JP2010276459A - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
JP2010276459A
JP2010276459A JP2009128927A JP2009128927A JP2010276459A JP 2010276459 A JP2010276459 A JP 2010276459A JP 2009128927 A JP2009128927 A JP 2009128927A JP 2009128927 A JP2009128927 A JP 2009128927A JP 2010276459 A JP2010276459 A JP 2010276459A
Authority
JP
Japan
Prior art keywords
contour projection
projection line
gas
protective film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009128927A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakano
吉博 中埜
Masashi Kida
真史 喜田
Takio Kojima
多喜男 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009128927A priority Critical patent/JP2010276459A/en
Publication of JP2010276459A publication Critical patent/JP2010276459A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas sensor avoiding such problems that a crack is formed in a protection film covering a gas sensing layer, and that the protection film is peeled from the gas sensing layer. <P>SOLUTION: The gas sensor 1 is configured such that contour projection lines of the gas sensing layer, the protection film and a heating element are disposed on a bottom contour projection line P or in an area surrounded by the bottom contour projection line P, wherein the contour projection lines and the bottom contour projection line P are represented by projecting members of the gas sensor 1 onto one surface of a substrate 15 along its thickness direction, and following equation (M-L)/T&le;500 is assured, wherein L is the minimum distance between the bottom contour projection line and the contour projection line of the protection film, and M is the minimum distance between the contour projection line and the center of a graphic surrounded by the bottom contour projection line, and T is the minimum thickness of the substrate on the bottom contour projection line. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、金属酸化物半導体を含むガス検知層を備えたガスセンサに関する。   The present invention relates to a gas sensor including a gas detection layer including a metal oxide semiconductor.

従来、半導体基板等の基体上に酸化スズ等の金属酸化物半導体をガス検知層として備えたガスセンサが知られている(例えば、特許文献1参照)。この種のガスセンサは、金属酸化物半導体が、被検知ガスに含まれる特定ガスの濃度変化に応じて電気的特性(例えば、抵抗値)が変化することを利用して、特定ガスを検知する。被検知ガス中にシリコン等の被毒ガス成分が含まれる場合、被毒ガスによりガス検知層が被毒されることがある。この場合、ガスセンサの検知性能が低下する虞があるため、特許文献1に記載のガスセンサでは、被検知ガスを透過する保護膜でガス検知層を覆っている。   2. Description of the Related Art Conventionally, a gas sensor is known that includes a metal oxide semiconductor such as tin oxide as a gas detection layer on a base such as a semiconductor substrate (see, for example, Patent Document 1). In this type of gas sensor, the metal oxide semiconductor detects the specific gas by utilizing the change in electrical characteristics (for example, resistance value) according to the change in concentration of the specific gas contained in the gas to be detected. When the gas to be detected contains a poisoning gas component such as silicon, the gas detection layer may be poisoned by the poisoning gas. In this case, since the detection performance of the gas sensor may be lowered, the gas sensor described in Patent Document 1 covers the gas detection layer with a protective film that allows the gas to be detected to pass through.

ガス検知層は、常温では被検知ガスに反応せず、例えば200〜400℃に加熱されることで活性化し、被検知ガスに反応する。このため、ガス検知層を加熱するために、基体には、ガス検知層に対応する位置に発熱抵抗体を設けるのが一般的である。そして、発熱抵抗体による加熱効率を向上させるため、基体の面の内、ガス検知層が形成された面とは反対側の面に凹部を設け、発熱抵抗体が設けられた部分およびその周辺の基体の厚みを薄くしている。   The gas detection layer does not react with the gas to be detected at normal temperature, but is activated by being heated to, for example, 200 to 400 ° C., and reacts with the gas to be detected. For this reason, in order to heat the gas detection layer, a heating resistor is generally provided on the base at a position corresponding to the gas detection layer. And in order to improve the heating efficiency by the heating resistor, a recess is provided on the surface of the substrate opposite to the surface on which the gas detection layer is formed, and the portion where the heating resistor is provided and its surroundings. The thickness of the substrate is reduced.

欧州特許出願公開第1950558号明細書European Patent Application Publication No. 1950558

しかしながら、発熱抵抗体によりガス検知層を加熱する際に、基体も加熱されて熱膨し、凹部を設けた部分の基体が変形することがある。この時、ガス検知層を覆う保護膜と、基体とでは熱膨張率が異なり、保護膜に熱応力が加わる。このため、ガスセンサが長期間使用されることにより、基体の変形が繰り返されると、保護膜にクラックが生じたり、保護膜がガス検知層から剥離したりする虞があった。保護膜にクラックが生じたり、保護膜がガス検知層から剥離したりした場合、被毒ガスによりガス検知層が被毒され、ガスセンサの検知性能が低下する虞がある。   However, when the gas detection layer is heated by the heating resistor, the substrate is also heated and thermally expanded, and the portion of the substrate provided with the recess may be deformed. At this time, the thermal expansion coefficient differs between the protective film covering the gas detection layer and the substrate, and thermal stress is applied to the protective film. For this reason, if the deformation | transformation of a base | substrate is repeated by using a gas sensor for a long period of time, there existed a possibility that a crack might arise in a protective film or a protective film might peel from a gas detection layer. When a crack occurs in the protective film or the protective film peels off from the gas detection layer, the gas detection layer may be poisoned by the poison gas, and the detection performance of the gas sensor may deteriorate.

本発明は、上記問題点を解決するためになされたものであり、ガス検知層を覆う保護膜にクラックが生じたり、保護膜がガス検知層から剥離したりすることを回避したガスセンサを提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a gas sensor that avoids the generation of cracks in the protective film covering the gas detection layer or the separation of the protective film from the gas detection layer. For the purpose.

本発明の実施態様に係るガスセンサは、板状の基体と、被検知ガス中の特定ガスの濃度変化に応じて電気的特性が変化する金属酸化物半導体を主成分とし、前記基体の一方の面に設けられるガス検知層と、前記ガス検知層の少なくとも一部を覆うように設けられ、前記ガス検知層を保護する保護膜と、前記基体の前記一方の面とは反対側の他方の面に形成されるとともに、前記基体の厚み方向に凹む凹部と、前記基体内に埋設され、通電により発熱する発熱体とを備えたガスセンサにおいて、前記基体の前記一方の面上に、前記凹部の底面と前記ガス検知層と前記保護膜と前記発熱体とを、前記厚み方向に沿ってそれぞれ投影したときに、前記ガス検知層と前記保護膜と前記発熱体とのそれぞれの輪郭投影線が前記底面の輪郭投影線上、または前記底面の輪郭投影線によって囲まれる領域の内側に配置されるとともに、前記基体の前記一方の面上において、前記底面の輪郭投影線と前記保護膜の輪郭投影線との最短距離をLとし、前記底面の輪郭投影線によって囲まれる図形の中心と、前記底面の輪郭投影線との最短距離をMとし、前記底面の輪郭投影線上における前記基体の厚みをみたときの最小厚みをTとしたときに、(M−L)/T≦500を満たす。   A gas sensor according to an embodiment of the present invention is mainly composed of a plate-shaped substrate and a metal oxide semiconductor whose electrical characteristics change according to the concentration change of the specific gas in the gas to be detected, and one surface of the substrate. A gas detection layer provided on the gas detection layer; a protective film provided to cover at least a part of the gas detection layer; and protecting the gas detection layer; and on the other surface opposite to the one surface of the substrate. A gas sensor comprising a recess recessed in the thickness direction of the base and a heating element embedded in the base and generating heat upon energization; and a bottom surface of the recess on the one surface of the base. When the gas detection layer, the protective film, and the heating element are respectively projected along the thickness direction, respective contour projection lines of the gas detection layer, the protective film, and the heating element are formed on the bottom surface. On the contour projection line, The shortest distance between the contour projection line of the bottom surface and the contour projection line of the protective film on the one surface of the base body is set to L on the inside of the region surrounded by the contour projection line of the bottom surface, When the shortest distance between the center of the figure surrounded by the contour projection line of the bottom surface and the contour projection line of the bottom surface is M, and the minimum thickness when the thickness of the base on the contour projection line of the bottom surface is seen is T And (M−L) / T ≦ 500 is satisfied.

