JP2010256165A - Photoionization detector and method of detecting photoionization - Google Patents

Photoionization detector and method of detecting photoionization Download PDF

Info

Publication number
JP2010256165A
JP2010256165A JP2009106520A JP2009106520A JP2010256165A JP 2010256165 A JP2010256165 A JP 2010256165A JP 2009106520 A JP2009106520 A JP 2009106520A JP 2009106520 A JP2009106520 A JP 2009106520A JP 2010256165 A JP2010256165 A JP 2010256165A
Authority
JP
Japan
Prior art keywords
electrode
current
measurement
detection
photoionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009106520A
Other languages
Japanese (ja)
Other versions
JP5448549B2 (en
Inventor
Yasuyuki Hirano
康之 平野
Hiromichi Yoshida
裕道 吉田
Yoshiaki Haramoto
欽朗 原本
Erito Kazawa
エリト 加沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority to JP2009106520A priority Critical patent/JP5448549B2/en
Publication of JP2010256165A publication Critical patent/JP2010256165A/en
Application granted granted Critical
Publication of JP5448549B2 publication Critical patent/JP5448549B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoionization detector and a detecting method, reducing a decrease in measurement sensitivity and performing precise, maintenance-free measurement for a long time. <P>SOLUTION: The photoionization detector has: a detection electrode 2 of VOC in a measurement fluid; an AC application circuit 3 for applying an AC voltage or an AC current to the detection electrode 2; a UV lamp 4 for irradiating the measurement fluid with ultraviolet rays; an excitation circuit 5 of the UV lamp 4; and a measurement circuit 7 for measuring current or voltage flowing to the detection electrode 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光イオン化検出器及び光イオン化検出方法に関するものであり、特に測定感度の低下を低減でき、高精度測定が可能な光イオン化検出器及び光イオン化検出方法に関する。   The present invention relates to a photoionization detector and a photoionization detection method, and more particularly to a photoionization detector and a photoionization detection method capable of reducing a decrease in measurement sensitivity and capable of high-accuracy measurement.

トルエン、キシレンなどの揮発性有機化合物(以下、Volatile Organ−ic Compounds:VOCという)は光化学スモッグや浮遊粒子状物質の原因となっており、工場などの排出源付近の住環境にも悪影響を及ぼす。したがって、特に排出施設周辺や都心部においてはVOCの削減が重要な課題となっている。
そして、VOCを削減するために大気汚染防止法や環境確保条例による規制等が定められているが、環境保全と産業振興の両立のためには、更なる削減技術の開発が求められている。近年、環境への関心が高まるにつれ、VOCを測定することの必要性も増してきており、より正確に精度良くVOCの測定ができる技術が望まれている。
Volatile organic compounds such as toluene and xylene (hereinafter referred to as “Volatile Organ-ic Compounds”: VOC) cause photochemical smog and suspended particulate matter, and adversely affect the living environment in the vicinity of emission sources such as factories. . Therefore, VOC reduction is an important issue especially in the vicinity of the discharge facility and in the city center.
In order to reduce VOCs, regulations based on the Air Pollution Control Act and the Environment Assurance Ordinance have been established. However, in order to achieve both environmental conservation and industrial promotion, further reduction technology development is required. In recent years, as interest in the environment has increased, the need to measure VOCs has increased, and a technology that can measure VOCs more accurately and accurately is desired.

VOC測定装置としては、例えば、水素炎イオン化検出器(公定法)、触媒酸化・非分散形赤外線分析計(公定法)、半導体センサ、触媒燃焼式センサ、ガスクロマトグラフィなどがある。なかでも、水素炎イオン化検出器は公定法として用いられ、簡易で、正確にVOCを測定することができるとしている。しかしながら、水素ボンベなどの設置が必要であることから装置が煩雑であり、また装置自体も高価であるという問題があった。また、触媒酸化・非分散形赤外線分析計も公定法として用いられているが、水素炎イオン化検出器と同様に、大型装置が必要で、装置自体も高価であるという問題があった。
また、半導体センサはコンタミネーションによる感度消失、ドリフトによって出力値が不安定である、濃度により感度差が生じるという問題、触媒燃焼式センサについても同様に感度消失、ドリフト、低濃度(100ppm以下)は測定不可能であること、更に、ガスクロマトグラフィは大型装置であり連続測定はできない、高価であるという問題があった。
Examples of the VOC measurement device include a flame ionization detector (official method), a catalytic oxidation / non-dispersion infrared analyzer (official method), a semiconductor sensor, a catalytic combustion type sensor, and a gas chromatography. Among them, the flame ionization detector is used as an official method, and it is simple and can measure VOC accurately. However, since installation of a hydrogen cylinder or the like is necessary, there is a problem that the apparatus is complicated and the apparatus itself is expensive. Further, a catalytic oxidation / non-dispersion type infrared analyzer is also used as an official method, but, like a flame ionization detector, there is a problem that a large apparatus is required and the apparatus itself is expensive.
In addition, the sensitivity loss due to contamination, the output value is unstable due to drift, the problem that sensitivity difference occurs due to concentration, the loss of sensitivity, drift, and low concentration (100 ppm or less) are also the same for the catalytic combustion type sensor. In addition, the gas chromatography has a problem that it is expensive because the gas chromatography is a large apparatus and cannot be continuously measured.

一方、これらの装置の他に、図9に例示したようなVOC測定装置としての光イオン化検出器(光イオン化センサによる測定法)が知られている。光イオン化検出器(PID)の測定原理は、一対の印加電極が配置された装置内に測定流体を誘導して短波長の紫外線(UV)を照射し、VOCをイオン化させ、そのイオンを印加電極で捕捉することにより、VOC濃度に比例した検出電流を得ることができるというものである。すなわち、UVによってチャージされたイオンが電極に導かれて一対の印加電極間の電流値が変化するため、その電流値を測定することにより、VOC濃度に換算することで、VOC濃度が測定できる。   On the other hand, in addition to these devices, a photoionization detector (measurement method using a photoionization sensor) as a VOC measurement device illustrated in FIG. 9 is known. The measurement principle of the photoionization detector (PID) is that a measuring fluid is guided into a device in which a pair of application electrodes are arranged, and ultraviolet rays (UV) of a short wavelength are irradiated to ionize VOC, and the ions are applied to the application electrode. The detection current proportional to the VOC concentration can be obtained by capturing with. That is, since ions charged by UV are guided to the electrode and the current value between the pair of applied electrodes changes, the VOC concentration can be measured by converting the current value to the VOC concentration.

そして、光イオン化検出器は、VOC測定流体FLが導入及び排出される検出室1と、検出室1内に設けられた金属電極2と、金属電極2に直流電圧を印加する直流印加回路13と、検出室1内の測定流体に短波長の紫外線を照射するUVランプ4と、UVランプ4を励起する励起回路5と、金属電極2を流れる電流を測定する測定回路7(例えば、電流計Aを接続する)と、更に電流値からVOC濃度へ換算するための計算を行う演算器8(制御装置)などから構成される。   The photoionization detector includes a detection chamber 1 into which the VOC measurement fluid FL is introduced and discharged, a metal electrode 2 provided in the detection chamber 1, and a DC application circuit 13 that applies a DC voltage to the metal electrode 2. , A UV lamp 4 that irradiates the measurement fluid in the detection chamber 1 with ultraviolet light of a short wavelength, an excitation circuit 5 that excites the UV lamp 4, and a measurement circuit 7 that measures the current flowing through the metal electrode 2 (for example, an ammeter A) And an arithmetic unit 8 (control device) for performing a calculation for converting the current value into the VOC concentration.

この従来の光イオン化検出器では、VOC測定流体FLは、検出室1に導入されて、UVランプ4による紫外線の照射後、検出室1から排出される。検出室1には、金属電極(直流印加電極)が設けられ、導入された測定流体FLは、検出室1側壁部に設けられたUVランプ4により照射される紫外線によってVOCがイオン化され、このイオン又は電子が金属電極2へ引き寄せられて捕捉されることで印加電極2に電流が生じる。
そして、この電流を測定回路7によって測定する。更に、当該電流値は演算器8により物質ごと(測定VOCの物質)の係数を乗じることで、VOC濃度として出力される。 このような光イオン化検出器は、公定法ではないものの、上述の他の検出器、検出方法と比べて、各VOC成分に対して選択性があるため、特定のVOCを測定するのに適しているうえ、ほとんどのVOC測定に有効な方法であり、装置も大型ではないため、簡易にVOCを測定でき、VOCの測定方法として非常に有用な方法である。
In this conventional photoionization detector, the VOC measurement fluid FL is introduced into the detection chamber 1 and discharged from the detection chamber 1 after being irradiated with ultraviolet rays by the UV lamp 4. The detection chamber 1 is provided with a metal electrode (direct current application electrode), and the introduced measurement fluid FL is ionized by ultraviolet rays irradiated by a UV lamp 4 provided on the side wall of the detection chamber 1, and this ion Alternatively, an electric current is generated in the application electrode 2 by attracting the electrons to the metal electrode 2 and capturing them.
Then, this current is measured by the measurement circuit 7. Further, the current value is output as a VOC concentration by multiplying the coefficient of each substance (measured VOC substance) by the calculator 8. Although such a photoionization detector is not an official method, it is more suitable for measuring a specific VOC because it has selectivity for each VOC component compared to the other detectors and detection methods described above. In addition, it is an effective method for most VOC measurements, and since the apparatus is not large in size, it can easily measure VOCs and is a very useful method for measuring VOCs.

しかしながら、従来の光イオン化検出器は、(1)長時間の使用により金属電極表面に絶縁物等のコンタミネーションが蓄積し、イオン化したVOCの電極への到達が阻害されて感度が低下すること、また(2)金属電極が汚染物質で覆われた場合は感度を失いセンサとして機能しなくなること、という問題があった。
したがって、汚染物質が金属電極表面に蓄積すると、再現性を得ることができなくなるため、定期的な電極のメンテナンスを必要とした。
そこで、下記特許文献1によれば、揮発性ガス濃度(VOCガス濃度に相当)を継続的に測定し、かつイオン化検出室内の酸素をUVランプによりオゾンに変換させることで、該オゾンによってイオン化検出室内の汚れを取り除くというPIDの自己清浄を行う構成が開示されている。
However, in the conventional photoionization detector, (1) contamination such as an insulator accumulates on the surface of the metal electrode due to long-term use, and the arrival of the ionized VOC to the electrode is hindered, resulting in a decrease in sensitivity. In addition, (2) when the metal electrode is covered with a contaminant, there is a problem that the sensitivity is lost and the sensor does not function as a sensor.
Therefore, if contaminants accumulate on the surface of the metal electrode, it becomes impossible to obtain reproducibility, so that periodic electrode maintenance is required.
Therefore, according to Patent Document 1 below, the volatile gas concentration (corresponding to the VOC gas concentration) is continuously measured, and oxygen in the ionization detection chamber is converted into ozone by a UV lamp, whereby ionization detection is performed by the ozone. A configuration for self-cleaning of PID to remove indoor dirt is disclosed.

