JP2010261633A - Multiple-tube for heat exchanger and geothermal air conditioning system using the same - Google Patents

Multiple-tube for heat exchanger and geothermal air conditioning system using the same Download PDF

Info

Publication number
JP2010261633A
JP2010261633A JP2009111884A JP2009111884A JP2010261633A JP 2010261633 A JP2010261633 A JP 2010261633A JP 2009111884 A JP2009111884 A JP 2009111884A JP 2009111884 A JP2009111884 A JP 2009111884A JP 2010261633 A JP2010261633 A JP 2010261633A
Authority
JP
Japan
Prior art keywords
tube
heat
pipe
ground
inner tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009111884A
Other languages
Japanese (ja)
Inventor
Isao Nemoto
功 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nemoto Kikaku Kogyo KK
Original Assignee
Nemoto Kikaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemoto Kikaku Kogyo KK filed Critical Nemoto Kikaku Kogyo KK
Priority to JP2009111884A priority Critical patent/JP2010261633A/en
Publication of JP2010261633A publication Critical patent/JP2010261633A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To economically construct a geothermal air conditioning system exchanging heat with ground heat. <P>SOLUTION: In this air conditioning system constituted by burying a tubular body in the ground to exchange heat between a fluid inside of the tubular body and the ground heat, an underground tube 1 is composed of a triple-tube of an inner tube 11, an intermediate tube 12 and an outer tube 13, an intermediate layer is vacuum and has a heat insulating property, and a liquid is made to flow into the inside of the outer tube 13 at a terminal end section above ground, and turn down at a tip section in the ground to be returned on ground from the inner tube 11. As a length of the underground tube 1 is determined to a length enough to exchange heat, and it is unnecessary to make the underground tube penetrate above ground at an opposite side, the geothermal air conditioning system can be economically constructed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、配管を地中に埋設して内部の流体と地中熱とで熱交換する空調システムにおける熱交換用多重管、ならびにこれを使用する地中熱利用空調システムに関する。   TECHNICAL FIELD The present invention relates to a heat exchange multiple pipe in an air conditioning system in which piping is buried in the ground and heat exchange is performed between an internal fluid and ground heat, and a ground heat utilization air conditioning system using the same.

本出願人はさきに、配管を地中に埋設して内部の流体と地中熱とで熱交換する空調システムを開発し、その内容は特許文献1により公開されている。まずこれを簡単に説明する。   The present applicant has previously developed an air conditioning system in which piping is buried in the ground and heat is exchanged between the internal fluid and the underground heat. First, this will be briefly described.

図6は特許文献1に記載の地中熱利用空調システム発明を示す構成図で、符号1は地中配管、符号2は冷媒などの液体の循環ポンプ、符号3は熱交換器、符号4は送風機、符号7は循環タンク、符号Rは被空調空間である。   FIG. 6 is a configuration diagram showing the ground heat utilization air conditioning system invention described in Patent Document 1. Reference numeral 1 is underground piping, reference numeral 2 is a circulation pump of liquid such as refrigerant, reference numeral 3 is a heat exchanger, reference numeral 4 is The blower, reference numeral 7 is a circulation tank, and reference numeral R is an air-conditioned space.

地中に埋設した地中配管1内と地上の熱交換器3との間に液体を循環させ、熱交換器3から得られる熱により建物内の被空調空間Rを冷暖房する地中熱利用空調システムであって、地中配管1は建物の下部を横断して略円弧状に敷設されている。   A ground heat-use air conditioner that circulates liquid between the underground pipe 1 buried in the ground and the heat exchanger 3 on the ground, and heats and cools the air-conditioned space R in the building by the heat obtained from the heat exchanger 3 In this system, the underground pipe 1 is laid in a substantially arc shape across the lower part of the building.

これは表層部を除く地表から10〜15m以下の地盤(以下「恒温層」という。「帯水層」ともいう。)内の地中温度が、地区にもよるが、例えば年間を通してほぼ15〜16℃であることに着目し、恒温層内に埋設した地中配管と地上の熱交換器との間に液体を循環させ、熱交換器から得られる熱により建物内を冷暖房するようにした地中熱利用空調システムであって、15〜16℃という温度範囲は、暖房用の目標温度としてはやや低めであるが、冷房用としてはむしろ低すぎるほどであり、年間を通じて建物内を上記の温度範囲に維持することができれば理想的な空調システムが実現するわけである。   This is because the ground temperature in the ground 10 to 15m or less from the ground surface excluding the surface layer (hereinafter referred to as "constant temperature layer" or "aquifer") is approximately 15 Focusing on the fact that the temperature is 16 ° C., a liquid is circulated between the underground pipe buried in the thermostatic layer and the heat exchanger on the ground, and the inside of the building is cooled and heated by the heat obtained from the heat exchanger. The medium-heat-use air conditioning system has a temperature range of 15 to 16 ° C., which is slightly lower as the target temperature for heating, but is rather too low for cooling. If it can be maintained within the range, an ideal air conditioning system will be realized.