凹部を設けた部分の基体が熱により変形する場合、凹部の底面の外周部分と、凹部の底面の外周よりも内側の部分とでは変形量が異なる。凹部の底面の外周部分からの平面上の距離が大きくなるほど、平面上の距離が小さい場合に比べ、変形量の差が大きくなる。一方、凹部を設けた部分の基体の厚みとその変形量との関係に着目すると、凹部を設けた部分の基体の厚みが大きいほど、その厚みが小さい場合に比べ、変形量が小さい。換言すれば、凹部を設けた部分の基体の厚みが大きいほど、その厚みが小さい場合に比べ、変形しにくい。よって本実施態様のガスセンサでは、凹部と保護膜との平面上の位置関係を考慮した値として上記最短距離LおよびMと、凹部を設けた部分の基体の厚みの代表値として上記最小厚みTとの関係を、(M−L)/T≦500と規定した。本実施態様のガスセンサのように、L,MおよびTを定めれば、保護膜にクラックが生じたり、保護膜がガス検知層から剥離したりすることを回避することができる。なお、底面の輪郭投影線によって囲まれる図形の中心とは、例えば底面の輪郭投影線によって囲まれる図形が円である場合には円の中心であり、正多角形の場合には最長の対角線の交点である。底面の輪郭投影線によって囲まれる図形がその他の形状の場合には、例えば、図形の重心を底面の輪郭投影線によって囲まれる図形の中心とする。   In the case where the base of the portion provided with the recess is deformed by heat, the amount of deformation differs between the outer peripheral portion of the bottom surface of the recess and the inner portion of the outer periphery of the bottom surface of the recess. The larger the distance on the plane from the outer peripheral portion of the bottom surface of the recess, the greater the difference in deformation amount compared to the case where the distance on the plane is small. On the other hand, paying attention to the relationship between the thickness of the base in the portion provided with the recess and the amount of deformation, the greater the thickness of the base in the portion provided with the recess, the smaller the amount of deformation compared to when the thickness is small. In other words, the greater the thickness of the substrate at the portion where the recess is provided, the more difficult it is to deform than when the thickness is small. Therefore, in the gas sensor according to the present embodiment, the shortest distances L and M are considered as a value in consideration of the planar positional relationship between the concave portion and the protective film, and the minimum thickness T as a representative value of the thickness of the substrate in the portion where the concave portion is provided Is defined as (ML) / T ≦ 500. If L, M, and T are determined as in the gas sensor of this embodiment, it is possible to avoid cracks in the protective film and peeling of the protective film from the gas detection layer. The center of the figure surrounded by the bottom contour projection line is, for example, the center of the circle if the figure surrounded by the bottom contour projection line is a circle, and the longest diagonal line in the case of a regular polygon. It is an intersection. When the figure surrounded by the contour projection line on the bottom surface has another shape, for example, the center of gravity of the figure is set as the center of the figure surrounded by the contour projection line on the bottom surface.

保護膜の厚みが大きいほど、保護膜の厚みが小さい場合に比べ、保護膜は凹部を設けた部分の基体の変動に追従し難い。よって、保護膜の厚みが大きいほど、保護膜の厚みが小さい場合に比べ、保護膜内で応力が生じやすく、保護膜にクラックが生じたり、保護膜がガス検知層から剥離したりしやすい。これに対し、本発明の実施態様に係るガスセンサは、前記保護膜は、膜厚が10μm以下であるガスセンサとしてもよい。保護膜の膜厚が10μm以下の場合、膜厚が10μmより大きい場合に比べ、保護膜にクラックが生じたり、保護膜がガス検知層から剥離したりすることを回避することができる。   As the thickness of the protective film is larger, the protective film is less likely to follow the variation of the substrate in the portion where the recess is provided, as compared with the case where the thickness of the protective film is small. Therefore, as the thickness of the protective film increases, stress is more likely to occur in the protective film than when the protective film is small, and the protective film is easily cracked or peeled off from the gas detection layer. On the other hand, in the gas sensor according to the embodiment of the present invention, the protective film may be a gas sensor having a film thickness of 10 μm or less. When the thickness of the protective film is 10 μm or less, it is possible to avoid cracks in the protective film or peeling of the protective film from the gas detection layer, compared to when the thickness is larger than 10 μm.

ガスセンサ1の平面図である。2 is a plan view of the gas sensor 1. FIG. 図1の1点鎖線A−Aにおいて矢視方向からみたガスセンサ1の断面の模式図である。It is a schematic diagram of the cross section of the gas sensor 1 seen from the arrow direction in the dashed-dotted line AA of FIG. 発熱抵抗体5の平面図である。3 is a plan view of a heating resistor 5. FIG. 図1の1点鎖線B−Bにおいて矢視方向からみたガスセンサ1の断面の模式図である。It is a schematic diagram of the cross section of the gas sensor 1 seen from the arrow direction in the dashed-dotted line BB of FIG. 基体15の一方の面51上に、凹部21の底面23とガス検知層7と保護膜8と発熱抵抗体5とを、基体15の厚み方向に沿ってそれぞれ投影した説明図である。FIG. 3 is an explanatory diagram in which the bottom surface 23 of the recess 21, the gas detection layer 7, the protective film 8, and the heating resistor 5 are projected on the one surface 51 of the base body 15 along the thickness direction of the base body 15. 評価1の結果を表すグラフである。It is a graph showing the result of evaluation 1. L=0μm,M=500μm,およびT=0.7μmの条件における評価1の結果を表す写真である。It is a photograph showing the result of Evaluation 1 under the conditions of L = 0 μm, M = 500 μm, and T = 0.7 μm. L=150μm,M=500μm,およびT=0.7μmの条件における評価1の結果を表す写真である。It is a photograph showing the result of Evaluation 1 under the conditions of L = 150 μm, M = 500 μm, and T = 0.7 μm. L=200μm,M=500μm,およびT=0.7μmの条件における評価1の結果を表す写真である。It is a photograph showing the result of Evaluation 1 under the conditions of L = 200 μm, M = 500 μm, and T = 0.7 μm. 250℃制御時の消費電力(M=500μm,T=0.7μm)を表すグラフである。It is a graph showing the power consumption at the time of 250 degreeC control (M = 500micrometer, T = 0.7micrometer). ガスセンサ101の図2に対応する図である。FIG. 3 is a view corresponding to FIG. 2 of the gas sensor 101.

以下、本発明の実施の形態について、図面を参照して説明する。なお、これらの図面は、本発明が採用しうる技術的特徴を説明するために用いられるものであり、記載されているガスセンサの構成、形状等は、それのみに限定する趣旨ではなく、単なる説明例である。   Embodiments of the present invention will be described below with reference to the drawings. These drawings are used to explain technical features that can be adopted by the present invention, and the configuration, shape, and the like of the described gas sensor are not intended to be limited to only that, but are merely an explanation. It is an example.