また、下記特許文献2には、図9に例示の光イオン化検出器とほぼ同様の基本構成を有する光イオン化検出器が開示されている。具体的には、特許文献2の光イオン化検出器は、透過窓と印加電極とが設けられ、測定流体が導入、排出される検出室と短波長の紫外線を照射するランプ、ランプを励起する励起回路、印加電極に電圧を印加する印加回路などから構成されている。
そして、特許文献2の光イオン化検出器では、このような構成に加え、感度の低下を防ぐために、間欠的にランプを動作させると共に、それに同期して測定流体を検出室に滞留させることで、連続して測定流体を導入した場合に比較して、ラジカルなどの原因物質の生成を抑え、感度の低下を防止する構成が開示されている。
Patent Document 2 below discloses a photoionization detector having a basic configuration substantially similar to that of the photoionization detector illustrated in FIG. Specifically, the photoionization detector of Patent Document 2 is provided with a transmission window and an application electrode, a detection chamber into which a measurement fluid is introduced and discharged, a lamp that irradiates ultraviolet light of a short wavelength, and an excitation that excites the lamp. The circuit includes an application circuit that applies a voltage to the application electrode.
And in the photoionization detector of patent document 2, in order to prevent the fall of a sensitivity in addition to such composition, while operating a lamp intermittently and making a measurement fluid retain in a detection chamber in synchronism with it, A configuration is disclosed in which generation of causative substances such as radicals is suppressed and sensitivity is prevented from being lowered as compared with a case where a measurement fluid is continuously introduced.

なお、下記非特許文献1には、光イオン化検出器の基本構成について記載されており、具体的には、多原子化合物をイオン化するのに必要なUVの発生、測定流体の検出室への導入と電極の構成などが記載されている。また、希ガス又は窒素又は水素を用いた放電は、多原子化合物(VOCなど)をイオン化するのに十分なエネルギーを持つ光子を発生可能なこと、電子を計測するためのチャンバ型アノード(C)に囲まれた測定流体の導入管D(カソード)は、遊離したイオンの集電極としても機能することが開示されている。
非特許文献1によれば、光イオン化検出器の金属電極はカソードD(陰極)とアノードC(陽極)から構成されており、電流の流れる向きが決まっていることから、図9、下記特許文献1及び下記特許文献2に例示した従来の光イオン化検出器における金属電極2は、直流印加電極であると理解することができる。
Non-Patent Document 1 below describes the basic configuration of a photoionization detector. Specifically, UV generation necessary for ionizing a polyatomic compound and introduction of a measurement fluid into a detection chamber are described. And the configuration of the electrodes. In addition, discharge using rare gas, nitrogen, or hydrogen can generate photons with sufficient energy to ionize polyatomic compounds (VOC, etc.), and chamber type anode (C) for measuring electrons. It is disclosed that the introduction pipe D (cathode) for the measurement fluid surrounded by the liquid crystal also functions as a collector electrode for liberated ions.
According to Non-Patent Document 1, since the metal electrode of the photoionization detector is composed of a cathode D (cathode) and an anode C (anode) and the direction of current flow is determined, FIG. It can be understood that the metal electrode 2 in the conventional photoionization detector exemplified in No. 1 and Patent Document 2 below is a DC application electrode.

特開2003−66008号公報JP 2003-66008 A 特開2003−98153号公報JP 2003-98153 A ジェー・イー・ラブロック(J.E.Lovelock)著、化学(CHEMISTRY)、ガス・蒸気の光イオン化検出器(A Photoioniza−tion Detector for Gases and Vapours)、 ネイチャー(NATURE)、ナンバー(No.)4748、1960年10月29日、401頁J. E. Lovelock, Chemistry, Gas / Vapor Photoionization Detector for Gases and Vapors, Nature, No. 4748, October 29, 1960, page 401

上記特許文献1記載の構成は、揮発性ガス分子濃度をリアルタイムで測定し、かつPIDを自己清浄できるが、周囲ガスに含まれる酸素をオゾンに変換するようにガス検出ユニットを制御するという複雑な構成である。また、自己清浄後も再び金属電極表面に絶縁物等のコンタミネーションが蓄積するため、依然として定期的な清浄が必要であった。
そして、特許文献2に記載の構成においても、長時間使用すると、依然として、金属電極表面にコンタミネーションが蓄積するため、メンテナンスを必要とした。
The configuration described in Patent Document 1 can measure the concentration of volatile gas molecules in real time and self-clean the PID, but it is complicated to control the gas detection unit so as to convert oxygen contained in the surrounding gas into ozone. It is a configuration. Further, since contamination such as an insulator accumulates again on the surface of the metal electrode even after self-cleaning, periodic cleaning is still necessary.
Even in the configuration described in Patent Document 2, when it is used for a long time, contamination still accumulates on the surface of the metal electrode, so that maintenance is required.

上述のように、金属電極表面にコンタミネーションが蓄積すると、測定感度が低下する。したがって、測定するVOCの種類や濃度によっては、イオン化による微小な、ノイズよりも小さな信号を検知することはできない。
本発明の課題は、測定感度の低下を低減できると共に、長期間メンテナンスフリー及び高精度測定が可能な光イオン化検出器及び光イオン化検出方法を提供することである。
As described above, when the contamination accumulates on the surface of the metal electrode, the measurement sensitivity decreases. Therefore, depending on the type and concentration of the VOC to be measured, it is not possible to detect a signal smaller than noise due to ionization.
An object of the present invention is to provide a photoionization detector and a photoionization detection method capable of reducing a decrease in measurement sensitivity and capable of long-term maintenance-free and high-precision measurement.

請求項1記載の発明は、測定流体中の揮発性有機化合物を検出する検出電極と、該検出電極に交流電圧又は交流電流を印加する印加手段と、前記測定流体中の揮発性有機化合物をイオン化するために測定流体に紫外線を照射するUVランプと、該UVランプを励起するための励起回路と、前記検出電極に流れる電流又は電圧を測定する測定手段とを有する揮発性有機化合物の光イオン化検出器である。
請求項2記載の発明は、前記測定手段が、位相検波器である請求項1記載の光イオン化検出器である。
請求項3記載の発明は、前記検出電極が絶縁被覆されている請求項1又は2に記載の光イオン化検出器である。
The invention according to claim 1 is a detection electrode for detecting a volatile organic compound in a measurement fluid, an application means for applying an alternating voltage or an alternating current to the detection electrode, and ionizing the volatile organic compound in the measurement fluid. Photoionization detection of a volatile organic compound having a UV lamp for irradiating the measurement fluid with ultraviolet light, an excitation circuit for exciting the UV lamp, and a measurement means for measuring a current or voltage flowing through the detection electrode It is a vessel.
A second aspect of the present invention is the photoionization detector according to the first aspect, wherein the measuring means is a phase detector.
A third aspect of the present invention is the photoionization detector according to the first or second aspect, wherein the detection electrode is covered with an insulating coating.

請求項4記載の発明は、測定流体中の揮発性有機化合物を検出するための検出電極に交流電圧又は交流電流を印加し、前記測定流体に紫外線を照射して測定流体中の揮発性有機化合物をイオン化させて、前記検出電極に流れる電流又は電圧を測定する揮発性有機化合物の光イオン化検出方法である。
請求項5記載の発明は、前記検出電極に流れる電流又は電圧を位相検波により測定する請求項4記載の光イオン化検出方法である。
請求項6記載の発明は、前記検出電極が絶縁被覆された電極を用いる請求項4又は5に記載の光イオン化検出方法である。
According to a fourth aspect of the present invention, an AC voltage or an AC current is applied to a detection electrode for detecting a volatile organic compound in a measurement fluid, and the measurement fluid is irradiated with ultraviolet rays to volatile organic compounds in the measurement fluid. Is a photoionization detection method for a volatile organic compound, in which a current or a voltage flowing through the detection electrode is measured.
A fifth aspect of the present invention is the photoionization detection method according to the fourth aspect, wherein the current or voltage flowing through the detection electrode is measured by phase detection.
A sixth aspect of the present invention is the photoionization detection method according to the fourth or fifth aspect, wherein the detection electrode is an insulating coated electrode.

(作用)
従来のPIDの金属電極(検出電極)に電圧を印加する手段は、非特許文献1に記載のように、直流印加回路である。なお、直流印加回路を用いることは、上記特許文献1及び特許文献2には明確に記載されていないが、一般的なことである。
そして、本発明によれば、検出電極に電圧を印加する手段として、交流印加回路を用いて交流電圧又は交流電流を印加する手段を備えていることを特徴とする。
(Function)
A conventional means for applying a voltage to the metal electrode (detection electrode) of the PID is a DC application circuit as described in Non-Patent Document 1. In addition, although it is not clearly described in the said patent document 1 and the patent document 2, it is common to use a DC application circuit.
And according to this invention, the means which applies an alternating voltage or an alternating current using an alternating current application circuit is provided as a means to apply a voltage to a detection electrode, It is characterized by the above-mentioned.

従来のPIDのように、直流印加回路を用いる場合は、電流の流れる方向が一定であることから、二つの直流印加電極のうち、一方の電極にコンタミネーションが蓄積すると、直流印加電極のイオンまたは電子を捕獲できる面積が小さくなる。したがって、電流の流れが妨げられて正確な電流値を測定することができなくなり、測定感度が低下する。すなわち、従来の直流印加回路を用いる場合は、コンタミネーションがイオンと電極との接触を阻害していた。   When a DC application circuit is used as in a conventional PID, since the current flowing direction is constant, if contamination accumulates in one of the two DC application electrodes, ions of the DC application electrode or The area where electrons can be captured becomes smaller. Therefore, the current flow is hindered, and an accurate current value cannot be measured, resulting in a decrease in measurement sensitivity. That is, when a conventional DC application circuit is used, contamination has hindered contact between ions and electrodes.

一方、交流印加電極における電流の発生は、イオン電流のみでなく、検出電極そのものがコンデンサとして働くことによっても生じる。イオン化したVOCにより検出電極の誘電損失が変わるため、コンデンサに蓄えられる電荷量が変わり、それによる電流値の変化を測定できる。したがって、検出電極にコンタミネーションが蓄積しても、電極に交流を印加することで測定感度を失うことを防止できる。   On the other hand, the generation of current in the AC application electrode occurs not only by the ion current but also by the detection electrode itself acting as a capacitor. Since the dielectric loss of the detection electrode is changed by the ionized VOC, the amount of charge stored in the capacitor is changed, and the change in the current value can be measured. Therefore, even if contamination accumulates on the detection electrode, it is possible to prevent loss of measurement sensitivity by applying alternating current to the electrode.

