JP2010232145A - Laminated-type battery and method of manufacturing same - Google Patents

Laminated-type battery and method of manufacturing same Download PDF

Info

Publication number
JP2010232145A
JP2010232145A JP2009081342A JP2009081342A JP2010232145A JP 2010232145 A JP2010232145 A JP 2010232145A JP 2009081342 A JP2009081342 A JP 2009081342A JP 2009081342 A JP2009081342 A JP 2009081342A JP 2010232145 A JP2010232145 A JP 2010232145A
Authority
JP
Japan
Prior art keywords
electrode plate
laminated
negative electrode
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009081342A
Other languages
Japanese (ja)
Inventor
Masataka Shinyashiki
昌孝 新屋敷
Nobuyuki Tamura
宜之 田村
Yasuyuki Okuda
泰之 奥田
Hitoshi Maeda
仁史 前田
Masayuki Fujiwara
雅之 藤原
Atsuhiro Funabashi
淳浩 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009081342A priority Critical patent/JP2010232145A/en
Publication of JP2010232145A publication Critical patent/JP2010232145A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated-type battery capable of fixing a laminated electrode body firmly without shifts, while suppressing reduction in the battery capacity. <P>SOLUTION: In a laminated electrode body 10 of a laminated-type battery, in a low activity region N1 that deviates from an active region H1 that is apt to be utilized in an electrode reaction substantially, through-parts 31, 32 for preventing the shift in a lamination, penetrating through a positive electrode plate 1 and a negative electrode plate 2 in the direction of lamination are provided, and the laminated electrode body 10 is fixed by the through-parts 31, 32, and thereby, the low active region N1 that is not utilized sufficiently in an electrode reaction is made to be utilized effectively. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ロボット、電気自動車などに使用される大容量でハイレート特性を有する積層式電池に関し、特に、積層枚数が多く、多数の正負極板の積層を必要とし、かつ電池に振動が加わりやすい動力用のリチウムイオン電池に関する。
また、本発明は、積層式電池の製造方法に関し、特に、積層電極体を容易かつ正確に位置決めして積層する方法に関する。
The present invention relates to a large-capacity laminated battery having a high rate characteristic and used for robots, electric vehicles and the like. In particular, the number of laminated sheets is large, a large number of positive and negative electrode plates are required to be laminated, and vibration is easily applied to the battery. The present invention relates to a lithium-ion battery for power.
The present invention also relates to a method for manufacturing a stacked battery, and more particularly to a method for positioning and stacking a stacked electrode body easily and accurately.

例えばロボットや電気自動車等の電源は、大容量でハイレート特性を有すること等が要望される。このような要望を満足するものとして、近年、高エネルギー密度を有するリチウムイオン電池が注目されている。このリチウムイオン電池の構造として、正極板および負極板をセパレータを介して交互に積層してなる積層電極体を外装体に収容した、積層式電池と称されるものがある。   For example, power supplies for robots and electric vehicles are required to have a large capacity and high rate characteristics. In recent years, lithium ion batteries having a high energy density have attracted attention as satisfying such demands. As a structure of this lithium ion battery, there is a so-called stacked battery in which a laminated electrode body in which positive and negative electrode plates are alternately laminated via a separator is accommodated in an exterior body.

上記のような大容量でハイレートでの充放電を必要とする動力用の積層式電池は、振動により積層ズレが生じやすいため、多数枚の正負極板およびセパレータを積層した積層電極体を強固に固定する必要がある。積層電極体の周縁部をテープで固定することもなされているが、この方法ではテープの粘着剤が電解液等に接触することにより粘着性を喪失しやすいため、積層電極体を確実に固定した状態に保持しておく上で難点があり、さらに、テープの外形がラミネートよりなる外装体の表面に表れて見栄えが損なわれやすいといった問題もある。また、電池を製造する段階においても、積層電極体を正確に位置合せしてズレなく積層する必要があるが、この作業は難しく手間も要するものとなっている。   The laminated battery for power that requires charging and discharging at a high rate with a large capacity as described above is likely to cause misalignment due to vibration. Therefore, a laminated electrode body in which a large number of positive and negative electrode plates and separators are laminated is firmly formed. Need to be fixed. Although the periphery of the laminated electrode body is also fixed with a tape, in this method, the adhesive of the tape is liable to be lost when it comes into contact with the electrolytic solution, so the laminated electrode body is securely fixed. There is a problem in maintaining the state, and there is a problem that the appearance of the tape appears on the surface of the exterior body made of a laminate, and the appearance is easily impaired. Also, in the stage of manufacturing the battery, it is necessary to accurately align the laminated electrode bodies and laminate them without any deviation, but this operation is difficult and troublesome.

そこで、特許文献1ないし特許文献2では、積層電極体に貫通孔を形成し、該貫通孔に円柱状の貫通部材ないしピンを貫通させるように配置することにより電極体を固定するようにしている。   Therefore, in Patent Documents 1 and 2, a through-hole is formed in the laminated electrode body, and the electrode body is fixed by disposing a cylindrical through-member or pin through the through-hole. .

また、特許文献3では、セパレータの周縁部を電極板よりも外側へ張り出すようにし、該周縁部を互いに固着することにより電極体を固定するようにしている。   Moreover, in patent document 3, the peripheral part of a separator is projected outside an electrode plate, and the electrode body is fixed by fixing the peripheral parts to each other.

特開2000−340265号公報JP 2000-340265 A 特開2002−246007号公報JP 2002-246007 A 特開平10−64506号公報JP-A-10-64506

しかしながら、前記特許文献1および特許文献2では、貫通部材ないしピンを貫通させる位置を、電極体の中央部(特許文献1)ないし集電端子に近接する端部(特許文献2)としているが、これらの位置の活物質は充放電反応に高い割合で利用されており、このような位置に貫通部材ないしピンを貫通させるようにすると、当該部位には活物質が存在しないこととなり、したがって電極の容量を低下させることとなってしまう。   However, in Patent Document 1 and Patent Document 2, the position where the penetrating member or pin penetrates is the central portion (Patent Document 1) of the electrode body or the end portion close to the current collecting terminal (Patent Document 2). The active material at these positions is used at a high rate for the charge / discharge reaction, and if the penetrating member or pin is penetrated at such a position, the active material does not exist at the site, and therefore, the electrode The capacity will be reduced.

一方、特許文献3では、セパレータ同士を固着させるようにしているため貫通部材やピンは不要となっているが、セパレータの周縁部を電極板よりも外側へ張り出すようにしているから、電極板が小サイズとなり、セパレータの固着箇所に相当する部位には極板が存在しない構造となるため、その分電池容量が低下することとなる。   On the other hand, in Patent Document 3, since the separators are fixed to each other, a penetrating member and a pin are unnecessary, but the peripheral edge of the separator is projected outward from the electrode plate. Becomes a small size, and the electrode plate does not exist in a portion corresponding to the fixing portion of the separator, and accordingly, the battery capacity is reduced accordingly.

したがって、本発明は、電池容量の低下を抑制しながら、積層電極体をズレなく強固に固定することが可能な積層式電池を提供することを目的とする。   Therefore, an object of the present invention is to provide a laminated battery capable of firmly fixing a laminated electrode body without displacement while suppressing a decrease in battery capacity.

また、本発明は、積層電極体を容易かつ正確に位置決めして積層することができるとともに、電池容量の低下を抑制しながら、積層電極体をズレなく強固に固定することが可能な積層式電池の製造方法を提供することを目的とする。   Further, the present invention provides a laminated battery that can position and laminate the laminated electrode body easily and accurately, and can firmly fix the laminated electrode body without displacement while suppressing a decrease in battery capacity. It aims at providing the manufacturing method of.

上記目的を達成する為に、本発明に係る積層式電池は、
正極板と負極板とをセパレータを介して交互に積層してなる積層電極体を備える積層式電池であって、
前記積層電極体において、電極反応に実質的に利用されやすい活性領域から逸脱する領域に、前記正極板および前記負極板を積層方向に貫通する積層ズレ防止用の貫通部が設けられ、この貫通部で前記積層電極体が固定されていることを特徴とする。
In order to achieve the above object, the laminated battery according to the present invention is:
A laminated battery comprising a laminated electrode body in which a positive electrode plate and a negative electrode plate are alternately laminated via separators,
In the laminated electrode body, a through-hole for preventing misalignment is provided in a region deviating from an active region that is substantially easily used for electrode reaction, and the through-hole for preventing misalignment through the positive electrode plate and the negative electrode plate is provided. The laminated electrode body is fixed.

本発明において、「電極反応に実質的に利用されやすい活性領域」(以下、単に「活性領域」とも称す)とは、積層電極体において活物質が電極反応に実質的に利用されて電流が流れるように活性化されやすい領域を意味し、したがって、たとえ活物質が電極反応に利用されて電流が流れたとしても、その電流量が上記活性領域を流れる最大電流量の1/10以下程度にとどまるような領域は、この活性領域から逸脱する領域(以下、「低活性領域」とも称す)に該当する。   In the present invention, the “active region that is substantially easily used for electrode reaction” (hereinafter, also simply referred to as “active region”) means that the active material is substantially used for electrode reaction in the laminated electrode body and current flows. Thus, even if an active material is used for an electrode reaction and a current flows, the amount of current remains at about 1/10 or less of the maximum amount of current flowing through the active region. Such a region corresponds to a region deviating from the active region (hereinafter also referred to as “low active region”).

また、「貫通部」とは、貫通孔の他、正極板および負極板を辺縁から切欠いた切欠き、正極板および負極板の隅部を切除した角落ち部等をいずれも含意する。   In addition to the through hole, the “penetrating portion” implies not only a notch obtained by cutting out the positive electrode plate and the negative electrode plate from the edge, but also a corner drop portion obtained by cutting off the corners of the positive electrode plate and the negative electrode plate.

上記構成によれば、正極板および負極板において、貫通部の形成にともないこの貫通部の占有面積分の活物質が存在しないこととなっても、この貫通部の形成位置は活性領域から逸脱する領域すなわち低活性領域にあるため、電極反応には実質的に影響しない。換言すれば、電極反応に十分に利用されることが少ない低活性領域を有効に利用して貫通部が設けられている。したがって、この貫通部で積層電極体を固定することにより、電池容量の低下を抑制しながら、積層電極体をズレなく強固に固定することができる。   According to the above configuration, in the positive electrode plate and the negative electrode plate, even if there is no active material corresponding to the area occupied by the through portion due to the formation of the through portion, the formation position of the through portion deviates from the active region. Since it is in the region, that is, the low active region, the electrode reaction is not substantially affected. In other words, the penetrating portion is provided by effectively using the low active region that is rarely used for the electrode reaction. Therefore, by fixing the laminated electrode body at this through portion, the laminated electrode body can be firmly fixed without displacement while suppressing a decrease in battery capacity.