まず、図1〜図5を参照し、一例としてのガスセンサ1の構造について説明する。図1に示すように、ガスセンサ1は、平面形状が、縦2.3mm,横2mmの略矩形に形成された板状をなす基体15の一方の面51(以下、「上面51」と言う。)側に、被検知ガス中の特定ガスの検知を行うガス検知部16が形成された構造を有する。なお、基体15の厚み方向(図1では紙面表裏方向、図2では矢印Cで図示する方向)をガスセンサ1の上下方向とし、ガス検知部16が形成された基体15の上面51側を、ガスセンサ1の上側として説明する。また、図2および図4では、ガスセンサ1を構成する各部材を模式的に示しており、各部材の実際の寸法を考慮して図示していない。   First, the structure of the gas sensor 1 as an example will be described with reference to FIGS. As shown in FIG. 1, the gas sensor 1 is referred to as one surface 51 (hereinafter, referred to as “upper surface 51”) of a plate-like base body 15 having a planar shape formed in a substantially rectangular shape having a length of 2.3 mm and a width of 2 mm. ) Side has a structure in which a gas detector 16 for detecting a specific gas in the gas to be detected is formed. The thickness direction of the substrate 15 (the front and back direction in FIG. 1 and the direction indicated by the arrow C in FIG. 2) is the vertical direction of the gas sensor 1, and the upper surface 51 side of the substrate 15 on which the gas detector 16 is formed is the gas sensor. 1 is described as the upper side. Moreover, in FIG. 2 and FIG. 4, each member which comprises the gas sensor 1 is shown typically, and it has not illustrated in consideration of the actual dimension of each member.

ガスセンサ1の基体15は、図2に示すように、所定の厚みを有するシリコン基板2と、シリコン基板2の上面に形成された絶縁被膜層3と、シリコン基板2の下面に形成された絶縁被膜層4とを有する。基体15の面の内、上面51とは反対側の他方の面52(以下、「下面52」と言う。)には、基体15の厚み方向に凹部21が設けられている。凹部21は、概略、四角錐の頂点側を上面51と平行に切り落とした形状を有する。凹部21の底面23が、四角錐の頂点側が上面51と平行に切り落とされた面に相当する。凹部21の底面23の平面形状は一辺が1mmの略正方形であり、凹部21の内周面22の横断面上の一辺の長さは、シリコン基板2の下面側ほど、シリコン基板2の上面側に比べ大きい。凹部21を設けた部分の基体15の厚みは、次のように設定される。基体15の厚み方向に沿って、底面23を上面51上に投影した輪郭投影線Pを想定する。輪郭投影線P上における基体15の厚みの最小値をTとした場合、Tの値は後述する保護膜8の形状、大きさおよび平面上の形成位置を考慮して定められる。本実施形態では、Tは0.7μmである。   As shown in FIG. 2, the base 15 of the gas sensor 1 includes a silicon substrate 2 having a predetermined thickness, an insulating coating layer 3 formed on the upper surface of the silicon substrate 2, and an insulating coating formed on the lower surface of the silicon substrate 2. Layer 4. A recess 21 is provided in the thickness direction of the substrate 15 on the other surface 52 (hereinafter referred to as “lower surface 52”) of the surface of the substrate 15 opposite to the upper surface 51. The concave portion 21 has a shape roughly cut off at the apex side of the quadrangular pyramid in parallel with the upper surface 51. The bottom surface 23 of the recess 21 corresponds to a surface in which the apex side of the quadrangular pyramid is cut off in parallel with the top surface 51. The planar shape of the bottom surface 23 of the recess 21 is a substantially square with a side of 1 mm. Bigger than The thickness of the base 15 in the portion where the recess 21 is provided is set as follows. A contour projection line P obtained by projecting the bottom surface 23 onto the top surface 51 along the thickness direction of the base body 15 is assumed. When the minimum value of the thickness of the substrate 15 on the contour projection line P is T, the value of T is determined in consideration of the shape and size of the protective film 8 described later and the formation position on the plane. In this embodiment, T is 0.7 μm.

絶縁被膜層3は、絶縁層31〜34,および保護層35から構成される。絶縁層31は、シリコン基板2の上面に形成されており、所定の厚みを有するSiO膜からなる。絶縁層31の上面には、所定の厚みを有するSi膜ならなる絶縁層32が形成されている。さらに、絶縁層32の上面に、所定の厚みを有するSiO膜からなる絶縁層33および絶縁層34が形成されている。絶縁層33と絶縁層34との間には、後述する発熱抵抗体5,および発熱抵抗体5に通電するためのリード部12が設けられている。絶縁層34の上面には、所定の厚みを有するSi膜からなる保護層35が形成されている。保護層35は、発熱抵抗体5やリード部12が腐食や外傷により損傷することを防止する。 The insulating coating layer 3 includes insulating layers 31 to 34 and a protective layer 35. The insulating layer 31 is formed on the upper surface of the silicon substrate 2 and is made of a SiO 2 film having a predetermined thickness. On the upper surface of the insulating layer 31, an insulating layer 32 made of a Si 3 N 4 film having a predetermined thickness is formed. Furthermore, an insulating layer 33 and an insulating layer 34 made of a SiO 2 film having a predetermined thickness are formed on the upper surface of the insulating layer 32. Between the insulating layer 33 and the insulating layer 34, there are provided a heat generating resistor 5, which will be described later, and a lead portion 12 for energizing the heat generating resistor 5. A protective layer 35 made of an Si 3 N 4 film having a predetermined thickness is formed on the upper surface of the insulating layer 34. The protective layer 35 prevents the heating resistor 5 and the lead portion 12 from being damaged by corrosion or trauma.

絶縁被膜層4は、絶縁層41および絶縁層42から構成される。絶縁層41は、シリコン基板2の下面に形成されており、絶縁層31と同様に、所定の厚みを有するSiO膜からなる。絶縁層41の下面には、所定の厚みを有するSi膜ならなる絶縁層42が形成されている。絶縁層41,42は、シリコン基板2の凹部21に対応する部分が、それぞれ除去されている。 The insulating coating layer 4 includes an insulating layer 41 and an insulating layer 42. The insulating layer 41 is formed on the lower surface of the silicon substrate 2 and is made of a SiO 2 film having a predetermined thickness, like the insulating layer 31. On the lower surface of the insulating layer 41, an insulating layer 42 made of a Si 3 N 4 film having a predetermined thickness is formed. Insulating layers 41 and 42 have portions removed corresponding to the recesses 21 of the silicon substrate 2, respectively.

次に、発熱抵抗体5およびリード部12は、上述のように、絶縁層33と絶縁層34との間に設けられている。発熱抵抗体5およびリード部12は、PtからなるPt層と、TaからなるTa層とから構成された2層構造を有する。絶縁層33と絶縁層34との間に発熱抵抗体5およびリード部12を形成する方法については後述する。図3に示すように、発熱抵抗体5は渦巻き状の平面形状を有する。発熱抵抗体5は、通電により発熱し、後述するガス検知部16(特にガス検知層7)を加熱して活性化させる。発熱抵抗体5は、ガス検知部16に対応する位置、具体的には、ガス検知部16の下部に設けられている。発熱抵抗体5の平面上の位置と、凹部21の底面23との平面上の位置とは次のような関係にある。基体15の上面51上に、凹部21の底面23と発熱抵抗体5とを、基体15の厚み方向(図2において矢印Cで図示する方向)に沿ってそれぞれ投影する。図5に示すように、発熱抵抗体5の輪郭投影線Rは、凹部21の底面23の輪郭投影線Pによって囲まれる領域内にある。なお、図5において、上面51上にガス検知部16を投影した輪郭投影線Qにより、発熱抵抗体5とリード部12との境目を規定している。凹部21と発熱抵抗体5との位置を上述のように定めることにより、発熱抵抗体5によるガス検知部16の加熱効率を高めることができる。   Next, the heating resistor 5 and the lead portion 12 are provided between the insulating layer 33 and the insulating layer 34 as described above. The heating resistor 5 and the lead portion 12 have a two-layer structure including a Pt layer made of Pt and a Ta layer made of Ta. A method for forming the heating resistor 5 and the lead portion 12 between the insulating layer 33 and the insulating layer 34 will be described later. As shown in FIG. 3, the heating resistor 5 has a spiral planar shape. The heating resistor 5 generates heat when energized, and heats and activates a gas detection unit 16 (particularly the gas detection layer 7) described later. The heating resistor 5 is provided at a position corresponding to the gas detection unit 16, specifically, below the gas detection unit 16. The position on the plane of the heating resistor 5 and the position on the plane with the bottom surface 23 of the recess 21 have the following relationship. On the upper surface 51 of the substrate 15, the bottom surface 23 of the recess 21 and the heating resistor 5 are respectively projected along the thickness direction of the substrate 15 (the direction indicated by the arrow C in FIG. 2). As shown in FIG. 5, the contour projection line R of the heating resistor 5 is in a region surrounded by the contour projection line P of the bottom surface 23 of the recess 21. In FIG. 5, a boundary between the heating resistor 5 and the lead portion 12 is defined by a contour projection line Q obtained by projecting the gas detection unit 16 on the upper surface 51. By determining the positions of the recess 21 and the heating resistor 5 as described above, the heating efficiency of the gas detection unit 16 by the heating resistor 5 can be increased.