一般的に、交流印加の場合は直流印加の場合に比べてノイズを拾いやすいということが認知されている。したがって、通常は、交流印加により測定感度を上げるということは考えにくい。しかし、本発明者らは鋭意研究によって、このように電極にコンタミネーションが蓄積するという状況下では、直流印加の場合の方が交流印加の場合に比べて感度が低下するということを突き止め、本発明を完成させるに至った。
また、交流印加の場合は、二つの交流印加電極のうち、一方の電極にコンタミネーションが蓄積しても、他方の電極でイオン化したVOCを捕捉可能であることから、測定感度の低下を防止できる。
In general, it is recognized that noise is more easily picked up in the case of alternating current application than in the case of direct current application. Therefore, it is difficult to think of increasing the measurement sensitivity by applying an alternating current. However, the present inventors have intensively researched and found that in the situation where contamination accumulates on the electrode in this way, the sensitivity is lower in the case of DC application than in the case of AC application. The invention has been completed.
In addition, in the case of AC application, even if contamination accumulates in one of the two AC application electrodes, VOC ionized by the other electrode can be captured, thereby preventing a decrease in measurement sensitivity. .

電極に印加し、検知する方法は、(a)一定の電圧を電極に印加し、出力(電極回路に流れる電流)の変化によって検知を行う場合と(b)一定の電流を電極に印加し、出力(電極回路にかかる電圧)の変化によって検知を行う場合がある。
したがって、請求項1及び4記載の発明によれば、検出電極に交流印加回路を用いて交流電圧又は交流電流を印加することで、検出電極がコンデンサとしても働くため、電流値の測定が可能である。したがって、検出電極がコンタミネーションによって測定感度を失うことを防止できる。
The method of applying and detecting to the electrode is (a) applying a constant voltage to the electrode and performing detection by changing the output (current flowing through the electrode circuit) and (b) applying a constant current to the electrode, Detection may be performed by a change in output (voltage applied to the electrode circuit).
Therefore, according to the first and fourth aspects of the invention, by applying an AC voltage or an AC current to the detection electrode using an AC application circuit, the detection electrode also functions as a capacitor, so that the current value can be measured. is there. Therefore, it is possible to prevent the detection electrode from losing measurement sensitivity due to contamination.

また、測定するVOCの種類や濃度によっては、イオン化による微小な信号の変化がノイズに埋もれてしまうことがあるが、検出電極に流れる電流又は電圧を位相検波により測定することで、すなわち交流印加回路の印加電圧の位相と検出信号の位相を同期させれば、ノイズを除去できる。例えば、検出電極に流れる電流信号を位相検波器を用いて測定すると良い。検出電極に流れる検出信号を安定な交流印加回路の信号と同期させることで、検出信号からノイズが除去される。この結果、高精度なVOCの濃度測定が可能となる。 すなわち、請求項2及び5記載の発明によれば、上記請求項1及び4記載の発明の作用に加えて、検出電極に流れる電流又は電圧を位相検波により測定することで、ノイズを除去できる。したがって、高精度なVOCの濃度測定が可能となる。   In addition, depending on the type and concentration of the VOC to be measured, a minute signal change due to ionization may be buried in noise, but by measuring the current or voltage flowing through the detection electrode by phase detection, that is, an AC application circuit If the phase of the applied voltage is synchronized with the phase of the detection signal, noise can be removed. For example, a current signal flowing through the detection electrode may be measured using a phase detector. Noise is removed from the detection signal by synchronizing the detection signal flowing through the detection electrode with the signal of the stable AC application circuit. As a result, the VOC concentration can be measured with high accuracy. That is, according to the second and fifth aspects of the invention, in addition to the effects of the first and fourth aspects of the invention, noise can be removed by measuring the current or voltage flowing through the detection electrode by phase detection. Therefore, it is possible to measure the VOC concentration with high accuracy.

また、検出電極に絶縁膜が被覆された電極を用いても良い。この結果、長期間メンテナンスフリーな電極を得ることができる。
交流印加電極は、イオン化ガスによる電極の静電容量(電気容量)の変化を検知することが可能であるため、絶縁膜を被覆した電極を用いても、電気容量の変化によって電流値を測定できる。絶縁膜を被覆した絶縁膜部は、UV照射による活性物質の発生又は腐食性物質の混入による汚染から電極を防ぐため、長期間のメンテナンスフリーが可能となる。 また、金属電極を用いても電極の金属部は劣化しない。
したがって、請求項3及び6記載の発明によれば、上記請求項1又は2及び請求項3又は4記載の発明の作用に加えて、絶縁膜を被覆した絶縁膜部はUV照射による活性物質の発生又は腐食性物質の混入による汚染が生じないため、電極の導体部にコンタミネーションが蓄積することがなく、長期間のメンテナンスフリーが可能となる。
Alternatively, an electrode in which an insulating film is coated on the detection electrode may be used. As a result, a long-term maintenance-free electrode can be obtained.
Since the AC application electrode can detect a change in the capacitance (electric capacity) of the electrode due to the ionized gas, even if an electrode covered with an insulating film is used, the current value can be measured by the change in the capacitance. . Since the insulating film portion coated with the insulating film prevents the electrode from being contaminated by generation of an active substance by UV irradiation or mixing of a corrosive substance, long-term maintenance-free operation is possible. Moreover, even if a metal electrode is used, the metal part of the electrode does not deteriorate.
Therefore, according to the invention described in claims 3 and 6, in addition to the operation of the invention described in claim 1 or 2 and claim 3 or 4, the insulating film portion coated with the insulating film is formed of the active substance by UV irradiation. Since no contamination due to generation or mixing of corrosive substances occurs, contamination does not accumulate in the conductor portion of the electrode, and long-term maintenance-free operation is possible.

本発明の光イオン化検出器は、金属電極に交流電圧又は交流電流を印加することで、汚染物質の存在下でもVOC濃度の測定が可能である。
具体的に、請求項1及び4記載の発明によれば、検出電極に交流印加回路を用いて交流電圧又は交流電流を印加することで、コンタミネーションによって測定感度を失うことを防止できる。したがって、VOC濃度の測定感度の低下を低減できる。
The photoionization detector of the present invention can measure the VOC concentration even in the presence of contaminants by applying an alternating voltage or alternating current to the metal electrode.
Specifically, according to the first and fourth aspects of the invention, it is possible to prevent loss of measurement sensitivity due to contamination by applying an AC voltage or an AC current to the detection electrode using an AC application circuit. Accordingly, it is possible to reduce a decrease in measurement sensitivity of the VOC concentration.

請求項2及び5記載の発明によれば、上記請求項1及び4記載の発明の効果に加えて、検出電極に流れる電流又は電圧を位相検波により測定することで、ノイズを除去でき、高精度なVOCの濃度測定が可能となる。
請求項3及び6記載の発明によれば、上記請求項1又は2及び3又は4記載の発明の効果に加えて、検出電極として絶縁膜を被覆した電極を用いることで、コンタミネーションの蓄積を防止でき、長期間のメンテナンスフリーが可能となる。
According to the second and fifth aspects of the invention, in addition to the effects of the first and fourth aspects of the invention, noise can be eliminated and high accuracy can be obtained by measuring the current or voltage flowing through the detection electrode by phase detection. This makes it possible to measure the VOC concentration.
According to the invention described in claims 3 and 6, in addition to the effect of the invention described in claim 1 or 2 and 3 or 4, the accumulation of contamination can be achieved by using an electrode coated with an insulating film as the detection electrode. It can be prevented and long-term maintenance-free is possible.

本発明の一実施形態による光イオン化検出器の構成図である。図1(a)は、交流印加回路に抵抗Rを設けた場合の図であり、図1(b)は、交流印加回路に電流計Aを設けた場合の図である。It is a block diagram of the photoionization detector by one Embodiment of this invention. FIG. 1A is a diagram in the case where the resistor R is provided in the AC application circuit, and FIG. 1B is a diagram in the case where the ammeter A is provided in the AC application circuit. 本発明の他の実施形態による光イオン化検出器の構成図である。It is a block diagram of the photoionization detector by other embodiment of this invention. 本発明の他の実施形態による光イオン化検出器の構成図である。It is a block diagram of the photoionization detector by other embodiment of this invention. 本発明の一実施形態による光イオン化検出器(図1)と従来の光イオン化検出器を用いて、コンタミネーションによる直流電極と交流電極の感度差を比較した測定結果を示した図である。It is the figure which showed the measurement result which compared the sensitivity difference of the DC electrode and AC electrode by contamination using the photoionization detector (FIG. 1) by one Embodiment of this invention, and the conventional photoionization detector. 本発明の一実施形態による光イオン化検出器(図2)を用いて、ノイズの有無を確認するために電流値の測定を行った結果を示した図である。It is the figure which showed the result of having measured the electric current value in order to confirm the presence or absence of noise using the photoionization detector (FIG. 2) by one Embodiment of this invention. 本発明の一実施形態による光イオン化検出器(図2)を用いた場合のVOC濃度と検出された電流値差との関係及びVOC濃度と位相差との関係を示した図である。It is the figure which showed the relationship between the VOC density | concentration and the detected electric current value difference at the time of using the photoionization detector (FIG. 2) by one Embodiment of this invention, and the relationship between a VOC density | concentration and a phase difference. 本発明の一実施形態による光イオン化検出器(図2)と従来の光イオン化検出器を用いて、コンタミネーションによる直流電極と交流電極の感度差を比較した測定結果を示した図である。It is the figure which showed the measurement result which compared the sensitivity difference of the direct current electrode and alternating current electrode by contamination using the photoionization detector (FIG. 2) by one Embodiment of this invention, and the conventional photoionization detector. 本発明の一実施形態による光イオン化検出器(図3)を用いて、実施例2(図5)と同様にノイズの有無を確認するために電流値の測定を行った結果を示した図である。The figure which showed the result of having measured the electric current value in order to confirm the presence or absence of noise similarly to Example 2 (FIG. 5) using the photoionization detector (FIG. 3) by one Embodiment of this invention. is there. 従来例の光イオン化検出器の構成図である。It is a block diagram of the photoionization detector of a prior art example.

本発明の実施の形態による光イオン化検出器を図面により説明する。
図1には本発明の一実施形態による光イオン化検出器の構成図を示す。
図1(a)の光イオン化検出器は、VOC測定流体FLが導入及び排出される検出室1と、検出室1内に設けられた金属電極2と、金属電極2に交流電圧を印加し、抵抗Rが設けられた交流印加回路3と、検出室1内の測定流体に短波長の紫外線を照射するUVランプ4と、UVランプ4を励起するUVランプ励起回路5と、金属電極2に生じる電流を測定する測定回路7と、電流値からVOC濃度へ換算するための計算を行う演算器8などから構成される。
A photoionization detector according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration diagram of a photoionization detector according to an embodiment of the present invention.
The photoionization detector of FIG. 1A applies an AC voltage to the detection chamber 1 into which the VOC measurement fluid FL is introduced and discharged, the metal electrode 2 provided in the detection chamber 1, and the metal electrode 2. An AC application circuit 3 provided with a resistance R, a UV lamp 4 for irradiating a measurement fluid in the detection chamber 1 with ultraviolet light having a short wavelength, a UV lamp excitation circuit 5 for exciting the UV lamp 4, and the metal electrode 2 are generated. A measurement circuit 7 that measures current and an arithmetic unit 8 that performs calculation for converting the current value into the VOC concentration are included.