前記積層式電池が、電流値が6.0It以上のハイレートで充放電されるものであることが望ましい。   It is desirable that the stacked battery is charged and discharged at a high rate with a current value of 6.0 It or more.

例えば電池が電流値1.0It程度の低レートで運転すなわち充放電されるものである場合には、積層電極体において電極反応に実質的に利用される部分の面積が比較的に大きく、したがって低活性領域は比較的に少ない。これに対し、電流値6.0It程度またはこれ以上のハイレートとなるほど、積層電極体においては正極端子から負極端子へ電流がより最短距離で流れようとする傾向が強くなるので、これにともない活性領域が狭小化していくとともに低活性領域が拡大していくこととなる。したがって、低活性領域に貫通部を設けるようにした本発明が特に好適に適用される。また、低活性領域が大となることで、それだけ貫通部の形成に適する領域が多大に確保されて該貫通部が形成しやすくなることともなる。   For example, when the battery is operated, that is, charged and discharged at a low rate of a current value of about 1.0 It, the area of the part that is substantially used for the electrode reaction in the laminated electrode body is relatively large, and therefore low There are relatively few active areas. On the other hand, the higher the current value is about 6.0 It or higher, the more the current tends to flow from the positive electrode terminal to the negative electrode terminal in the shortest distance in the laminated electrode body. As the area becomes narrower, the low active area will expand. Therefore, the present invention in which the through portion is provided in the low active region is particularly preferably applied. Further, since the low active region becomes large, a region suitable for the formation of the penetrating portion is secured so much that the penetrating portion is easily formed.

前記貫通部が、正極板および負極板とともにセパレータを積層方向に貫通し、該貫通部に不導体よりなる貫通部材を貫通させるように配置することにより積層電極体が固定されている構成としてもよい。   It is good also as a structure by which the said penetration part penetrates a separator with a positive electrode plate and a negative electrode plate in the lamination direction, and arrange | positions so that the penetration member which consists of a non-conductor may be penetrated to this penetration part, and the laminated electrode body is being fixed. .

上記構成によれば、簡単な構成により容易かつ確実に積層電極体を固定することができる。また、貫通部が、正極板および負極板だけでなくセパレータも積層方向に貫通するものとなっていることで、該貫通部に位置決めボス等を挿通するようにして正極板、負極板およびセパレータを容易かつ正確に位置合せして積層することが可能となる。   According to the said structure, a laminated electrode body can be fixed easily and reliably by simple structure. In addition, since the through portion penetrates not only the positive electrode plate and the negative electrode plate but also the separator in the laminating direction, the positive electrode plate, the negative electrode plate and the separator are inserted so as to insert a positioning boss or the like into the through portion. It becomes possible to easily and accurately align and laminate.

前記貫通部がセパレータを貫通しておらず、該貫通部を挟むように位置するセパレータ同士を該貫通部内で溶着することにより積層電極体が固定されている構成としてもよい。   It is good also as a structure by which the laminated electrode body is being fixed by welding the separator which is located so that the said penetration part may not penetrate the separator, and may pinch | interpose this penetration part in this penetration part.

上記構成によれば、セパレータ自体が固定手段となることで、別に固定手段として貫通部材等を用意する必要がなく、その分部品点数を少なくして構成を簡潔化することができる。また、別体の固定手段を用いると、この固定手段が厚さ方向(積層方向)に多少とも突出し、ラミネートよりなる外装体の表面に表れて見栄えや納まり等が劣ることともなりやすいが、これに対し、上記のようにセパレータ同士を該貫通部内で溶着するようにすれば、厚さ方向に凹入することはあっても突出することはないので、ラミネートよりなる外装体の表面に表れることもなく、したがって見栄えや納まり等が損なわれることもない。   According to the above configuration, since the separator itself becomes the fixing means, there is no need to prepare a penetrating member or the like as the fixing means, and the configuration can be simplified by reducing the number of parts accordingly. If a separate fixing means is used, this fixing means protrudes somewhat in the thickness direction (stacking direction) and appears on the surface of the exterior body made of laminate. On the other hand, if the separators are welded together in the penetrating portion as described above, they do not protrude even if they are recessed in the thickness direction, so that they appear on the surface of the exterior body made of laminate. Therefore, the appearance and the fit are not impaired.

また、本発明に係る積層式電池の製造方法は、
正極板と負極板とをセパレータを介して交互に積層してなる積層電極体を備える積層式電池の製造方法であって、
前記正極板、負極板およびセパレータの一枚ごとに、電極反応に実質的に利用されやすい活性領域から逸脱する領域に、前記正極板、負極板およびセパレータを積層方向に貫通する積層ズレ防止用の貫通部をそれぞれ設け、この貫通部に位置決めボスを挿通するようにして前記正極板、負極板およびセパレータを位置合せして積層することを特徴とする。
In addition, the manufacturing method of the stacked battery according to the present invention includes:
A method for producing a laminated battery comprising a laminated electrode body in which a positive electrode plate and a negative electrode plate are alternately laminated via separators,
Each of the positive electrode plate, the negative electrode plate, and the separator is for preventing misalignment of the positive electrode plate, the negative electrode plate, and the separator that penetrates in the stacking direction in a region that deviates from an active region that is substantially easily used for electrode reaction. Each of the through portions is provided, and the positive electrode plate, the negative electrode plate, and the separator are aligned and laminated so that the positioning boss is inserted into the through portion.

本発明において、「位置決めボス」とは、積層部材(正極板、負極板およびセパレータ)の貫通部に挿入されて互いの位置を揃えるように規制するための突起のことであり、その形状は、貫通部に挿入し得るものであれば任意のものを含意し、例えば柱状、筒状、ピン状、片状等がいずれも含まれる。   In the present invention, the “positioning boss” is a protrusion that is inserted into the through-hole of the laminated member (positive electrode plate, negative electrode plate and separator) and regulates to align each other, and its shape is Anything that can be inserted into the penetrating portion is implied, and for example, any of a columnar shape, a cylindrical shape, a pin shape, a piece shape and the like is included.

積層式電池の作製においては、積層電極体の積層工程で正極板と負極板とをセパレータを介して交互に積層していく際に、これらの積層部材を互いにずれないように正確に位置合せしながら積層していくのが難しくて手間を要し、従来はコンピュータで制御しながら位置合せする等していたが、これに対し、上記のように積層ズレ防止用の貫通部に位置決めボスを挿通して位置合せするようにすることにより、大掛かりな装置や冶具等を要することもなく、正極板、負極板およびセパレータを容易に、かつ、ずれないよう正確に位置合せして積層することができる。   In the production of a laminated battery, when laminating positive and negative electrodes alternately via separators in the lamination process of the laminated electrode body, these laminated members are accurately aligned so as not to deviate from each other. However, it has been difficult to stack the layers, requiring time and labor, and in the past, positioning was performed while being controlled by a computer. On the other hand, the positioning boss was inserted into the through-hole for preventing stacking deviation as described above. Thus, the positive electrode plate, the negative electrode plate, and the separator can be easily aligned accurately and stacked so as not to be displaced without requiring a large-scale device or jig. .

本発明の積層式電池によれば、積層電極体における低活性領域に積層ズレ防止用の貫通部を設け、この貫通部で積層電極体を固定するようにしたことにより、電池容量の低下を抑制しながら、積層電極体をズレなく強固に固定することが可能な積層式電池を得ることができる。   According to the multilayer battery of the present invention, the through electrode for preventing misalignment is provided in the low active region of the laminated electrode body, and the laminated electrode body is fixed by this through part, thereby suppressing the decrease in battery capacity. On the other hand, it is possible to obtain a laminated battery capable of firmly fixing the laminated electrode body without deviation.

また、本発明の積層式電池の製造方法によれば、上述の積層ズレ防止用の貫通部に位置決めボスを挿通して位置合せするようにすることにより、簡単な位置合せ手段により、正極板、負極板およびセパレータを容易かつ正確に位置合せして積層することができ、したがって、電池容量の低下を抑制しながら、積層電極体をズレなく強固に固定することが可能な積層式電池を容易に効率よく作製することができる。   Further, according to the method for manufacturing a laminated battery of the present invention, the positioning plate is inserted into the above-described through-hole for preventing misalignment, and the positive electrode plate is obtained by simple alignment means. A negative electrode plate and a separator can be easily and accurately aligned and stacked, and thus a stacked battery that can firmly fix a stacked electrode body without displacement while suppressing a decrease in battery capacity is easily obtained. It can be produced efficiently.

本発明の積層式電池の一部を示す図であって、同図(a)は正極の平面図、同図(b)はセパレータの斜視図、同図(c)は正極が内部に配置された袋状セパレータを示す平面図である。It is a figure which shows a part of laminated battery of this invention, Comprising: The figure (a) is a top view of a positive electrode, The figure (b) is a perspective view of a separator, The figure (c) is a positive electrode arrange | positioned inside. It is a top view which shows the bag-shaped separator. 本発明の積層式電池に用いる負極板の平面図である。It is a top view of the negative electrode plate used for the laminated battery of this invention. 本発明の積層式電池に用いる積層電極体の分解斜視図である。It is a disassembled perspective view of the laminated electrode body used for the laminated battery of this invention. 本発明の積層式電池に用いる積層電極体を貫通部で固定した状況を示す概略部分断面図である。It is a schematic fragmentary sectional view which shows the condition which fixed the laminated electrode body used for the laminated battery of this invention by the penetration part. 本発明の積層式電池に用いる積層電極体の平面図である。It is a top view of the laminated electrode body used for the laminated battery of this invention. 正負極タブと正負極集電端子とを溶着した状態を示す平面図である。It is a top view which shows the state which welded the positive / negative electrode tab and the positive / negative electrode current collection terminal. 本発明の積層式電池に用いる外装体に図6の積層電極体を挿入した状態の斜視図である。It is a perspective view of the state which inserted the laminated electrode body of FIG. 6 in the exterior body used for the laminated battery of this invention. 本発明の積層式電池を用いてハイレートで充放電を繰り返した場合の電流分布を示す概念図である。It is a conceptual diagram which shows the electric current distribution at the time of repeating charging / discharging at a high rate using the laminated battery of this invention. 比較例の積層式電池に用いた積層電極体の平面図である。It is a top view of the laminated electrode body used for the laminated battery of the comparative example. 第2実施例に係る積層電極体を積層する状況を示す斜視図である。It is a perspective view which shows the condition which laminates | stacks the laminated electrode body which concerns on 2nd Example. 図10の積層電極体を貫通部で固定した状況を示す概略部分断面図である。It is a schematic fragmentary sectional view which shows the condition which fixed the laminated electrode body of FIG. 10 by the penetration part. 他の例に係る積層式電池を用いてハイレートで充放電を繰り返した場合の電流分布を示す概念図である。It is a conceptual diagram which shows the electric current distribution at the time of repeating charging / discharging at a high rate using the laminated battery which concerns on another example. 正負極タブおよび貫通部の配置の他の例を示す部分平面図である。It is a fragmentary top view which shows the other example of arrangement | positioning of a positive / negative electrode tab and a penetration part. 他の例に係る積層電極体を貫通部で固定した状況を示す平面図である。It is a top view which shows the condition which fixed the laminated electrode body which concerns on another example with the penetration part. 図14のC−C線部模式矢視断面図である。It is CC sectional view taken on the line of FIG.