また、図4に示すように、リード部12のそれぞれの末端の位置には、絶縁層34および保護層35を貫通するスルーホール14が形成されている。スルーホール14には、内部に露出したリード部12と電気的に接触し、保護層35の上面側へ電極を引き出す引出電極13が設けられている。引出電極13は、Pt層とTi層とから構成されている。そして、引出電極13の表面上に、Auからなり、発熱抵抗体5への通電のため外部回路(図示外)との接続を担う一対の接続端子9が形成されている。図1に示すように、接続端子9は、ガスセンサ1の長手方向の一方の縁端寄りの位置に、後述する接続端子10とともに配置されている。   As shown in FIG. 4, a through hole 14 that penetrates the insulating layer 34 and the protective layer 35 is formed at each terminal position of the lead portion 12. The through hole 14 is provided with an extraction electrode 13 that is in electrical contact with the lead portion 12 exposed inside and leads out to the upper surface side of the protective layer 35. The extraction electrode 13 is composed of a Pt layer and a Ti layer. On the surface of the extraction electrode 13, a pair of connection terminals 9 made of Au and responsible for connection with an external circuit (not shown) for energizing the heating resistor 5 is formed. As shown in FIG. 1, the connection terminal 9 is disposed with a connection terminal 10 described later at a position near one edge in the longitudinal direction of the gas sensor 1.

次に、図2に示すように、基体15の上面51(絶縁被膜層3の保護層35の上面)には、ガス検知部16が形成されている。ガス検知部16は、検知電極6,ガス検知層7,および保護膜8を有する。図1に示すように、ガス検知部16は、凹部21の底面23を基体15の厚み方向(図2において矢印Cで図示する方向)に沿って基体15の上面51上に投影した輪郭投影線Pによって囲まれる領域内に配置される。   Next, as shown in FIG. 2, the gas detector 16 is formed on the upper surface 51 of the substrate 15 (the upper surface of the protective layer 35 of the insulating coating layer 3). The gas detection unit 16 includes a detection electrode 6, a gas detection layer 7, and a protective film 8. As shown in FIG. 1, the gas detector 16 projects a contour projection line in which the bottom surface 23 of the recess 21 is projected on the upper surface 51 of the base body 15 along the thickness direction of the base body 15 (the direction indicated by the arrow C in FIG. 2). Arranged in a region surrounded by P.

検知電極6は、基体15の上面51に、櫛歯状のパターンに形成された一対の電極からなり、互いに非接触となるように、一方の電極の櫛歯形状をなす部位の間に他方の電極の櫛歯形状をなす部位が配置されている。検知電極6を構成する一対の電極は、ガス検知層7を介し、互いに電気的に接続されており、ガス検知層7における電気的特性の変化を検出する。検知電極6は、基体15の厚み方向において、発熱抵抗体5と重なる位置に配置されている。   The detection electrode 6 is composed of a pair of electrodes formed in a comb-like pattern on the upper surface 51 of the base body 15, and the other electrode is disposed between the parts of the comb-like shape of one electrode so as not to contact each other. The part which makes the comb-tooth shape of an electrode is arrange | positioned. A pair of electrodes constituting the detection electrode 6 are electrically connected to each other via the gas detection layer 7, and detects a change in electrical characteristics in the gas detection layer 7. The detection electrode 6 is disposed at a position overlapping the heating resistor 5 in the thickness direction of the base body 15.

ガス検知層7は、検知電極6を覆う。ガス検知層7は、金属酸化物半導体であるSnOを主成分とし、被検知ガス中の特定ガスによって自身の電気的特性(具体的には電気抵抗値)が変化する性質を有する。特定ガスとしては、例えば、CO,H,NO,NHやHS,(CH,CHSH,(CHNが挙げられる。ガス検知層7の平面上の位置と、凹部21の底面23の平面上の位置とは次のような関係にある。基体15の上面51上に、凹部21の底面23とガス検知層7とを、基体15の厚み方向に沿ってそれぞれ投影する。図5に示すように、ガス検知層7の輪郭投影線Sは、凹部21の底面23の輪郭投影線Pによって囲まれる領域内にある。凹部21とガス検知層7との位置を上述のように定めることにより、発熱抵抗体5によるガス検知部16の加熱効率が高められる。 The gas detection layer 7 covers the detection electrode 6. The gas detection layer 7 has SnO 2 that is a metal oxide semiconductor as a main component, and has a property that its own electric characteristics (specifically, an electric resistance value) change depending on a specific gas in the gas to be detected. Examples of the specific gas include CO, H 3 , NO 2 , NH 3 , H 2 S, (CH 3 ) 2 S 2 , CH 3 SH, and (CH 3 ) 3 N. The position on the plane of the gas detection layer 7 and the position on the plane of the bottom surface 23 of the recess 21 have the following relationship. On the upper surface 51 of the substrate 15, the bottom surface 23 of the recess 21 and the gas detection layer 7 are projected along the thickness direction of the substrate 15. As shown in FIG. 5, the contour projection line S of the gas detection layer 7 is in a region surrounded by the contour projection line P of the bottom surface 23 of the recess 21. By determining the positions of the recess 21 and the gas detection layer 7 as described above, the heating efficiency of the gas detection unit 16 by the heating resistor 5 is increased.

保護膜8は、一辺が600μmの略正方形の平面形状を有し、ガス検知層7を覆う膜である。保護膜8は、被検知ガスを透過しつつ、ガス検知層7を被毒から保護する。保護膜8の厚みは、10μm以下とすることが好ましい。保護膜8の厚みが大きくなるほど、保護膜8の厚みが小さい場合に比べ、発熱抵抗体5において発生した熱が保護膜8に伝達される量が多くなり、発熱抵抗体5によるガス検知部16の加熱効率が低下するためである。   The protective film 8 is a film that has a substantially square planar shape with a side of 600 μm and covers the gas detection layer 7. The protective film 8 protects the gas detection layer 7 from poisoning while permeating the gas to be detected. The thickness of the protective film 8 is preferably 10 μm or less. As the thickness of the protective film 8 increases, the amount of heat generated in the heating resistor 5 is transferred to the protective film 8 more than in the case where the thickness of the protective film 8 is small. This is because the heating efficiency decreases.