地中配管1は建物の下部に埋設されているため、建物の敷地外を工事する必要がなく、敷設のために新たな用地を取得することも不要であるが、既設の建物に対してあとから配管を埋設しようとすれば、建物の外側に水平ボーリングの発進基地となる竪坑を設けるか、あるいは何らかの特殊な工法を採用することを検討しなければならない。   The underground pipe 1 is buried in the lower part of the building, so there is no need to work outside the building site and it is not necessary to acquire a new site for laying. If it is going to embed the pipe, it will be necessary to consider installing a shaft to serve as a starting base for horizontal boring outside the building, or adopting a special construction method.

特許文献2には、近年米国で開発された可撓性のロッドを使用する非開削式のボーリング機(以下、「掘進機」という)ならびにこれを使用する工法が記載されている。図7ないし図9よりこれを簡単に説明する。   Patent Document 2 describes a non-cutting boring machine (hereinafter referred to as “digging machine”) using a flexible rod, which has been recently developed in the United States, and a method of using the same. This will be briefly described with reference to FIGS.

図7はこの公知の掘進工法を示す概念図で、符号1Aは前記地中配管1に相当する可撓性の連結ロッド、符号6は掘進ヘッド、符号7は掘進機、符号Sは構造物である。構造物Sの脇の地上から地中に向けて斜めにボーリングを開始し、所定の深さ、すなわち前記の恒温層に到達したら掘進ヘッドの向きを水平方向に変え、以後は水平にボーリングするのである。ここで、「水平」とは、完全に水平であることに加えて、通常の掘進で許容される範囲内での傾斜状態(例えば±10°程度)を含む。   FIG. 7 is a conceptual diagram showing this known excavation method. Reference numeral 1A is a flexible connecting rod corresponding to the underground pipe 1, reference numeral 6 is an excavation head, reference numeral 7 is an excavator, and reference numeral S is a structure. is there. Since the boring is started obliquely from the ground beside the structure S toward the ground, the direction of the excavation head is changed to the horizontal direction when reaching the predetermined depth, that is, the above-mentioned constant temperature layer, and thereafter the horizontal boring is performed is there. Here, “horizontal” includes not only being completely horizontal, but also an inclined state (for example, about ± 10 °) within a range allowed for normal excavation.

図8は特許文献2に記載の掘進ヘッド6の断面図で、符号61はジェットノズル、符号62は高圧流体の供給される流体経路である。この例ではジェットノズル61は掘進ヘッド6の中心軸に対して約5度斜め方向を向いている。したがって掘進ヘッド6に回転を与えながら前進させれば直進するが、回転を与えずに前進させればジェットノズル61の向きに従って斜め方向に進む。   FIG. 8 is a cross-sectional view of the excavation head 6 described in Patent Document 2. Reference numeral 61 denotes a jet nozzle, and reference numeral 62 denotes a fluid path through which high-pressure fluid is supplied. In this example, the jet nozzle 61 is inclined at about 5 degrees with respect to the central axis of the digging head 6. Accordingly, if the advancing head 6 is moved forward while being rotated, it moves straight, but if it is moved forward without being rotated, it proceeds in an oblique direction according to the direction of the jet nozzle 61.

図9は同じく特許文献2に記載の掘進機の外観図で、符号7は掘進機、符号70はベース、符号71はその上を移動する前進フレーム、符号72は回転用モータ、符号73はチェーン、符号74は前進用モータである。前進フレーム71には連結ロッド1Aを固定するクランプと、連結ロッド1Aを把持して回転させるチャックが備えられており、これに前進機構を組み合わせると連結ロッド1Aを回転させずに前進させたり、回転させながら前進させたりすることができる。   FIG. 9 is an external view of the excavator described in Patent Document 2. Reference numeral 7 is an excavator, reference numeral 70 is a base, reference numeral 71 is a forward frame that moves on the excavator, reference numeral 72 is a motor for rotation, and reference numeral 73 is a chain. Reference numeral 74 denotes a forward motor. The forward frame 71 is provided with a clamp for fixing the connecting rod 1A and a chuck for gripping and rotating the connecting rod 1A. When the advance mechanism is combined with this, the connecting rod 1A is moved forward without rotating, or rotated. You can make it move forward.

なお、連結ロッド1Aを中空の管体で構成し、掘進後にこれを地中に残置すればそのまま地中配管となるが、施工の都合で管体以外の連結ロッド1Aを使用する場合は、貫通後に連結ロッド1Aに管体を接続して地中に引き込むようにすればよい。   If the connecting rod 1A is constituted by a hollow tube and is left in the ground after excavation, it becomes an underground pipe as it is. However, when a connecting rod 1A other than the tube is used for the convenience of construction, it is penetrated. What is necessary is just to make it connect to a connecting rod 1A later and to draw in in the ground.

特開2007−64549号公報JP 2007-64549 A 特開昭61−257501号公報JP-A 61-257501

地中配管を図6に示したような略円弧状とすれば、特許文献2に記載の掘進機により施工が可能ではあるが、建物の下を横断して反対側の地上まで到達させるにはかなり長い距離の掘削が必要であり、熱交換に必要な長さを大幅に上回る場合も発生し、非常に不経済である。   If the underground piping has a substantially circular arc shape as shown in FIG. 6, it can be constructed by the excavator described in Patent Document 2, but to reach the ground on the opposite side across the bottom of the building. Excessive length of drilling is required, sometimes exceeding the length required for heat exchange, which is very uneconomical.

