ガイド板の一端が該プラズマ発生装置の軸線と平行である、請求項2に記載のプラズマ点火バーナー。   The plasma ignition burner according to claim 2, further comprising a guide plate disposed along the axis of the curved tube, wherein one end of the guide plate on the burner tube side is parallel to the axis of the plasma generator. 該ガイド板が該第一段バーナー筒取り入れ口の近辺まで延びている、請求項3に記載のプラズマ点火バーナー。   The plasma ignition burner according to claim 3, wherein the guide plate extends to the vicinity of the first stage burner tube intake. 該プラズマ発生装置末端と該ガイド板末端が、該バーナー筒の軸線上に配置されるか、又は所定距離だけ該バーナー筒の軸線から進路が変えられている、請求項4に記載のプラズマ点火バーナー。   The plasma ignition burner according to claim 4, wherein the plasma generator terminal and the guide plate terminal are disposed on an axis of the burner cylinder, or a path is changed from the axis of the burner cylinder by a predetermined distance. . 該ガイド板の断面形状が平坦面である、請求項3から5のいずれか1項に記載のプラズマ点火バーナー。   The plasma ignition burner according to any one of claims 3 to 5, wherein a cross-sectional shape of the guide plate is a flat surface. 該ガイド板の断面形状が曲面である、請求項3から5のいずれか1項に記載のプラズマ点火バーナー。   The plasma ignition burner according to any one of claims 3 to 5, wherein a cross-sectional shape of the guide plate is a curved surface. 該プラズマ発生装置を保護するために、耐摩耗用保護スリーブを備える、請求項2から7のいずれか1項に記載のプラズマ点火バーナー。   The plasma ignition burner according to any one of claims 2 to 7, further comprising an anti-wear sleeve for protecting the plasma generator. 該耐摩耗用保護スリーブの風上面がV型である、請求項8に記載のプラズマ点火バーナー。
9. The plasma ignition burner according to claim 8, wherein the windward surface of the wear-resistant protective sleeve is V-shaped.
JP2010516350A 2007-07-19 2008-03-17 Plasma ignition burner Pending JP2010533833A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CNU2007201462446U CN201126192Y (en) 2007-07-19 2007-07-19 Plasma ignition combustor
CN2007101370082A CN101349435B (en) 2007-07-19 2007-07-19 Plasma ignition combustor
PCT/CN2008/000521 WO2009009948A1 (en) 2007-07-19 2008-03-17 A burner ignited by plasma

Publications (1)

Publication Number Publication Date
JP2010533833A true JP2010533833A (en) 2010-10-28

Family

ID=40259296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010516350A Pending JP2010533833A (en) 2007-07-19 2008-03-17 Plasma ignition burner

Country Status (7)

Country Link
US (1) US20090038518A1 (en)
EP (1) EP2172706A4 (en)
JP (1) JP2010533833A (en)
KR (1) KR101206354B1 (en)
AU (1) AU2008278159B2 (en)
RU (1) RU2439434C2 (en)
WO (1) WO2009009948A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112549A (en) * 2010-11-22 2012-06-14 Ihi Corp Pulverized coal burner
KR101284290B1 (en) 2012-08-07 2013-07-08 한국기계연구원 Combustion apparatus
JP2014501378A (en) * 2010-12-23 2014-01-20 アルストム テクノロジー リミテッド System and method for reducing emissions from boilers
CN104879780A (en) * 2014-02-28 2015-09-02 北京大学 Multichannel plasma area igniting burner
JP2016065662A (en) * 2014-09-24 2016-04-28 三菱重工業株式会社 Combustion burner and boiler