保護膜8の大きさ、形状、および平面上の形成位置は、上述の輪郭投影線P上における基体15の厚みの最小値Tを考慮して定められる。具体的には、基体15の上面51上に、凹部21の底面23と保護膜8とを、基体15の厚み方向に沿ってそれぞれ投影する。図5に示すように、底面23の輪郭投影線Pと保護膜8の輪郭投影線Qとの最短距離をL,底面23の輪郭投影線Pによって囲まれる図形Zの中心Xと輪郭投影線Pとの最短距離をMとした場合、MおよびLは(M−L)/T≦500を満たす値とする。本実施形態では、Tは0.7μmであり、Mは500μmであり、Lは200μmである。なお、本実施形態では、図形Z,および保護膜8の輪郭投影線Qによって囲まれる図形Wは、いずれも正方形である。そして、図形Wは図形Zの中央に配置されている。よって、最短距離Mは、図形Zの一辺と、中心Xを通りその一辺と平行な線Yとの間の距離と等しい。また、(M−L)は、図形Wの一辺と、中心Xを通りその一辺と平行な線Yとの間の距離Nと等しい。このように底面23に対するガス検知部16の平面上の位置を定めることにより、発熱抵抗体5により効率的にガス検知層7を加熱させることができる。   The size, shape, and formation position on the plane of the protective film 8 are determined in consideration of the minimum value T of the thickness of the substrate 15 on the contour projection line P described above. Specifically, the bottom surface 23 of the recess 21 and the protective film 8 are projected on the upper surface 51 of the base body 15 along the thickness direction of the base body 15. As shown in FIG. 5, the shortest distance between the contour projection line P of the bottom surface 23 and the contour projection line Q of the protective film 8 is L, and the center X of the figure Z surrounded by the contour projection line P of the bottom surface 23 and the contour projection line P And M and L are values satisfying (ML) / T ≦ 500. In this embodiment, T is 0.7 μm, M is 500 μm, and L is 200 μm. In the present embodiment, the figure Z and the figure W surrounded by the contour projection line Q of the protective film 8 are all square. The figure W is arranged at the center of the figure Z. Therefore, the shortest distance M is equal to the distance between one side of the figure Z and a line Y passing through the center X and parallel to the one side. (ML) is equal to a distance N between one side of the figure W and a line Y passing through the center X and parallel to the one side. Thus, by determining the position on the plane of the gas detection unit 16 with respect to the bottom surface 23, the gas detection layer 7 can be efficiently heated by the heating resistor 5.

図1に示すように、基体15(保護層35)の上面には、上記の検知電極6を構成する一対の電極間への通電を行うため、検知電極6と接続する一対のリード部11のパターンが形成されている。図4に示すように、各リード部11の末端の表面上に、Auからなり、外部回路(図示外)との接続を担う一対の接続端子10が形成されている。検知電極6およびリード部11も、上記の引出電極13と同様に、Pt層とTi層とから構成された2層構造を有する。   As shown in FIG. 1, the upper surface of the base 15 (protective layer 35) has a pair of lead portions 11 connected to the detection electrode 6 in order to energize the pair of electrodes constituting the detection electrode 6. A pattern is formed. As shown in FIG. 4, a pair of connection terminals 10 made of Au and responsible for connection with an external circuit (not shown) are formed on the surface of the end of each lead portion 11. Similarly to the extraction electrode 13, the detection electrode 6 and the lead portion 11 also have a two-layer structure composed of a Pt layer and a Ti layer.

以下、ガスセンサ1の製造工程について説明する。なお、作製途中のガスセンサ1の中間体を、基板と称する。また、各工程の説明に用いる工程名に付した括弧内の数字は、各工程の実施順序を示している。   Hereinafter, the manufacturing process of the gas sensor 1 will be described. In addition, the intermediate body of the gas sensor 1 in the middle of manufacture is called a board | substrate. Moreover, the number in the parenthesis attached to the process name used for description of each process has shown the execution order of each process.

(1) シリコン基板2の洗浄
厚みが400μmのシリコン基板2を洗浄液中に浸し、洗浄処理を行った。
(1) Cleaning of silicon substrate 2 A silicon substrate 2 having a thickness of 400 μm was immersed in a cleaning solution and subjected to a cleaning process.

(2) 絶縁層31,41の形成
シリコン基板2を熱処理炉に入れ、熱酸化処理にて厚さが100nmのSiO膜からなる絶縁層31,41をシリコン基板2の両面(上面および下面)に形成した。
(2) Formation of insulating layers 31 and 41 The silicon substrate 2 is put into a heat treatment furnace, and the insulating layers 31 and 41 made of a SiO 2 film having a thickness of 100 nm are formed on both surfaces (upper and lower surfaces) of the silicon substrate 2 by thermal oxidation. Formed.

(3) 絶縁層32,42の形成
LP−CVDにてSiHCl,NHをソースガスとし、絶縁層31,41それぞれの表面上に、厚さが200nmのSi膜からなる絶縁層32,42を形成した。
(3) Formation of insulating layers 32 and 42 SiH 2 Cl 2 and NH 3 are used as a source gas by LP-CVD, and 200 nm thick Si 3 N 4 films are formed on the surfaces of the insulating layers 31 and 41, respectively. Insulating layers 32 and 42 were formed.

(4) 絶縁層33の形成
プラズマCVDにてTEOS,Oをソースガスとし、絶縁層32の表面上に厚さが100nmのSiO膜からなる絶縁層33を形成した。
(4) Formation of Insulating Layer 33 An insulating layer 33 made of a SiO 2 film having a thickness of 100 nm was formed on the surface of the insulating layer 32 by plasma CVD using TEOS and O 2 as source gases.

(5) 発熱抵抗体5およびリード部12の形成
DCスパッタ装置を用い、絶縁層33の表面上に厚さ20nmのTa層を形成し、その層上に厚さ220nmのPt層を形成した。スパッタ後、フォトリソグラフィによりレジストのパターニングを行い、ウエットエッチング処理で発熱抵抗体5およびリード部12のパターンを形成した。
(5) Formation of heating resistor 5 and lead portion 12 Using a DC sputtering apparatus, a Ta layer having a thickness of 20 nm was formed on the surface of the insulating layer 33, and a Pt layer having a thickness of 220 nm was formed on the Ta layer. After sputtering, the resist was patterned by photolithography, and the pattern of the heating resistor 5 and the lead portion 12 was formed by wet etching.

(6) 絶縁層34の形成
(4)と同様に、プラズマCVDにてTEOS,Oをソースガスとし、絶縁層33,発熱抵抗体5およびリード部12の表面上に、厚さが100nmのSiO膜からなる絶縁層34を形成した。このようにして、SiO膜からなる絶縁層33,34内に、発熱抵抗体5およびリード部12を埋設した。
(6) Formation of insulating layer 34 As in (4), TEOS, O 2 is used as a source gas by plasma CVD, and a thickness of 100 nm is formed on the surfaces of the insulating layer 33, the heating resistor 5 and the lead portion 12. An insulating layer 34 made of a SiO 2 film was formed. In this way, the heating resistor 5 and the lead portion 12 were embedded in the insulating layers 33 and 34 made of the SiO 2 film.

(7) 保護層35の形成
(3)と同様に、LP−CVDにてSiHCl,NHをソースガスとし、絶縁層34の上面に、厚さが200nmのSi膜からなる保護層35を形成した。
(7) Formation of protective layer 35 Similar to (3), SiH 2 Cl 2 and NH 3 are used as source gases by LP-CVD, and an Si 3 N 4 film having a thickness of 200 nm is formed on the upper surface of the insulating layer 34. A protective layer 35 was formed.

(8) 接続端子9の開口の形成
フォトリソグラフィによりレジストのパターニングを行い、ドライエッチング法で保護層35および絶縁層34のエッチングを行い、接続端子9の形成を予定する部分にスルーホール14を開け、リード部12の末端の一部を露出させた。
(8) Formation of the opening of the connection terminal 9 The resist is patterned by photolithography, the protective layer 35 and the insulating layer 34 are etched by the dry etching method, and the through hole 14 is opened in the portion where the connection terminal 9 is to be formed. A part of the end of the lead portion 12 was exposed.