本発明は、連結ロッドを管体で構成し、この管体を多重管とすることにより、地中の掘進長を熱交換に必要な限度に留め、経済的な施工で地中熱との熱交換を達成することを目的とする。   In the present invention, the connecting rod is composed of a tubular body, and this tubular body is a multiple tube, so that the underground excavation length is limited to the limit necessary for heat exchange, and the heat with the underground heat is economically constructed. The purpose is to achieve the exchange.

請求項1に記載の本発明は、地盤の恒温層内に水平方向に埋設して内部の流体と周囲の地中熱とで熱交換するための少なくとも10m以上の長い多重管であって、内管と、これを囲む外管、あるいはこれを囲む少なくとも1層の中管と外管とからなる多重管で構成され、前記外管を先端において閉塞するとともに、前記内管を前記外管の先端で開口させて、前記内管と、前記外管と内管とで囲まれる空間とで往復する管路を形成させたことを特徴とする熱交換用多重管である。   The present invention as set forth in claim 1 is a long multiple pipe of at least 10 m or more for horizontally exchanging in a constant temperature layer of the ground and exchanging heat between the internal fluid and the surrounding underground heat. A tube and an outer tube surrounding the tube, or a multiple tube including at least one layer of an inner tube and an outer tube surrounding the tube, the outer tube is closed at a tip, and the inner tube is a tip of the outer tube The heat exchanging pipe is characterized in that a pipe path reciprocating between the inner pipe and the space surrounded by the outer pipe and the inner pipe is formed.

請求項2に記載の本発明は、前記内管の径が、外管の径の(1/2)1/2以下である請求項1に記載の熱交換用多重管である。 The present invention according to claim 2 is the multiple tube for heat exchange according to claim 1, wherein the diameter of the inner tube is equal to or less than (1/2) 1/2 of the diameter of the outer tube.

請求項3に記載の本発明は、前記内管を熱伝導率の低い材料で構成するとともに、前記外管を熱伝導率の高い材料で構成したことを特徴とする請求項1または2に記載の熱交換用多重管である。   According to a third aspect of the present invention, the inner pipe is made of a material having a low thermal conductivity, and the outer pipe is made of a material having a high thermal conductivity. It is a multiple tube for heat exchange.

請求項4に記載の本発明は、前記内管の外周に熱伝導率の低い材料で構成した断熱層を設けるとともに、前記外管を熱伝導率の高い材料で構成したことを特徴とする請求項1または2に記載の熱交換用多重管である。   According to a fourth aspect of the present invention, a heat insulating layer made of a material having low thermal conductivity is provided on the outer periphery of the inner tube, and the outer tube is made of a material having high heat conductivity. Item 3. The heat exchange multiple tube according to Item 1 or 2.

請求項5に記載の本発明は、前記内管の外周を少なくとも1層の中管で囲み、囲んだ部分の両端を閉塞して内部を真空状態とし断熱層を形成したことを特徴とする請求項4に記載の熱交換用多重管である。   The present invention according to claim 5 is characterized in that the outer periphery of the inner tube is surrounded by at least one layer of inner tube, and both ends of the enclosed portion are closed to form a heat-insulating layer in a vacuum state. Item 5. A heat exchange multiple tube according to Item 4.

さらに、請求項6に記載の本発明は、地盤の恒温層内に水平方向に埋設した熱交換用多重管における前記内管を、管長方向に伸び、両端を閉塞された複数の周孔を形成した多孔管で構成し、この周孔に熱媒を封入したことを特徴とする請求項1または2に記載の熱交換用多重管である。   Furthermore, in the present invention described in claim 6, the inner tube of the heat exchange multiplex tube embedded in the constant temperature layer of the ground in the horizontal direction is extended in the tube length direction, and a plurality of peripheral holes closed at both ends are formed. The multi-tube for heat exchange according to claim 1 or 2, wherein the heat transfer medium is sealed in the peripheral hole.

そして請求項7に記載の本発明は、地盤の恒温層内に水平方向に埋設した地中配管内と地上の熱交換器との間に液体を循環させ、熱交換器から得られる熱により建物内の被空調空間を冷暖房する地中熱利用空調システムにおいて、前記地中配管が請求項1ないし5のいずれかに記載の熱交換用多重管であることを特徴とする地中熱利用空調システムである。   According to the seventh aspect of the present invention, a liquid is circulated between an underground pipe buried horizontally in a constant temperature layer of the ground and a heat exchanger on the ground, and heat is obtained from the heat exchanger. A geothermal air conditioning system for cooling and heating an air-conditioned space in the interior, wherein the underground pipe is the multiple pipe for heat exchange according to any one of claims 1 to 5. It is.

