JP2010280250A - Power generation source control device - Google Patents

Power generation source control device Download PDF

Info

Publication number
JP2010280250A
JP2010280250A JP2009133360A JP2009133360A JP2010280250A JP 2010280250 A JP2010280250 A JP 2010280250A JP 2009133360 A JP2009133360 A JP 2009133360A JP 2009133360 A JP2009133360 A JP 2009133360A JP 2010280250 A JP2010280250 A JP 2010280250A
Authority
JP
Japan
Prior art keywords
power
vehicle
generation source
destination
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009133360A
Other languages
Japanese (ja)
Inventor
Kazunao Yamada
山田  和直
Hideaki Suganuma
英明 菅沼
Mamoru Kuraishi
守 倉石
Toshiaki Niwa
俊明 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Denso Corp
Toyota Motor Corp
Original Assignee
Aisin AW Co Ltd
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Denso Corp, Toyota Motor Corp filed Critical Aisin AW Co Ltd
Priority to JP2009133360A priority Critical patent/JP2010280250A/en
Priority to PCT/JP2010/003297 priority patent/WO2010140305A1/en
Publication of JP2010280250A publication Critical patent/JP2010280250A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power generation source control device which more improves practical fuel consumption. <P>SOLUTION: The power generation source control device successively compares electric power which is used for EV traveling (available electric energy) with the estimated value (estimated required electric energy) of required electric energy when traveling by an EV travel mode to the destination (S14), sets a power threshold at 7.5 kw when the estimated required electric energy is larger, and sets the power threshold at 30 kw, when the available electric energy is larger. Then the power generation source control device switches the electric travel mode in which the vehicle is travelled using motor generator MG as a power generation source travel mode supplying power from a battery 6, and an HV travel mode using an engine 2 as a power generation source, based on comparison of the sequentially decided driving power request value with the power threshold. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ハイブリッド車両に用いられ、動力発生源を制御する動力発生源制御装置に関する。   The present invention relates to a power generation source control device that is used in a hybrid vehicle and controls a power generation source.

車両の駆動軸を駆動するための動力を発生させる動力発生源として、内燃機関および回転電機を備えたハイブリッド車両が知られている。   As a power generation source that generates power for driving a drive shaft of a vehicle, a hybrid vehicle including an internal combustion engine and a rotating electric machine is known.

このハイブリッド車両において、消費燃料をできるだけ少なくするために、目的地までの経路の道路状況に応じて内燃機関および回転電機の運転スケジュールを設定する技術が知られている(たとえば特許文献1)。   In this hybrid vehicle, a technique is known in which an operation schedule of an internal combustion engine and a rotating electrical machine is set in accordance with a road condition of a route to a destination in order to reduce fuel consumption as much as possible (for example, Patent Document 1).

特許文献1に記載のものは、道路データに基づいて経路の走行パターンを予測し、予測した走行パターンから、エンジンおよびモータの運転スケジュールを設定する。さらに、設定した運転スケジュールの再設定も可能となっている。   The device described in Patent Document 1 predicts a route travel pattern based on road data, and sets engine and motor operation schedules from the predicted travel pattern. Furthermore, the set operation schedule can be reset.

再設定を可能としている理由は、予期せぬ渋滞や運転者のその日の走行状態によって、設定された運転スケジュール通りに走行することができないことが考えられるからであり、走行中の実際のSOCと運転スケジュールに含まれるSOCとの相違が大きい場合に、運転スケジュールを再設定している。   The reason why the resetting is possible is that it may be impossible to drive according to the set driving schedule due to unexpected traffic jams and the driving conditions of the driver that day. When the difference from the SOC included in the operation schedule is large, the operation schedule is reset.

特開2007−50888号公報JP 2007-50888 A

しかし、走行中に運転スケジュールを再設定する場合、再設定する前の運転スケジュールは適切でなかったことになる。つまり、再設定する前の運転スケジュールでは、十分に燃費のよい走行ではなかったことになる。また、再設定した後の運転スケジュールも適切なスケジュールであるとは限らない。つまり、再設定した後も、十分に燃費のよい走行が行われるとは限らない。   However, when resetting the driving schedule during traveling, the driving schedule before resetting was not appropriate. That is, the driving schedule before resetting was not a sufficiently fuel-efficient driving. Moreover, the driving schedule after resetting is not necessarily an appropriate schedule. That is, even after resetting, traveling with sufficiently high fuel efficiency is not always performed.

また、回転電機のみを動力発生源として用いて目的地まで到達できることが予想できる場合には、目的地まですべて電動走行を行うという計画を設定することも考えられる。そのため、内燃機関を動力発生源として用いるか否かを考慮することなく暖機制御を常に行うとすれば、燃料を無駄に消費することになり、実用燃費を低下させてしまう。   In addition, when it can be predicted that the destination can be reached using only the rotating electrical machine as a power generation source, it is also conceivable to set a plan for performing electric travel to the destination. Therefore, if the warm-up control is always performed without considering whether or not the internal combustion engine is used as a power generation source, fuel is consumed wastefully, and practical fuel consumption is reduced.

本発明は、この事情に基づいて成されたものであり、その目的とするところは、より実用燃費を向上させることができる動力発生源制御装置を提供することにある。   The present invention has been made based on this situation, and an object of the present invention is to provide a power generation source control device capable of further improving the practical fuel consumption.

その目的を達成するための請求項1記載の発明は、車両の駆動軸を駆動するための動力を発生させる動力発生源として、内燃機関および回転電機を備えるとともに、前記回転電機との間で電力の授受を行う蓄電装置を備えたハイブリッド車両に用いられ、前記動力発生源を制御する動力発生源制御装置であって、
前記動力発生源で発生させる駆動動力を逐次決定する駆動動力決定手段と、
前記内燃機関を停止させ、且つ、前記蓄電装置から電力を供給して前記回転電機を動力発生源として用いて前記車両を走行させる電動走行モードと、前記内燃機関を動力発生源として用いる内燃機関駆動モードとを切り替えるものであって、前記駆動動力決定手段で決定した駆動動力と動力閾値とを比較し、駆動動力が動力閾値以下であることに基づいて前記電動走行モードとし、駆動動力が動力閾値よりも高いことに基づいて前記内燃機関駆動モードとする走行モード切替手段と、
前記蓄電装置の使用可能電力量および目的地までの残距離に基づいて、走行モードを前記電動走行モードとしたままで目的地まで到着できるか否かを逐次判定する判定手段と、
その判定手段によって、走行モードを前記電動走行モードとしたままで目的地まで到着できると判定した場合には前記動力閾値を所定の低閾値に設定し、走行モードを前記電動走行モードとしたままでは目的地まで到着できないと判定した場合には前記動力閾値を前記低閾値よりも高い所定の高閾値に設定する閾値設定手段と、を含むことを特徴とする。
In order to achieve the object, the invention according to claim 1 is provided with an internal combustion engine and a rotating electric machine as a power generation source for generating power for driving a drive shaft of a vehicle, and electric power is supplied to the rotating electric machine. A power generation source control device for controlling the power generation source used in a hybrid vehicle including a power storage device that transfers
Drive power determination means for sequentially determining drive power generated by the power generation source;
An electric driving mode in which the internal combustion engine is stopped and electric power is supplied from the power storage device to drive the vehicle using the rotating electrical machine as a power generation source, and an internal combustion engine drive using the internal combustion engine as a power generation source The mode is to switch the mode, the driving power determined by the driving power determining means is compared with a power threshold, and the electric driving mode is set based on the fact that the driving power is less than the power threshold, and the driving power is the power threshold. Traveling mode switching means for setting the internal combustion engine drive mode based on the higher than,
Based on the available power amount of the power storage device and the remaining distance to the destination, determination means for sequentially determining whether or not the vehicle can arrive at the destination while keeping the driving mode in the electric driving mode;
When it is determined by the determining means that the vehicle can reach the destination while the driving mode remains in the electric driving mode, the power threshold is set to a predetermined low threshold, and the driving mode remains in the electric driving mode. Threshold value setting means for setting the power threshold value to a predetermined high threshold value higher than the low threshold value when it is determined that the vehicle cannot reach the destination.

本発明では、予め走行モードを計画しておくのではなく、逐決定する駆動動力と動力閾値との比較に基づいて、走行モードを電動走行モードとするか内燃機関駆動モードとするかを切り替える。そのため、予め走行モードを計画する場合と異なり、計画時に想定された駆動動力と実際に発生した駆動動力とのずれは生じ得ないので、燃費を確実に向上させることが可能となる。   In the present invention, the travel mode is not planned in advance, but the travel mode is switched between the electric travel mode and the internal combustion engine drive mode based on the comparison between the drive power and the power threshold that are determined sequentially. Therefore, unlike the case where the travel mode is planned in advance, there can be no deviation between the driving power assumed at the time of planning and the driving power actually generated, so that the fuel consumption can be reliably improved.