(9) 検知電極6,リード部11および引出電極13の形成
DCスパッタ装置を用い、保護層35の表面上に厚さ20nmのTi層を形成し、さらにその表面上に厚さ40nmのPt層を形成した。スパッタ後、フォトリソグラフィによりレジストのパターニングを行い、ウエットエッチング処理にて、櫛歯状の平面形状を有する検知電極6およびリード部11のパターンを形成した。また、(8)で形成したスルーホール14内および周辺にもTi層およびPt層を形成し、リード部12の末端を保護層35の上面側に引き出す引出電極13のパターンを形成した。
(9) Formation of detection electrode 6, lead portion 11 and extraction electrode 13 Using a DC sputtering apparatus, a Ti layer having a thickness of 20 nm is formed on the surface of protective layer 35, and a Pt layer having a thickness of 40 nm is further formed on the surface. Formed. After sputtering, the resist was patterned by photolithography, and the patterns of the detection electrode 6 and the lead portion 11 having a comb-like planar shape were formed by wet etching. Further, a Ti layer and a Pt layer were also formed in and around the through hole 14 formed in (8), and a pattern of the extraction electrode 13 was formed so that the end of the lead portion 12 was drawn to the upper surface side of the protective layer 35.

(10) 接続端子9,10の形成
DCスパッタ装置を用い、上記電極部分が作製された基板の電極側の表面上に、厚さ400nmのAu層を形成した。スパッタ後、フォトリソグラフィによりレジストのパターニングを行い、ウエットエッチング処理で接続端子9,10を形成した。これにより、接続端子9はリード部12の末端と電気的に接続され、接続端子10は、引出電極13を介し、リード部11の末端と電気的に接続された。
(10) Formation of connection terminals 9 and 10 Using a DC sputtering apparatus, an Au layer having a thickness of 400 nm was formed on the electrode-side surface of the substrate on which the electrode part was fabricated. After sputtering, the resist was patterned by photolithography, and the connection terminals 9 and 10 were formed by wet etching. Thereby, the connection terminal 9 was electrically connected to the end of the lead portion 12, and the connection terminal 10 was electrically connected to the end of the lead portion 11 via the extraction electrode 13.

(11) 凹部21の形成
フォトリソグラフィによりレジストのパターニングを行い、マスクとなる絶縁膜(図示外)をドライエッチング処理により形成した。そしてTMAH溶液中に基板を浸し、シリコン基板2の異方性エッチングを行って凹部21を形成した。
(11) Formation of recesses 21 Resist was patterned by photolithography, and an insulating film (not shown) serving as a mask was formed by dry etching. Then, the substrate was immersed in the TMAH solution, and the silicon substrate 2 was anisotropically etched to form the recess 21.

(12) ガス検知層7の形成
RFスパッタ装置を用いて、シリコン基板2の温度が240℃になるように加熱しながら、櫛歯状の検知電極6,およびその周辺部分の保護層35上に、厚さ200nmのSnO膜を形成した。その後、SnO膜上にDCスパッタ装置にて、加熱なしで、Auを付着させ触媒粒子を形成した。
(12) Formation of the gas detection layer 7 Using an RF sputtering apparatus, while heating the silicon substrate 2 so that the temperature of the silicon substrate 2 becomes 240 ° C., on the comb-shaped detection electrode 6 and the protective layer 35 in the peripheral portion thereof A SnO 2 film having a thickness of 200 nm was formed. Thereafter, Au was deposited on the SnO 2 film by a DC sputtering apparatus without heating to form catalyst particles.

(13) 熱処理
RFスパッタ装置または真空熱処理炉を用いて、O濃度が10ppm以下(好ましくは、0.2ppmまたは5ppm)の雰囲気の下、360℃、3時間の熱処理を加えた。
(13) Heat treatment Using an RF sputtering apparatus or a vacuum heat treatment furnace, heat treatment was performed at 360 ° C. for 3 hours in an atmosphere having an O 2 concentration of 10 ppm or less (preferably 0.2 ppm or 5 ppm).

(14) 保護膜8の形成
TiO粉末にバインダーと有機溶剤とを混ぜた後、トリロールミルを用いて混練し、TiOペーストを作成した。メタルマスクを用いてシリコン基板2の所定の場所にTiOペーストを印刷した後、350℃で焼成した。
(14) Formation of protective film 8 A binder and an organic solvent were mixed with TiO 2 powder, and then kneaded using a tri-roll mill to prepare a TiO 2 paste. A TiO 2 paste was printed on a predetermined location of the silicon substrate 2 using a metal mask, and then baked at 350 ° C.

(15) 基板の切断
ダイシングソーを用いて基板を切断し、平面視矩形で2.3mm×2mmの大きさにした。以上の製造工程により、図1に示す、ガスセンサ1が完成した。
(15) Cutting the substrate The substrate was cut using a dicing saw, and the size was 2.3 mm × 2 mm in a rectangular shape in plan view. The gas sensor 1 shown in FIG. 1 was completed by the above manufacturing process.

次に、上記製造工程に従いガスセンサ1を作製し、以下に示す評価試験を行った。   Next, the gas sensor 1 was produced according to the above manufacturing process, and the following evaluation test was performed.

[評価1]
評価1では、ガスセンサ1の保護膜8のクラック・剥離発生確率を評価した。まず、上述の製造工程に従い、Tが0.7μm,Mが500μmの条件で、Lの値が異なるガスセンサ1を100個ずつ作成した。Lの値は、0,50,100,150,および200の計5つの値を用いた。保護膜8の厚みは、7±3μmとした。各ガスセンサ1について、25℃の雰囲気中、400℃で通電制御を1秒間と、非通電1秒間とを交互に2万回繰り返し、保護膜にクラックや剥離が発生したか否かを確認した。そして、保護膜のクラック・剥離発生確率を求めた。さらに、Tが0.35,およびMが500μmの条件で、(M−L)/Tが1000,500,および429となるLについて同様の評価を行った。また、Tが1.05μm,およびMが500μmの条件で,(M−L)/Tが476および429となるLについて同様な評価を行った。なお、最小厚みTが0.35または1.05μmとなるガスセンサは、絶縁被膜層3が備える絶縁層31〜34,保護層35,発熱抵抗体5,およびリード部12の厚みをそれぞれ相対的に変えて作成した。
[Evaluation 1]
In Evaluation 1, the probability of occurrence of cracks / peeling of the protective film 8 of the gas sensor 1 was evaluated. First, according to the manufacturing process described above, 100 gas sensors 1 having different values of L were prepared on a condition that T was 0.7 μm and M was 500 μm. A total of five values of 0, 50, 100, 150, and 200 were used as the value of L. The thickness of the protective film 8 was 7 ± 3 μm. For each gas sensor 1, energization control at 400 ° C. in a 25 ° C. atmosphere for 1 second and non-energization for 1 second were repeated 20,000 times alternately to check whether cracks or peeling occurred in the protective film. Then, the probability of occurrence of cracks / peeling of the protective film was determined. Further, under the conditions where T is 0.35 and M is 500 μm, the same evaluation was performed for L where (ML) / T is 1000, 500, and 429. Further, the same evaluation was performed for L where (ML) / T was 476 and 429 under the conditions of T = 1.05 μm and M = 500 μm. In the gas sensor having the minimum thickness T of 0.35 or 1.05 μm, the thicknesses of the insulating layers 31 to 34, the protective layer 35, the heating resistor 5 and the lead portion 12 included in the insulating coating layer 3 are relatively set. Created by changing.