なお、本発明で「水平方向」とは、完全に水平な方向に限られないのであり、本発明の目的を損なわない範囲で所定の角度傾斜している方向を含み、例えば±10°程度傾斜している方向であってもよい。   In the present invention, the “horizontal direction” is not limited to a completely horizontal direction, and includes a direction inclined at a predetermined angle within a range not impairing the object of the present invention, for example, about ± 10 ° It may be the direction in which

本発明によれば、地中配管を地中熱との熱交換に必要なだけの長さとすればよいので地中熱利用空調システムが経済的、効率的に構築できるという、すぐれた効果を奏する。   According to the present invention, since it is only necessary to make the underground pipe as long as necessary for heat exchange with the underground heat, an excellent effect is achieved that the underground heat utilization air conditioning system can be constructed economically and efficiently. .

本発明の第1の実施例の多重管の断面図である。It is sectional drawing of the multiple tube of the 1st Example of this invention. 本発明の第2の実施例におけるひれ付き多孔管の断面図である。It is sectional drawing of the perforated pipe with a fin in the 2nd Example of this invention. 本発明実施例の多重管の埋設状態を示す概念図である。It is a conceptual diagram which shows the embedment state of the multiple pipe | tube of this invention Example. 本発明実施例の地中熱利用空調システムの構成図である。It is a block diagram of the underground heat utilization air conditioning system of an Example of this invention. 本発明の多重管の断面寸法を説明する説明図である。It is explanatory drawing explaining the cross-sectional dimension of the multiple tube | pipe of this invention. 従来の技術における地中熱利用空調システムの構成図である。It is a block diagram of the underground heat utilization air conditioning system in a prior art. 本発明に係わる従来公知の掘進工法の概念図である。It is a conceptual diagram of the conventionally well-known excavation method concerning this invention. 従来の技術における掘進ヘッドの断面図である。It is sectional drawing of the excavation head in a prior art. 従来の技術における掘進機の外観図である。It is an external view of the excavator in the prior art.

本発明の多重管が備えるべき断面寸法について、2重管の例で図面により説明する。   The cross-sectional dimensions that the multiple tube of the present invention should have will be described with reference to the drawings using an example of a double tube.

図5(a)は二重管の断面を示し、外管の半径をr、内管の半径をr、外管の周長をL、内管の周長をLとする。 FIG. 5A shows a cross section of the double tube, where the radius of the outer tube is r 1 , the radius of the inner tube is r 2 , the circumference of the outer tube is L 1 , and the circumference of the inner tube is L 2 .

本発明では、内管と、外管と内管とで囲まれる空間とで流体を往復させるので、(b)に示すように外管と内管とに囲まれた部分の断面積をS、内管の断面積をSとすると、往復の流量が等しいとすれば、
=S
であり、
π(r −r )=π・r
となる。r>0であるから、
=r 1/2
となる。これがいわば限界値であり、rがこれ以下になることは好ましくない。
In the present invention, and the inner tube, since the reciprocating fluid in the space surrounded by the outer tube and the inner tube, the cross-sectional area of surrounded by the outer tube and the inner tube portion as shown in (b) S 1 , and the cross-sectional area of the inner tube and S 2, if the reciprocating flow are equal,
S 1 = S 2
And
π (r 1 2 −r 2 2 ) = π · r 2 2
It becomes. Since r 2 > 0,
r 1 = r 2 1/2
It becomes. This is a limit value, and it is not preferable that r 1 be less than this.

さてこのとき,
=L 1/2
であるから,外管と周囲の地層との接触面積は,外管の内側の水と内管の水との接触面積よりも21/2倍だけ大きい。
At this time,
L 1 = L 2 1/2
Therefore, the contact area between the outer tube and the surrounding strata is 2 1/2 times larger than the contact area between the water inside the outer tube and the water in the inner tube.

そしてrがこれよりも大きければ、あるいはrがこれよりも小さければ、接触面積の比はさらに大きくなる。 If r 1 is larger than this, or if r 2 is smaller than this, the ratio of the contact areas is further increased.

このとき内部の流速は、
=S
のときは同じであるが、外管に対して内管が相対的に細くなれば、外側の流れに対して内側の流れが速くなり、地中熱との熱交換はゆっくり行われ,内部同士の熱交換(熱損失)はあまり行わずに排出することができる.
At this time, the internal flow rate is
S 1 = S 2
However, if the inner tube becomes relatively thin with respect to the outer tube, the inner flow becomes faster with respect to the outer flow, and heat exchange with the underground heat takes place slowly. The heat exchange (heat loss) of can be discharged without much.

以上から,
(1)内管の径を外管の(1/2)1/2倍よりも細くする。
(2)外管には熱伝導率の高い材料(銅,アルミニウム等)を用い、内管には熱伝導率の低い材料(ステンレス鋼等)を用いる。
(3)外管と内管との中間に断熱層を設けるか、あるいは真空層を設ける。
(4)内管にヒートパイプを使用して外部との熱交換を促進する。
などが有効であり、これにより、地層との交換熱を、内部損失を少なくして外部に取り出すことができる。外管と内管との断熱は、空調システムを昼夜で断続運転する場合などに特に有効である。
From the above,
(1) The diameter of the inner tube is made thinner than (1/2) 1/2 times the outer tube.
(2) A material with high thermal conductivity (copper, aluminum, etc.) is used for the outer tube, and a material with low thermal conductivity (stainless steel, etc.) is used for the inner tube.
(3) A heat insulating layer is provided between the outer tube and the inner tube, or a vacuum layer is provided.
(4) Promote heat exchange with the outside by using a heat pipe in the inner pipe.
As a result, the heat exchanged with the formation can be extracted outside with less internal loss. Insulation between the outer pipe and the inner pipe is particularly effective when the air conditioning system is intermittently operated day and night.