加えて、仮に、動力閾値を高い値で一定とすると、その後に、電動走行モードで走行することが適切な低負荷区間が存在しているとしても、その低負荷区間の手前の高負荷区間において電動走行モードで走行して蓄電装置の電力を使い過ぎて、電動走行モードにおいて最も効率良く走行することができる低負荷区間において電動走行モードで走行することができなくなってしまい、燃費を十分に向上できない可能性がある。しかし、本発明では、走行モードを選択するために用いる動力閾値を、電動走行モードとしたままでは目的地まで到着できないと判定する間は低閾値に設定する。動力閾値が低閾値に設定されている状態では、高負荷区間では低閾値を越える駆動動力が必要となることが多くなるため、内燃機関駆動モードにて走行されることが多くなる。すなわち、電動走行モードで走行すると充電量が急激に低下し、平坦路を電動走行モードで走行する場合より効率の悪化する高負荷区間において電動走行モードを選択してしまうことが抑制されるので、実用燃費が向上する。   In addition, if the power threshold is constant at a high value, even if there is a low load section that is appropriate to travel in the electric travel mode after that, in the high load section before that low load section Driving in the electric driving mode and using the power of the power storage device excessively makes it impossible to drive in the electric driving mode in the low-load section where the electric driving mode can drive most efficiently, thereby sufficiently improving the fuel consumption. It may not be possible. However, in the present invention, the power threshold value used for selecting the travel mode is set to a low threshold while it is determined that the vehicle cannot reach the destination if it is in the electric travel mode. In a state where the power threshold is set to the low threshold, driving power exceeding the low threshold is often required in the high load section, and thus the vehicle is often driven in the internal combustion engine drive mode. In other words, the amount of charge suddenly decreases when traveling in the electric travel mode, and it is suppressed to select the electric travel mode in a high load section where the efficiency is worse than when traveling on a flat road in the electric travel mode. Practical fuel consumption is improved.

ここで、前記判定手段は、請求項2記載のように、たとえば、前記電動走行モードにて走行した場合の走行可能距離の推定値である推定電動走行可能距離と目的地までの残距離との比較、または、目的地までの残距離を前記電動走行モードで走行する際に必要な電力量の推定値である推定必要電力量と蓄電装置の使用可能電力量との比較に基づいて前記判定を行うことができる。   Here, as described in claim 2, for example, the determination means includes an estimated electric travelable distance that is an estimated value of a travelable distance when traveling in the electric travel mode and a remaining distance to the destination. The determination is based on a comparison or a comparison between an estimated required power amount that is an estimated value of the amount of power required when traveling in the electric travel mode for the remaining distance to the destination and a usable power amount of the power storage device. It can be carried out.

請求項3は、前記動力発生源制御装置が搭載される車両が、車両外部の外部電源からの電力が入力され、その電力で前記蓄電装置を充電する外部電力入力手段を備えたハイブリッド車両であり、
前記判定手段は、比較する2つの値の少なくともいずれか一方に、前記推定値の推定誤差を補い、且つ、走行モードを前記電動走行モードとしたままで目的地まで到着できると判定されやすくする補正を行い、補正後の値に基づいて比較を行うことを特徴とする。
Claim 3 is a hybrid vehicle in which the vehicle on which the power generation source control device is mounted is provided with external power input means for receiving electric power from an external power source outside the vehicle and charging the power storage device with the electric power. ,
The determination means compensates for at least one of the two values to be compared with the estimated error of the estimated value, and makes it easier to determine that the vehicle can arrive at the destination while the driving mode remains the electric driving mode. And performing comparison based on the corrected value.

このようにすれば、走行モードを前記電動走行モードとしたままで目的地まで到着できると判定されやすくする補正を行うので、高閾値が設定されやすくなる。その結果、電動走行モードが行われやすくなるので、目的地に到着した時に、使用可能電力を使い切っていないという状態を防ぐことができる。そのため、到着した目的地にて、外部電源を用いて充電できる電力量を多くすることができる。加えて、上記補正の程度が大きいと、動力閾値が高い値に維持されることになってしまうが、上記補正は、推定値(推定電動走行可能距離または推定必要電力量)の推定誤差を補う程度の補正であるので、動力閾値が高い値に維持されてしまうこともない。   In this way, the correction is performed so that it is easily determined that the vehicle can reach the destination while the driving mode is kept in the electric driving mode, so that a high threshold value is easily set. As a result, since the electric travel mode is easily performed, it is possible to prevent the state where the available power is not used up when the vehicle arrives at the destination. Therefore, it is possible to increase the amount of power that can be charged using the external power source at the destination that has arrived. In addition, if the degree of the correction is large, the power threshold value is maintained at a high value. However, the correction compensates for an estimation error of the estimated value (estimated electric travelable distance or estimated required electric energy). Since the correction is of a degree, the power threshold value is not maintained at a high value.

請求項4は、前記車両の走行中に、走行パワーを決定するための走行パワー関連値を位置に関連付けて逐次記憶する走行パワー関連値記憶手段と、
前記走行パワー関連値記憶手段により位置に関連づけて記憶された走行パワー関連値に基づいて、目的地までの経路を走行する場合の前記推定必要電力量を算出する推定必要電力量算出手段とをさらに備え、
前記判定手段は、前記推定必要電力量算出手段で算出した推定必要電力量と、前記蓄電装置の使用可能電力量との比較に基づいて前記判定を行うことを特徴とする。
According to a fourth aspect of the present invention, a travel power related value storage means for sequentially storing a travel power related value for determining travel power in association with a position during travel of the vehicle;
Estimated required power amount calculating means for calculating the estimated required power amount when traveling on the route to the destination based on the travel power related value stored in association with the position by the travel power related value storage means; Prepared,
The determination unit performs the determination based on a comparison between the estimated required power amount calculated by the estimated required power amount calculation unit and the usable power amount of the power storage device.

このようにすれば、経路に応じて異なる推定必要電力量を精度よく算出することができ、その精度よく算出した推定必要電力量を用いて判定を行うので、精度のよい判定が可能となる。   In this way, it is possible to accurately calculate the estimated required power amount that differs depending on the route, and the determination is performed using the estimated required power amount that has been calculated with high accuracy, so that a highly accurate determination is possible.

また、前記目的を達成するための請求項5記載の発明は、車両の駆動軸を駆動するための動力を発生させる動力発生源として、内燃機関および回転電機を備えたハイブリッド車両に用いられ、前記動力発生源を制御する動力発生源制御装置であって、
前記車両の出発時に、前記内燃機関を停止させ、前記回転電機を動力発生源として用いて前記車両を走行させる電動走行モードとしたままで目的地まで到着できるか否かを、前記蓄電装置の使用可能電力量および目的地までの残距離に基づいて判定する判定手段を備え、
その判定手段によって、走行モードを前記電動走行モードとしたままでは目的地まで到着できないと判定した場合には前記内燃機関の暖機制御を行うが、走行モードを前記電動走行モードとしたままで目的地まで到着できると判定した場合には前記暖機制御を行わないことを特徴とする。
The invention according to claim 5 for achieving the above object is used in a hybrid vehicle including an internal combustion engine and a rotating electric machine as a power generation source for generating power for driving a drive shaft of the vehicle, A power source control device for controlling a power source,
Use of the power storage device to determine whether or not the internal combustion engine is stopped at the time of departure of the vehicle and the vehicle can be reached in the electric driving mode in which the vehicle is driven using the rotating electrical machine as a power generation source. A determination means for determining based on the available electric energy and the remaining distance to the destination;
When the determination means determines that the vehicle cannot reach the destination when the driving mode is set to the electric driving mode, the warm-up control of the internal combustion engine is performed. When it is determined that the vehicle can reach the ground, the warm-up control is not performed.

このように、本発明では、出発時に、電動走行モードとしたままで目的地まで走りきれるかどうかを判定する。そして、電動走行モードとしたままで走りきれると判定した場合には、内燃機関を駆動させる必要はないことから、内燃機関の暖機制御を行わない。そのため、内燃機関の暖機制御に要する燃費を節約して実用燃費を向上させることができる。   As described above, according to the present invention, at the time of departure, it is determined whether or not the vehicle can travel to the destination while keeping the electric travel mode. When it is determined that the vehicle can be driven while in the electric travel mode, it is not necessary to drive the internal combustion engine, so the warm-up control of the internal combustion engine is not performed. Therefore, the fuel efficiency required for warm-up control of the internal combustion engine can be saved and the practical fuel efficiency can be improved.