Tが0.7μm,Mが500μmの場合の評価1の結果を図6乃至図9に示す。図6に示すように、(M−L)/Tが714の場合では、保護膜8のクラック・剥離発生確率が100%であった。図7に示すように、(M−L)/Tが714の場合には、輪郭投影線Pの周辺部分において保護膜8にクラックが生じた。図示しないが、Tが0.7μm,Mが500μmの条件で、保護膜8の輪郭投影線Qが底面23の輪郭投影線Pよりも外側となるガスセンサについて同様の評価を行ったところ、保護膜8にクラックが生じた。一方、図6に示すように、(M−L)/Tが714より小さい場合、(M−L)/Tが小さくなるにつれクラック・剥離発生確率が低下し、(M−L)/Tが500以下の場合には、クラック・剥離発生確率が0%であった。図8に示す(M−L)/Tが500の場合、および図9に示す(M−L)/Tが429の場合には、保護膜にクラックや剥離が発生しなかった。図示しないが、Tが0.35,およびMが500μmの条件、並びにTが1.05μm,およびMが500μmの条件においても、(M−L)/Tが500以下の場合には、クラック・剥離発生確率が0%であった。評価1の結果から、ガス検知部16の輪郭投影線が底面23の輪郭投影線P上または輪郭投影線Pの内側となり、かつ、(M−L)/T≦500となるようにL,MおよびTを設定すれば、保護膜8にクラックや剥離が発生することを回避することができることが確認された。なお、(M−L)/T≦429となるようにL,MおよびTを設定することにより、保護膜8にクラックや剥離が発生することをより確実に回避することができる。   The results of Evaluation 1 when T is 0.7 μm and M is 500 μm are shown in FIGS. As shown in FIG. 6, when (ML) / T is 714, the probability of occurrence of cracking / peeling of the protective film 8 was 100%. As shown in FIG. 7, when (ML) / T is 714, the protective film 8 is cracked in the peripheral portion of the contour projection line P. Although not shown, when the same evaluation was performed on a gas sensor in which the contour projection line Q of the protective film 8 was outside the contour projection line P of the bottom surface 23 under the conditions of T of 0.7 μm and M of 500 μm, the protective film 8 cracked. On the other hand, as shown in FIG. 6, when (ML) / T is smaller than 714, as (ML) / T decreases, the probability of occurrence of cracks and delamination decreases, and (ML) / T is In the case of 500 or less, the probability of occurrence of cracks / peeling was 0%. When (ML) / T shown in FIG. 8 is 500 and (ML) / T shown in FIG. 9 is 429, no cracks or peeling occurred in the protective film. Although not shown in the figure, even when T is 0.35 and M is 500 μm, and T is 1.05 μm and M is 500 μm, if (ML) / T is 500 or less, The occurrence probability of peeling was 0%. From the result of evaluation 1, L, M so that the contour projection line of the gas detection unit 16 is on or inside the contour projection line P of the bottom surface 23 and (ML) / T ≦ 500. When T and T are set, it has been confirmed that cracks and peeling can be avoided in the protective film 8. In addition, by setting L, M, and T so that (ML) / T ≦ 429, it is possible to more reliably avoid the occurrence of cracks or peeling in the protective film 8.

[評価2]
次に、Tが0.7μm,Mが500μmの条件で、発熱抵抗体5の温度が250℃となるように制御した時の発熱抵抗体5の消費電力を測定した。評価2の結果を図7に示す。なお、(M−L)/T=0の場合とは、保護膜8を設けない場合である。図7に示すように、250℃制御時の消費電力は、(M−L)/Tが500の場合には40.1mWとなり、(M−L)/Tが500より小さい条件では(M−L)/Tが小さくなるほど消費電力が小さくなった。評価2の結果から、(M−L)/T≦500となるように、L,MおよびTを設定すれば、発熱抵抗体5の温度が所定温度となるように通電制御する際の消費電力を損なうことなく、保護膜8にクラックや剥離が発生することを回避することができることが確認された。
[Evaluation 2]
Next, the power consumption of the heating resistor 5 was measured when the temperature of the heating resistor 5 was controlled to be 250 ° C. under conditions where T was 0.7 μm and M was 500 μm. The result of evaluation 2 is shown in FIG. In addition, the case where (ML) / T = 0 is a case where the protective film 8 is not provided. As shown in FIG. 7, the power consumption at 250 ° C. control is 40.1 mW when (ML) / T is 500, and (M−L) / T is less than 500 under the condition that (ML) / T is less than 500. The power consumption decreased as L) / T decreased. From the result of evaluation 2, if L, M, and T are set so that (ML) / T ≦ 500, the power consumption when energization control is performed so that the temperature of the heating resistor 5 becomes a predetermined temperature. It was confirmed that it is possible to avoid the occurrence of cracks and peeling in the protective film 8 without damaging the film.

なお、本発明は上記実施の形態に限られず、本発明の要旨を逸脱しない範囲内において種々の変更を加えてもよい。例えば、以下の(A)〜(C)に示す変形を加えてもよい。   The present invention is not limited to the above embodiment, and various modifications may be made without departing from the scope of the present invention. For example, the following modifications (A) to (C) may be added.

(A)基体15のシリコン基板2は、シリコンから作製したが、その他の半導体材料から作製してもよい。また、ガスセンサ1の平面形状は矩形に限らず、任意の形状をなしてもよく、その大きさ、厚み、各部材の配置についても限定されるものではない。   (A) The silicon substrate 2 of the base 15 is made of silicon, but may be made of other semiconductor materials. Further, the planar shape of the gas sensor 1 is not limited to a rectangle, and may be an arbitrary shape, and the size, thickness, and arrangement of each member are not limited.

(B)絶縁被膜層3,4を、SiO膜とSi膜からなる複層構造としたが、SiO膜またはSi膜からなる単層構造としてもよい。また、発熱抵抗体5を絶縁層33と絶縁層34の間に埋設したが、ガス検知部16を効率よく加熱できる位置に配置されていればよい。 (B) Although the insulating coating layers 3 and 4 have a multi-layer structure composed of a SiO 2 film and a Si 3 N 4 film, they may have a single layer structure composed of a SiO 2 film or a Si 3 N 4 film. Further, although the heating resistor 5 is embedded between the insulating layer 33 and the insulating layer 34, it is only necessary to be disposed at a position where the gas detection unit 16 can be efficiently heated.

(C)保護膜はガス検知層の少なくとも一部を覆っていればよい。また、凹部21が設けられている部分の基体15の構成は、厚みTに応じて種々変更可能である。例えば、図11に示す変形例のようにしてもよい。図11において、図2に示す上記実施形態と同様な構成には同じ符号を付与している。図11に示すように、変形例のガスセンサ101では、保護膜108はガス検知層107の上面の一部を覆っている。また、絶縁被膜層103の絶縁層131〜134,および保護層135,絶縁被膜層104が備える絶縁層141および142,発熱抵抗体105,並びにリード部112の厚みは、図2に示す実施形態のガスセンサに比べ相対的に薄くなっている。変形例において、絶縁層131が凹部121の底面123となっている。
(C) The protective film should just cover at least one part of a gas detection layer. Further, the configuration of the base body 15 at the portion where the recess 21 is provided can be variously changed according to the thickness T. For example, the modification shown in FIG. 11 may be used. In FIG. 11, the same reference numerals are given to the same components as those in the above embodiment shown in FIG. As shown in FIG. 11, in the modified gas sensor 101, the protective film 108 covers a part of the upper surface of the gas detection layer 107. The thicknesses of the insulating layers 131 to 134 of the insulating coating layer 103, the protective layer 135, the insulating layers 141 and 142 included in the insulating coating layer 104, the heating resistor 105, and the lead portion 112 are the same as those of the embodiment shown in FIG. It is relatively thinner than a gas sensor. In the modification, the insulating layer 131 is the bottom surface 123 of the recess 121.