なお、本発明は、電流計Aを接続してもよく、この場合は、図1(b)に示すように電流計Aが測定回路7となり、抵抗Rを設ける必要はない。また、図1(a)、図1(b)共に、図9の光イオン化検出器における直流印加回路13を、交流印加回路3とした点で、図9の従来の光イオン化検出器とは異なる。   In the present invention, an ammeter A may be connected. In this case, the ammeter A serves as the measurement circuit 7 as shown in FIG. 1A and 1B differ from the conventional photoionization detector of FIG. 9 in that the DC application circuit 13 in the photoionization detector of FIG. .

ここで、本発明について更に説明する。VOC測定流体FLは、検出室1に導入されて、UVランプ4による紫外線の照射後、検出室1から排出される。検出室1には、金属電極(交流印加電極)が設けられ、導入された測定流体FLは、検出室1側壁部に設けられたUVランプ4により照射される紫外線によってVOCがイオン化され、このイオン又は電子が金属電極2へ引き寄せられて捕捉されることで印加電極2に電流が生じる。
交流印加回路3によって交流電圧が金属電極2に印加されると、金属電極2はコンデンサとして機能するため、空気の誘電率に依存した電流が交流印加回路3に流れる。電流の計測は抵抗Rの両端の電圧を計測することで行われる。図1(b)に示すように電流計Aにより電流を直接計測する場合も電流計の内部では抵抗の電圧を計測している。
Here, the present invention will be further described. The VOC measurement fluid FL is introduced into the detection chamber 1 and discharged from the detection chamber 1 after being irradiated with ultraviolet rays by the UV lamp 4. The detection chamber 1 is provided with a metal electrode (AC application electrode), and the introduced measurement fluid FL is ionized by the ultraviolet rays irradiated by the UV lamp 4 provided on the side wall of the detection chamber 1, and this ion Alternatively, an electric current is generated in the application electrode 2 by attracting the electrons to the metal electrode 2 and capturing them.
When an AC voltage is applied to the metal electrode 2 by the AC application circuit 3, the metal electrode 2 functions as a capacitor, so that a current depending on the dielectric constant of air flows through the AC application circuit 3. The current is measured by measuring the voltage across the resistor R. As shown in FIG. 1B, when the current is directly measured by the ammeter A, the resistance voltage is measured inside the ammeter.

測定流体中のVOCは紫外線(UV)照射によりイオン化する。そして、VOCのイオン化により金属電極2の電気容量が変化すること、及びイオン又は電子が金属電極2に引き寄せられることでイオン電流が発生することによって電流値は変化する。
そして、この金属電極2に流れる電流信号を取り出して、イオン発生時の電流値からイオン発生前の電流値を減算し、イオン化による電流値を演算器8によって測定する。なお、一定電流を電極2に印加する場合はイオン電流が発生することによって電圧値も変化するため、イオン化による電極2間の電圧値を測定回路7によって測定しても良い。
The VOC in the measurement fluid is ionized by ultraviolet (UV) irradiation. Then, the current value changes as the electric capacity of the metal electrode 2 changes due to the ionization of the VOC, and when an ion current is generated by drawing ions or electrons to the metal electrode 2.
Then, the current signal flowing through the metal electrode 2 is taken out, the current value before ion generation is subtracted from the current value at the time of ion generation, and the current value due to ionization is measured by the calculator 8. Note that, when a constant current is applied to the electrode 2, the voltage value also changes due to the generation of an ionic current. Therefore, the voltage value between the electrodes 2 due to ionization may be measured by the measurement circuit 7.

更に前記電流値は演算器8により物質ごとの係数を乗じることで、VOC濃度として出力される。
イオン化したVOCにより金属電極2の電気容量が変わるため、その変化によって電流値を測定できる。したがって、金属電極2にコンタミネーションが蓄積しても、イオン又は電子の検知が可能であり、交流電極がコンタミネーションによって測定感度を失うことを防止できる。
Further, the current value is output as a VOC concentration by multiplying the coefficient for each substance by the calculator 8.
Since the electric capacity of the metal electrode 2 is changed by the ionized VOC, the current value can be measured by the change. Therefore, even if contamination accumulates in the metal electrode 2, it is possible to detect ions or electrons, and it is possible to prevent the AC electrode from losing measurement sensitivity due to contamination.

また、二つの交流印加金属電極2のうち、一方の金属電極2にコンタミネーションが蓄積しても、他方の金属電極2でイオン化したVOCを捕捉可能であることから、測定感度の低下を防止できる。
したがって、本実施形態に示すように、金属電極2に交流印加回路3を用いて金属電極2に交流電圧又は交流電流を印加することで、金属電極2がコンデンサとしても働くため、電流値(又は電圧値)の測定が可能である。したがって、金属電極2がコンタミネーションによって測定感度を失うことを防止できる。
Moreover, even if contamination accumulates in one of the two AC-applied metal electrodes 2, VOC ionized by the other metal electrode 2 can be captured, thereby preventing a decrease in measurement sensitivity. .
Therefore, as shown in this embodiment, by applying an AC voltage or an AC current to the metal electrode 2 using the AC application circuit 3 to the metal electrode 2, the metal electrode 2 also functions as a capacitor. Voltage value) can be measured. Therefore, it is possible to prevent the metal electrode 2 from losing measurement sensitivity due to contamination.

測定可能なVOCの例としては、アルカン、アルケン、アルコール、エーテル、アルデヒド、カルボン酸、芳香族炭化水素など、環境省から公表されている各種の物質が挙げられる。特に感度が高い物質として、p−キシレン、トルエン、ベンゼン、トリクロロエチレン、ブタノール、イソプロピルアルコールなどが挙げられる。なお、UVランプの種類によって、イオン化ポテンシャルが10.6ev以下の物質のみならず、イオン化ポテンシャルが10.6ev以上の物質でも検知可能である。
また、金属電極2としては、SUS(ステンレス)電極、金電極、白金電極、銅電極などがあり、特に種類は問わない。なお、銅は反応性が良いため、電極表面が変質しやすいので、SUS電極、金電極、白金電極が好ましい。
Examples of measurable VOCs include various substances published by the Ministry of the Environment, such as alkanes, alkenes, alcohols, ethers, aldehydes, carboxylic acids, and aromatic hydrocarbons. Examples of particularly sensitive substances include p-xylene, toluene, benzene, trichloroethylene, butanol, isopropyl alcohol and the like. Depending on the type of UV lamp, not only a substance having an ionization potential of 10.6 ev or less but also a substance having an ionization potential of 10.6 ev or more can be detected.
Moreover, as the metal electrode 2, there are a SUS (stainless steel) electrode, a gold electrode, a platinum electrode, a copper electrode, and the like, and the kind is not particularly limited. Note that since SUS has good reactivity, the electrode surface is likely to be altered, and therefore, a SUS electrode, a gold electrode, and a platinum electrode are preferable.

また、UVランプ4としては、クリンプトン、キセノン、アルゴンなどを封入した一般的に使用されるランプを用いればよい。
一例として、トルエンガスをイオン化する場合、UVランプ4には10.6evのイオン化ポテンシャルを持つクリンプトン封入ランプを用いて、UVランプ励起回路5にはクリンプトンを励起させることが可能な13.56MHzの周波数を発振回路とする。
また、非特許文献に記載のように、UVを発生させる方法として、電極を用いて励起させる方法もある。
The UV lamp 4 may be a generally used lamp in which crimpton, xenon, argon or the like is enclosed.
As an example, when toluene gas is ionized, the UV lamp 4 uses a crimpton-enclosed lamp having an ionization potential of 10.6 ev, and the UV lamp excitation circuit 5 has a frequency of 13.56 MHz that can excite the crimpton. Is an oscillation circuit.
In addition, as described in non-patent literature, there is a method of exciting using an electrode as a method of generating UV.

図2には本発明の他の実施形態による光イオン化検出器の構成図を示す。
また、図2の光イオン化検出器は、VOC測定流体FLが導入及び排出される検出室1と、検出室1内に設けられた金属電極2と、金属電極2に交流電圧を印加し、抵抗Rが設けられた交流印加回路3と、検出室1内の測定流体に短波長の紫外線を照射するUVランプ4と、UVランプ4を励起する励起回路5と、抵抗Rに生じる電流の検出信号と交流印加回路3の波長とを同期させてノイズを除去し、該ノイズが除去された信号を電流値に変換するための位相検波器10と、位相検波器10により測定された電流値からVOC濃度へ換算するための計算を行う演算器8などから構成される。
すなわち、図2の光イオン化検出器は、図1の光イオン化検出器とは測定回路7の代わりに位相検波器10を用いた点で異なり、その他の構成は同様である。
FIG. 2 shows a block diagram of a photoionization detector according to another embodiment of the present invention.
Further, the photoionization detector of FIG. 2 applies an AC voltage to the detection chamber 1 into which the VOC measurement fluid FL is introduced and discharged, the metal electrode 2 provided in the detection chamber 1, and the resistance to the resistance. An AC applying circuit 3 provided with R, a UV lamp 4 for irradiating the measurement fluid in the detection chamber 1 with short-wave ultraviolet light, an excitation circuit 5 for exciting the UV lamp 4, and a detection signal of a current generated in the resistor R Is synchronized with the wavelength of the AC applying circuit 3 to remove noise, and the phase detector 10 for converting the noise-removed signal into a current value, and the VOC from the current value measured by the phase detector 10 It comprises an arithmetic unit 8 or the like that performs a calculation for conversion into a concentration.
That is, the photoionization detector of FIG. 2 differs from the photoionization detector of FIG. 1 in that a phase detector 10 is used instead of the measurement circuit 7, and the other configurations are the same.

交流印加回路3によって交流電圧が金属電極2に印加されると、金属電極2はコンデンサとして機能するため、空気の誘電率に依存した電流が交流印加回路3に流れる。
測定流体中のVOCは紫外線(UV)照射によりイオン化し、金属電極2の電気容量が変化すること、及びイオン又は電子が金属電極2に引き寄せられることでイオン電流が発生することによって電流値は変化する。
そして、測定するVOCの種類や濃度によっては、ノイズやドリフトにより出力が安定しない。
When an AC voltage is applied to the metal electrode 2 by the AC application circuit 3, the metal electrode 2 functions as a capacitor, so that a current depending on the dielectric constant of air flows through the AC application circuit 3.
The VOC in the measurement fluid is ionized by ultraviolet (UV) irradiation, the electric capacity of the metal electrode 2 changes, and the ionic current is generated when ions or electrons are attracted to the metal electrode 2 to change the current value. To do.
Depending on the type and concentration of the VOC to be measured, the output is not stable due to noise or drift.

しかし、金属電極2に流れる電流又は電圧を位相検波器10により測定することで、すなわち位相検波器10によって交流印加回路の位相と検出信号の位相を同期させると、同期しない信号は除去されて出力が安定する。
そして、イオン発生時の電流値からイオン発生前の電流値を減算し、イオン化による電流値を測定する。更に当該電流値は演算器8により物質ごとの係数を乗じることで、VOC濃度として出力される。
したがって、この結果、高精度なVOCの濃度測定が可能となる。
However, when the current or voltage flowing through the metal electrode 2 is measured by the phase detector 10, that is, when the phase of the AC application circuit and the phase of the detection signal are synchronized by the phase detector 10, the signal that is not synchronized is removed and output. Is stable.
Then, the current value before ion generation is subtracted from the current value at the time of ion generation, and the current value due to ionization is measured. Further, the current value is output as a VOC concentration by multiplying the coefficient for each substance by the calculator 8.
Therefore, as a result, the concentration of VOC can be measured with high accuracy.