以下本発明の望ましい実施例を図面により説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1は第1の実施例の地中配管である多重管を示す断面図で、符号11は内管、符号12は中管、符号13は外管、符号14は真空処理の際の逆止弁である。多重管は、施工の際は図7に示すように掘進ヘッド6の後方に、掘進の進行に伴って継手を介して順次接続されるものであり、配管経路の屈曲に追随できる可撓性を有する。図1では中間を省略して先端部と末端部を示している。構造は内管11と、これを囲む中管12と、さらにこの中管12を囲む外管13とからなる多重管であり、先端部において前記内管11と外管13の内側とを導通させるとともに、前記内管11と中管12とで囲まれる空間をこの多重管1の両端で閉塞し、その内部を真空として断熱性を付与し、地上にある末端部では例えば外管13と中管12との管に熱交換用の液体を流入させ、内管11から流出させるように構成する。流れの向きは逆でもよい。前記空間内を真空とする代わりに内管に断熱材を被覆してもよい。いずれにしても内管11と中管12とで囲まれる空間を断熱層とすることにより、外側から流入する流体と内管から流出する流体とが隣接しないから、地中熱と熱交換した液体がそのままの状態で地上に戻り、損失がほとんど発生しない。   FIG. 1 is a cross-sectional view showing a multiple pipe which is an underground pipe of the first embodiment. Reference numeral 11 is an inner pipe, reference numeral 12 is an inner pipe, reference numeral 13 is an outer pipe, and reference numeral 14 is a check during vacuum processing. It is a valve. As shown in FIG. 7, the multiple pipes are sequentially connected to the rear of the digging head 6 via a joint as the digging progresses, and have flexibility to follow the bending of the piping path. Have. In FIG. 1, the middle portion is omitted and the tip portion and the end portion are shown. The structure is a multiple tube comprising an inner tube 11, an inner tube 12 surrounding the inner tube 11, and an outer tube 13 surrounding the inner tube 12, and the inner tube 11 and the inner side of the outer tube 13 are electrically connected at the tip. In addition, the space surrounded by the inner tube 11 and the inner tube 12 is closed at both ends of the multiple tube 1, and the inside is vacuumed to provide heat insulation. At the end portion on the ground, for example, the outer tube 13 and the middle tube The liquid for heat exchange is made to flow into the pipe | tube with 12, and it is made to flow out from the inner pipe | tube 11. FIG. The direction of the flow may be reversed. Instead of evacuating the space, the inner tube may be covered with a heat insulating material. In any case, since the space surrounded by the inner tube 11 and the inner tube 12 is a heat insulating layer, the fluid flowing from the outside and the fluid flowing out from the inner tube are not adjacent to each other. Returns to the ground as it is, with little loss.

図1は3重管の例であるが、4重管として断熱層をさらに増やしてもよい。   Although FIG. 1 shows an example of a triple pipe, the heat insulating layer may be further increased as a quadruple pipe.

図2は第2の実施例における多孔管を示す断面図である。符号11Aは多孔管、符号111は内外面に設けられた熱伝達のためのひれ(フィン)、符号112は管長方向に伸び、両端を閉塞された複数の周孔である。この実施例では、内管としてこのようなひれ付きの多孔管を使用し、この周孔112内に熱媒を封入して、いわゆる「ヒートパイプ」を構成し、内管の両面における熱移動を促進させる。ひれはいうまでもなく伝熱面積を増やすためであるから、場合によっては設けなくてもよいし、ひれの代わりに表面に波を形成してもよい。周孔の内面にもひれや波を設けるようにすれば、内部の熱媒の対流を助ける。なお、このような形状の多孔管は、アルミニウム等の押し出し成形で製造可能である。   FIG. 2 is a cross-sectional view showing a perforated tube in the second embodiment. Reference numeral 11A is a perforated tube, reference numeral 111 is a fin (fin) for heat transfer provided on the inner and outer surfaces, and reference numeral 112 is a plurality of peripheral holes extending in the tube length direction and closed at both ends. In this embodiment, such a finned perforated tube is used as the inner tube, and a heat medium is enclosed in the peripheral hole 112 to form a so-called “heat pipe”, which performs heat transfer on both sides of the inner tube. Promote. Needless to say, fins are used to increase the heat transfer area, and may not be provided in some cases, or waves may be formed on the surface instead of fins. If fins and waves are also provided on the inner surface of the peripheral hole, it will help convection of the internal heat medium. In addition, the porous tube of such a shape can be manufactured by extrusion molding, such as aluminum.