以下、本発明を図面を参照しながら更に詳細に説明するが、本発明は以下の最良の形態になんら限定されるものではなく、その趣旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in more detail with reference to the drawings. However, the present invention is not limited to the following best modes, and can be implemented with appropriate modifications without departing from the spirit of the present invention. It is a thing.

〔正極の作製〕
正極活物質としてのLiCoOを90質量%と、導電剤としてのカーボンブラックを5質量%と、結着剤としてのポリフッ化ビニリデンを5質量%と、溶剤としてのN−メチル−2−ピロリドン(NMP)溶液とを混合して正極用スラリーを調製した後、この正極用スラリーを、正極集電体としてのアルミニウム箔(厚み:15μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで厚み0.1mmにまで圧縮した後、図1(a)に示すように、幅L1=95mmおよび高さL2=115mmを有する矩形状となるように切断して、両面に正極活物質層1aを有する正極板1を作製した。この際、正極板1における一方短辺(図1(a)における上辺)の一方端部(図1(a)における左端部)から、幅L3=30mmおよび高さL4=20mmを有する矩形状の活物質未塗布部を延出させて正極タブ11とした。
[Production of positive electrode]
90% by mass of LiCoO 2 as a positive electrode active material, 5% by mass of carbon black as a conductive agent, 5% by mass of polyvinylidene fluoride as a binder, N-methyl-2-pyrrolidone as a solvent ( NMP) solution was mixed to prepare a positive electrode slurry, and this positive electrode slurry was applied to both surfaces of an aluminum foil (thickness: 15 μm) as a positive electrode current collector. Then, after drying the solvent and compressing it to a thickness of 0.1 mm with a roller, as shown in FIG. 1A, it is cut into a rectangular shape having a width L1 = 95 mm and a height L2 = 115 mm. A positive electrode plate 1 having a positive electrode active material layer 1a on both sides was produced. At this time, a rectangular shape having a width L3 = 30 mm and a height L4 = 20 mm from one end portion (the left end portion in FIG. 1A) of one short side (the upper side in FIG. 1A) of the positive electrode plate 1. The active material uncoated portion was extended to form a positive electrode tab 11.

〔負極の作製〕
負極活物質としての黒鉛粉末を95質量%と、結着剤としてのポリフッ化ピニリデンを5質量%と、溶剤としてのNMP溶液とを混合して負極用スラリーを調製した後、この負極用スラリーを負極集電体としての銅箔(厚み:10μm)の両面に塗布した。その後、溶剤を乾燥し、ローラーで厚み0.08mmにまで圧縮した後、図2に示すように、幅L7=100mmおよび高さL8=120mmを有する矩形状となるように切断して、両面に負極活物質層2aを有する負極板2を作製した。この際、負極板2における一方短辺(図2における上辺)の一方端部(図2における右端部)から、幅L9=30mmおよび高さL10=20mmを有する矩形状の活物質未塗布部を延出させて負極タブ12とした。
(Production of negative electrode)
A negative electrode slurry was prepared by mixing 95% by mass of graphite powder as a negative electrode active material, 5% by mass of polyvinylidene fluoride as a binder, and an NMP solution as a solvent. It apply | coated to both surfaces of the copper foil (thickness: 10 micrometers) as a negative electrode collector. Then, after drying the solvent and compressing to a thickness of 0.08 mm with a roller, as shown in FIG. 2, cut into a rectangular shape having a width L7 = 100 mm and a height L8 = 120 mm, A negative electrode plate 2 having a negative electrode active material layer 2a was produced. At this time, a rectangular active material uncoated portion having a width L9 = 30 mm and a height L10 = 20 mm from one end portion (right end portion in FIG. 2) of one short side (upper side in FIG. 2) of the negative electrode plate 2. The negative electrode tab 12 was extended.

〔貫通部の形成〕
図1(a)に示すように、上記正極板1において、正極タブ11形成側短辺と反対側の短辺(図1における下辺)の両端よりやや中心寄りの内側部(即ち図1(a)における右下および左下の各隅部の内側部)に、より具体的には、当該短辺からの距離D1=5mm、両長辺からの距離D2=5mmの位置を中心として、直径5mmの孔をそれぞれ穿設して、貫通部31を形成した。
(Formation of penetration part)
As shown in FIG. 1 (a), in the positive electrode plate 1, the inner part (that is, FIG. 1 (a) slightly closer to the center than the opposite ends of the short side (lower side in FIG. 1) opposite to the short side of the positive electrode tab 11 formation side. More specifically, the inner part of each of the lower right and lower left corners)), more specifically, the distance D1 = 5 mm from the short side, and the distance D2 = 5 mm from both long sides is 5 mm in diameter. A through-hole 31 was formed by drilling holes.

また、図2に示すように、上記負極板2において、負極タブ12形成側短辺と反対側の短辺(図2における下辺)の両端よりやや中心寄りの内側部(即ち図2における右下および左下の隅部の内側部)に、より具体的には、当該短辺からの距離D3=7.5mm、両長辺からの距離D4=7.5mmの位置を中心として、直径5mmの孔をそれぞれ穿設して、貫通部32を形成した。   Further, as shown in FIG. 2, in the negative electrode plate 2, the inner part (that is, lower right in FIG. 2) slightly closer to the center than both ends of the short side (lower side in FIG. 2) opposite to the short side on the negative electrode tab 12 formation side. And, more specifically, a hole having a diameter of 5 mm centered on a position with a distance D3 = 7.5 mm from the short side and a distance D4 = 7.5 mm from both long sides. The penetrating part 32 was formed by drilling each of these.

〔正極板が内部に配置された袋状セパレータの作製〕
図1(b)に示すように、幅L5=100mmおよび高さL6=120mmを有する2枚の方形状のポリプロピレン(PP)製のセパレータ3a(厚み30μm)の間に正極板1を配置した後、図1(c)に示すように、セパレータ3aの周辺部を融着部4で熱溶着して、正極板1が内部に収納・配置された袋状セパレータ3を作製した。
[Production of bag-shaped separator with positive electrode plate arranged inside]
After arranging the positive electrode plate 1 between two rectangular polypropylene (PP) separators 3a (thickness 30 μm) having a width L5 = 100 mm and a height L6 = 120 mm as shown in FIG. As shown in FIG. 1 (c), the peripheral part of the separator 3a was thermally welded by the fusion part 4 to produce a bag-like separator 3 in which the positive electrode plate 1 was housed and arranged.

〔積層電極体の作製〕
上記正極板1が内部に配置された袋状セパレータ3を50枚、負極板2を51枚調製し、図3に示すように、該袋状セパレータ3と負極板2とを交互に積層した。その際、両端面部に負極板2が位置するようにし、また、この両端面部に配置した負極板2のさらに外側(図3における最上端面部および最下端面部)に、それぞれ上記セパレータ3aと同形・同寸法のポリプロピレンシート3bを1枚ずつ配置した。ついで、図4にこの積層体の積層方向中央部の数枚のみを図示しそれ以外は省略して模式的に示すように、該積層体における袋状セパレータ3およびポリプロピレンシート3b(図4では図示省略)を、正極板1および負極板2の貫通部31、32内で、両側から挟圧するように熱溶着して互いに接合し、これによりこの積層体を該貫通部31、32の位置で固定して、図5にも示す積層電極体10を得た。
(Production of laminated electrode body)
50 bag-shaped separators 3 and 51 negative electrode plates 2 each having the positive electrode plate 1 disposed therein were prepared, and the bag-shaped separators 3 and the negative electrode plates 2 were alternately laminated as shown in FIG. At that time, the negative electrode plate 2 is positioned at both end surface portions, and the same shape as that of the separator 3a is provided on the outer side (the uppermost end surface portion and the lowermost end surface portion in FIG. 3) of the negative electrode plate 2 disposed on both end surface portions. One polypropylene sheet 3b having the same dimensions was disposed. Next, FIG. 4 shows only a few sheets in the center of the laminate in the stacking direction, and the other parts are omitted, and as schematically shown, a bag-like separator 3 and a polypropylene sheet 3b (shown in FIG. 4). Are omitted from each other in the through holes 31 and 32 of the positive electrode plate 1 and the negative electrode plate 2 and bonded to each other so that the laminate is fixed at the positions of the through holes 31 and 32. Thus, the laminated electrode body 10 shown in FIG. 5 was obtained.

〔集電端子の溶接〕
図6に示すように、積層された正極タブ11および負極タブ12のそれぞれの延出端部に、幅30mm、厚み0.5mmのアルミニウム板よりなる正極集電端子15ならびに幅30mm、厚み0.5mmの銅板よりなる負極集電端子16を、それぞれ超音波溶接法により接合した。
[Welding of current collector terminal]
As shown in FIG. 6, the positive electrode current collector terminal 15 made of an aluminum plate having a width of 30 mm and a thickness of 0.5 mm and a width of 30 mm and a thickness of 0. The negative electrode current collecting terminals 16 made of a 5 mm copper plate were joined by ultrasonic welding.

〔外装体への封入〕
図7に示すように、あらかじめ電極体が設置できるように成形した2枚のラミネートフィルム17で構成した外装体18に、上記積層電極体10を挿入し、正極集電端子15および負極集電端子16のみが外装体18より外部に突出するよう正極集電端子15および負極集電端子16がある辺を熱融着するとともに、残りの3辺の内、2辺を熱融着した。
[Encapsulation in exterior body]
As shown in FIG. 7, the laminated electrode body 10 is inserted into an exterior body 18 composed of two laminate films 17 formed so that the electrode body can be installed in advance, and a positive current collecting terminal 15 and a negative current collecting terminal The sides where the positive electrode current collecting terminal 15 and the negative electrode current collecting terminal 16 are thermally fused so that only 16 protrudes from the exterior body 18 and two of the remaining three sides are thermally fused.

〔電解液の封入、密封化〕
上記外装体18の熱溶着していない1辺から、エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)とが体積比で30:70の割合で混合された混合溶媒に、LiPFが1M(モル/リットル)の割合で溶解された電解液を注入し、最後に熱溶着していない1辺を熱溶着することにより積層式電池を作製した。
[Encapsulation and sealing of electrolyte]
LiPF 6 is 1M (moles) in a mixed solvent in which ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed at a volume ratio of 30:70 from one side where the outer package 18 is not thermally welded. The laminated electrolyte was manufactured by injecting an electrolytic solution dissolved at a ratio of 1 / liter) and finally thermally welding one side that was not thermally welded.