また、図3にも本発明の他の実施形態による光イオン化検出器の構成図を示す。
図3の光イオン化検出器は、VOC測定流体FLが導入及び排出される検出室1と、検出室1内に設けられ、金属電極2に絶縁膜が被覆された絶縁膜被覆金属電極11と、絶縁膜被覆電極11に交流電圧を印加し、抵抗Rが設けられた交流印加回路3と、検出室1内の測定流体に短波長の紫外線を照射するUVランプ4と、UVランプ4を励起する励起回路5と、抵抗Rに生じる電流の信号を増幅し、該増幅された検出信号と交流印加回路3の波長とを同期させ、ノイズ除去後の信号を電流値に変換するための位相検波器10と、電流値からVOC濃度へ換算するための計算を行う演算器8などから構成される。
FIG. 3 is a block diagram of a photoionization detector according to another embodiment of the present invention.
The photoionization detector of FIG. 3 includes a detection chamber 1 into which the VOC measurement fluid FL is introduced and discharged, an insulating film-covered metal electrode 11 provided in the detection chamber 1 and having a metal electrode 2 covered with an insulating film, An AC voltage is applied to the insulating film covering electrode 11, the AC application circuit 3 provided with the resistance R, the UV lamp 4 that irradiates the measurement fluid in the detection chamber 1 with ultraviolet light having a short wavelength, and the UV lamp 4 are excited. A phase detector for amplifying a current signal generated in the excitation circuit 5 and the resistor R, synchronizing the amplified detection signal and the wavelength of the AC applying circuit 3, and converting the noise-removed signal into a current value 10 and an arithmetic unit 8 that performs calculation for converting the current value into the VOC concentration.

すなわち、図3の光イオン化検出器は、図2の光イオン化検出器とは金属電極2が二つとも絶縁被覆されている点で異なり、その他の構成は同様である。なお、二つ金属電極2の両方を被覆するだけでなく、一方のみを被覆することも本実施形態に含まれる。
交流印加電極の金属電極2は、イオン化ガスによる電極2の電気容量の変化を検知することが可能であるため、絶縁膜を被覆した絶縁膜被覆電極11を用いても、電気容量の変化によって電流値を測定できる。絶縁膜を被覆した絶縁膜部は、UV照射による活性物質の発生又は腐食性物質の混入による汚染から電極を防ぐため、長期間のメンテナンスフリーが可能となる。また、金属電極2を用いても絶縁膜で被覆することにより電極の金属部は劣化しないので、長期間メンテナンスフリーな金属電極2を得ることができる。
That is, the photoionization detector shown in FIG. 3 differs from the photoionization detector shown in FIG. 2 in that both metal electrodes 2 are insulated and the other configurations are the same. It should be noted that the present embodiment includes not only covering both of the two metal electrodes 2 but also covering only one of them.
Since the metal electrode 2 of the alternating current application electrode can detect a change in the electric capacity of the electrode 2 due to the ionized gas, even if the insulating film-coated electrode 11 covered with the insulating film is used, the electric current changes due to the change in the electric capacity. The value can be measured. Since the insulating film portion coated with the insulating film prevents the electrode from being contaminated by generation of an active substance by UV irradiation or mixing of a corrosive substance, long-term maintenance-free operation is possible. Even if the metal electrode 2 is used, the metal part of the electrode is not deteriorated by being covered with the insulating film, so that the metal electrode 2 that is maintenance-free for a long period of time can be obtained.

実施例1には、図1の光イオン化検出器を使用した例を示す。
図4には、図1の光イオン化検出器と図9の従来の光イオン化検出器を用いて、コンタミネーションによる直流電極と交流電極の感度差を比較した測定結果を示す。
絶縁物のコンタミネーションが電極を覆うという条件を疑似的に作り出すため、二つの金属電極2(平行平板電極、縦30mm、横30mm、厚さ0.1mm、電極間距離:0.8mm、材質:SUS304)のうち一方を絶縁フィルム(商品名 パラフィルム、アメリカン ナショナル キャン カンパニー社製)で覆い、他方の電極2には何も覆わない通常の金属電極2を用いて、図1(b)の光イオン化検出器と図9の従来の光イオン化検出器により、UV照射時間を5分から15分の10分間として、測定回路7(電流計A)を電極2と直列に接続し、各電流値(nA)を測定した。
Example 1 shows an example using the photoionization detector of FIG.
FIG. 4 shows the measurement results comparing the sensitivity difference between the DC electrode and the AC electrode due to contamination using the photoionization detector of FIG. 1 and the conventional photoionization detector of FIG.
In order to artificially create the condition that the contamination of the insulator covers the electrodes, two metal electrodes 2 (parallel plate electrodes, 30 mm long, 30 mm wide, 0.1 mm thick, distance between electrodes: 0.8 mm, material: One of SUS304) is covered with an insulating film (trade name Parafilm, manufactured by American National Can Company), and the other electrode 2 is covered with a normal metal electrode 2 so that the light shown in FIG. With the ionization detector and the conventional photoionization detector shown in FIG. 9, the UV irradiation time is set to 5 minutes to 10 minutes, and the measurement circuit 7 (ammeter A) is connected in series with the electrode 2 so that each current value (nA ) Was measured.

測定試料として、トルエンガス100ppmを用い、測定試料にUVランプ励起回路5(ヘレウス社製、C210RF)により励起したUVランプ4(10.6eV、ヘレウス社製、PKR106)から波長117nmの紫外線を5分から15分(照射時間は10分間)照射した。また、交流印加回路3(ファンクション・ジェネレータ、(株)テクシオ製、FG−281、発振波形:正弦波)は280ヘルツ(Hz)の周波数とし、交流印加回路3及び直流印加回路13(アジレント・テクノロジー社製、E3630A)の印加電圧は10Vに設定した。なお、本実施例では、直流及び交流の場合も抵抗Rを用いずに、電流計Aにより直接電流を計測した。   As a measurement sample, 100 ppm of toluene gas was used, and UV light having a wavelength of 117 nm was emitted from a UV lamp 4 (10.6 eV, Heraeus, PKR106) excited by a UV lamp excitation circuit 5 (Hereus, C210RF) from 5 minutes. Irradiation was for 15 minutes (irradiation time was 10 minutes). The AC application circuit 3 (function generator, manufactured by Techio Co., Ltd., FG-281, oscillation waveform: sine wave) has a frequency of 280 hertz (Hz), and the AC application circuit 3 and the DC application circuit 13 (Agilent Technology). The applied voltage of E3630A) manufactured by the company was set to 10V. In this example, the current was directly measured by the ammeter A without using the resistor R even in the case of direct current and alternating current.

検出室(内寸:縦200mm、横200mm、高さ125mm、材質:SUS304)1内を前記トルエンガス(100ppm)で置換し、金属電極2に交流印加回路3又は直流印加回路13による電流を印加し、印加電極2に生じた電流を測定回路7によって電流値として測定した。
測定回路7の電流計Aとして、マルチメータ(アジレント・テクノロジー社製、U1252A)を設置し、電流値の測定は5秒間に1回行い、30秒間(6回分)の平均値をプロットした。
The inside of the detection chamber (inside dimensions: 200 mm long, 200 mm wide, 125 mm high, material: SUS304) 1 is replaced with the toluene gas (100 ppm), and current is applied to the metal electrode 2 by the AC applying circuit 3 or the DC applying circuit 13. The current generated in the applied electrode 2 was measured as a current value by the measurement circuit 7.
A multimeter (manufactured by Agilent Technologies, U1252A) was installed as the ammeter A of the measurement circuit 7, the current value was measured once every 5 seconds, and the average value for 30 seconds (for 6 times) was plotted.

図4により、UVランプ4の非照射時(0〜5分、15分から20分)と照射時(5分から15分)を比較すると、直流印加回路13を用いた場合(三角で示す)は、UVランプ4の非照射時と照射時では電流値に差が生じず、ほぼ電流値がゼロであった。この結果から、金属電極2の一方にのみコンタミネーションが生じた場合でも、正確な電流値を測定することができなくなり、測定感度が低下することが確認された。
一方、交流印加回路3を用いた場合(黒丸で示す)は、UVランプ4の非照射時と照射時では電流値に差が生じたことから、金属電極2の一方にコンタミネーションが生じた場合でも、測定感度を失うことなく、電流値の測定が可能であることが確認された。交流印加電極における電流の発生は、イオン電流のみでなく、金属電極2そのものがコンデンサとして働くことによっても生じる。そして、二つの交流印加された金属電極2のうち、一方の電極2にコンタミネーションが蓄積しても、他方の電極2でイオン化したVOCを捕捉可能であることから、測定感度の低下を防止できる。
According to FIG. 4, when the non-irradiation (0 to 5 minutes, 15 to 20 minutes) and the irradiation time (5 to 15 minutes) of the UV lamp 4 are compared, when the DC application circuit 13 is used (indicated by a triangle), There was no difference in current value between when the UV lamp 4 was not irradiated and when it was irradiated, and the current value was almost zero. From this result, it was confirmed that even when contamination occurred only in one of the metal electrodes 2, an accurate current value could not be measured and the measurement sensitivity was lowered.
On the other hand, when the AC application circuit 3 is used (indicated by a black circle), there is a difference in the current value between when the UV lamp 4 is not irradiated and when it is irradiated, so that contamination occurs on one of the metal electrodes 2. However, it was confirmed that the current value can be measured without losing the measurement sensitivity. The generation of current in the AC application electrode occurs not only by the ionic current but also when the metal electrode 2 itself functions as a capacitor. And even if contamination accumulates in one electrode 2 among the two metal electrodes 2 to which an alternating current is applied, the VOC ionized by the other electrode 2 can be captured, thereby preventing a decrease in measurement sensitivity. .

実施例2には、図2の光イオン化検出器を使用した例を示す。
図5には、図2の光イオン化検出器を用いて、ノイズの有無を確認するために電流値の測定を行った結果を示す。
測定回路7(電流計)の代わりに抵抗Rを接続し、その抵抗Rの両端の電圧を計測する図2の光イオン化検出器の位相検波器10として、ロックインアンプ((株)エヌエフ回路設計ブロック製、5610B)を使用した以外は実施例1と同様の装置を使用した。
また、測定条件として、二つとも何も覆わない通常の金属電極2(平行平板電極、縦30mm、横30mm、厚さ0.1mm、電極間距離:1.6mm、材質:SUS304)を用いて、ロックインアンプ10の設定、測定条件を印加電圧の周波数280Hz、時定数1秒、バンドパスフィルタQ(中心周波数と帯域幅の比)=30とした。
Example 2 shows an example using the photoionization detector of FIG.
FIG. 5 shows the results of measuring the current value to confirm the presence or absence of noise using the photoionization detector of FIG.
As a phase detector 10 of the photoionization detector shown in FIG. 2 in which a resistor R is connected instead of the measuring circuit 7 (ammeter) and the voltage across the resistor R is measured, a lock-in amplifier (NF circuit design) A device similar to that of Example 1 was used except that 5610B) manufactured by Bloc was used.
In addition, as a measurement condition, a normal metal electrode 2 (parallel plate electrode, vertical 30 mm, horizontal 30 mm, thickness 0.1 mm, distance between electrodes: 1.6 mm, material: SUS304) that does not cover anything is used. The setting of the lock-in amplifier 10 and the measurement conditions were an applied voltage frequency of 280 Hz, a time constant of 1 second, and a bandpass filter Q (ratio of center frequency to bandwidth) = 30.