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9151434B2 (en) * 2008-12-18 2015-10-06 Alstom Technology Ltd Coal rope distributor with replaceable wear components
US9857077B2 (en) 2008-12-18 2018-01-02 General Electric Technology Gmbh Coal rope distributor with replaceable wear components
CN101846315B (en) * 2009-03-24 2012-07-04 烟台龙源电力技术股份有限公司 Coal dust concentration device and coal dust burner with same
US9593795B2 (en) 2009-11-02 2017-03-14 General Electric Technology Gmbh Fuel head assembly with replaceable wear components
CN101886816A (en) * 2010-04-14 2010-11-17 中国电力工程顾问集团华北电力设计院工程有限公司 Improved plasma ignition nozzle of coal dust gasifier and mode
CN101900330B (en) * 2010-07-23 2012-03-28 西安交通大学 Plasma ignition burner for anthracite
CN102454985B (en) * 2010-11-01 2015-04-08 烟台龙源电力技术股份有限公司 Pulverized coal burner and pulverized coal boiler
RU2460941C1 (en) * 2011-02-11 2012-09-10 Учреждение Российской Академии наук Институт теплофизики им. С.С. Кутателадзе Сибирского отделения РАН (ИТ СО РАН) Combustion method of fine pulverised coal and regular pulverised coal in pulverised coal burner, and device for its implementation
KR101050511B1 (en) * 2011-04-26 2011-07-20 한국기계연구원 Multistep combustion apparatus using plasma
CN102305415B (en) * 2011-10-18 2013-10-09 上海锅炉厂有限公司 Plasma oil-free ignition system in oxygen-enriched environments
RU2543648C1 (en) * 2014-01-10 2015-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Восточно-Сибирский государственный университет технологий и управления" Plasma pulverised coal burner
RU2559658C1 (en) * 2014-06-24 2015-08-10 Геннадий Саитянович Туктакиев Device for combustion of powdered fuel
RU2557969C1 (en) * 2014-06-24 2015-07-27 Геннадий Саитянович Туктакиев Powdered fuel combustion device
RU2557967C1 (en) * 2014-06-24 2015-07-27 Геннадий Саитянович Туктакиев Powdered fuel combustion method
DE102015104401A1 (en) 2015-03-24 2015-05-07 Mitsubishi Hitachi Power Systems Europe Gmbh Method for reducing NOx emissions during the combustion of pulverized fuel
DE102015104406A1 (en) 2015-03-24 2015-05-21 Mitsubishi Hitachi Power Systems Europe Gmbh Method for reducing NOx emissions during the combustion of pulverized fuel
DE102015111587A1 (en) * 2015-07-16 2017-01-19 Mitsubishi Hitachi Power Systems Europe Gmbh Burner and method for igniting fires with pulverized fuel
EP3130851B1 (en) 2015-08-13 2021-03-24 General Electric Technology GmbH System and method for providing combustion in a boiler
CN105782965B (en) * 2016-03-04 2018-09-21 烟台龙源电力技术股份有限公司 A kind of heat-storage type burner
US10473327B2 (en) 2016-06-09 2019-11-12 General Electric Technology Gmbh System and method for increasing the concentration of pulverized fuel in a power plant
KR101922933B1 (en) * 2016-10-11 2018-11-28 한국에너지기술연구원 Plasma ignition burner for coal power plant
US10711994B2 (en) 2017-01-19 2020-07-14 General Electric Technology Gmbh System, method and apparatus for solid fuel ignition
CN114440257B (en) * 2022-01-13 2023-03-21 徐兴国 Plasma cooling air device for boiler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181543U (en) * 1984-05-07 1985-12-02 三菱重工業株式会社 pulverized coal burner
JPS6391433A (en) * 1986-10-03 1988-04-22 Babcock Hitachi Kk Ignition device for pulverized coal and carrier air mixture
JPH04502806A (en) * 1989-01-16 1992-05-21 イマツラン・ボイマ・オーワイ Method and apparatus for starting the boiler of a solid fuel-burning power plant and ensuring the combustion process of the fuel
JPH09296908A (en) * 1996-05-02 1997-11-18 Mitsubishi Heavy Ind Ltd Round type burner
JP2004536270A (en) * 2001-02-27 2004-12-02 ヤン タイ ロン ユアン ディアンリ チースー ユーシャ コンスー Combined cathode and plasma ignition device using the cathode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU598147B2 (en) * 1987-08-13 1990-06-14 Connell Wagner Pty Ltd Pulverised fuel burner
FI87949C (en) * 1990-07-13 1993-03-10 Imatran Voima Oy Process for reducing nitrogen oxides in combustion of various fuels
CN1105874C (en) * 1995-06-01 2003-04-16 哈萨克斯坦动力研究所 Method of firing and stabilising combustion of low-grade coals and device for applying the method
CN2526693Y (en) * 2002-03-01 2002-12-18 洛阳泛华电力工程技术有限公司 Plasma coal igniter
CN2646575Y (en) * 2003-08-25 2004-10-06 侯桂林 DC burner ignition device of pulverized coal firing boiler
WO2005103568A1 (en) * 2004-04-26 2005-11-03 Anatoly Timofeevich Neklesa Device for plasma igniting and stabilising a coal-dust flame