〔積層式電池の使用試験〕
上記積層式電池を用いて1.0It(10A)の低レートで充放電を1000サイクル繰り返した後、この積層式電池を分解して正極板1および負極板2の表面の状態を観察した。また、これと同様にして、上記積層式電池を用いて6.0It(60A)のハイレートで充放電を同じく1000サイクル繰り返した後、この積層式電池を分解して正極板1および負極板2の表面の状態を観察した。その結果、低レートおよびハイレートのいずれの場合にも、正極板1および負極板2において活物質が電極反応に利用されることにより変色が生じているが、該正極板1および負極板2の全面が均一に変色するのではなく、領域によって変色の度合いに差が出ていること、即ちムラが生じていることが認められた。このとき、電流値6.0Itのハイレートで充放電を行った場合のほうが、変色のムラが大きくなっていることが認められた。この変色の状況から、電流値6.0Itのハイレートで充放電を繰り返した場合の電流分布は、およそ図8の概念図に示すようになっているものと考えられる。
[Use test of stacked battery]
After repeating 1000 cycles of charging and discharging at a low rate of 1.0 It (10A) using the above-mentioned laminated battery, this laminated battery was disassembled and the surface states of the positive electrode plate 1 and the negative electrode plate 2 were observed. Similarly, after repeating 1000 cycles of charging and discharging at a high rate of 6.0 It (60 A) using the above laminated battery, the laminated battery was disassembled and the positive electrode plate 1 and the negative electrode plate 2 were The surface condition was observed. As a result, in both cases of the low rate and the high rate, discoloration occurs due to the active material being used for the electrode reaction in the positive electrode plate 1 and the negative electrode plate 2, but the entire surface of the positive electrode plate 1 and the negative electrode plate 2. However, it was recognized that the degree of discoloration differs depending on the region, that is, unevenness occurs. At this time, it was recognized that the unevenness of discoloration was larger when charging / discharging was performed at a high rate of a current value of 6.0 It. From this discoloration situation, it is considered that the current distribution when charging / discharging is repeated at a high rate of 6.0 It is approximately as shown in the conceptual diagram of FIG.

同図に示すように、正極板1および負極板2上においては、電流経路が、左上端の正極タブ11と右上端の負極タブ12とを結ぶ直線(即ち正極板1および負極板2における正極タブ11ないし負極タブ12形成側短辺)に沿った電流経路R1から、正負極タブ11、12形成側と反対側(図8における下側)へしだいに波状に拡がっていき、その最も外側では、正極タブ11から、正負極タブ11、12形成側と反対側端部中央を経て負極タブ12へ、概略半長円状をなして湾曲しながら延びる電流経路R2となっていると考えられ、矩形状の正極板1ないし負極板2における正負極タブ11、12形成側短辺と反対側の短辺(図8における下辺)および両側長辺に内接する半円にほぼ沿って延びる境界線B1よりも外側の位置(即ち図8における左下および右下の隅部)では電流量が大幅に低下するものと考えられる。即ち、この境界線B1よりも内側(正負極タブ11、12側)の全体として概略U字形状の外形を有する領域は、積層電極体10において活物質が電極反応に実質的に利用されて電流が流れるように活性化されやすい活性領域H1となっており、境界線B1よりも外側は該活性領域H1から逸脱する低活性領域N1となっていると考えられる。この低活性領域N1を流れる電流量は、上記活性領域を流れる最大電流量の1/10以下程度であると考えられる。   As shown in the figure, on the positive electrode plate 1 and the negative electrode plate 2, the current path is a straight line connecting the positive electrode tab 11 at the upper left end and the negative electrode tab 12 at the upper right end (that is, the positive electrode in the positive electrode plate 1 and the negative electrode plate 2). From the current path R1 along the tab 11 to the negative electrode tab 12 formation side short side), it gradually spreads in a wave shape to the side opposite to the positive and negative electrode tabs 11 and 12 formation side (the lower side in FIG. 8). It is considered that the current path R2 extends from the positive electrode tab 11 to the negative electrode tab 12 through the center on the opposite side of the positive and negative electrode tabs 11 and 12 to the negative electrode tab 12 while curving in a substantially semicircular shape. Boundary line B1 extending substantially along a short side (lower side in FIG. 8) opposite to the short side of the positive and negative electrode tabs 11 and 12 on the rectangular positive electrode plate 1 or negative electrode plate 2 and a semicircle inscribed in the long sides on both sides. Outside the position (ie FIG. 8 Definitive bottom left and corner of the lower right), the current amount is believed to be significantly reduced. In other words, the region having a substantially U-shaped outer shape on the entire inner side (positive and negative electrode tabs 11 and 12 side) of the boundary line B1 is that the active material in the laminated electrode body 10 is substantially used for the electrode reaction. It is considered that the active region H1 is easy to be activated so as to flow, and the outside of the boundary line B1 is a low active region N1 that deviates from the active region H1. The amount of current flowing through the low active region N1 is considered to be about 1/10 or less of the maximum amount of current flowing through the active region.

[第1実施例]
(実施例1)
実施例1の積層式電池としては、上記発明を実施する為の形態で説明した積層式電池と同様に作製したものを用いた。
このようにして作製した積層式電池を、以下、本発明電池A1と称す。
[First embodiment]
Example 1
As the stacked battery of Example 1, a battery manufactured in the same manner as the stacked battery described in the embodiment for carrying out the invention was used.
The laminated battery thus produced is hereinafter referred to as the present invention battery A1.

(実施例2)
前記本発明電池A1において、積層電極体10を作製する工程で、正極板1および負極板2の貫通部31、32の位置を画像処理装置により確認しながら、負極板2、袋状セパレータ3およびポリプロピレンシート3bを位置合せして積層する以外は全て同様にして、積層式電池を作製した。
このようにして作製した積層式電池を、以下、本発明電池A2と称す。
(Example 2)
In the battery A1 of the present invention, in the step of producing the laminated electrode body 10, while confirming the positions of the through portions 31 and 32 of the positive electrode plate 1 and the negative electrode plate 2 with an image processing apparatus, the negative electrode plate 2, the bag-like separator 3 and A laminated battery was produced in the same manner except that the polypropylene sheet 3b was aligned and laminated.
The stacked battery thus produced is hereinafter referred to as the present invention battery A2.

(比較例1)
前記本発明電池A1において、図9に示すように、正極板および負極板の貫通部(ここでは便宜的に正極板の貫通部と負極板の貫通部とを総称する)33の位置を、中央よりやや左方およびやや右方の2箇所に変えて積層電極体20を構成する以外は全て同様にして、積層式電池を作製した。
このようにして作製した積層式電池を、以下、比較電池Z1と称す。
(Comparative Example 1)
In the present invention battery A1, as shown in FIG. 9, the positions of the through holes 33 of the positive electrode plate and the negative electrode plate (here, the through hole of the positive electrode plate and the through hole of the negative electrode plate are collectively referred to) A laminated battery was fabricated in the same manner except that the laminated electrode body 20 was constructed by changing the position to the left and slightly to the right.
The stacked battery thus produced is hereinafter referred to as a comparative battery Z1.

〔第1実施例についての考察〕
上記本発明電池A1、A2は、積層電極体10において、電極反応に実質的に利用されやすい活性領域H1から逸脱する低活性領域N1に、正極板1および負極板2を積層方向に貫通する積層ズレ防止用の貫通部31、32が設けられ、この貫通部31、32で積層電極体10が固定されているので、正極板1および負極板2において、貫通部31、32の形成にともないこの貫通部31、32の占有面積分の活物質は存在しないが、この貫通部31、32の形成位置は活性領域H1から逸脱する領域すなわち低活性領域N1にあるため、電極反応には実質的に影響しない。換言すれば、電極反応に十分に利用されることが少ない低活性領域N1を有効に利用して貫通部31、32が設けられている。したがって、この貫通部31、32で積層電極体10が固定されていることにより、電池容量の低下が抑制されつつ、積層電極体10がズレなく強固に固定されている。
[Consideration of the first embodiment]
The batteries A1 and A2 of the present invention are laminated electrodes that penetrate the positive electrode plate 1 and the negative electrode plate 2 in the laminating direction in the low active region N1 that deviates from the active region H1 that is substantially easily used for electrode reaction. Through-holes 31 and 32 for preventing misalignment are provided, and the laminated electrode body 10 is fixed by the through-holes 31 and 32. Accordingly, in the positive electrode plate 1 and the negative electrode plate 2, the penetration portions 31 and 32 are formed. There is no active material corresponding to the area occupied by the penetrating portions 31 and 32, but the formation positions of the penetrating portions 31 and 32 are in a region deviating from the active region H1, that is, the low active region N1, so that the electrode reaction substantially does not occur. It does not affect. In other words, the through portions 31 and 32 are provided by effectively using the low active region N1 that is rarely used for electrode reactions. Therefore, since the laminated electrode body 10 is fixed by the through portions 31 and 32, the laminated electrode body 10 is firmly fixed without deviation while suppressing a decrease in battery capacity.

さらに、貫通部31、32は、低活性領域N1のなかでも、正極タブ11および負極タブ12の形成位置と対称となる位置にある両角(図8では左下および右下の角)に近接するように形成されている。即ち、これら両角に揃うように位置する、正極板1ないし負極板2の幅L1、L7および高さL2、L8のほぼ1/10に相当する幅10mm、高さ10mm(負極板2では幅15mm、高さ15mm)の正方形状の領域内(の中央)に納まるようにして、直径5mmの貫通孔である貫通部31、32がそれぞれ形成されている。したがって、低活性領域N1のなかでも、電極反応に利用されることが最も少ないと考えられるだけでなく、積層電極体10を最も安定して確実に固定し得る位置に貫通部31、32が形成されており、これにより、積層電極体10の積層ズレが効果的に防止されるようになっている。このとき、正極板1および負極板2の各々に着目すると、正極タブ11または負極タブ12と、2箇所の貫通部31、32との計3箇所、即ち3つの隅部(左上または右上の隅部と、左下の隅部と、右下の隅部と)で支持固定されるようになっている。   Further, the penetrating portions 31 and 32 are close to both corners (lower left corner and lower right corner in FIG. 8) at positions symmetrical to the formation positions of the positive electrode tab 11 and the negative electrode tab 12 in the low active region N1. Is formed. That is, the width 10 mm and the height 10 mm (15 mm width in the negative electrode plate 2) corresponding to approximately one-tenth of the widths L 1 and L 7 and the heights L 2 and L 8 of the positive electrode plate 1 or the negative electrode plate 2 positioned so as to be aligned at both the corners. The through-holes 31 and 32, which are through-holes having a diameter of 5 mm, are formed so as to fit within (center of) a square region having a height of 15 mm. Therefore, it is considered that the low active region N1 is least used for the electrode reaction, and the through portions 31 and 32 are formed at positions where the laminated electrode body 10 can be fixed most stably and surely. As a result, misalignment of the laminated electrode body 10 is effectively prevented. At this time, paying attention to each of the positive electrode plate 1 and the negative electrode plate 2, the positive electrode tab 11 or the negative electrode tab 12 and the two through portions 31 and 32 in total, that is, three corners (upper left or upper right corner). Part, lower left corner, and lower right corner).