実施例1と同様に、測定試料として、トルエンガス40ppmを用い、測定試料にUVランプ励起回路5により励起したUVランプ4から波長117nmの紫外線を5分から15分(照射時間は10分間)照射した。また、交流印加回路3の印加電圧は10Vに設定し、ロックインアンプ10により抵抗R(10キロオーム)に生じる電流の信号を増幅して、該増幅された信号を電流値として測定した。更に増幅信号と交流印加回路3の波長との位相差(度)を測定した。   Similar to Example 1, 40 ppm of toluene gas was used as a measurement sample, and the measurement sample was irradiated with ultraviolet light having a wavelength of 117 nm from a UV lamp 4 excited by a UV lamp excitation circuit 5 for 5 to 15 minutes (irradiation time was 10 minutes). . The applied voltage of the AC applying circuit 3 was set to 10 V, a signal of current generated in the resistor R (10 kilohms) was amplified by the lock-in amplifier 10, and the amplified signal was measured as a current value. Further, the phase difference (degree) between the amplified signal and the wavelength of the AC applying circuit 3 was measured.

UVランプ4の非照射時において、金属電極2に流れる電流の信号は、交流印加回路3を流れる電流の信号に対して、約90度の位相差がある。そこで、UVランプ4によってトルエンガスに紫外線を照射することで、前記90度からどの程度ずれるのか、すなわち90度からのずれ(Δφ)を測定した。
これら電流値及び位相差の測定は5秒間に1回行い、30秒間(6回分)の平均値をプロットした。
When the UV lamp 4 is not irradiated, the current signal flowing through the metal electrode 2 has a phase difference of about 90 degrees with respect to the current signal flowing through the AC applying circuit 3. Therefore, by irradiating the toluene gas with ultraviolet rays by the UV lamp 4, the degree of deviation from 90 degrees, that is, the deviation (Δφ) from 90 degrees was measured.
These current values and phase differences were measured once every 5 seconds, and the average values for 30 seconds (six times) were plotted.

図5では、検出された電流値(nA)を左側縦軸に示し、金属電極2の検出信号と交流印加回路3の波長との位相差(度)を右側縦軸に示した。なお、電流出力値(UVオフ)は白丸で示し、電流出力値(UVオン)は黒丸で示し、位相差(UVオフ)は白の三角で示し、位相差(UVオン)は黒の三角で示した。
図5から、UVランプの非照射時(0から5分、15分から20分)と照射時(5分から15分)で、検出された電流値のプロットがほぼ一直線上に横並びとなり、ノイズが生じることなく非照射時と照射時の電流値差が生じることが確認された。この電流値差はイオン電流と、金属電極2の電気容量変化の合計によるものである。UV照射時、金属電極2はコンデンサと抵抗の並列回路として機能するため、電流の位相は交流印加回路3の位相より0度以上90度未満の範囲で進んだものとなる。なお、UV非照射時は金属電極2が完全にコンデンサとして機能するため、電流の位相は交流印加回路3の位相よりも約90度進んだものとなる。
In FIG. 5, the detected current value (nA) is shown on the left vertical axis, and the phase difference (degree) between the detection signal of the metal electrode 2 and the wavelength of the AC applying circuit 3 is shown on the right vertical axis. The current output value (UV off) is indicated by a white circle, the current output value (UV on) is indicated by a black circle, the phase difference (UV off) is indicated by a white triangle, and the phase difference (UV on) is indicated by a black triangle. Indicated.
From FIG. 5, when the UV lamp is not irradiated (from 0 to 5 minutes, from 15 to 20 minutes) and at the time of irradiation (from 5 to 15 minutes), the detected current value plots are aligned substantially in a straight line, causing noise. It was confirmed that there was a difference in current value between non-irradiation and irradiation. This difference in current value is due to the sum of the ionic current and the change in the capacitance of the metal electrode 2. At the time of UV irradiation, the metal electrode 2 functions as a parallel circuit of a capacitor and a resistor. Therefore, the phase of the current is advanced in the range of 0 degree or more and less than 90 degrees from the phase of the AC application circuit 3. In addition, since the metal electrode 2 completely functions as a capacitor when UV is not irradiated, the phase of the current is about 90 degrees ahead of the phase of the AC applying circuit 3.

図5から、UVランプの非照射時と照射時とでは、増幅された検出信号と交流印加回路3の波長との間に位相差(90度からのずれ)が生じることが分かり、ガスのイオン化を確認することができた。そして、UVランプの非照射時と照射時で、位相差を表すプロットがほぼ一直線上に横並びとなり、ノイズが生じることなく、測定可能であることも確認できた。
このように、図2の光イオン化検出器を用いた場合は、検出された電流値だけではなく、上記位相差によってもVOCを検知することができるため、直流印加回路13を用いた場合はもちろん、図1の光イオン化検出器を用いた場合に比べても、より正確にVOC濃度を測定することができる。
From FIG. 5, it can be seen that there is a phase difference (deviation from 90 degrees) between the amplified detection signal and the wavelength of the AC applying circuit 3 when the UV lamp is not irradiated and when irradiated. I was able to confirm. It was also confirmed that the plot representing the phase difference was aligned on a straight line between the non-irradiation and the irradiation of the UV lamp, and measurement was possible without causing noise.
As described above, when the photoionization detector of FIG. 2 is used, VOC can be detected not only by the detected current value but also by the above phase difference, so of course when the DC application circuit 13 is used. Compared with the case where the photoionization detector of FIG. 1 is used, the VOC concentration can be measured more accurately.

そして、図6には、図2の光イオン化検出器を用いた場合のVOC濃度と電流値差との関係及びVOC濃度と上記位相差との関係を示す。
測定試料として、トルエンガス(4,40,100ppm)及びブタノールガス(40,100ppm)を用い、それぞれの測定試料にUVランプ励起回路5により励起したUVランプ4から波長117nmの紫外線を5分から10分(照射時間は10分間)照射した。また、交流印加回路3の印加電圧は10V、ロックインアンプ10の設定、測定条件を印加電圧の周波数280Hz、時定数1秒、バンドパスフィルタQ(中心周波数と帯域幅の比)=30とし、ロックインアンプ10により抵抗R(10キロオーム)に生じる電流の信号を増幅して、該増幅された信号を電流値として測定し、UV照射時と非照射時との電流値差を求め、該電流値差と各物質の濃度との関係(検量線)を表した。また、同時にロックインアンプ10により信号と交流印加回路3の波長との位相差(度)を測定し、UV照射時の位相差と各物質の濃度との関係(検量線)を表した。なお、電力値差は実線で示し、位相差は点線で示した。また、トルエンガスの電流出力値差は黒丸で示し、位相差(UVオン)は白丸で示し、ブタノールガスの電流出力値差は黒の三角で示し、位相差(UVオン)は白の三角で示した。
FIG. 6 shows the relationship between the VOC concentration and the current value difference and the relationship between the VOC concentration and the phase difference when the photoionization detector of FIG. 2 is used.
As measurement samples, toluene gas (4, 40, 100 ppm) and butanol gas (40, 100 ppm) were used, and ultraviolet rays having a wavelength of 117 nm were emitted from the UV lamp 4 excited by the UV lamp excitation circuit 5 to each measurement sample for 5 minutes to 10 minutes. Irradiation was performed (irradiation time was 10 minutes). The applied voltage of the AC application circuit 3 is 10 V, the setting of the lock-in amplifier 10, and the measurement conditions are applied voltage frequency 280 Hz, time constant 1 second, band pass filter Q (ratio of center frequency to bandwidth) = 30, The lock-in amplifier 10 amplifies the signal of the current generated in the resistor R (10 kilohms), measures the amplified signal as a current value, obtains the current value difference between the UV irradiation time and the non-irradiation time. The relationship (calibration curve) between the value difference and the concentration of each substance was expressed. At the same time, the phase difference (degree) between the signal and the wavelength of the AC application circuit 3 was measured by the lock-in amplifier 10 to express the relationship (calibration curve) between the phase difference during UV irradiation and the concentration of each substance. The power value difference is indicated by a solid line, and the phase difference is indicated by a dotted line. Also, the current output value difference of toluene gas is indicated by a black circle, the phase difference (UV on) is indicated by a white circle, the current output value difference of butanol gas is indicated by a black triangle, and the phase difference (UV on) is indicated by a white triangle. Indicated.

図6から、各物質の濃度と電流出力値差及び位相差には比例関係があり、このように検量線を物質ごとに求めておけば未知の濃度を計測することが可能となる。
実際の計測器としては、演算器8により電流出力値と位相差に物質ごとの係数を乗じることで、VOC濃度を求めることができる。
From FIG. 6, there is a proportional relationship between the concentration of each substance, the current output value difference, and the phase difference. Thus, if a calibration curve is obtained for each substance, an unknown concentration can be measured.
As an actual measuring instrument, the VOC concentration can be obtained by multiplying the current output value and the phase difference by the coefficient for each substance by the calculator 8.

更に、図7には、図2の光イオン化検出器と図9の従来の光イオン化検出器を用いて、コンタミネーションによる直流電極と交流電極の感度差を比較した測定結果を示す。
実施例1と同様に、絶縁物のコンタミネーションが電極を覆うという条件を疑似的に作り出すため、二つの金属電極2(実施例1と同じ)のうち一方を絶縁フィルム(パラフィルム)で覆い、他方の電極2には何も覆わない通常の金属電極2を用いて、図2の光イオン化検出器と図9の従来の光イオン化検出器により、UV照射時間を5分から15分の10分間として各電流値(nA)を測定した。
Further, FIG. 7 shows a measurement result comparing the sensitivity difference between the DC electrode and the AC electrode due to contamination using the photoionization detector of FIG. 2 and the conventional photoionization detector of FIG.
Similarly to Example 1, in order to create a pseudo condition that the contamination of the insulator covers the electrode, one of the two metal electrodes 2 (same as Example 1) is covered with an insulating film (parafilm), Using a normal metal electrode 2 that does not cover anything on the other electrode 2, the photoirradiation detector of FIG. 2 and the conventional photoionization detector of FIG. Each current value (nA) was measured.