ハイブリッド車両1において本発明に関する構成を示す図である。1 is a diagram showing a configuration related to the present invention in a hybrid vehicle 1. FIG. 本実施形態の車両1が出発時に実施する暖機要否判定処理を示すフローチャートである。It is a flowchart which shows the warming-up necessity determination process which the vehicle 1 of this embodiment implements at the time of a departure. 走行モードの切り替え判定に用いる閾値を設定する閾値設定処理を示すフローチャートである。It is a flowchart which shows the threshold value setting process which sets the threshold value used for switching determination of driving modes. 図3のステップS15またはS16で設定する動力閾値と、走行パワーと、走行モードとの関係を、SOCの変化とともに示す図である。It is a figure which shows the relationship between the power threshold value set by step S15 or S16 of FIG. 3, a driving | running | working power, and driving modes with the change of SOC. 本実施形態の車両1が従来のハイブリッド車両よりも燃費が向上していることを概念的に示す図である。It is a figure which shows notionally that the vehicle 1 of this embodiment has improved the fuel consumption compared with the conventional hybrid vehicle.

以下、本発明の実施形態を図面に基づいて説明する。図1は、ハイブリッド車両(以下、単に車両という)1において本発明に関する構成を示す図である。図1に示すように、車両1は、エンジン2とモータジェネレータMGとを動力発生源として備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration relating to the present invention in a hybrid vehicle (hereinafter simply referred to as a vehicle) 1. As shown in FIG. 1, the vehicle 1 includes an engine 2 and a motor generator MG as power generation sources.

エンジン2は、燃料としてガソリンまたは軽油等を用いる内燃機関である。このエンジン2の出力軸は、図示しない遊星歯車装置、減速機、デファレンシャルギアを介して駆動輪の車軸に連結されている。   The engine 2 is an internal combustion engine that uses gasoline or light oil as fuel. The output shaft of the engine 2 is connected to the axle of the drive wheel via a planetary gear device, a reduction gear, and a differential gear (not shown).

モータジェネレータMGはインバータ4に接続されており、そのインバータ4は、バッテリ6と電気的に接続されている。なお、モータジェネレータMGは1つに限られず、2つ備えていてもよい。   Motor generator MG is connected to inverter 4, and inverter 4 is electrically connected to battery 6. The number of motor generators MG is not limited to one and may be two.

このモータジェネレータMGは、バッテリ6からの電力が供給されるとモータとして機能して動力を発生させる。一方、車輪あるいはエンジン2の回転が伝達されることによって回転させられると発電機として機能して電力を発生させる。モータジェネレータMGが発電機として機能して発生させた電力はバッテリ6に蓄電される。バッテリ6は請求項の蓄電装置に相当するものであり、たとえば、ニッケル水素二次電池を用いる。   The motor generator MG functions as a motor to generate power when electric power from the battery 6 is supplied. On the other hand, when the rotation of the wheel or the engine 2 is transmitted, it functions as a generator and generates electric power. Electric power generated by the motor generator MG functioning as a generator is stored in the battery 6. The battery 6 corresponds to the power storage device recited in the claims, and for example, a nickel hydride secondary battery is used.

充電量監視部8は、図示しない電流センサによってバッテリ6に対する入出力電流を検出するとともに、バッテリ6の電圧を逐次監視し、それらに基づいてバッテリ6の蓄電状態(以下、SOCという)を逐次演算する。そして、そのSOCを表す信号をHV制御部10、および、ナビゲーション部30へ逐次供給する。   The charge amount monitoring unit 8 detects an input / output current for the battery 6 with a current sensor (not shown), sequentially monitors the voltage of the battery 6, and sequentially calculates a storage state (hereinafter referred to as SOC) of the battery 6 based on them. To do. Then, a signal representing the SOC is sequentially supplied to the HV control unit 10 and the navigation unit 30.

加えて、充電量監視部8は、SOCとバッテリ6の定格容量とから、バッテリ6が充電可能な最大の電力量および放電可能な最大の電力量を逐次算出する。この充電可能最大電力量および放電可能最大電力量もHV制御部10へ送信する。   In addition, the charge amount monitoring unit 8 sequentially calculates the maximum power amount that can be charged by the battery 6 and the maximum power amount that can be discharged from the SOC and the rated capacity of the battery 6. The chargeable maximum power amount and the dischargeable maximum power amount are also transmitted to the HV control unit 10.

HV制御部10には、車速を表す車速信号SSp、アクセル開度を表すアクセル開度信号Accが供給される。また、充電量監視部8、MG制御部12、エンジン制御部14、ナビゲーション部30との間で相互に信号の送受信を行う。そして、供給される種々の信号に基づいて所定の演算処理を実行する。   The HV control unit 10 is supplied with a vehicle speed signal SSp indicating the vehicle speed and an accelerator opening signal Acc indicating the accelerator opening. In addition, signals are transmitted and received among the charge amount monitoring unit 8, the MG control unit 12, the engine control unit 14, and the navigation unit 30. Then, predetermined arithmetic processing is executed based on various supplied signals.

上記演算処理には、車両1が要求する駆動動力要求値の算出処理がある。この駆動動力要求値は、アクセル開度と車速とに基づいて算出する。詳しくは、アクセル開度から、予め記憶されている要求駆動トルク決定マップを用いて要求駆動トルクを設定する。なお、この要求駆動トルクの決定には、アクセル開度に加えてシフト位置を用いてもよい。次いで、車速に基づいて車軸の回転速度を算出し、その回転速度に上記要求駆動トルクを乗じることにより駆動動力要求値を算出する。なお、この駆動動力要求値の算出処理は、請求項の駆動動力決定手段に相当する処理である。   The calculation process includes a calculation process of a drive power request value required by the vehicle 1. This drive power request value is calculated based on the accelerator opening and the vehicle speed. Specifically, the required drive torque is set from the accelerator opening using a required drive torque determination map stored in advance. Note that the shift position may be used in addition to the accelerator opening for determining the required drive torque. Next, the rotational speed of the axle is calculated based on the vehicle speed, and the required driving power value is calculated by multiplying the rotational speed by the required driving torque. The calculation process of the drive power request value is a process corresponding to the drive power determination means in the claims.

そして、HV制御部10は、上記駆動動力要求値と動力閾値とを比較し、比較結果に基づいて、EV走行モードにて走行するかHV走行モードにて走行するかを切り替える走行モード切替処理を走行中に逐次行う。   And the HV control part 10 compares the said drive power request value with a power threshold value, and based on the comparison result, the driving mode switching process which switches whether it drive | works in EV driving mode or HV driving mode is performed. Sequentially while driving.

上記EV走行モードとは、エンジン2を停止させ、バッテリ6から電力を供給してモータジェネレータMGを動力発生源として用いて車両1を走行させる走行モードであり、請求項の電動走行モードに相当する。また、HV走行モードとは、エンジン2を動力発生源として用いる走行モードであり、請求項の内燃機関駆動モードに相当する。HV走行モードでは、エンジン2のみを動力発生源として用いてもよいし、エンジン2とモータジェネレータMGの2種類の動力発生源を用いてもよい。なお、SOCが使用下限値となった場合には、駆動動力要求値の大きさに関わらずHV走行モードを選択する。   The EV travel mode is a travel mode in which the engine 2 is stopped, electric power is supplied from the battery 6 and the vehicle 1 is traveled using the motor generator MG as a power generation source, and corresponds to the electric travel mode of the claims. . The HV traveling mode is a traveling mode in which the engine 2 is used as a power generation source, and corresponds to the internal combustion engine drive mode in the claims. In the HV traveling mode, only the engine 2 may be used as a power generation source, or two types of power generation sources, that is, the engine 2 and the motor generator MG may be used. When the SOC reaches the lower limit value, the HV travel mode is selected regardless of the magnitude of the drive power request value.

EV走行モードを選択した場合、HV制御部10は、駆動動力要求値(あるいはそれに対応するトルク)を発生させることを指示する信号を、MG制御部12へ出力する。一方、HV走行モードを選択した場合、HV制御部10は、駆動動力要求値に基づいて、エンジン2に発生させる駆動動力(あるいはトルク)とモータジェネレータMGに発生させる駆動動力(あるいはトルク)とを決定して、それらを発生させることを指示する信号を、エンジン制御部14およびMG制御部12へそれぞれ出力する。   When the EV travel mode is selected, the HV control unit 10 outputs a signal instructing to generate a drive power request value (or a torque corresponding thereto) to the MG control unit 12. On the other hand, when the HV traveling mode is selected, the HV control unit 10 generates the driving power (or torque) generated by the engine 2 and the driving power (or torque) generated by the motor generator MG based on the driving power request value. Signals that are determined and instructed to be generated are output to the engine control unit 14 and the MG control unit 12, respectively.

HV制御部10は、上述のように、EV走行モードにて走行するかHV走行モードにて走行するかの判断に動力閾値を用いる。この動力閾値は一定ではなく、低閾値(ここでは7.5kw)または高閾値(ここでは30kw)のいずれかを車両走行中に逐次切り替えて設定する。この閾値を設定する閾値設定処理については、図3を用いて後に詳述する。   As described above, the HV control unit 10 uses the power threshold value for determining whether to travel in the EV traveling mode or to travel in the HV traveling mode. This power threshold value is not constant, and is set by switching one of a low threshold value (here 7.5 kw) and a high threshold value (here 30 kw) while the vehicle is running. The threshold setting process for setting the threshold will be described later in detail with reference to FIG.