また、上記使用試験の結果から明らかな通り、電池が電流値1.0Itの低レートで充放電されるものである場合には、積層電極体10において電極反応に実質的に利用される部分の面積が比較的に大きく、したがって低活性領域は比較的に少ないと考えられるが、電流値6.0Itのハイレートでは、上述の境界線B1よりも外側に拡がる低活性領域N1が形成される。したがって、この低活性領域N1に貫通部31、32を設けるようにした本発明電池A1、A2は、このようなハイレートで充放電される場合に特に好適なものとなっている。   Further, as is apparent from the results of the use test, when the battery is charged / discharged at a low rate of 1.0 It, the portion of the laminated electrode body 10 that is substantially used for the electrode reaction. Although it is considered that the area is relatively large and therefore there are relatively few low active regions, at a high rate of current value 6.0 It, a low active region N1 extending outside the boundary line B1 is formed. Therefore, the batteries A1 and A2 of the present invention in which the through portions 31 and 32 are provided in the low active region N1 are particularly suitable when charging and discharging at such a high rate.

このとき、例えば電流値を6.0Itよりも上げていくと、積層電極体10においては正極タブ11から負極タブ12へ電流がより最短距離で流れようとする傾向が強くなるので、これにともない活性領域が狭小化していくとともに低活性領域が拡大していくこととなる。即ち、図8の概念図に示す最外側の電流経路R2が、電流が最短距離で流れる電流経路R1に近づくように萎んでいき、これにともない活性領域H1と低活性領域N1との境界線B1も、その半円形状を概略において維持しながら、正負極タブ11、12側(図8における上側)へ移動していくこととなる。このように低活性領域が大となっていくと、それだけ貫通部の形成に適する領域も多大となって該貫通部の配置形成が容易ともなる。ただし、このように低活性領域が拡大した場合でも、積層電極体10を安定して確実に固定する観点からは、前記と同様に正極タブ11および負極タブ12の形成位置と対称となる位置にある両角になるべく近接する位置に貫通部を形成するほうが望ましい。   At this time, for example, when the current value is increased from 6.0 It, the tendency that the current tends to flow from the positive electrode tab 11 to the negative electrode tab 12 in the laminated electrode body 10 becomes stronger. As the active region is narrowed, the low active region is expanded. That is, the outermost current path R2 shown in the conceptual diagram of FIG. 8 is deflated so as to approach the current path R1 through which the current flows through the shortest distance, and accordingly, the boundary line B1 between the active region H1 and the low active region N1 However, it moves to the positive and negative electrode tabs 11 and 12 side (upper side in FIG. 8) while maintaining the semicircular shape in outline. As the low active area becomes larger in this way, the area suitable for the formation of the penetrating portion increases, and the arrangement of the penetrating portion becomes easy. However, even in the case where the low active region is enlarged in this way, from the viewpoint of stably and surely fixing the laminated electrode body 10, the position where the positive electrode tab 11 and the negative electrode tab 12 are formed is the same as described above. It is desirable to form the penetrating portion at a position as close as possible to both corners.

また、図4に示すように、貫通部31、32が袋状セパレータ3およびポリプロピレンシート3bを貫通しておらず、該貫通部31、32を挟むように位置する袋状セパレータ3(およびポリプロピレンシート3b)同士を該貫通部31、32内で溶着することにより積層電極体10が固定されているので、袋状セパレータ3およびポリプロピレンシート3b自体が固定手段となることで、別に固定手段として貫通部材等を用いることなく積層電極体10が固定されており、その分部品点数が少なく構成が簡潔化されている。また、別体の固定手段を用いると、この固定手段の形状によっては厚さ方向(積層方向)に多少とも突出して見栄えや納まり等が劣ることともなりやすいが、これに対し、上記本発明電池A1、A2においては袋状セパレータ3(およびポリプロピレンシート3b)同士を貫通部31、32内で溶着することにより積層電極体10が固定されているので、厚さ方向の突出もなく、したがって見栄えや納まり等も損なわれることなく良好に維持されている。   Moreover, as shown in FIG. 4, the penetration part 31, 32 does not penetrate the bag-like separator 3 and the polypropylene sheet 3b, and the bag-like separator 3 (and the polypropylene sheet) positioned so as to sandwich the penetration parts 31, 32. 3b) Since the laminated electrode body 10 is fixed by welding each other in the through-portions 31 and 32, the bag-like separator 3 and the polypropylene sheet 3b itself become fixing means. The laminated electrode body 10 is fixed without using the like, and the number of parts is reduced accordingly, and the configuration is simplified. In addition, when a separate fixing means is used, depending on the shape of the fixing means, it may slightly protrude in the thickness direction (stacking direction), and the appearance and fit may be inferior. In A1 and A2, since the laminated electrode body 10 is fixed by welding the bag-like separators 3 (and the polypropylene sheet 3b) in the through portions 31 and 32, there is no protrusion in the thickness direction, and thus the appearance is good. It is well maintained without losing its fit.

図9に示すように、上記本発明電池A1、A2に対し、比較電池Z1においては、積層電極体20の正極板および負極板における中央部に貫通部33を設けるようにしている。即ち、該貫通部33が活性領域H1に設けられ、特に、活性領域H1のなかでも中央に近い位置に設けられている。したがって、この貫通部33の占有面積分の活物質の欠損が電池容量の低下をきたすこととなる。   As shown in FIG. 9, in the comparative battery Z1, the penetration part 33 is provided in the center part of the positive electrode plate and the negative electrode plate of the laminated electrode body 20 with respect to the inventive batteries A1 and A2. That is, the penetrating portion 33 is provided in the active region H1, and particularly in the active region H1 at a position near the center. Therefore, the loss of the active material corresponding to the area occupied by the penetrating portion 33 causes a reduction in battery capacity.

[第2実施例]
(実施例3)
前記本発明電池A1において、図10に示すように、袋状セパレータ3およびポリプロピレンシート3bにも、正極板1および負極板2の貫通部31、32に対応する貫通部34を設けるようにした。また、積層電極体10の幅および高さよりも大きい幅および高さを有して該積層電極体10を余裕をもって内包し得る矩形状の外形を有する盤面部35に、正極板1および負極板2の貫通部31、32に対応する2点の位置(即ち2つの貫通部31、32の間隔に等しい間隔をおいた2点の位置)から、積層電極体10の厚さより大きい長さを有する径5mmの円柱状であって先端面周縁の稜角部をテーパ状に角落ちさせた形状を有する位置決めボス36をそれぞれ突出させるように設けて位置決め盤37を作製し、この位置決め盤37を用いて、袋状セパレータ3およびポリプロピレンシート3bと負極板2とを、位置決めボス36を貫通部31、32、34に挿通するようにしながら、交互に積層していくようにした。この後、この積層体を位置決め盤37から取り外し、図11に示すように、貫通部31、32、34に貫通部材38を挿通して締結し、これによりこの積層体を該貫通部31、32、34の位置で固定して、積層電極体30を得た。この貫通部材38は、ポリプロピレンを成形してなり、直径8mmの円板状のフランジ381の中央から径5mmの円柱状の軸382が突出する形状を有する第1分割体38Aと、該第1分割体38Aとほぼ同様の形状を有する第2分割体38Bとで構成され、該第1分割体38Aと第2分割体38Bとを貫通部31、32、34に両側から圧入すると、該第1分割体38Aの軸382の先端が第2分割体38Bの軸383の先端部に「ほぞ状」に嵌入し弾性的に(スナップ式に)係合して締結固定されるようになっている。また、正極板1および負極板2において貫通部材38のフランジ381に対応する直径8mmの円状の領域内には活物質を塗布しないようにした(図示省略)。
以上の点以外は前記本発明電池A1の場合と全て同様にして、積層式電池を作製した。
このようにして作製した積層式電池を、以下、本発明電池A3と称す。
[Second Embodiment]
Example 3
In the present invention battery A1, as shown in FIG. 10, the bag-like separator 3 and the polypropylene sheet 3b are also provided with through portions 34 corresponding to the through portions 31, 32 of the positive electrode plate 1 and the negative electrode plate 2. In addition, the positive electrode plate 1 and the negative electrode plate 2 are formed on a board surface portion 35 having a width and height larger than the width and height of the multilayer electrode body 10 and having a rectangular outer shape that can enclose the multilayer electrode body 10 with a margin. A diameter having a length larger than the thickness of the laminated electrode body 10 from the position of two points corresponding to the through portions 31 and 32 (that is, the position of two points having an interval equal to the interval between the two through portions 31 and 32). A positioning board 37 is produced by providing a positioning boss 36 having a cylindrical shape of 5 mm and having a ridge angle portion at the periphery of the tip end surface tapered so as to protrude, and using this positioning board 37, The bag-shaped separator 3, the polypropylene sheet 3 b, and the negative electrode plate 2 are alternately stacked while the positioning boss 36 is inserted through the through portions 31, 32, and 34. Thereafter, the laminated body is removed from the positioning board 37, and as shown in FIG. 11, the penetrating member 38 is inserted into the penetrating parts 31, 32, 34 and fastened, whereby the laminated body is attached to the penetrating parts 31, 32. , 34 to obtain a laminated electrode body 30. The penetrating member 38 is formed of polypropylene, and includes a first divided body 38A having a shape in which a cylindrical shaft 382 having a diameter of 5 mm projects from the center of a disk-shaped flange 381 having a diameter of 8 mm, and the first divided body 38A. When the first divided body 38A and the second divided body 38B are press-fitted into the through-holes 31, 32, 34 from both sides, the first divided body 38A has a shape substantially the same as the body 38A. The tip of the shaft 382 of the body 38A is inserted into the tip of the shaft 383 of the second divided body 38B in a “tenon shape” and is elastically (snap-shaped) engaged to be fastened and fixed. Further, in the positive electrode plate 1 and the negative electrode plate 2, no active material was applied in a circular region having a diameter of 8 mm corresponding to the flange 381 of the penetrating member 38 (not shown).
Except for the above, a laminated battery was fabricated in the same manner as in the case of the battery A1 of the present invention.
The laminated battery thus produced is hereinafter referred to as the present invention battery A3.