1,101 ガスセンサ
5,105 発熱抵抗体
7,107 ガス検知層
8,108 保護膜
15,115 基体
21,121 凹部
23,123 底面
51 上面
52 下面
DESCRIPTION OF SYMBOLS 1,101 Gas sensor 5,105 Heating resistor 7,107 Gas detection layer 8,108 Protective film 15,115 Base | substrate 21,121 Recess 23,123 Bottom 51 Upper surface 52 Lower surface

Claims (2)

板状の基体と、
被検知ガス中の特定ガスの濃度変化に応じて電気的特性が変化する金属酸化物半導体を主成分とし、前記基体の一方の面に設けられるガス検知層と、
前記ガス検知層の少なくとも一部を覆うように設けられ、前記ガス検知層を保護する保護膜と、
前記基体の前記一方の面とは反対側の他方の面に形成されるとともに、前記基体の厚み方向に凹む凹部と、
前記基体内に埋設され、通電により発熱する発熱体と
を備えたガスセンサにおいて、
前記基体の前記一方の面上に、前記凹部の底面と前記ガス検知層と前記保護膜と前記発熱体とを、前記厚み方向に沿ってそれぞれ投影したときに、前記ガス検知層と前記保護膜と前記発熱体とのそれぞれの輪郭投影線が、前記底面の輪郭投影線上、または前記底面の輪郭投影線によって囲まれる領域の内側に配置されるとともに、
前記基体の前記一方の面上において、前記底面の輪郭投影線と前記保護膜の輪郭投影線との最短距離をLとし、
前記底面の輪郭投影線によって囲まれる図形の中心と、前記底面の輪郭投影線との最短距離をMとし、
前記底面の輪郭投影線上における前記基体の厚みをみたときの最小厚みをTとしたときに
(M−L)/T≦500
を満たすことを特徴とするガスセンサ。
A plate-like substrate;
A gas detection layer provided on one surface of the substrate, the main component of which is a metal oxide semiconductor whose electrical characteristics change according to the concentration change of the specific gas in the gas to be detected;
A protective film provided to cover at least a part of the gas detection layer and protecting the gas detection layer;
A recess formed in the other surface opposite to the one surface of the base and recessed in the thickness direction of the base;
A gas sensor comprising a heating element embedded in the substrate and generating heat when energized,
When the bottom surface of the recess, the gas detection layer, the protective film, and the heating element are respectively projected along the thickness direction on the one surface of the base, the gas detection layer and the protective film And the contour projection lines of the heating element and the heating element are arranged on the contour projection line of the bottom surface or inside the region surrounded by the contour projection line of the bottom surface,
On the one surface of the substrate, L is the shortest distance between the contour projection line of the bottom surface and the contour projection line of the protective film,
The shortest distance between the center of the figure surrounded by the contour projection line of the bottom surface and the contour projection line of the bottom surface is M,
(M−L) / T ≦ 500, where T is the minimum thickness when the thickness of the substrate on the contour projection line of the bottom surface is seen.
Gas sensor characterized by satisfying.
前記保護膜は、膜厚が10μm以下であることを特徴とする請求項1に記載のガスセンサ。   The gas sensor according to claim 1, wherein the protective film has a thickness of 10 μm or less.
JP2009128927A 2009-05-28 2009-05-28 Gas sensor Pending JP2010276459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128927A JP2010276459A (en) 2009-05-28 2009-05-28 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128927A JP2010276459A (en) 2009-05-28 2009-05-28 Gas sensor

Publications (1)

Publication Number Publication Date
JP2010276459A true JP2010276459A (en) 2010-12-09

Family

ID=43423561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128927A Pending JP2010276459A (en) 2009-05-28 2009-05-28 Gas sensor

Country Status (1)

Country Link
JP (1) JP2010276459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113892021A (en) * 2019-06-07 2022-01-04 Koa株式会社 Vulcanization detection sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794641A (en) * 1980-12-04 1982-06-12 Ricoh Co Ltd Manufacture of electric heater
JPH07198647A (en) * 1993-11-22 1995-08-01 Siemens Ag Gas sensor
JPH0894398A (en) * 1995-09-06 1996-04-12 Sharp Corp Silicon microsensor
JP2003279520A (en) * 2002-03-25 2003-10-02 Osaka Gas Co Ltd Apparatus and method for detection of gas
JP2003294673A (en) * 2002-03-29 2003-10-15 Fuji Electric Co Ltd Manufacturing method of thin film gas sensor
JP2004108929A (en) * 2002-09-18 2004-04-08 Matsushita Electric Ind Co Ltd Gas sensor, method of manufacturing the same, and refrigerator
JP2005134165A (en) * 2003-10-29 2005-05-26 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor
JP2007017217A (en) * 2005-07-06 2007-01-25 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor
JP2009103541A (en) * 2007-10-23 2009-05-14 Fuji Electric Fa Components & Systems Co Ltd Flammable gas detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794641A (en) * 1980-12-04 1982-06-12 Ricoh Co Ltd Manufacture of electric heater
JPH07198647A (en) * 1993-11-22 1995-08-01 Siemens Ag Gas sensor
JPH0894398A (en) * 1995-09-06 1996-04-12 Sharp Corp Silicon microsensor
JP2003279520A (en) * 2002-03-25 2003-10-02 Osaka Gas Co Ltd Apparatus and method for detection of gas
JP2003294673A (en) * 2002-03-29 2003-10-15 Fuji Electric Co Ltd Manufacturing method of thin film gas sensor
JP2004108929A (en) * 2002-09-18 2004-04-08 Matsushita Electric Ind Co Ltd Gas sensor, method of manufacturing the same, and refrigerator
JP2005134165A (en) * 2003-10-29 2005-05-26 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor
JP2007017217A (en) * 2005-07-06 2007-01-25 Fuji Electric Fa Components & Systems Co Ltd Thin film gas sensor
JP2009103541A (en) * 2007-10-23 2009-05-14 Fuji Electric Fa Components & Systems Co Ltd Flammable gas detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113892021A (en) * 2019-06-07 2022-01-04 Koa株式会社 Vulcanization detection sensor
CN113892021B (en) * 2019-06-07 2024-04-02 Koa株式会社 Vulcanization detection sensor

Similar Documents

Publication Publication Date Title
JP5161210B2 (en) Gas sensor
US10241094B2 (en) Micro heater, micro sensor and micro sensor manufacturing method
JP4921556B2 (en) Gas sensor
US10697920B2 (en) Gas sensor
JP2002286673A (en) Gas sensor and its manufacturing method
EP1953539A1 (en) Gas sensor
CN106124576B (en) Integrated humidity sensor and multiple-unit gas sensor and its manufacturing method
JP5021377B2 (en) Gas sensor
JP5609919B2 (en) Micro heater element
CN108107081B (en) Method for manufacturing gas sensor and gas sensor manufactured thereby
JP2005292120A (en) Platinum resistor type temperature sensor
JP2008209390A5 (en)
JP2010276459A (en) Gas sensor
WO2000074082A1 (en) Resistive hydrogen sensing element
JP2005030907A (en) Gas sensor
JP5134490B2 (en) Gas sensor
JP2007017217A (en) Thin film gas sensor
JP3759027B2 (en) Gas sensor and manufacturing method thereof
JP6877397B2 (en) Manufacturing method of MEMS gas sensor and MEMS gas sensor
JP2006317155A (en) Gas sensor and manufacturing method therefor
JP2011196896A (en) Contact combustion type gas sensor
JP3380310B2 (en) Gas sensor
JP5278086B2 (en) Thin film gas sensor and manufacturing method thereof
JP2008309556A (en) Gas sensor
JP2007139669A (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A977 Report on retrieval

Effective date: 20121024

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Effective date: 20140121

Free format text: JAPANESE INTERMEDIATE CODE: A02