また、HV制御部10は、出発時には、エンジン2の暖機制御を行うか否かを決定する暖機要否判定処理を行なう。この処理については、図2を用いて後に詳述する。   Further, the HV control unit 10 performs a warm-up necessity determination process for determining whether or not to perform the warm-up control of the engine 2 at the time of departure. This process will be described in detail later with reference to FIG.

ナビゲーション部30は、位置検出部32、制御部34、地図DB36、学習DB38を備えている。位置検出部32は、GPS受信機等、車両の位置検出に一般的に利用される機器を少なくとも一つ備え、その機器を用いて車両1の現在位置を逐次検出する。   The navigation unit 30 includes a position detection unit 32, a control unit 34, a map DB 36, and a learning DB 38. The position detection unit 32 includes at least one device generally used for vehicle position detection, such as a GPS receiver, and sequentially detects the current position of the vehicle 1 using the device.

制御部34は、地図DB36に記憶されている道路地図および位置検出部32により逐次検出される現在位置に基づいて現在位置周辺の道路地図を表示する地図表示処理、出発地から目的地までの経路を探索する経路探索処理等、ナビゲーション装置の通常の処理を行なうとともに、走行パワー関連値の学習処理を走行中に逐次行なう。   The control unit 34 displays a road map stored in the map DB 36 and a map display process for displaying a road map around the current position based on the current position sequentially detected by the position detection unit 32, and a route from the departure point to the destination. Normal processing of the navigation device, such as route search processing for searching for, is performed, and traveling power related value learning processing is sequentially performed during traveling.

この学習処理は、走行パワーを決定するための走行パワー関連値を位置に関連付けて逐次、学習DB38に記憶する処理であり、本実施形態では、走行パワー関連値として車速とアクセル開度とを記憶する。また、位置は、一点であってもよいし、区間であってもよい。ここでの区間は、種々に設定可能である。たとえば、一定距離、発進から停止まで、交差点間、目的地までの経路を所定数に分割した区間などを用いることができる。区間である場合、車速、アクセル開度は、その区間の平均値を記憶する。この学習処理が請求項の走行パワー関連値記憶手段に相当する。   This learning process is a process of sequentially storing the driving power related value for determining the driving power in association with the position and storing it in the learning DB 38. In this embodiment, the vehicle speed and the accelerator opening are stored as the driving power related value. To do. Further, the position may be a single point or a section. Various sections can be set here. For example, a predetermined distance, a section obtained by dividing a route from the start to the stop, between the intersections, and the route to the destination into a predetermined number can be used. When it is a section, the vehicle speed and the accelerator opening store the average value of the section. This learning process corresponds to the traveling power related value storage means in the claims.

外部電力入力手段に相当する充電器40は充電ケーブル41を介して充電コネクタ42に接続されている。その充電コネクタ42が車両外部の充電ステーションや自宅の電力供給口に接続されている状態では、充電器40は、充電ステーションや自宅に設置された電力供給設備から電力を取得し、取得した電力をバッテリ6に供給する。充電器40がバッテリ6に供給する電力量すなわち充電量は充電器制御部44によって制御する。充電器制御部44は、バッテリ6が所定電圧となるまで、または、所定の電流量をバッテリ6に充電するように充電器40の充電量を制御する。   A charger 40 corresponding to external power input means is connected to a charging connector 42 via a charging cable 41. In a state where the charging connector 42 is connected to a charging station outside the vehicle or a power supply port at home, the charger 40 acquires power from a power supply facility installed at the charging station or home, and uses the acquired power. The battery 6 is supplied. The amount of power that the charger 40 supplies to the battery 6, that is, the amount of charge, is controlled by the charger controller 44. The charger control unit 44 controls the amount of charge of the charger 40 until the battery 6 reaches a predetermined voltage or charges the battery 6 with a predetermined amount of current.

図2は、本実施形態の車両1が出発時に実施する暖機要否判定処理を示すフローチャートである。ここで、出発時とは、車両1の電源ポジションがオフからアクセサリーまたはオンとなった後から走行を開始するまでである。なお、この図2に示す処理は、HV制御部10が実施するが、一部の処理をナビゲーション部30の制御部34が実施するようにしてもよい。   FIG. 2 is a flowchart showing the warm-up necessity determination process that the vehicle 1 according to the present embodiment performs at the time of departure. Here, the time of departure is from when the power position of the vehicle 1 is turned off to the accessory or on until the vehicle starts running. The processing shown in FIG. 2 is performed by the HV control unit 10, but some processing may be performed by the control unit 34 of the navigation unit 30.

まず、ステップS1では、現在値(すなわち出発地)から目的地までの経路の走行パワー関連値、すなわち、車速およびアクセル開度を学習DB38から取得するとともに、目的地までの残距離を取得する。また、充電量監視部8から現在のSOCを取得する。ここでの目的地は、車両乗員によって目的地が設定された場合にはその目的地とするが、それに限らず、現在位置や過去の走行履歴から自動的に設定してもよい。   First, in step S1, the travel power related value of the route from the current value (that is, the departure point) to the destination, that is, the vehicle speed and the accelerator opening are acquired from the learning DB 38, and the remaining distance to the destination is acquired. Further, the current SOC is acquired from the charge monitoring unit 8. The destination here is the destination when the destination is set by the vehicle occupant, but is not limited thereto, and may be set automatically from the current position or past travel history.

続くステップS2では、ステップS1で取得した情報から、EV走行に使用可能な電力量[kWh](以下、使用可能電力量)、および、目的地までEV走行モードで走行する際に必要な電力量の推定値である推定必要電力量を算出する。使用可能電力量は、ステップS1で取得した現在のSOCと予め設定されたSOC下限値との差に基づいて算出する。推定必要電力量は、まず、ステップS1で取得した走行パワー関連値から、目的地へ向かう経路をEV走行モードで走行する場合に要求される駆動動力[kW]を算出し、この算出した駆動動力[kW]から、目的地までの経路を走行する際に必要な走行エネルギー[kWh]を所定の区間毎に算出する。そして、区間毎の走行エネルギーの総和を推定必要電力量とする。   In the subsequent step S2, the amount of power [kWh] that can be used for EV travel (hereinafter referred to as usable power amount) and the amount of power that is necessary for traveling to the destination in the EV travel mode from the information acquired in step S1. An estimated required power amount that is an estimated value of is calculated. The available electric energy is calculated based on the difference between the current SOC acquired in step S1 and a preset SOC lower limit value. For the estimated required power amount, first, drive power [kW] required when traveling in the EV travel mode on the route to the destination is calculated from the travel power related value acquired in step S1, and the calculated drive power is calculated. From [kW], the travel energy [kWh] required for traveling on the route to the destination is calculated for each predetermined section. And the sum total of the driving | running energy for every area is made into estimation required electric energy.

続くステップS3は請求項の判定手段に相当する処理であり、ステップS2で算出した使用可能電力量が、同ステップS2で算出した推定必要電力量よりも多いか否かを判断する。この判断がYESの場合、すなわち、使用可能電力量の方が推定必要電力量よりも多い場合にはステップS4へ進み、暖機制御をしないことに決定する。使用可能電力量の方が推定必要電力量よりも多い場合、EV走行モードで目的地まで走りきれると考えられ、EV走行モードで目的地まで走りきる場合には、エンジン2の暖機制御は必要ない。そこで、このように、暖機制御をしないことに決定するのである。これによって、暖機制御に要する燃費を節約して実用燃費を向上させることができる。   The subsequent step S3 is a process corresponding to the determining means in the claims, and it is determined whether or not the available power amount calculated in step S2 is larger than the estimated required power amount calculated in step S2. If this determination is YES, that is, if the available power amount is larger than the estimated required power amount, the process proceeds to step S4, and it is determined not to perform the warm-up control. When the amount of usable electric power is larger than the estimated required electric energy, it is considered that the vehicle can run to the destination in the EV driving mode. When the electric vehicle can run to the destination in the EV driving mode, the warm-up control of the engine 2 is necessary. Absent. Therefore, in this way, it is decided not to perform the warm-up control. Thereby, the fuel consumption required for warm-up control can be saved and the practical fuel consumption can be improved.

一方、ステップS3の判断がNOの場合、すなわち、使用可能電力量が推定必要電力量以下の場合にはステップS5へ進む。ステップS5では、周知の暖機制御をすることに決定する。   On the other hand, if the determination in step S3 is NO, that is, if the available power amount is equal to or less than the estimated required power amount, the process proceeds to step S5. In step S5, it is determined to perform known warm-up control.