熱媒は熱媒体ともいい、熱を移動させるために使用される流体の総称であるが、広義には砂や樹脂粉末等の非流体も含む。熱容量が大きいか潜熱が大きく、それ自身は不燃性で毒性がなく安価なものが望ましく、フロン、二酸化炭素、ブライン、アンモニア、シリコン油、砂等、多くの物質が知られている。気体、液体等の相の変化を伴う場合、その変化する圧力や温度が使用条件に合致するものを選定すればよい。   The heat medium is also called a heat medium, and is a general term for fluids used to move heat, but in a broad sense includes non-fluids such as sand and resin powder. It is desirable that it has a large heat capacity or large latent heat, and is itself non-flammable, non-toxic and inexpensive, and many substances are known, such as chlorofluorocarbon, carbon dioxide, brine, ammonia, silicon oil, and sand. When accompanied by a change in the phase of gas, liquid, etc., it is only necessary to select a gas whose pressure or temperature changes according to the use conditions.

図3は、本発明の多重管の埋設状態を示す概念図で、符号1は多重管である。少なくとも10m以上の長い多重管が、地盤の恒温層内に略水平方向に埋設されており、多重管1と地上との間で実線の矢印、あるいは破線の矢印のように液体を循環させる。このように本発明の多重管は地上に建物や設備、樹木等があっても、十分な深さとすることにより、それらに支障なく埋設できる。   FIG. 3 is a conceptual diagram showing a buried state of the multiple pipe of the present invention, and reference numeral 1 denotes the multiple pipe. A long multiple tube of at least 10 m or more is embedded in the constant temperature layer of the ground in a substantially horizontal direction, and the liquid is circulated between the multiple tube 1 and the ground as indicated by a solid line arrow or a broken line arrow. Thus, even if there are buildings, facilities, trees, etc. on the ground, the multiple pipe of the present invention can be buried without hindrance by setting it to a sufficient depth.

図4は本発明の多重管を使用した地中熱利用空調システムの構成図で、地中配管1は図1に示したような3重管である。掘進中は連結ロッドとして機能するので、可撓性を有し、掘進の進捗に伴い順次後方に新たなものが接続される。地中配管1は恒温層内で地中熱との熱交換に必要十分な長さを有していればよく、図5と比較すれば明らかなように、反対側の地上まで到達させるための長さよりもはるかに短い距離でよいから、施工がきわめて経済的である。   FIG. 4 is a block diagram of the underground heat utilization air conditioning system using the multiple pipe of the present invention, and the underground pipe 1 is a triple pipe as shown in FIG. Since it functions as a connecting rod during excavation, it has flexibility, and new ones are sequentially connected to the rear as the excavation progresses. It is sufficient that the underground pipe 1 has a necessary and sufficient length for heat exchange with the underground heat in the thermostatic layer, and as is apparent from comparison with FIG. 5, for reaching the ground on the opposite side. Construction is extremely economical because it can be much shorter than the length.

以上多重管を掘進用の連結ロッドとして使用する例について説明したが、掘進作業は外管のみで行い、掘進後にその内部に内管を挿入するようにしてもよい。この場合、内管を外管の中心位置に保持する必要はあまりないので、保持具等は不要であり、単に挿入すればよい。   The example in which the multiple pipe is used as the connecting rod for excavation has been described above. However, the excavation work may be performed only with the outer pipe, and the inner pipe may be inserted into the interior after the excavation. In this case, since it is not necessary to hold the inner tube at the center position of the outer tube, a holding tool or the like is unnecessary, and it may be simply inserted.

採熱、放熱の目的からみて、外管としては熱伝導率の高い鋼管や銅管、内管としては熱伝導率の低いステンレスパイプや塩化ビニル樹脂管などが好ましい。   From the viewpoint of heat collection and heat dissipation, a steel pipe or copper pipe with high thermal conductivity is preferable as the outer pipe, and a stainless steel pipe or vinyl chloride resin pipe with low thermal conductivity is preferable as the inner pipe.

1…地中配管、 1A…連結ロッド、 2…循環ポンプ、 3…熱交換器、 4…送風機、 5…循環タンク、 6…掘進ヘッド、 7…掘進機、 11…内管、 11A…多孔管、 12…中管、 13…外管、 14…逆止弁、 61…ジェットノズル、 62…流体経路、 71…前進フレーム、 72…回転用モータ、 73…チェーン、 74…前進用モータ、 111…ひれ、 112…周孔、 R…被空調空間、 S…構造物。   DESCRIPTION OF SYMBOLS 1 ... Underground piping, 1A ... Connecting rod, 2 ... Circulation pump, 3 ... Heat exchanger, 4 ... Blower, 5 ... Circulation tank, 6 ... Digging head, 7 ... Digging machine, 11 ... Inner pipe, 11A ... Porous pipe 12 ... Medium pipe, 13 ... Outer pipe, 14 ... Check valve, 61 ... Jet nozzle, 62 ... Fluid path, 71 ... Advance frame, 72 ... Motor for rotation, 73 ... Chain, 74 ... Motor for advance, 111 ... Fins 112 ... Circumferential hole R ... Space to be air conditioned S ... Structure

Claims (7)