なお、測定回路7(電流計)の代わりに抵抗Rを接続し、その抵抗Rの両端の電圧を計測する図2の光イオン化検出器の位相検波器10として、ロックインアンプ((株)エヌエフ回路設計ブロック製、5610B)を使用した以外は実施例1と同様の装置を使用した。測定条件は印加電圧の周波数280Hz、時定数1秒、バンドパスフィルタQ=30として、電流値の測定は5秒間に1回行い、30秒間(6回分)の平均値をプロットした。   Note that a lock-in amplifier (NF Co., Ltd.) is used as the phase detector 10 of the photoionization detector of FIG. 2 in which a resistor R is connected instead of the measuring circuit 7 (ammeter) and the voltage across the resistor R is measured. An apparatus similar to that of Example 1 was used except that 5610B) manufactured by Circuit Design Block was used. The measurement conditions were an applied voltage frequency of 280 Hz, a time constant of 1 second, and a band-pass filter Q = 30. A current value was measured once every 5 seconds, and an average value for 30 seconds (six times) was plotted.

図7により、UVランプ4の非照射時(0〜5分、15分から20分)と照射時(5分から15分)を比較すると、直流印加回路13を用いた場合(三角で示す)は、UVランプ4の非照射時と照射時では電流値に差が生じず、ほぼ電流値がゼロであり、金属電極2の一方にのみコンタミネーションが生じた場合でも、正確な電流値を測定することができなくなり、測定感度が低下することが確認された。
一方、交流印加回路3を用いた場合(黒丸で示す)は、UVランプ4の非照射時と照射時では電流値に差が生じたことから、金属電極2の一方にコンタミネーションが生じた場合でも、測定感度を失うことなく、電流値を測定が可能であることが確認された。交流印加電極における電流の発生は、イオン電流のみでなく、金属電極2そのものがコンデンサとして働くことによっても生じる。そして、二つの交流印加された金属電極2のうち、一方の電極2にコンタミネーションが蓄積しても、他方の電極2でイオン化したVOCを捕捉可能であることから、測定感度の低下を防止できる。
According to FIG. 7, when the non-irradiation (0 to 5 minutes, 15 to 20 minutes) of the UV lamp 4 is compared with the irradiation time (5 to 15 minutes), when the DC application circuit 13 is used (indicated by a triangle), There is no difference in the current value between when the UV lamp 4 is not irradiated and when it is irradiated, the current value is almost zero, and even when contamination occurs only on one of the metal electrodes 2, an accurate current value should be measured. It was confirmed that the measurement sensitivity was lowered.
On the other hand, when the AC application circuit 3 is used (indicated by a black circle), there is a difference in the current value between when the UV lamp 4 is not irradiated and when it is irradiated, so that contamination occurs on one of the metal electrodes 2. However, it was confirmed that the current value can be measured without losing measurement sensitivity. The generation of current in the AC application electrode occurs not only by the ionic current but also when the metal electrode 2 itself functions as a capacitor. And even if contamination accumulates in one electrode 2 among the two metal electrodes 2 to which an alternating current is applied, the VOC ionized by the other electrode 2 can be captured, thereby preventing a decrease in measurement sensitivity. .

また、図1の光イオン化検出器を用いた図4に示す場合(実施例1)に比べて、UVランプ4の照射時のプロットのバラツキが少なく安定しており、位相検波器10によってノイズが除去されることが確認された。
測定するVOCの種類や濃度によっては、イオン化による微小な信号がノイズに埋もれてしまうことがあるが、金属電極2に流れる電流又は電圧を位相検波器10により測定することで、ノイズを除去できる。したがって、高精度なVOCの濃度測定が可能となる。
Compared to the case shown in FIG. 4 using the photoionization detector shown in FIG. 1 (Example 1), there is less variation in plots during irradiation of the UV lamp 4, and the phase detector 10 generates noise. It was confirmed that it was removed.
Depending on the type and concentration of the VOC to be measured, a minute signal due to ionization may be buried in noise, but noise can be removed by measuring the current or voltage flowing in the metal electrode 2 with the phase detector 10. Therefore, it is possible to measure the VOC concentration with high accuracy.

実施例3には、図3の光イオン化検出器を使用した例を示す。
図8には、図3の光イオン化検出器を用いて、実施例2(図5)と同様にノイズの有無を確認するために電流値の測定を行った結果を示す。
測定条件として、金属電極2(平行平板電極、縦30mm、横30mm、厚さ0.1mm、電極間距離:0.8mm、材質:SUS304)に絶縁膜被覆電極11(二つの金属電極2の両方を絶縁フィルム(パラフィルム)で覆い、擬似的に両金属電極2に絶縁膜で覆うという条件を作り出した)を用いて、トルエンガス濃度を100ppmに、印加電圧の周波数を1kHzに変え、抵抗Rを5オーム、照射時間を5分間とした以外は、実施例2(図5)と同じ条件とした。
Example 3 shows an example in which the photoionization detector of FIG. 3 is used.
FIG. 8 shows the result of measuring the current value using the photoionization detector of FIG. 3 in order to confirm the presence or absence of noise as in Example 2 (FIG. 5).
As measurement conditions, a metal electrode 2 (parallel plate electrode, 30 mm long, 30 mm wide, 0.1 mm thick, distance between electrodes: 0.8 mm, material: SUS304) and an insulating film-covered electrode 11 (both two metal electrodes 2) Was created with the condition that the metal electrode 2 was covered with an insulating film in a pseudo manner, and the toluene gas concentration was changed to 100 ppm, the frequency of the applied voltage was changed to 1 kHz, and the resistance R Was set to the same conditions as in Example 2 (FIG. 5) except that the irradiation time was 5 minutes.

測定試料として、トルエンガス100ppmを用い、測定試料にUVランプ4から波長117nmの紫外線を5分から10分間(照射時間は5分)照射した。また、交流印加回路3の印加電圧は10Vに設定し、ロックインアンプ10により抵抗R(5オーム)に生じる電流の信号を増幅して、該増幅された信号を電流値として測定し、更に増幅信号と交流印加回路3の波長との位相差(度)を測定した。
これら電流値及び位相差の測定は5秒間に1回行い、30秒間(6回分)の平均値をプロットした。
As a measurement sample, 100 ppm of toluene gas was used, and the measurement sample was irradiated with ultraviolet rays having a wavelength of 117 nm from the UV lamp 4 for 5 to 10 minutes (irradiation time was 5 minutes). Further, the applied voltage of the AC application circuit 3 is set to 10 V, the signal of the current generated in the resistor R (5 ohms) is amplified by the lock-in amplifier 10, the amplified signal is measured as a current value, and further amplified. The phase difference (degree) between the signal and the wavelength of the AC application circuit 3 was measured.
These current values and phase differences were measured once every 5 seconds, and the average values for 30 seconds (six times) were plotted.

実施例2の図5と同様に、検出された電流値を左側縦軸に示し、ロックインアンプ10により増幅された検出信号と交流印加回路3の波長との位相差を右側縦軸に示した。
図8に示したように、UVランプの非照射時(0から5分、10分から15分)と照射時(5分から10分)では、ほぼプロットが横並びとなり、UVランプ照射と非照射で出力差が生じることが確認され、絶縁膜被覆電極11を用いた電極でもVOC濃度が測定可能であることが確認できた。
Similarly to FIG. 5 of the second embodiment, the detected current value is shown on the left vertical axis, and the phase difference between the detection signal amplified by the lock-in amplifier 10 and the wavelength of the AC applying circuit 3 is shown on the right vertical axis. .
As shown in FIG. 8, when the UV lamp is not irradiated (from 0 to 5 minutes, from 10 minutes to 15 minutes) and at the time of irradiation (from 5 minutes to 10 minutes), the plots are almost side by side, and output is performed with and without UV lamp irradiation. It was confirmed that a difference occurred, and it was confirmed that the VOC concentration could be measured even with the electrode using the insulating film-coated electrode 11.

なお、電極2の両方に絶縁膜被覆を行った場合、イオン電流は発生せず、電極2の電気容量の変化のみによって出力が変わるためと考えられる。
また、交流印加回路3の場合は、金属電極2がコンデンサとして働くために金属電極2の電気容量が変わって検出信号と交流印加回路3の電源の波長とに位相差が生じて両者の位相がずれる。
In addition, it is considered that when both the electrodes 2 are covered with the insulating film, no ionic current is generated, and the output is changed only by the change in the electric capacity of the electrode 2.
Further, in the case of the AC application circuit 3, since the metal electrode 2 functions as a capacitor, the electric capacity of the metal electrode 2 changes and a phase difference occurs between the detection signal and the wavelength of the power supply of the AC application circuit 3, and the phases of both of them change. Shift.

そして、図8からも、図5と同様に、UVランプの非照射時と照射時では、ロックインアンプ10により増幅された検出信号と交流印加回路3の波長との間に位相差が生じることが分かり、ガスのイオン化を確認することができた。
このように、交流印加した金属電極2は、イオン化ガスによる金属電極2の電気容量の変化を検知することが可能であるため、絶縁膜を被覆した場合でも、電気容量の変化によって電流値を測定できる。絶縁膜を被覆した絶縁膜部は、UV照射による活性物質の発生又は腐食性物質の混入による汚染から電極を防ぐため、電極の導体部にコンタミネーションが蓄積することがなく、長期間のメンテナンスフリーが可能となる。また、金属電極2を用いても電極の金属部は劣化しない。
Also from FIG. 8, as in FIG. 5, there is a phase difference between the detection signal amplified by the lock-in amplifier 10 and the wavelength of the AC applying circuit 3 when the UV lamp is not irradiated and when irradiated. As a result, gas ionization was confirmed.
As described above, since the metal electrode 2 applied with alternating current can detect a change in the capacitance of the metal electrode 2 due to the ionized gas, the current value is measured by the change in the capacitance even when the insulating film is covered. it can. The insulating film covered with the insulating film prevents the electrodes from being contaminated by the generation of active substances or corrosive substances caused by UV irradiation, so there is no accumulation of contamination in the electrode conductors and long-term maintenance-free operation. Is possible. Moreover, even if the metal electrode 2 is used, the metal part of the electrode does not deteriorate.

本発明は、VOC濃度の測定装置及び測定方法として、環境分野のみならず、工業分野においても利用可能性がある。   The present invention can be used not only in the environmental field but also in the industrial field as a VOC concentration measuring apparatus and measuring method.