次に、図3を用いて、走行モードの切り替え判定に用いる閾値を設定する閾値設定処理を説明する。まず、ステップS11では、次の区間に入ったか否かを判断する。次の区間に入っていないと判断する場合には、このステップS11を否定判断し、ステップS17へ進み、ステップS17にて目的地に到着していないと判断する場合には、再度、ステップS11の判断を行う。従って、ステップS11は、前回のステップS11の実行時に走行していた区間に対して次の区間となったか否かを判断するものである。なお、ここでの区間も、前述の学習処理における区間と同様に種々に設定可能である。また、ここでの区間は、学習処理における区間と同一の区切りであってもよいし、学習処理における区間とは異なる区切りであってもよい。   Next, a threshold value setting process for setting a threshold value used for determination of switching between travel modes will be described with reference to FIG. First, in step S11, it is determined whether or not the next section has been entered. If it is determined that the vehicle is not in the next section, a negative determination is made in step S11, and the process proceeds to step S17. If it is determined in step S17 that the vehicle has not arrived at the destination, the process returns to step S11. Make a decision. Therefore, step S11 determines whether or not the next section has been reached with respect to the section that was running at the time of the previous execution of step S11. It should be noted that the section here can be variously set similarly to the section in the learning process described above. The section here may be the same section as the section in the learning process, or may be a section different from the section in the learning process.

ステップS11が肯定判断となった場合には、ステップS12へ進む。ステップS12では、図2のステップS1の処理と同様にして、現在位置から目的地までの経路の走行パワー関連値(すなわち、車速およびアクセル開度)、目的地までの残距離、現在のSOCを取得する。そして、続くステップS13では、図2のステップS2と同様にして、推定必要電力量および使用可能電力量を算出する。   If step S11 is affirmative, the process proceeds to step S12. In step S12, as in the process of step S1 of FIG. 2, the travel power related values (ie, vehicle speed and accelerator opening) of the route from the current position to the destination, the remaining distance to the destination, and the current SOC are calculated. get. In the subsequent step S13, the estimated required power amount and the usable power amount are calculated in the same manner as in step S2 of FIG.

続いて、請求項の判定手段に相当する処理であるステップS14を実行する。ステップS14では、ステップS13で算出した使用可能電力量が、同ステップS13で算出した推定必要電力量以上であるか否かを判断する。この判断がYESの場合、すなわち、使用可能電力量が推定必要電力量以上である場合にはステップS15へ進み、動力閾値を30kwに設定することで、30kwよりも高い負荷を高負荷区間と判定するようにする。このように動力閾値を30kwに設定すると、相当な高負荷状態でなければ駆動動力要求値がこの動力閾値を超えることはない。その結果、ほとんどEV走行モードが選択されることになる。従って、使用可能電力量が推定必要電力量以上の場合には、原則としてEV走行モードで目的地まで走行することになる。   Then, step S14 which is a process corresponding to the determination means in the claims is executed. In step S14, it is determined whether the available power amount calculated in step S13 is equal to or greater than the estimated required power amount calculated in step S13. If this determination is YES, that is, if the available power amount is equal to or greater than the estimated required power amount, the process proceeds to step S15, and a load higher than 30 kw is determined as a high load section by setting the power threshold to 30 kw. To do. When the power threshold is set to 30 kW in this way, the drive power request value does not exceed the power threshold unless the load is considerably high. As a result, the EV traveling mode is almost selected. Therefore, when the available power amount is greater than the estimated required power amount, the vehicle travels to the destination in principle in the EV travel mode.

一方、ステップS14の判断がNOの場合、すなわち、使用可能電力量が推定必要電力量よりも少ない場合にはステップS16へ進む。ステップS16では、動力閾値を7.5kwに設定することで、7.5kwよりも高い負荷を高負荷区間と判定するようにする。このように動力閾値を7.5kwに設定すると、比較的低い負荷でも駆動動力要求値が動力閾値を超えることになる。その結果、高負荷区間ではHV走行モードが選択されることになる。   On the other hand, if the determination in step S14 is NO, that is, if the available power amount is smaller than the estimated required power amount, the process proceeds to step S16. In step S16, by setting the power threshold value to 7.5 kw, a load higher than 7.5 kw is determined as a high load section. When the power threshold is set to 7.5 kw in this way, the drive power request value exceeds the power threshold even with a relatively low load. As a result, the HV traveling mode is selected in the high load section.

ステップS15またはステップS16を実行した場合には、ステップS17へ進み、目的地に到着したか否かを判断する。目的地に到着した場合にはこの処理を終了するが、目的地に到着していない場合には、ステップS11へ戻り処理を継続する。   If step S15 or step S16 is executed, the process proceeds to step S17 to determine whether or not the destination has been reached. If the destination has been reached, the process is terminated. If the destination has not been reached, the process returns to step S11 to continue the process.

図4は、図3のステップS15またはS16で設定する動力閾値と、走行パワーと、走行モードとの関係((A)、(B)下図)を、SOCの変化((A)、(B)上図)とともに示す図であって、図4(A)は使用可能電力量が推定必要電力量よりも少ない場合(S14がNOの場合)であり、図4(B)は使用可能電力量が推定必要電力量以上の場合(S14がYESの場合)である。なお、走行パワーとは前述の駆動動力要求値と同じ意味である。また、各図の横軸は時間または距離である。   FIG. 4 shows the relationship between the power threshold value set in step S15 or S16 in FIG. 3, the running power, and the running mode ((A), (B) below), and the change in SOC ((A), (B). FIG. 4 (A) shows a case where the available power amount is smaller than the estimated required power amount (when S14 is NO), and FIG. 4 (B) shows the usable power amount. This is a case where the amount is more than the estimated required power (when S14 is YES). The traveling power has the same meaning as the above-described driving power request value. Moreover, the horizontal axis of each figure is time or distance.

図4(A)(B)の比較から分かるように、同じ走行パワーが必要であっても、動力閾値が7.5kwに設定されているか30kwに設定されているかで、選択される走行モードが異なってくる。図4(B)に示すように、動力閾値が高い値に設定されていると、HV走行モードが選択されにくくなり、その結果、SOCの低下が早い。一方、図4(A)に示すように、動力閾値が低い値に設定されていると、高い走行パワーが要求され、EV走行モードでは効率よい走行ができない区間ではHV走行モードが選択されることになる。その結果、SOCの急激な低下を抑制できる。   As can be seen from the comparison of FIGS. 4 (A) and 4 (B), even if the same traveling power is required, the selected traveling mode is determined depending on whether the power threshold is set to 7.5 kw or 30 kw. Come different. As shown in FIG. 4B, when the power threshold is set to a high value, it is difficult to select the HV traveling mode, and as a result, the SOC is rapidly reduced. On the other hand, as shown in FIG. 4A, when the power threshold is set to a low value, high travel power is required, and the HV travel mode is selected in a section where efficient travel is not possible in the EV travel mode. become. As a result, a rapid decrease in SOC can be suppressed.

図5は、本実施形態の車両1が従来のハイブリッド車両よりも燃費が向上していることを概念的に示す図である。なお、ここでの従来のハイブリッド車両は、SOCが使用下限値に到達するまでは、駆動動力要求値の大きさに関わらず、まずEV走行モードで走行し、SOCが使用下限値に到達した後はHV走行モードで走行する走行制御を行う。   FIG. 5 is a diagram conceptually showing that the vehicle 1 of the present embodiment has improved fuel efficiency over the conventional hybrid vehicle. Note that the conventional hybrid vehicle here first travels in the EV travel mode until the SOC reaches the lower limit value, regardless of the drive power requirement value, and after the SOC reaches the lower limit value. Performs traveling control for traveling in the HV traveling mode.

図5に示すように、従来のハイブリッド車両は、負荷の大きさにかかわらず、まず、EV走行モードで走行する。そのため、走行開始後、間もない区間に高負荷区間が存在する場合、その高負荷区間もEV走行モードで走行する。高負荷区間をEV走行モードで走行することから充電量が急激に低下する。そのため、高負荷区間の途中で電気切れとなってしまっている。   As shown in FIG. 5, the conventional hybrid vehicle first travels in the EV travel mode regardless of the magnitude of the load. Therefore, when a high load section exists in a short section after the start of traveling, the high load section also travels in the EV travel mode. Since the vehicle travels in the EV travel mode in the high load section, the amount of charge rapidly decreases. As a result, electricity is cut off during the high load section.