〔第2実施例についての考察〕
上記本発明電池A3は、貫通部31、32、34が、正極板1および負極板2とともに袋状セパレータ3およびポリプロピレンシート3bを積層方向に貫通しており、該貫通部31、32、34に不導体であるポリプロピレンよりなる貫通部材38を貫通させるように配置することにより積層電極体30が固定されているので、簡単な構成により容易かつ確実に積層電極体30を固定することができるようになっている。また、貫通部31、32、34が、正極板1および負極板2だけでなく袋状セパレータ3およびポリプロピレンシート3bも積層方向に貫通するものとなっていることで、該貫通部31、32、34に位置決めボス36を挿通するようにして正極板1、負極板2、袋状セパレータ3およびポリプロピレンシート3bを容易かつ正確に位置合せして積層することが可能となっている。
[Consideration of the second embodiment]
In the battery A3 of the present invention, the through portions 31, 32, and 34 penetrate the bag-like separator 3 and the polypropylene sheet 3b together with the positive electrode plate 1 and the negative electrode plate 2 in the laminating direction. Since the laminated electrode body 30 is fixed by being arranged so as to penetrate the penetrating member 38 made of polypropylene which is a non-conductor, the laminated electrode body 30 can be fixed easily and reliably with a simple configuration. It has become. Moreover, since the penetration parts 31, 32, and 34 penetrate not only the positive electrode plate 1 and the negative electrode plate 2 but also the bag-like separator 3 and the polypropylene sheet 3b, the penetration parts 31, 32, The positive electrode plate 1, the negative electrode plate 2, the bag-like separator 3, and the polypropylene sheet 3 b can be easily and accurately aligned and stacked so that the positioning boss 36 is inserted into the plate 34.

また、上記本発明電池A3の作製においては、正極板1、負極板2、袋状セパレータ3およびポリプロピレンシート3bの一枚ごとに、電極反応に実質的に利用されやすい活性領域H1から逸脱する低活性領域N1に、正極板1、負極板2、袋状セパレータ3およびポリプロピレンシート3bを積層方向に貫通する積層ズレ防止用の貫通部31、32、34をそれぞれ設け、この貫通部31、32、34に位置決めボス36を挿通するようにして正極板1、負極板2、袋状セパレータ3およびポリプロピレンシート3bを位置合せして積層するようにしているので、大掛かりな装置や冶具等を要することもなく、盤面部35に位置決めボス36を突設したという簡潔な構成を有する位置決め盤37を用いるだけで、正極板1、負極板2、袋状セパレータ3およびポリプロピレンシート3bを容易に、かつ、ずれないよう正確に位置合せして積層することができるようになっている。   In the production of the battery A3 of the present invention, each of the positive electrode plate 1, the negative electrode plate 2, the bag-like separator 3 and the polypropylene sheet 3b has a low deviating from the active region H1 that is substantially easily used for electrode reaction. In the active region N1, there are provided through portions 31, 32, 34 for preventing misalignment that penetrate the positive electrode plate 1, the negative electrode plate 2, the bag-like separator 3 and the polypropylene sheet 3b in the laminating direction. 34, the positive electrode plate 1, the negative electrode plate 2, the bag-like separator 3 and the polypropylene sheet 3b are aligned and laminated so that the positioning boss 36 is inserted, so that a large-scale device or jig may be required. The positive electrode plate 1, the negative electrode plate 2, and the bag shape can be obtained simply by using the positioning board 37 having a simple configuration in which the positioning boss 36 is projected on the board surface portion 35. Comparator 3 and a polypropylene sheet 3b easily and so that the can be stacked precisely aligned so as not to shift.

〔その他の事項〕
(1)上記本発明電池A1、A2、A3の積層電極体10、30においては、いずれも矩形状の正極板1および負極板2における同一辺(図1(a)および図2における上辺)から正極タブ11および負極タブ12が延出する構成となっているが、例えば図12に示すように、正極板および負極板において互いに異なる辺から正極タブ41および負極タブ42が延出する構成とした積層電極体40としてもよい。同図に示す積層電極体40においては、正極タブ41の位置は、前記本発明電池A1、A2、A3の積層電極体10、30における正極タブ11と同様に正極板における一方短辺(図12における上辺)の一方端部(図12における左端部)となっているが、負極タブ42の位置は、上記正極タブ41形成側短辺と反対側の短辺(図12における下辺)の他方端部(図12における右端部)となっている。即ち、正極タブ41および負極タブ42が、正極板および負極板における対角をなす一対の隅部(図12における左上および右下の隅部)から、それぞれ互いに逆方向へ(図12における上方および下方)へ延出する構成となっている。
[Other matters]
(1) In the laminated electrode bodies 10 and 30 of the present invention batteries A1, A2 and A3, all are from the same side (the upper side in FIGS. 1A and 2) of the rectangular positive electrode plate 1 and the negative electrode plate 2. The positive electrode tab 11 and the negative electrode tab 12 are configured to extend. For example, as illustrated in FIG. 12, the positive electrode tab 41 and the negative electrode tab 42 extend from different sides of the positive electrode plate and the negative electrode plate. The laminated electrode body 40 may be used. In the laminated electrode body 40 shown in the same figure, the position of the positive electrode tab 41 is the same as that of the positive electrode tab 11 in the laminated electrode bodies 10 and 30 of the batteries A1, A2 and A3 of the present invention. Is the one end (the left end in FIG. 12) of the negative electrode tab 42, but the position of the negative electrode tab 42 is the other end of the short side (the lower side in FIG. 12) opposite to the positive side of the positive electrode tab 41 formation side. Part (right end part in FIG. 12). That is, the positive electrode tab 41 and the negative electrode tab 42 are respectively opposite to each other (upper and lower in FIG. 12) from a pair of diagonal corners (upper left and lower right corners in FIG. 12) in the positive electrode plate and the negative electrode plate. It is configured to extend downward).

上記積層電極体40の構成の場合、電流経路は、正極板および負極板上において、左上端の正極タブ41と右下端の負極タブ42とをほぼ最短距離で結ぶ直線に沿った電流経路R11を中心として、両側へ次第に波状に拡がっていき、全体として、正極タブ41から負極タブ42へ概略紡錘状に延びる形状となっており、矩形状の正極板ないし負極板の一方短辺(図12における上辺ないし下辺)および両側長辺に内接する円において正負極タブ41、42が形成されていない対角部(即ち図12における左下および右上の角部)にそれぞれ近接する四半分をなす部分円にほぼ沿って延びる境界線B11よりも外側の位置(即ち図12における左下および右上の隅部)では実質的には電流が流れにくいものと考えられる。即ち、この境界線B11よりも内側が活性領域H11、外側が低活性領域N11となっている。   In the case of the configuration of the laminated electrode body 40, the current path is a current path R11 along a straight line connecting the upper left positive electrode tab 41 and the lower right negative electrode tab 42 at a substantially shortest distance on the positive electrode plate and the negative electrode plate. As the center, it gradually spreads in a wavy shape on both sides, and as a whole, it has a shape extending in a generally spindle shape from the positive electrode tab 41 to the negative electrode tab 42, and one short side of the rectangular positive electrode plate or negative electrode plate (in FIG. 12) In a circle inscribed in the upper side or the lower side) and in the circle inscribed on the long sides on both sides, it is a partial circle that forms a quarter that is close to the diagonal part where the positive and negative electrode tabs 41 and 42 are not formed (that is, the lower left and upper right corners in FIG. 12). It is considered that current hardly flows at positions outside the boundary line B11 extending substantially along (that is, the lower left and upper right corners in FIG. 12). That is, the inside of the boundary line B11 is the active region H11, and the outside is the low active region N11.

したがってこの場合、同図に示すように、正負極タブ41、42が形成されていない隅部(即ち図12における左下および右上の角部)に形成された低活性領域N11に、積層ズレ防止用の貫通部39をそれぞれ設けるようにすればよく、さらにこのとき、前記本発明電池A1、A2、A3の場合と同様に、当該両角に揃うように位置する、正極板ないし負極板の幅および高さのほぼ1/10に相当する幅、高さの矩形状の領域内(の中央)に納まるようにして貫通部39をそれぞれ設けることが望ましい。   Therefore, in this case, as shown in the figure, the low active region N11 formed at the corner where the positive and negative electrode tabs 41 and 42 are not formed (that is, the lower left and upper right corners in FIG. 12) In this case, as in the case of the batteries A1, A2, and A3 of the present invention, the width and height of the positive electrode plate or the negative electrode plate positioned so as to be aligned at both corners. It is desirable to provide each of the through portions 39 so as to be within (in the center of) a rectangular region having a width and height corresponding to approximately 1/10 of the height.

なお、上記のように正極タブ41および負極タブ42を正極板ないし負極板から互いに逆方向へ延出させる構成とする場合、正極タブ41および負極タブ42のそれぞれの幅を、正極板ないし負極板の幅の範囲内でできるだけ広くするほど、それに応じて活性領域も広くなり、抵抗も小とできるなど端子としての特性の上でも望ましいと考えられるが、あまり広くするとラミネート外装体の封止が困難となるため、この外装体の封止を可能とし得るだけの余地は残しておく必要がある。したがって、上記のように低活性領域が形成されることは不可避であるから、本発明が好適に適用される。   When the positive electrode tab 41 and the negative electrode tab 42 are configured to extend in the opposite directions from the positive electrode plate or the negative electrode plate as described above, the respective widths of the positive electrode tab 41 and the negative electrode tab 42 are set to the positive electrode plate or the negative electrode plate. It is considered that the wider the active area, the wider the active region and the lower the resistance, which is desirable in terms of the characteristics of the terminal. Therefore, it is necessary to leave enough room to enable sealing of the exterior body. Therefore, since it is inevitable that the low active region is formed as described above, the present invention is preferably applied.

(2)以上の例では、正極タブおよび負極タブが、正極板および負極板における一辺の一方端に寄せて配置形成されていたが、例えば図13に示すように、正極タブ511および負極タブ512が、正極板51ないし負極板52における一辺(同一辺;図13における上辺)の一方端から距離D5をおいてそれぞれ配置形成されている場合には、この正極タブ511および負極タブ512の位置よりも外側に、上記距離D5に等しい幅W1で両側辺に沿って延びる低活性領域N21がそれぞれ形成される。したがって、この低活性領域N21の幅W1が貫通部を形成し得る程度以上である場合には、この低活性領域N21に貫通部を形成するようにしてもよい。同図に示す例では、両側の低活性領域N21において正負極タブ511、512に近接する端部、即ち正極タブ511および負極タブ512の両側に位置する隅部に、それぞれ貫通部43が設けられ、したがって正負極タブ511、512形成側と反対側の両端部に設けられた貫通部(図示省略)とあわせて、正極板51および負極板52がそれぞれ4隅部で貫通部により固定されるようになっている。この構成では、正極板51および負極板52の各々が、正極タブ511ないし負極タブ512以外でも、4隅部で支持固定されるようになっている。 (2) In the above example, the positive electrode tab and the negative electrode tab are arranged and formed close to one end of one side of the positive electrode plate and the negative electrode plate. For example, as shown in FIG. 13, the positive electrode tab 511 and the negative electrode tab 512 are arranged. Are arranged at a distance D5 from one end of one side (same side; upper side in FIG. 13) of the positive electrode plate 51 to the negative electrode plate 52, respectively, from the positions of the positive electrode tab 511 and the negative electrode tab 512. The low active regions N21 extending along both sides with a width W1 equal to the distance D5 are formed on the outside. Therefore, when the width W1 of the low active region N21 is greater than or equal to the extent that a through portion can be formed, the through portion may be formed in the low active region N21. In the example shown in the figure, through portions 43 are provided at the end portions close to the positive and negative electrode tabs 511 and 512 in the low active regions N21 on both sides, that is, at the corners located on both sides of the positive electrode tab 511 and the negative electrode tab 512, respectively. Therefore, the positive electrode plate 51 and the negative electrode plate 52 are fixed by the through portions at the four corners together with the through portions (not shown) provided at the opposite ends of the positive and negative electrode tabs 511 and 512 on the opposite side. It has become. In this configuration, each of the positive electrode plate 51 and the negative electrode plate 52 is supported and fixed at four corners other than the positive electrode tab 511 to the negative electrode tab 512.