1 検出室 2 金属電極
3 交流印加回路 4 UVランプ
5 UVランプ励起回路 7 測定回路
8 演算器 10 位相検波器(ロックインアンプ)
11 絶縁膜被覆電極 13 直流印加回路
DESCRIPTION OF SYMBOLS 1 Detection chamber 2 Metal electrode 3 AC application circuit 4 UV lamp 5 UV lamp excitation circuit 7 Measurement circuit 8 Calculator 10 Phase detector (lock-in amplifier)
11 Insulating film coated electrode 13 DC application circuit

Claims (6)

測定流体中の揮発性有機化合物を検出する検出電極と、該検出電極に交流電圧又は交流電流を印加する印加手段と、前記測定流体中の揮発性有機化合物をイオン化するために測定流体に紫外線を照射するUVランプと、該UVランプを励起するための励起回路と、前記検出電極に流れる電流又は電圧を測定する測定手段とを有することを特徴とする揮発性有機化合物の光イオン化検出器。   A detection electrode for detecting a volatile organic compound in the measurement fluid, an application means for applying an alternating voltage or an alternating current to the detection electrode, and an ultraviolet ray on the measurement fluid for ionizing the volatile organic compound in the measurement fluid A photoionization detector for a volatile organic compound, comprising: a UV lamp for irradiation; an excitation circuit for exciting the UV lamp; and a measuring means for measuring a current or voltage flowing through the detection electrode. 前記測定手段が、位相検波器であることを特徴とする請求項1記載の光イオン化検出器。   2. The photoionization detector according to claim 1, wherein the measuring means is a phase detector. 前記検出電極が絶縁被覆されていることを特徴とする請求項1又は2に記載の光イオン化検出器。   The photoionization detector according to claim 1 or 2, wherein the detection electrode is covered with an insulating coating. 測定流体中の揮発性有機化合物を検出するための検出電極に交流電圧又は交流電流を印加し、前記測定流体に紫外線を照射して測定流体中の揮発性有機化合物をイオン化させて、前記検出電極に流れる電流又は電圧を測定することを特徴とする揮発性有機化合物の光イオン化検出方法。   An AC voltage or an AC current is applied to a detection electrode for detecting a volatile organic compound in the measurement fluid, and the measurement fluid is irradiated with ultraviolet rays to ionize the volatile organic compound in the measurement fluid, and the detection electrode A method for photoionization detection of a volatile organic compound, characterized by measuring a current or a voltage flowing through the substrate. 前記検出電極に流れる電流又は電圧を位相検波により測定することを特徴とする請求項4記載の光イオン化検出方法。   5. The photoionization detection method according to claim 4, wherein a current or voltage flowing through the detection electrode is measured by phase detection. 前記検出電極が絶縁被覆された電極を用いることを特徴とする請求項4又は5に記載の光イオン化検出方法。   6. The photoionization detection method according to claim 4, wherein the detection electrode is an insulating coating.
JP2009106520A 2009-04-24 2009-04-24 Photoionization detector and photoionization detection method Active JP5448549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106520A JP5448549B2 (en) 2009-04-24 2009-04-24 Photoionization detector and photoionization detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106520A JP5448549B2 (en) 2009-04-24 2009-04-24 Photoionization detector and photoionization detection method

Publications (2)

Publication Number Publication Date
JP2010256165A true JP2010256165A (en) 2010-11-11
JP5448549B2 JP5448549B2 (en) 2014-03-19

Family

ID=43317250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106520A Active JP5448549B2 (en) 2009-04-24 2009-04-24 Photoionization detector and photoionization detection method

Country Status (1)

Country Link
JP (1) JP5448549B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004527A (en) * 2011-06-16 2013-01-07 Mocon Inc Gas discharge lamp with axially extending strip of getter and method of manufacturing the same
JP2013036931A (en) * 2011-08-10 2013-02-21 Tokyo Metropolitan Industrial Technology Research Institute Volatile organic matter detector and volatile organic matter detecting method
WO2013038584A1 (en) 2011-09-15 2013-03-21 地方独立行政法人東京都立産業技術研究センター Ionized gas detector and ionized gas detection method
US20140346347A1 (en) * 2013-05-27 2014-11-27 Hitachi, Ltd. Ion detecting apparatus
CN105388208A (en) * 2015-12-14 2016-03-09 河南省建筑科学研究院有限公司 PID-based air VOC monitoring machine and remote monitoring realization method thereof
JP2016053573A (en) * 2015-10-28 2016-04-14 株式会社日立製作所 Outer air measuring instrument and mobile body equipped with the same
KR20170032091A (en) * 2015-09-14 2017-03-22 연세대학교 산학협력단 Sensor for Volatile Organic Compounds
JP2017223705A (en) * 2017-08-22 2017-12-21 株式会社日立製作所 Outdoor air measurement device and mobile vehicle having the same
JP2018021767A (en) * 2016-08-01 2018-02-08 地方独立行政法人東京都立産業技術研究センター Device and method for detecting volatile organic
KR20190022866A (en) * 2016-08-09 2019-03-06 허니웰 인터내셔날 인코포레이티드 Low Power Photoionization Detector (PID)
CN112834490A (en) * 2021-01-07 2021-05-25 上海雷密传感技术有限公司 Photo-ion detection device
US11037778B1 (en) 2021-01-14 2021-06-15 Mocon, Inc. UV lamp

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756749A (en) * 1980-09-20 1982-04-05 Mitsubishi Electric Corp Detector of very small quantity of ion
JPH10227763A (en) * 1997-02-17 1998-08-25 Mitsubishi Electric Corp Gas concentration measuring device
JP2001033425A (en) * 1999-07-19 2001-02-09 Matsushita Electric Ind Co Ltd Hydrogen gas sensor
JP2003066008A (en) * 2001-05-29 2003-03-05 Rae Systems Inc Photoionization detector and method for continuous operation and real time self cleaning
JP2003098153A (en) * 2001-09-27 2003-04-03 Yokogawa Electric Corp Photoionization detector
JP2007170925A (en) * 2005-12-20 2007-07-05 Toshiba Corp Autoanalyzer and its detection method
JP2008268169A (en) * 2007-03-27 2008-11-06 Denso Corp Liquid property sensor and impedance sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756749A (en) * 1980-09-20 1982-04-05 Mitsubishi Electric Corp Detector of very small quantity of ion
JPH10227763A (en) * 1997-02-17 1998-08-25 Mitsubishi Electric Corp Gas concentration measuring device
JP2001033425A (en) * 1999-07-19 2001-02-09 Matsushita Electric Ind Co Ltd Hydrogen gas sensor
JP2003066008A (en) * 2001-05-29 2003-03-05 Rae Systems Inc Photoionization detector and method for continuous operation and real time self cleaning
JP2003098153A (en) * 2001-09-27 2003-04-03 Yokogawa Electric Corp Photoionization detector
JP2007170925A (en) * 2005-12-20 2007-07-05 Toshiba Corp Autoanalyzer and its detection method
JP2008268169A (en) * 2007-03-27 2008-11-06 Denso Corp Liquid property sensor and impedance sensor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9368338B2 (en) 2011-06-16 2016-06-14 Mocon, Inc. Gas discharge lamp with an axially extending strip of getter and method of manufacture
JP2013004527A (en) * 2011-06-16 2013-01-07 Mocon Inc Gas discharge lamp with axially extending strip of getter and method of manufacturing the same
JP2013036931A (en) * 2011-08-10 2013-02-21 Tokyo Metropolitan Industrial Technology Research Institute Volatile organic matter detector and volatile organic matter detecting method
WO2013038584A1 (en) 2011-09-15 2013-03-21 地方独立行政法人東京都立産業技術研究センター Ionized gas detector and ionized gas detection method
JPWO2013038584A1 (en) * 2011-09-15 2015-03-23 地方独立行政法人東京都立産業技術研究センター Ionized gas detector and ionized gas detection method
US9645113B2 (en) 2011-09-15 2017-05-09 Tokyo Metropolitan Industrial Technology Research Institute Ionized gas detector and ionized gas detecting method
US10241106B2 (en) 2013-05-27 2019-03-26 Hitachi, Ltd. Atmospheric pressure ion detector for outside air measurement
US20140346347A1 (en) * 2013-05-27 2014-11-27 Hitachi, Ltd. Ion detecting apparatus
US10041908B2 (en) 2015-09-14 2018-08-07 Industry-Academic Cooperation Foundation Yonsei University Volatile organic compound sensor
KR20170032091A (en) * 2015-09-14 2017-03-22 연세대학교 산학협력단 Sensor for Volatile Organic Compounds
KR101720572B1 (en) 2015-09-14 2017-03-29 연세대학교 산학협력단 Sensor for Volatile Organic Compounds
JP2016053573A (en) * 2015-10-28 2016-04-14 株式会社日立製作所 Outer air measuring instrument and mobile body equipped with the same
CN105388208A (en) * 2015-12-14 2016-03-09 河南省建筑科学研究院有限公司 PID-based air VOC monitoring machine and remote monitoring realization method thereof
JP2018021767A (en) * 2016-08-01 2018-02-08 地方独立行政法人東京都立産業技術研究センター Device and method for detecting volatile organic
KR20190022866A (en) * 2016-08-09 2019-03-06 허니웰 인터내셔날 인코포레이티드 Low Power Photoionization Detector (PID)
KR102160086B1 (en) 2016-08-09 2020-09-28 허니웰 인터내셔날 인코포레이티드 Low power photoionization detector (PID)
US11193909B2 (en) 2016-08-09 2021-12-07 Honeywell International Inc. Low power photoionization detector (PID)
JP2017223705A (en) * 2017-08-22 2017-12-21 株式会社日立製作所 Outdoor air measurement device and mobile vehicle having the same
CN112834490A (en) * 2021-01-07 2021-05-25 上海雷密传感技术有限公司 Photo-ion detection device
CN112834490B (en) * 2021-01-07 2022-12-20 上海雷密传感技术有限公司 Photo-ion detection device
US11037778B1 (en) 2021-01-14 2021-06-15 Mocon, Inc. UV lamp

Also Published As

Publication number Publication date
JP5448549B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5448549B2 (en) Photoionization detector and photoionization detection method
JP5861739B2 (en) Discharge ionization current detector
JP4936492B2 (en) Discharge ionization current detector
Zhu et al. Flow-through microfluidic photoionization detectors for rapid and highly sensitive vapor detection
US8797041B2 (en) Discharge ionization current detector
US8773138B2 (en) Discharge ionization current detector
US20110316551A1 (en) Discharge Ionization Current Detector
Olenici-Craciunescu et al. Characterization of a capillary dielectric barrier plasma jet for use as a soft ionization source by optical emission and ion mobility spectrometry
JP5987968B2 (en) Discharge ionization current detector and adjustment method thereof
JP2010060354A (en) Discharge ionizing current sensor
JP6318242B2 (en) Glow discharge mass spectrometry method and apparatus
Li et al. Determination of ultratrace nitrogen in pure argon gas by dielectric barrier discharge-molecular emission spectrometry
JP4973441B2 (en) Atmosphere analyzer and atmosphere analysis method
JP5614379B2 (en) Discharge ionization current detector and gas chromatograph apparatus
WO2013176580A1 (en) Differential ion mobility spectrometer
KR100931066B1 (en) Odor detecting method using photo-ionazation detector(pid)
WO2021212229A1 (en) Photoionization detector and method for gas sample analysis
JP5779038B2 (en) Volatile organic matter detector and volatile organic matter detection method
US20210341422A1 (en) Integrated micro-photoionization detector with an ultrathin ultraviolet transmission window
JP5121739B2 (en) Sodium leak detection system
JP4571170B2 (en) Photocatalytic activity quantitative measurement apparatus and photocatalytic activity quantitative measurement method
Sun et al. Real-time monitoring of trace-level VOCs by an ultrasensitive compact lamp-based VUV photoionization mass spectrometer
Liess et al. New operation principle for ultra-stable photo-ionization detectors
JP6727977B2 (en) Volatile organic substance detector and volatile organic substance detection method
JPH04303759A (en) Electron capture detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5448549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250