一方、本発明では、前述のように、使用可能電力量が推定必要電力量よりも少ない場合には、動力閾値として、HV走行モードが選択されやすい7.5kwを設定する。そのため、走行開始当初の高負荷区間をHV走行モードで走行する。これにより、その高負荷区間での充電量の急激な低下を抑制することができ、その結果、従来のハイブリッド車両に比べてEV走行モードで走行することができる距離が長くなる。しかも、EV走行モードで走行する低負荷区間が長くなるため、HV走行モードで走行する低負荷区間は短くなる。低負荷区間をHV走行モードで走行するよりも、高負荷区間をHV走行モードで走行するほうが効率がよいので、HV走行モードで走行する低負荷区間が短くなる点でも本発明は従来のハイブリッド車両よりも効率がよい。   On the other hand, in the present invention, as described above, when the available power amount is smaller than the estimated required power amount, 7.5 kW is set as the power threshold value so that the HV traveling mode is easily selected. Therefore, the vehicle travels in the HV traveling mode in the high load section at the beginning of traveling. As a result, a sudden decrease in the amount of charge in the high load section can be suppressed, and as a result, the distance that can be traveled in the EV travel mode is longer than that in the conventional hybrid vehicle. Moreover, since the low load section that travels in the EV travel mode becomes longer, the low load section that travels in the HV travel mode becomes shorter. Since it is more efficient to travel in the HV traveling mode in the high load section than traveling in the HV traveling mode in the low load section, the present invention is also a conventional hybrid vehicle in that the low load section traveling in the HV traveling mode is shortened. More efficient.

以上、説明した本実施形態によれば、予め走行モードを計画しておくのではなく、逐決定する駆動動力要求値と動力閾値との比較に基づいて、走行モードをEV走行モードとするかHV走行モードとするかを切り替える。そのため、予め走行モードを計画する場合と異なり、計画時に想定された駆動動力と実際に発生した駆動動力とのずれは生じ得ないので、燃費を確実に向上させることが可能となる。   As described above, according to the present embodiment described above, it is determined whether the travel mode is set to the EV travel mode based on the comparison between the drive power request value determined in turn and the power threshold value instead of planning the travel mode in advance. Switch to driving mode. Therefore, unlike the case where the travel mode is planned in advance, there can be no deviation between the driving power assumed at the time of planning and the driving power actually generated, so that the fuel consumption can be reliably improved.

加えて、仮に、動力閾値を高い値で一定とすると、その後に、EV走行モードで走行することが適切な低負荷区間が存在しているとしても、その低負荷区間の手前の高負荷区間においてEV走行モードで走行してバッテリ6の電力を使い過ぎて、EV走行モードにおいて最も効率良く走行することができる低負荷区間においてEV走行モードで走行することができなくなってしまい、燃費を十分に向上できない可能性がある。しかし、本実施形態では、走行モードを選択するために用いる動力閾値を、EV走行モードとしたままでは目的地まで到着できないと判定する間は低閾値(7.5kw)に設定する。動力閾値が低閾値(7.5kw)に設定されている状態では、高負荷区間では低閾値を越える駆動動力要求値となることが多くなるため、HV走行モードにて走行することが多くなる。すなわち、EV走行モードで走行すると充電量が急激に低下し、平坦路をEV走行モードで走行する場合より効率の悪化する高負荷区間においてEV走行モードを選択してしまうことが抑制されるので、実用燃費が向上する。   In addition, if the power threshold is fixed at a high value, even if there is a low load section that is appropriate to travel in the EV travel mode thereafter, in the high load section before the low load section, Driving in the EV driving mode and using too much electric power from the battery 6 makes it impossible to drive in the EV driving mode in the low load section where the EV can be driven most efficiently in the EV driving mode, thereby sufficiently improving fuel consumption. It may not be possible. However, in the present embodiment, the power threshold value used for selecting the travel mode is set to a low threshold value (7.5 kW) while it is determined that the vehicle cannot reach the destination when the EV travel mode is maintained. In a state where the power threshold is set to the low threshold (7.5 kw), the drive power requirement value that exceeds the low threshold is often increased in the high load section, and therefore, the vehicle frequently travels in the HV travel mode. That is, when the vehicle is traveling in the EV traveling mode, the charging amount is drastically reduced, and the EV traveling mode is suppressed from being selected in a high load section where the efficiency is worse than when traveling on the flat road in the EV traveling mode. Practical fuel consumption is improved.

また、本実施形態では、出発時に、EV走行モードとしたままで目的地まで走りきれるかどうかを判定する。そして、EV走行モードとしたままで走りきれると判定した場合には、エンジン2を駆動させる必要はないことから、エンジン2の暖機制御を行わない。そのため、エンジン2の暖機制御に要する燃費を節約して実用燃費を向上させることができる。   Moreover, in this embodiment, it is determined at the time of departure whether the vehicle can run to the destination while keeping the EV travel mode. When it is determined that the vehicle can be run while in the EV travel mode, the engine 2 does not need to be driven, so the warm-up control of the engine 2 is not performed. Therefore, the fuel consumption required for the warm-up control of the engine 2 can be saved and the practical fuel consumption can be improved.

以上、本発明の実施形態を説明したが、本発明は上述の実施形態に限定されるものではなく、次の実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the above-mentioned embodiment, The following embodiment is also contained in the technical scope of this invention, and also the summary other than the following is also included. Various modifications can be made without departing from the scope.

たとえば、前述の実施形態の図3のステップS14では、ステップS13で算出した使用可能電力量と同ステップS13で算出した推定必要電力量とをそのまま比較していたが、いずれか一方または両方に、推定値(すなわち推定必要電力量)の推定誤差を補い、且つ、高閾値(30kw)が設定されやすくするための補正を行い、補正後の値に基づいてステップS14の判断を行ってもよい。このようにすると、高閾値(30kw)が設定されやすくなる結果、EV走行モードが行われやすくなるので、目的地に到着した時に、使用可能電力を使い切っていないという状態を防ぐことができる。そのため、到着した目的地にて、外部電源を用いて充電できる電力量を多くすることができる。なお、上記補正としては、たとえば、使用可能電力量および推定必要電力量の一方または両方に補正係数を乗じる補正がある。この場合、補正係数は、推定必要電力量の推定誤差を考慮して、目的地の少し手前でSOCが下限値に至る程度の係数とし、目的地からあまり離れた地点でSOCが下限値に至らないようにする。したがって、具体的な数値は実験に基づいて設定するが、上記補正係数は1に近い数値となる。また、推定必要電力量を補正する場合、この推定必要電力量の算出に用いる一部の区間(たとえば、最後の区間のみ)の走行エネルギーに対してのみ、補正係数を乗じてもよい。このように、一部の区間の走行エネルギーに対してのみ補正を行うことで、目的地からあまり離れた地点でSOCが下限値に至らないようにすることが容易となる。   For example, in step S14 of FIG. 3 of the above-described embodiment, the available power amount calculated in step S13 and the estimated required power amount calculated in step S13 are compared as they are. Correction for compensating for the estimation error of the estimated value (that is, the required electric energy required for estimation) and making it easy to set the high threshold (30 kW) may be performed, and the determination in step S14 may be performed based on the corrected value. If it does in this way, since it becomes easy to set high threshold value (30 kW) and EV driving mode is performed easily, when arriving at the destination, the state where usable electric power is not used up can be prevented. Therefore, it is possible to increase the amount of power that can be charged using the external power source at the destination that has arrived. In addition, as said correction | amendment, there exists a correction | amendment which multiplies a correction coefficient to one or both of the amount of electric power which can be used, and estimation required electric energy, for example. In this case, the correction coefficient is set so that the SOC reaches the lower limit value slightly before the destination in consideration of the estimation error of the estimation required electric energy, and the SOC reaches the lower limit value at a point far away from the destination. Do not. Therefore, although specific numerical values are set based on experiments, the correction coefficient is a numerical value close to 1. When correcting the estimated required power amount, the correction coefficient may be multiplied only for the travel energy of a part of the section (for example, only the last section) used for calculating the estimated required power amount. As described above, it is easy to prevent the SOC from reaching the lower limit value at a point far away from the destination by correcting only the traveling energy in a part of the section.

また、前述の実施形態では、推定必要電力量と使用可能電力量とを比較することで、EV走行モードとしたままで目的地まで到着できるか否かを判定していたが、EV走行モードにて走行した場合の走行可能距離(EV走行可能距離)と目的地までの残距離との比較により、EV走行モードとしたままで目的地まで到着できるか否かを判定してもよい。なお、EV走行可能距離が目的地までの残距離を越えるような場合、目的地までの経路を外れる区間の走行パワー関連値をどのように設定するかが問題となるが、目的地までの経路を外れる区間の走行パワー関連値としては、予め設定された一定値を用いたり、目的地までの経路において目的地付近の走行パワー関連値を用いたりすればよい。   In the above-described embodiment, the estimated required power amount and the usable power amount are compared to determine whether or not the vehicle can arrive at the destination while being in the EV travel mode. It is also possible to determine whether or not the vehicle can arrive at the destination while in the EV travel mode by comparing the travelable distance (EV travelable distance) with the remaining distance to the destination. When the EV travelable distance exceeds the remaining distance to the destination, it becomes a problem how to set the travel power related value in the section outside the route to the destination. As the travel power related value in the section outside the range, a predetermined constant value may be used, or a travel power related value near the destination may be used on the route to the destination.