(3)上記本発明電池A1、A2、A3においては、正極板1および負極板2のそれぞれの両面における全面に正極活物質層1aおよび負極活物質層2aが形成されていたが、例えば、低活性領域N1内には正極活物質層および負極活物質層を形成しないようにしてもよい。低活性領域N1内にある活物質は電極反応に実質的に利用されることが少ないので、これを除去するようにすれば、電池容量を実質的に低下させることなく活物質の使用量を節減することができて材料コストの低減に資するとともに、電池の重量エネルギー密度も向上させることができる。 (3) In the present invention batteries A1, A2, and A3, the positive electrode active material layer 1a and the negative electrode active material layer 2a were formed on the entire surfaces of the positive electrode plate 1 and the negative electrode plate 2, respectively. The positive electrode active material layer and the negative electrode active material layer may not be formed in the active region N1. Since the active material in the low active region N1 is hardly used for the electrode reaction, if this is removed, the usage amount of the active material can be saved without substantially reducing the battery capacity. Thus, the material cost can be reduced and the weight energy density of the battery can be improved.

(4)以上の例では、貫通部が円形の貫通孔となっていたが、貫通部としては貫通孔以外にも、例えば正極板および負極板を辺縁から弧状、矩形状、三角状等の任意の形状に切欠いた切欠きや、正極板および負極板の隅部を弧状、鉤形状、斜辺状等の任意の形状に切除した角落ち部等であってもよい。図14および図15は、貫通部を角落ち部として積層電極体を固定した例を示す図である。同図に示す例では、正極板61および負極板62の正負極タブ611、612形成側と反対側の両端部において、上記本発明電池A1、A2、A3の場合と同様の境界線B12より外側に形成された低活性領域N31内で、両隅部(図14における右下および左下の各隅部)を斜辺状に切除して角落ちさせるようにして貫通部44がそれぞれ形成され、各貫通部44でセパレータ63の両隅部同士を熱溶着することにより、積層電極体50が固定されている。なお、図15においては明確化のため、積層電極体50を構成する積層部材(正極板61、負極板62およびセパレータ63)の枚数を実際の枚数よりも大幅に少なくして模式的に示している。この構成によれば、低活性領域N31内にある活物質だけでなく、正極板61および負極板62も、発電要素として実質的に利用されることが少ない部分をより広範囲に除去するようにすることができ、その分電池をより軽量化することができる。 (4) In the above example, the through portion is a circular through hole. However, as the through portion, in addition to the through hole, for example, the positive electrode plate and the negative electrode plate are arc-shaped, rectangular, triangular, etc. from the edge. It may be a notch cut out in an arbitrary shape, a corner drop portion in which corners of the positive electrode plate and the negative electrode plate are cut into an arbitrary shape such as an arc shape, a saddle shape, or a hypotenuse shape. 14 and 15 are diagrams showing an example in which the laminated electrode body is fixed with the penetrating portion as a corner drop portion. In the example shown in the figure, at both ends of the positive electrode plate 61 and the negative electrode plate 62 opposite to the side where the positive and negative electrode tabs 611 and 612 are formed, outside the boundary line B12 similar to the case of the present invention batteries A1, A2 and A3. In the low active region N31 formed in FIG. 14, through portions 44 are formed so that both corners (lower right corner and lower left corner in FIG. 14) are cut into oblique sides so as to drop the corners. The laminated electrode body 50 is fixed by thermally welding the corners of the separator 63 with the portion 44. In FIG. 15, for the sake of clarity, the number of laminated members (positive electrode plate 61, negative electrode plate 62, and separator 63) constituting the laminated electrode body 50 is schematically shown by being significantly smaller than the actual number. Yes. According to this configuration, not only the active material in the low active region N31 but also the positive electrode plate 61 and the negative electrode plate 62 are removed in a wider range of portions that are hardly used as power generation elements. Therefore, the weight of the battery can be further reduced.

(5)上記第2実施例の本発明電池A3においては、貫通部材38がポリプロピレンよりなるものとなっていたが、貫通部材の材質としては、セパレータの場合と同様に、電解液に溶け難くかつ絶縁性を有するものであればよく、例えばポリプロピレンの他にもポリエチレン等のポリオレフィン樹脂、ポリテトラフルオロエチレン(テフロン(登録商標))等のフッ素系樹脂等が挙げられる。
また、貫通部材の構造としては、積層電極体を強固に締結するものである必要はなく、貫通部に挿通された状態で脱落することなく確実に保持され得るようなものであればよい。
(5) In the battery A3 of the present invention of the second embodiment, the penetrating member 38 is made of polypropylene. However, the material of the penetrating member is hardly soluble in the electrolyte as in the case of the separator. What is necessary is just to have insulation, For example, polyolefin resins, such as polyethylene other than a polypropylene, Fluorine-type resin, such as polytetrafluoroethylene (Teflon (trademark)), etc. are mentioned.
In addition, the structure of the penetrating member does not need to be firmly fastened to the laminated electrode body, and may be any structure as long as it can be reliably held without falling off while being inserted into the penetrating portion.

(6)上記本発明電池A1、A2、A3は、ラミネートフィルム17で構成された外装体18に積層電極体10が挿入された構成となっているが、外装体としては、このようなラミネート式のもの以外にも、例えば金属製の電池缶等を用いるようにしてもよい。ただし、ラミネート式の外装体のほうが、積層電極体に振動や外力が伝わりやすく積層ズレを生じやすいため、本発明の効果が一層発揮される。 (6) The batteries A1, A2 and A3 of the present invention have a configuration in which the laminated electrode body 10 is inserted into the exterior body 18 composed of the laminate film 17, and such a laminate type is used as the exterior body. For example, a metal battery can or the like may be used. However, since the laminate-type exterior body is more likely to transmit vibration and external force to the laminated electrode body, and more likely to cause misalignment, the effect of the present invention is further exhibited.

(7)正極活物質としては、上記コバルト酸リチウムに限定されるものではなく、コバルト−ニッケル−マンガン、アルミニウム−ニッケル−マンガン、アルミニウム−ニッケル−コバルト等のコバルト、ニッケル或いはマンガンを含むリチウム複合酸化物や、スピネル型マンガン酸リチウム等でも構わない。 (7) The positive electrode active material is not limited to the above-described lithium cobalt oxide, and lithium composite oxide containing cobalt such as cobalt-nickel-manganese, aluminum-nickel-manganese, aluminum-nickel-cobalt, nickel, or manganese. Or a spinel type lithium manganate may be used.

(8)負極活物質としては、天然黒鉛、人造黒鉛等の黒鉛以外にも、グラファイト・コークス・酸化スズ・金属リチウム・珪素・及びそれらの混合物等、リチウムイオンを挿入脱離できうるものであれば構わない。 (8) As the negative electrode active material, in addition to graphite such as natural graphite and artificial graphite, graphite, coke, tin oxide, lithium metal, silicon, and a mixture thereof can be used to insert and desorb lithium ions. It doesn't matter.

(9)電解液としても特に本実施例で示したものに限定されるものではなく、リチウム塩としては例えばLiBF、LiPF、LiN(SOCF,LiN(SO,LiPF6―x(C2n+1[但し、1<x<6、n=1又は2]等が挙げられ、これらの1種もしくは2種以上を混合して使用できる。支持塩の濃度は特に限定されないが、電解液1リットル当り0.8〜1.8モルが望ましい。また、溶媒種としては上記ECやMEC以外にも、プロピレンカーボネート(PC)、γ−ブチロラクトン(GBL)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)等のカーボネート系溶媒が好ましく、更に好ましくは環状カーボネートと鎖状カーボネートの組合せが望ましい。 (9) The electrolyte solution is not particularly limited to that shown in the present embodiment, and examples of the lithium salt include LiBF 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiPF 6-x (C n F 2n + 1 ) x [where 1 <x <6, n = 1 or 2] and the like can be used, and one or more of these can be used in combination. The concentration of the supporting salt is not particularly limited, but is preferably 0.8 to 1.8 mol per liter of the electrolyte. In addition to the above EC and MEC, the solvent species include carbonate solvents such as propylene carbonate (PC), γ-butyrolactone (GBL), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), and diethyl carbonate (DEC). More preferably, a combination of a cyclic carbonate and a chain carbonate is desirable.

本発明は、例えばロボットや電気自動車等に搭載される動力用などの高出力用途の電源に好適に適用することができる。   The present invention can be suitably applied to a power source for high output applications such as for power mounted on a robot or an electric vehicle, for example.