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181543U (en) * 1984-05-07 1985-12-02 三菱重工業株式会社 pulverized coal burner
JPS6391433A (en) * 1986-10-03 1988-04-22 Babcock Hitachi Kk Ignition device for pulverized coal and carrier air mixture
JPH04502806A (en) * 1989-01-16 1992-05-21 イマツラン・ボイマ・オーワイ Method and apparatus for starting the boiler of a solid fuel-burning power plant and ensuring the combustion process of the fuel
JPH09296908A (en) * 1996-05-02 1997-11-18 Mitsubishi Heavy Ind Ltd Round type burner
JP2004536270A (en) * 2001-02-27 2004-12-02 ヤン タイ ロン ユアン ディアンリ チースー ユーシャ コンスー Combined cathode and plasma ignition device using the cathode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012112549A (en) * 2010-11-22 2012-06-14 Ihi Corp Pulverized coal burner
JP2014501378A (en) * 2010-12-23 2014-01-20 アルストム テクノロジー リミテッド System and method for reducing emissions from boilers
KR101284290B1 (en) 2012-08-07 2013-07-08 한국기계연구원 Combustion apparatus
CN104879780A (en) * 2014-02-28 2015-09-02 北京大学 Multichannel plasma area igniting burner
CN104879780B (en) * 2014-02-28 2018-10-19 北京大学 A kind of multichannel heating region ignition burning device
JP2016065662A (en) * 2014-09-24 2016-04-28 三菱重工業株式会社 Combustion burner and boiler

Also Published As

Publication number Publication date
WO2009009948A1 (en) 2009-01-22
RU2008129851A (en) 2010-01-27
RU2439434C2 (en) 2012-01-10
EP2172706A4 (en) 2012-05-09
EP2172706A1 (en) 2010-04-07
KR101206354B1 (en) 2012-11-29
AU2008278159A1 (en) 2009-01-22
KR20090009167A (en) 2009-01-22
US20090038518A1 (en) 2009-02-12
AU2008278159B2 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP2010533833A (en) Plasma ignition burner
JP7027817B2 (en) Combustion device and boiler
CN201126192Y (en) Plasma ignition combustor
WO2011077762A1 (en) Combustion burner and boiler provided with combustion burner
JP5657681B2 (en) Mixed firing system
JP5558870B2 (en) Gas turbine burner and method for partially cooling a hot gas stream passing through the burner
CN102305415A (en) Plasma oil-free ignition system in oxygen-enriched environments
US20120006238A1 (en) Pulverized coal concentrator and pulverized coal burner including the concentrator
US9464809B2 (en) Gas turbine combustor and operating method for gas turbine combustor
CN101349435B (en) Plasma ignition combustor
JP2010271001A (en) Coal fired boiler
TW200928234A (en) Burner pilot with virtual spinner
CN106568079B (en) System and method for providing combustion in a boiler
CN101349422B (en) Combustor and method for improving combustor
CN100523607C (en) Direct current coal powder burner
WO2014179956A1 (en) System and method for small-scale combustion of pulverized solid fuels
RU2300053C1 (en) Auxiliary burner device for plasma ignition and stabilization of burning of low reaction black dust fuel of main burners of heat apparatus
CN201133645Y (en) Burner
RU50280U1 (en) AUXILIARY BURNER DEVICE FOR PLASMA IGNITION AND STABILIZATION OF BURNING OF LOW-REACTIVE DUST-COAL FUEL OF MAIN HEATER UNIT BURNERS
RU2642997C2 (en) Gas burner with low content of nitrogen oxides and method of fuel gas combustion
CN201852088U (en) Pulverized coal concentrator, pulverized coal burner and pulverized coal boiler
RU2339878C2 (en) Method of plasma-coal lighting up of boiler and associated plant
JP6123720B2 (en) Multi-tube tubular flame burner
JP7262521B2 (en) Gas burner and combustion equipment
JP2012202601A (en) Pulverized coal burner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141110

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825