また、前述の実施形態では、自車の走行中の走行パワー関連値を記憶していたが、これに限られず、他車両が走行したときの走行パワー関連値を、その他車両から、または、センタから無線通信等により取得してもよい。   In the above-described embodiment, the travel power related value during travel of the host vehicle is stored. However, the present invention is not limited to this, and the travel power related value when the other vehicle travels is obtained from the other vehicle or the center. May be acquired by wireless communication or the like.

また、前述の実施形態では、走行パワー関連値として、車速、アクセル開度を記憶していたが、これに限られず、車速、アクセル開度から決定できる走行パワーそのものを走行パワー関連値として記憶してもよい。また、車速、アクセル開度に加えて、ブレーキ信号やシフトポジションを走行パワー関連値として記憶してもよい。   In the above-described embodiment, the vehicle speed and the accelerator opening are stored as the travel power related values. However, the present invention is not limited to this, and the travel power itself that can be determined from the vehicle speed and the accelerator opening is stored as the travel power related values. May be. In addition to the vehicle speed and the accelerator opening, a brake signal and a shift position may be stored as travel power related values.

1:ハイブリッド車両、 2:エンジン(内燃機関)、 4:インバータ、 6:バッテリ(蓄電装置)、 8:充電量監視部、 10:HV制御部、 12:MG制御部、 14:エンジン制御部、 30:ナビゲーション部、 32:位置検出部、 34:制御部、 36:地図DB、 36:学習DB、 40:充電器(外部電力入力手段)、 41:充電ケーブル、 42:充電コネクタ、 44:充電器制御部、 MG:モータジェネレータ(回転電機)、 S3:判定手段、 S14:判定手段、 S15〜S16:閾値設定手段 1: hybrid vehicle, 2: engine (internal combustion engine), 4: inverter, 6: battery (power storage device), 8: charge amount monitoring unit, 10: HV control unit, 12: MG control unit, 14: engine control unit, 30: Navigation unit, 32: Position detection unit, 34: Control unit, 36: Map DB, 36: Learning DB, 40: Charger (external power input means), 41: Charging cable, 42: Charging connector, 44: Charging Controller, MG: motor generator (rotary electric machine), S3: determination means, S14: determination means, S15 to S16: threshold setting means

Claims (5)

車両の駆動軸を駆動するための動力を発生させる動力発生源として、内燃機関および回転電機を備えるとともに、前記回転電機との間で電力の授受を行う蓄電装置を備えたハイブリッド車両に用いられ、前記動力発生源を制御する動力発生源制御装置であって、
前記動力発生源で発生させる駆動動力を逐次決定する駆動動力決定手段と、
前記内燃機関を停止させ、且つ、前記蓄電装置から電力を供給して前記回転電機を動力発生源として用いて前記車両を走行させる電動走行モードと、前記内燃機関を動力発生源として用いる内燃機関駆動モードとを切り替えるものであって、前記駆動動力決定手段で決定した駆動動力と動力閾値とを比較し、駆動動力が動力閾値以下であることに基づいて前記電動走行モードとし、駆動動力が動力閾値よりも高いことに基づいて前記内燃機関駆動モードとする走行モード切替手段と、
前記蓄電装置の使用可能電力量および目的地までの残距離に基づいて、走行モードを前記電動走行モードとしたままで目的地まで到着できるか否かを逐次判定する判定手段と、
その判定手段によって、走行モードを前記電動走行モードとしたままで目的地まで到着できると判定した場合には前記動力閾値を所定の低閾値に設定し、走行モードを前記電動走行モードとしたままでは目的地まで到着できないと判定した場合には前記動力閾値を前記低閾値よりも高い所定の高閾値に設定する閾値設定手段と、を含むことを特徴とする動力発生源制御装置。
As a power generation source for generating power for driving the drive shaft of the vehicle, the power generation source includes an internal combustion engine and a rotating electrical machine, and is used for a hybrid vehicle including a power storage device that transfers power to and from the rotating electrical machine. A power generation source control device for controlling the power generation source,
Drive power determination means for sequentially determining drive power generated by the power generation source;
An electric driving mode in which the internal combustion engine is stopped and electric power is supplied from the power storage device to drive the vehicle using the rotating electrical machine as a power generation source, and an internal combustion engine drive using the internal combustion engine as a power generation source The mode is to switch the mode, the driving power determined by the driving power determining means is compared with a power threshold, and the electric driving mode is set based on the fact that the driving power is less than the power threshold, and the driving power is the power threshold. Traveling mode switching means for setting the internal combustion engine drive mode based on the higher than,
Based on the available power amount of the power storage device and the remaining distance to the destination, determination means for sequentially determining whether or not the vehicle can arrive at the destination while keeping the driving mode in the electric driving mode;
When it is determined by the determining means that the vehicle can reach the destination while the driving mode remains in the electric driving mode, the power threshold is set to a predetermined low threshold, and the driving mode remains in the electric driving mode. And a threshold value setting unit that sets the power threshold value to a predetermined high threshold value that is higher than the low threshold value when it is determined that the vehicle cannot reach the destination.
請求項1において、
前記判定手段は、前記電動走行モードにて走行した場合の走行可能距離の推定値である推定電動走行可能距離と目的地までの残距離との比較、または、目的地までの残距離を前記電動走行モードで走行する際に必要な電力量の推定値である推定必要電力量と蓄電装置の使用可能電力量との比較に基づいて前記判定を行うことを特徴とする動力発生源制御装置。
In claim 1,
The determination means compares the estimated electric travelable distance, which is an estimated value of the travelable distance when traveling in the electric travel mode, with the remaining distance to the destination, or determines the remaining distance to the destination A power generation source control device characterized in that the determination is made based on a comparison between an estimated required power amount, which is an estimated value of an electric energy required when traveling in a travel mode, and a usable power amount of a power storage device.
請求項2において、
前記動力発生源制御装置が搭載される車両が、車両外部の外部電源からの電力が入力され、その電力で前記蓄電装置を充電する外部電力入力手段を備えたハイブリッド車両であり、
前記判定手段は、比較する2つの値の少なくともいずれか一方に、前記推定値の推定誤差を補い、且つ、走行モードを前記電動走行モードとしたままで目的地まで到着できると判定されやすくする補正を行い、補正後の値に基づいて比較を行うことを特徴とする動力発生源制御装置。
In claim 2,
The vehicle on which the power generation source control device is mounted is a hybrid vehicle that includes external power input means that receives power from an external power supply outside the vehicle and charges the power storage device with the power.
The determination means compensates for at least one of the two values to be compared with the estimated error of the estimated value, and makes it easier to determine that the vehicle can arrive at the destination while the driving mode remains the electric driving mode. And performing a comparison based on the corrected value.
請求項2または3において、
前記車両の走行中に、走行パワーを決定するための走行パワー関連値を位置に関連付けて逐次記憶する走行パワー関連値記憶手段と、
前記走行パワー関連値記憶手段により位置に関連づけて記憶された走行パワー関連値に基づいて、目的地までの経路を走行する場合の前記推定必要電力量を算出する推定必要電力量算出手段とをさらに備え、
前記判定手段は、前記推定必要電力量算出手段で算出した推定必要電力量と、前記蓄電装置の使用可能電力量との比較に基づいて前記判定を行うことを特徴とする動力発生源制御装置。
In claim 2 or 3,
Travel power related value storage means for sequentially storing a travel power related value for determining travel power in association with a position during travel of the vehicle;
Estimated required power amount calculating means for calculating the estimated required power amount when traveling on the route to the destination based on the travel power related value stored in association with the position by the travel power related value storage means; Prepared,
The power generation source control device, wherein the determination unit performs the determination based on a comparison between the estimated required power amount calculated by the estimated required power amount calculation unit and the usable power amount of the power storage device.
車両の駆動軸を駆動するための動力を発生させる動力発生源として、内燃機関および回転電機を備えたハイブリッド車両に用いられ、前記動力発生源を制御する動力発生源制御装置であって、
前記車両の出発時に、前記内燃機関を停止させ、前記回転電機を動力発生源として用いて前記車両を走行させる電動走行モードとしたままで目的地まで到着できるか否かを、前記蓄電装置の使用可能電力量および目的地までの残距離に基づいて判定する判定手段を備え、
その判定手段によって、走行モードを前記電動走行モードとしたままでは目的地まで到着できないと判定した場合には前記内燃機関の暖機制御を行うが、走行モードを前記電動走行モードとしたままで目的地まで到着できると判定した場合には前記暖機制御を行わないことを特徴とする動力発生源制御装置。
A power generation source control device for controlling a power generation source used in a hybrid vehicle including an internal combustion engine and a rotating electrical machine as a power generation source for generating power for driving a drive shaft of the vehicle,
Use of the power storage device to determine whether or not the internal combustion engine is stopped at the time of departure of the vehicle and the vehicle can be reached in the electric driving mode in which the vehicle is driven using the rotating electrical machine as a power generation source. A determination means for determining based on the available electric energy and the remaining distance to the destination;
When the determination means determines that the vehicle cannot reach the destination when the driving mode is set to the electric driving mode, the warm-up control of the internal combustion engine is performed. The power generation source control device characterized by not performing the warm-up control when it is determined that the vehicle can reach the ground.
JP2009133360A 2009-06-02 2009-06-02 Power generation source control device Pending JP2010280250A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009133360A JP2010280250A (en) 2009-06-02 2009-06-02 Power generation source control device
PCT/JP2010/003297 WO2010140305A1 (en) 2009-06-02 2010-05-17 Control device for power-generating source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133360A JP2010280250A (en) 2009-06-02 2009-06-02 Power generation source control device