地盤の恒温層内に水平方向に埋設して内部の流体と周囲の地中熱とで熱交換するための少なくとも10m以上の長い多重管であって、内管と、これを囲む外管、あるいはこれを囲む少なくとも1層の中管と外管とからなる多重管で構成され、前記外管を先端において閉塞するとともに、前記内管を前記外管の先端で開口させて、前記内管と、前記外管と内管とで囲まれる空間とで往復する管路を形成させたことを特徴とする熱交換用多重管。   A long multiple pipe of at least 10 m or more, which is buried in the constant temperature layer of the ground in a horizontal direction and exchanges heat between the internal fluid and the surrounding underground heat, and includes an inner pipe and an outer pipe surrounding the inner pipe, or It is composed of a multiple tube composed of at least one layer of an inner tube and an outer tube surrounding the outer tube, and closes the outer tube at the tip, and opens the inner tube at the tip of the outer tube, A heat exchanging multiple pipe characterized in that a pipe path reciprocating between a space surrounded by the outer pipe and the inner pipe is formed. 前記内管の径が、外管の径の(1/2)1/2以下である請求項1に記載の熱交換用多重管。 The multiple tube for heat exchange according to claim 1, wherein the diameter of the inner tube is equal to or less than (1/2) 1/2 of the diameter of the outer tube. 前記内管を熱伝導率の低い材料で構成するとともに、前記外管を熱伝導率の高い材料で構成したことを特徴とする請求項1または2に記載の熱交換用多重管。   The multiple tube for heat exchange according to claim 1 or 2, wherein the inner tube is made of a material having a low heat conductivity, and the outer tube is made of a material having a high heat conductivity. 前記内管の外周に熱伝導率の低い材料で構成した断熱層を設けるとともに、前記外管を熱伝導率の高い材料で構成したことを特徴とする請求項1または2に記載の熱交換用多重管。   The heat exchanger according to claim 1 or 2, wherein a heat insulating layer made of a material having low thermal conductivity is provided on an outer periphery of the inner tube, and the outer tube is made of a material having high heat conductivity. Multiple tubes. 前記内管の外周を少なくとも1層の中管で囲み、囲んだ部分の両端を閉塞して内部を真空状態とし断熱層を形成したことを特徴とする請求項4に記載の熱交換用多重管。   5. The heat exchanging multiple tube according to claim 4, wherein the outer periphery of the inner tube is surrounded by at least one layer of an inner tube, and both ends of the enclosed portion are closed to form a heat-insulating layer in a vacuum state. . 地盤の恒温層内に水平方向に埋設した熱交換用多重管における前記内管を、管長方向に伸び、両端を閉塞された複数の周孔を形成した多孔管で構成し、この周孔に熱媒を封入したことを特徴とする請求項1または2に記載の熱交換用多重管。   The inner pipe in the heat exchange multiplex pipe embedded in the constant temperature layer of the ground in the horizontal direction is composed of a perforated pipe extending in the pipe length direction and having a plurality of peripheral holes closed at both ends. The multiple tube for heat exchange according to claim 1 or 2, wherein a medium is enclosed. 地盤の恒温層内に水平方向に埋設した地中配管内と地上の熱交換器との間に液体を循環させ、熱交換器から得られる熱により建物内の被空調空間を冷暖房する地中熱利用空調システムにおいて、前記地中配管が請求項1ないし6のいずれかに記載の熱交換用多重管であることを特徴とする地中熱利用空調システム。   Geothermal heat that circulates liquid between underground piping horizontally embedded in the thermostatic layer of the ground and the heat exchanger on the ground, and heats and cools the air-conditioned space in the building with the heat obtained from the heat exchanger In a utilization air-conditioning system, the underground piping is the multiple pipe | tube for heat exchange in any one of Claim 1 thru | or 6, The geothermal utilization air-conditioning system characterized by the above-mentioned.
JP2009111884A 2009-05-01 2009-05-01 Multiple-tube for heat exchanger and geothermal air conditioning system using the same Pending JP2010261633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111884A JP2010261633A (en) 2009-05-01 2009-05-01 Multiple-tube for heat exchanger and geothermal air conditioning system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111884A JP2010261633A (en) 2009-05-01 2009-05-01 Multiple-tube for heat exchanger and geothermal air conditioning system using the same

Publications (1)

Publication Number Publication Date
JP2010261633A true JP2010261633A (en) 2010-11-18

Family

ID=43359863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111884A Pending JP2010261633A (en) 2009-05-01 2009-05-01 Multiple-tube for heat exchanger and geothermal air conditioning system using the same

Country Status (1)

Country Link
JP (1) JP2010261633A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100270003A1 (en) * 2009-04-27 2010-10-28 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
WO2013105468A1 (en) * 2012-01-10 2013-07-18 株式会社九州パワーサービス Geothermal heat exchanger and geothermal power generation device
CN103292505A (en) * 2013-07-03 2013-09-11 史修庚 Heat exchanging column for storing and taking out solar energy
JP2013217628A (en) * 2012-04-06 2013-10-24 Hajime Ozeki Gravity power generation
JP2014025638A (en) * 2012-07-26 2014-02-06 Koichi Takezaki Underground heat exchange system
JP2015180825A (en) * 2012-01-10 2015-10-15 ジャパン・ニュー・エナジー株式会社 Ground heat exchanger and geothermal power generator
WO2017003239A1 (en) * 2015-06-30 2017-01-05 한국생산기술연구원 Geothermal well insulating pipe, geothermal well pipe assembly, geothermal well heat exchange system, and construction method therefor
GB2549832A (en) * 2016-03-08 2017-11-01 Henderson William Geothermal power system
JP2017210951A (en) * 2016-05-23 2017-11-30 協同テック株式会社 Ground heat recovery device including triple pipe
CN110185401A (en) * 2019-04-30 2019-08-30 韩金井 A kind of heating heating well construction
JP2019184098A (en) * 2018-04-04 2019-10-24 鹿島建設株式会社 Burial method for underground heat exchanger
CN113091335A (en) * 2020-01-08 2021-07-09 陈俊雄 Heat extraction device and power generation system
JP2021183905A (en) * 2017-05-16 2021-12-02 株式会社イノアック住環境 Spacer for heat exchanger