Publications (1)

Publication Number Publication Date
JP2010280250A true JP2010280250A (en) 2010-12-16

Family

ID=43297448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133360A Pending JP2010280250A (en) 2009-06-02 2009-06-02 Power generation source control device

Country Status (2)

Country Link
JP (1) JP2010280250A (en)
WO (1) WO2010140305A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013098990A1 (en) 2011-12-28 2013-07-04 トヨタ自動車株式会社 Plug-in hybrid vehicle
JP2014151760A (en) * 2013-02-07 2014-08-25 Toyota Motor Corp Travel control unit
JP2014184776A (en) * 2013-03-22 2014-10-02 Toyota Motor Corp Hybrid vehicle
JP2014184892A (en) * 2013-03-25 2014-10-02 Toyota Motor Corp Hybrid vehicle
KR101664077B1 (en) * 2015-06-29 2016-10-10 현대자동차 주식회사 Device for controlling mode change of hybrid electric vehicle and method for controlling mode change using the same
EP3100924A1 (en) * 2015-06-04 2016-12-07 Hyundai Motor Company Method and apparatus for controlling plug-in hybrid electric vehicle
KR20170011164A (en) * 2015-07-21 2017-02-02 현대자동차주식회사 Control system and controlling method of hybrid electric vehicle
JP2018192912A (en) * 2017-05-17 2018-12-06 トヨタ自動車株式会社 Control device for hybrid vehicle
JP2019119389A (en) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 Hybrid vehicle
JP2019151316A (en) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 Control device for hybrid vehicle
JP2019199186A (en) * 2018-05-17 2019-11-21 スズキ株式会社 Start control device of internal combustion engine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6939689B2 (en) * 2018-04-19 2021-09-22 トヨタ自動車株式会社 Hybrid vehicle control device
JP7091987B2 (en) * 2018-10-09 2022-06-28 トヨタ自動車株式会社 Hybrid vehicle control device and hybrid vehicle control system
JP2020153950A (en) * 2019-03-22 2020-09-24 トヨタ自動車株式会社 Vehicle control system, server, hybrid vehicle, computer program for estimating destination
FR3100509B1 (en) * 2019-09-09 2023-11-24 Psa Automobiles Sa CONTROL OF THE THERMAL STARTING TORQUE THRESHOLD OF A HYBRID POWERTRAIN OF A VEHICLE ON A TRIP
GB2594293B (en) * 2020-04-21 2022-10-26 Jaguar Land Rover Ltd Hybrid vehicle state of charge control
JP7191918B2 (en) * 2020-11-06 2022-12-19 本田技研工業株式会社 Control device, control method, and electric vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4211831B2 (en) * 2006-09-14 2009-01-21 トヨタ自動車株式会社 HYBRID VEHICLE, HYBRID VEHICLE CONTROL METHOD, AND COMPUTER-READABLE RECORDING MEDIUM CONTAINING PROGRAM FOR CAUSING COMPUTER TO EXECUTE THE CONTROL METHOD
JP4155321B2 (en) * 2006-09-25 2008-09-24 トヨタ自動車株式会社 Hybrid vehicle display device, hybrid vehicle, and hybrid vehicle display method
JP2008087516A (en) * 2006-09-29 2008-04-17 Toyota Motor Corp Hybrid vehicle and drive control method of the same
JP4910612B2 (en) * 2006-10-04 2012-04-04 日産自動車株式会社 Hybrid vehicle and control method thereof
JP4862621B2 (en) * 2006-11-15 2012-01-25 トヨタ自動車株式会社 Hybrid vehicle and control method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272701B2 (en) 2011-12-28 2016-03-01 Toyota Jidosha Kabushiki Kaisha Plug-in hybrid vehicle
WO2013098990A1 (en) 2011-12-28 2013-07-04 トヨタ自動車株式会社 Plug-in hybrid vehicle
JP2014151760A (en) * 2013-02-07 2014-08-25 Toyota Motor Corp Travel control unit
JP2014184776A (en) * 2013-03-22 2014-10-02 Toyota Motor Corp Hybrid vehicle
US9014900B2 (en) 2013-03-22 2015-04-21 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle
JP2014184892A (en) * 2013-03-25 2014-10-02 Toyota Motor Corp Hybrid vehicle
CN106240561B (en) * 2015-06-04 2022-07-08 现代自动车株式会社 Apparatus and method for controlling plug-in hybrid electric vehicle
EP3100924A1 (en) * 2015-06-04 2016-12-07 Hyundai Motor Company Method and apparatus for controlling plug-in hybrid electric vehicle
CN106240561A (en) * 2015-06-04 2016-12-21 现代自动车株式会社 For controlling the apparatus and method of plug-in hybrid electric vehicle
US9527502B1 (en) 2015-06-04 2016-12-27 Hyundai Motor Company Method and apparatus for controlling plug-in hybrid electric vehicle
KR101664077B1 (en) * 2015-06-29 2016-10-10 현대자동차 주식회사 Device for controlling mode change of hybrid electric vehicle and method for controlling mode change using the same
US10000202B2 (en) 2015-06-29 2018-06-19 Hyundai Motor Company Device and method for controlling running mode of hybrid electric vehicle
KR20170011164A (en) * 2015-07-21 2017-02-02 현대자동차주식회사 Control system and controlling method of hybrid electric vehicle
KR102237065B1 (en) * 2015-07-21 2021-04-06 현대자동차 주식회사 Control system and controlling method of hybrid electric vehicle
JP2018192912A (en) * 2017-05-17 2018-12-06 トヨタ自動車株式会社 Control device for hybrid vehicle
JP2019119389A (en) * 2018-01-10 2019-07-22 トヨタ自動車株式会社 Hybrid vehicle
JP2019151316A (en) * 2018-03-02 2019-09-12 トヨタ自動車株式会社 Control device for hybrid vehicle
JP7067388B2 (en) 2018-03-02 2022-05-16 トヨタ自動車株式会社 Hybrid vehicle control device
JP2019199186A (en) * 2018-05-17 2019-11-21 スズキ株式会社 Start control device of internal combustion engine
JP7110718B2 (en) 2018-05-17 2022-08-02 スズキ株式会社 Start control device for internal combustion engine

Also Published As

Publication number Publication date
WO2010140305A1 (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP2010280250A (en) Power generation source control device
EP3081426B1 (en) Cooling system for secondary battery
JP6683175B2 (en) Control device for hybrid vehicle
JP4307455B2 (en) Control device for hybrid vehicle
JP4306746B2 (en) Vehicle power supply
KR101761539B1 (en) Hybrid vehicle
US20090277701A1 (en) Hybrid vehicle and travel control method of hybrid vehicle
JP5370492B2 (en) Vehicle and vehicle control method
US20140132214A1 (en) Electrically powered vehicle and method for controlling electrically powered vehicle
WO2011061811A1 (en) Vehicle and method for controlling vehicle
JP2009248822A (en) Charging amount controller
JP2010241396A (en) Power supply system for hybrid vehicle
KR101972958B1 (en) Hybrid vehicle and control method for hybrid vehicle
JP2011093335A (en) Controller for hybrid vehicle
WO2012010950A2 (en) Control device for hybrid vehicle, and hybrid vehicle equipped with control device
KR20170011162A (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
JP2010088206A (en) Vehicle and method of charging secondary battery
JP2006304574A (en) Power supply and its control method
JP6965809B2 (en) Hybrid vehicle control device
US20180091076A1 (en) Alternator control unit, alternator driving control method, and power supply management system for engine vehicle
JP4023445B2 (en) Control device for hybrid vehicle
JP2005261034A (en) Controller of electric storage mechanism
JP2006230102A (en) Power supply device, automobile equipped therewith, and control method thereof
JP2009290951A (en) Power storage means controller and electric vehicle
JP5520625B2 (en) Control device for hybrid vehicle