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8307896B2 (en) * 2009-04-27 2012-11-13 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
US20100270003A1 (en) * 2009-04-27 2010-10-28 Alberto Sarria Two-concentric pipe system to heat fluids using the earth's interior thermal energy (deep)
AU2012365103B2 (en) * 2012-01-10 2016-08-04 Japan New Energy Co., Ltd. Geothermal heat exchanger and geothermal power generation device
WO2013105468A1 (en) * 2012-01-10 2013-07-18 株式会社九州パワーサービス Geothermal heat exchanger and geothermal power generation device
JP2013164062A (en) * 2012-01-10 2013-08-22 Kyushu Power Service:Kk Geothermal heat exchanger and geothermal power generation device
JP2015180825A (en) * 2012-01-10 2015-10-15 ジャパン・ニュー・エナジー株式会社 Ground heat exchanger and geothermal power generator
JP2013217628A (en) * 2012-04-06 2013-10-24 Hajime Ozeki Gravity power generation
JP2014025638A (en) * 2012-07-26 2014-02-06 Koichi Takezaki Underground heat exchange system
CN103292505A (en) * 2013-07-03 2013-09-11 史修庚 Heat exchanging column for storing and taking out solar energy
WO2017003239A1 (en) * 2015-06-30 2017-01-05 한국생산기술연구원 Geothermal well insulating pipe, geothermal well pipe assembly, geothermal well heat exchange system, and construction method therefor
CN108027174A (en) * 2015-06-30 2018-05-11 韩国生产技术研究院 Geothermal well instlated tubular, geothermal well-pipe assembly and geothermal well heat-exchange system and its construction method
GB2549832A (en) * 2016-03-08 2017-11-01 Henderson William Geothermal power system
JP2017210951A (en) * 2016-05-23 2017-11-30 協同テック株式会社 Ground heat recovery device including triple pipe
JP2021183905A (en) * 2017-05-16 2021-12-02 株式会社イノアック住環境 Spacer for heat exchanger
JP7232450B2 (en) 2017-05-16 2023-03-03 株式会社イノアック住環境 Spacer for heat exchanger
JP2019184098A (en) * 2018-04-04 2019-10-24 鹿島建設株式会社 Burial method for underground heat exchanger
JP7010751B2 (en) 2018-04-04 2022-01-26 鹿島建設株式会社 How to bury a geothermal heat exchanger
CN110185401A (en) * 2019-04-30 2019-08-30 韩金井 A kind of heating heating well construction
CN113091335A (en) * 2020-01-08 2021-07-09 陈俊雄 Heat extraction device and power generation system

Similar Documents

Publication Publication Date Title
JP2010261633A (en) Multiple-tube for heat exchanger and geothermal air conditioning system using the same
EP2640971B1 (en) System and method for extracting energy
JP6448085B2 (en) Ground freezing method and ground freezing system
JP4642579B2 (en) Geothermal heat collection system
KR100824419B1 (en) Structure for establishment in-case of heating exchange system using the geothermal
JP4632905B2 (en) Geothermal air conditioning system
JPS61268956A (en) Geothermic heat exchanging device
JP2008292107A (en) Heat exchanger, heat exchange system, and construction method of heat exchange system
WO2009133709A1 (en) Heat exchanger and air conditioning system
JP5103070B2 (en) Support pile system for heat exchange for residential and architectural use using geothermal heat
JP2007120781A (en) Water-cooled heat pump air-conditioning system utilizing ground heat
JP2003262430A (en) Heat pump using underground heat
JP2005090902A (en) Geothermal heat pump structure
JP4981516B2 (en) HEAT EXCHANGER, HEAT EXCHANGE SYSTEM, HEAT EXCHANGER MANUFACTURING METHOD, AND HEAT EXCHANGE SYSTEM CONSTRUCTION METHOD
JP2009041231A (en) Buried heat exchanger and its manufacturing method
JP6089472B2 (en) Holding member and underground heat exchanger
JP2013119227A (en) Pipe manufacturing member and heat collecting structure
JP6237867B2 (en) Insertion method of underground heat exchanger
JP5753771B2 (en) Pipe-making member and heat collection structure
JP6738596B2 (en) Underground heat exchange mechanism
JP2008096015A (en) Burying structure of underground heat exchanger
JP2014020644A (en) Underground heat exchanger, and method of inserting underground heat exchanger
JP2007010276A (en) Underground heat exchanger
KR20070064169A (en) Terrestial heat a collection equipment and the construct of method
WO2009133708A1 (en) Heat exchanger and air conditioning system