10 積層電極体
1/2 正極板/負極板
31、32 貫通部
H1 活性領域
N1 低活性領域
10 Laminated electrode body 1/2 Positive electrode plate / Negative electrode plate 31, 32 Through portion H 1 Active region N 1 Low active region

Claims (5)

正極板と負極板とをセパレータを介して交互に積層してなる積層電極体を備える積層式電池であって、
前記積層電極体において、電極反応に実質的に利用されやすい活性領域から逸脱する領域に、前記正極板および前記負極板を積層方向に貫通する積層ズレ防止用の貫通部が設けられ、この貫通部で前記積層電極体が固定されていることを特徴とする積層式電池。
A laminated battery comprising a laminated electrode body in which a positive electrode plate and a negative electrode plate are alternately laminated via separators,
In the laminated electrode body, a through-hole for preventing misalignment is provided in a region deviating from an active region that is substantially easily used for electrode reaction, and the through-hole for preventing misalignment through the positive electrode plate and the negative electrode plate is provided. A laminated battery, wherein the laminated electrode body is fixed.
電流値が6.0It以上のハイレートで充放電されるものである、請求項1に記載の積層式電池。   The stacked battery according to claim 1, wherein the current value is charged and discharged at a high rate of 6.0 It or more. 前記貫通部が、正極板および負極板とともにセパレータを積層方向に貫通し、該貫通部に不導体よりなる貫通部材を貫通させるように配置することにより積層電極体が固定されている、請求項1または請求項2に記載の積層式電池。   The laminated electrode body is fixed by arranging the penetrating portion so as to penetrate the separator in the laminating direction together with the positive electrode plate and the negative electrode plate, and penetrating a penetrating member made of a nonconductor through the penetrating portion. Alternatively, the stacked battery according to claim 2. 前記貫通部がセパレータを貫通しておらず、該貫通部を挟むように位置するセパレータ同士を該貫通部内で溶着することにより積層電極体が固定されている、請求項1または請求項2に記載の積層式電池。   The laminated electrode body is fixed by welding the separators positioned so as not to penetrate the separator and sandwiching the through part in the through part. Stacked battery. 正極板と負極板とをセパレータを介して交互に積層してなる積層電極体を備える積層式電池の製造方法であって、
前記正極板、負極板およびセパレータの一枚ごとに、電極反応に実質的に利用されやすい活性領域から逸脱する領域に、前記正極板、負極板およびセパレータを積層方向に貫通する積層ズレ防止用の貫通部をそれぞれ設け、この貫通部に位置決めボスを挿通するようにして前記正極板、負極板およびセパレータを位置合せして積層することを特徴とする積層式電池の製造方法。
A method for producing a laminated battery comprising a laminated electrode body in which a positive electrode plate and a negative electrode plate are alternately laminated via separators,
Each of the positive electrode plate, the negative electrode plate, and the separator is for preventing misalignment of the positive electrode plate, the negative electrode plate, and the separator that penetrates in the stacking direction in a region that deviates from an active region that is substantially easily used for electrode reaction. A method for manufacturing a stacked battery, comprising: providing a through portion; and positioning and stacking the positive electrode plate, the negative electrode plate, and the separator so that a positioning boss is inserted through the through portion.
JP2009081342A 2009-03-30 2009-03-30 Laminated-type battery and method of manufacturing same Pending JP2010232145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009081342A JP2010232145A (en) 2009-03-30 2009-03-30 Laminated-type battery and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009081342A JP2010232145A (en) 2009-03-30 2009-03-30 Laminated-type battery and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2010232145A true JP2010232145A (en) 2010-10-14

Family

ID=43047764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009081342A Pending JP2010232145A (en) 2009-03-30 2009-03-30 Laminated-type battery and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2010232145A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054194A (en) * 2010-09-03 2012-03-15 Nec Energy Devices Ltd Laminate type secondary battery
JP2013196894A (en) * 2012-03-19 2013-09-30 Toyota Industries Corp Power storage device, vehicle and method of manufacturing electrode body
JP2014049193A (en) * 2012-08-29 2014-03-17 Toyota Industries Corp Power storage device and lamination deviation inspection method
JP2014232591A (en) * 2013-05-28 2014-12-11 株式会社デンソー Battery element for secondary battery, and manufacturing method thereof
JP2015069812A (en) * 2013-09-27 2015-04-13 積水化学工業株式会社 Laminated battery and method of manufacturing the same
US20150140400A1 (en) * 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
JP2016162533A (en) * 2015-02-27 2016-09-05 株式会社豊田自動織機 Power storage device and manufacturing method for the same
US9876256B2 (en) 2011-04-07 2018-01-23 Nissan Motor Co., Ltd. Electrode stacking device and electrode stacking method
JP2018174032A (en) * 2017-03-31 2018-11-08 Tdk株式会社 Nonaqueous electrolyte secondary battery
US10320025B2 (en) 2013-10-22 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
JP2019212413A (en) * 2018-06-01 2019-12-12 プライムアースEvエナジー株式会社 Secondary cell and manufacturing method of secondary cell
US10908640B2 (en) 2013-11-15 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Electronic device
JPWO2021065900A1 (en) * 2019-09-30 2021-04-08
JP2022121818A (en) * 2021-02-09 2022-08-22 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116361U (en) * 1986-01-14 1987-07-24
JPH0536435A (en) * 1991-07-30 1993-02-12 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH1064506A (en) * 1996-08-19 1998-03-06 Shin Kobe Electric Mach Co Ltd Square battery
JP2000030670A (en) * 1998-07-07 2000-01-28 Toyota Motor Corp Battery jar structure for battery or capacitor and manufacture of battery or capacitor
JP2000340265A (en) * 1999-05-31 2000-12-08 Mitsubishi Chemicals Corp Planar and laminated secondary battery
JP2001093505A (en) * 1999-09-21 2001-04-06 Matsushita Electric Ind Co Ltd Battery and manufacturing method
JP2001102050A (en) * 1999-09-30 2001-04-13 Toyota Motor Corp Electrode structure for layer built cell/capacitor
JP2001307760A (en) * 2000-04-18 2001-11-02 Matsushita Electric Ind Co Ltd Square battery and its manufacturing method
JP2002237292A (en) * 2001-02-09 2002-08-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2002246007A (en) * 2001-02-19 2002-08-30 Yuasa Corp Battery with layered plate group
JP2002324571A (en) * 2001-04-26 2002-11-08 Matsushita Electric Ind Co Ltd Electrode group of cell
JP2004095402A (en) * 2002-08-30 2004-03-25 Nissan Motor Co Ltd Laminate battery, modular battery pack, battery pack and vehicle provided therewith
WO2006095579A1 (en) * 2005-03-07 2006-09-14 Nec Corporation Multilayer electrode, electric device employing the multilayer electrode, and method for producing them
JP2007018917A (en) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd Stacked battery, and battery pack
WO2007097524A1 (en) * 2006-02-23 2007-08-30 Lg Chem, Ltd. Electrode assembly having member for holding electrodes and secondary battery comprising the same

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62116361U (en) * 1986-01-14 1987-07-24
JPH0536435A (en) * 1991-07-30 1993-02-12 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH1064506A (en) * 1996-08-19 1998-03-06 Shin Kobe Electric Mach Co Ltd Square battery
JP2000030670A (en) * 1998-07-07 2000-01-28 Toyota Motor Corp Battery jar structure for battery or capacitor and manufacture of battery or capacitor
JP2000340265A (en) * 1999-05-31 2000-12-08 Mitsubishi Chemicals Corp Planar and laminated secondary battery
JP2001093505A (en) * 1999-09-21 2001-04-06 Matsushita Electric Ind Co Ltd Battery and manufacturing method
JP2001102050A (en) * 1999-09-30 2001-04-13 Toyota Motor Corp Electrode structure for layer built cell/capacitor
JP2001307760A (en) * 2000-04-18 2001-11-02 Matsushita Electric Ind Co Ltd Square battery and its manufacturing method
JP2002237292A (en) * 2001-02-09 2002-08-23 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2002246007A (en) * 2001-02-19 2002-08-30 Yuasa Corp Battery with layered plate group
JP2002324571A (en) * 2001-04-26 2002-11-08 Matsushita Electric Ind Co Ltd Electrode group of cell
JP2004095402A (en) * 2002-08-30 2004-03-25 Nissan Motor Co Ltd Laminate battery, modular battery pack, battery pack and vehicle provided therewith
WO2006095579A1 (en) * 2005-03-07 2006-09-14 Nec Corporation Multilayer electrode, electric device employing the multilayer electrode, and method for producing them
JP2007018917A (en) * 2005-07-08 2007-01-25 Nissan Motor Co Ltd Stacked battery, and battery pack
WO2007097524A1 (en) * 2006-02-23 2007-08-30 Lg Chem, Ltd. Electrode assembly having member for holding electrodes and secondary battery comprising the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054194A (en) * 2010-09-03 2012-03-15 Nec Energy Devices Ltd Laminate type secondary battery
US9876256B2 (en) 2011-04-07 2018-01-23 Nissan Motor Co., Ltd. Electrode stacking device and electrode stacking method
JP2013196894A (en) * 2012-03-19 2013-09-30 Toyota Industries Corp Power storage device, vehicle and method of manufacturing electrode body
JP2014049193A (en) * 2012-08-29 2014-03-17 Toyota Industries Corp Power storage device and lamination deviation inspection method
JP2014232591A (en) * 2013-05-28 2014-12-11 株式会社デンソー Battery element for secondary battery, and manufacturing method thereof
JP2015069812A (en) * 2013-09-27 2015-04-13 積水化学工業株式会社 Laminated battery and method of manufacturing the same
US11316189B2 (en) 2013-10-22 2022-04-26 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US10320025B2 (en) 2013-10-22 2019-06-11 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US11677095B2 (en) 2013-10-22 2023-06-13 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and electronic device
US11347263B2 (en) 2013-11-15 2022-05-31 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US10908640B2 (en) 2013-11-15 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US20150140400A1 (en) * 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
WO2015071808A1 (en) * 2013-11-15 2015-05-21 Semiconductor Energy Laboratory Co., Ltd. Power storage unit and electronic device including the same
JP2016162533A (en) * 2015-02-27 2016-09-05 株式会社豊田自動織機 Power storage device and manufacturing method for the same
JP2018174032A (en) * 2017-03-31 2018-11-08 Tdk株式会社 Nonaqueous electrolyte secondary battery
JP7130920B2 (en) 2017-03-31 2022-09-06 Tdk株式会社 Non-aqueous electrolyte secondary battery, method for designing non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery
JP2019212413A (en) * 2018-06-01 2019-12-12 プライムアースEvエナジー株式会社 Secondary cell and manufacturing method of secondary cell
JP7058180B2 (en) 2018-06-01 2022-04-21 プライムアースEvエナジー株式会社 Method of manufacturing secondary batteries and secondary batteries
JPWO2021065900A1 (en) * 2019-09-30 2021-04-08
JP7211528B2 (en) 2019-09-30 2023-01-24 株式会社村田製作所 secondary battery
JP2022121818A (en) * 2021-02-09 2022-08-22 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
JP7317877B2 (en) 2021-02-09 2023-07-31 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP2010232145A (en) Laminated-type battery and method of manufacturing same
JP5474466B2 (en) Stacked battery
JP4932263B2 (en) Multilayer secondary battery and manufacturing method thereof
JP5252937B2 (en) Stacked battery and method for manufacturing the same
US8119277B2 (en) Stack type battery
US20110244304A1 (en) Stack type battery
JP2012069378A (en) Stacked cell
JP5197103B2 (en) Multilayer battery, multilayer electrode assembly manufacturing jig, and multilayer battery manufacturing method using the jig
JP6504158B2 (en) Stacked battery and method of manufacturing the same
JP2002252023A (en) Laminating type secondary battery
JP2008066090A (en) Battery pack
WO2011002064A1 (en) Laminated battery
JP2011076838A (en) Laminate type battery
JP4725578B2 (en) Electrochemical device and method for producing electrochemical device
JP2006324093A (en) Secondary battery and method for manufacturing the same
WO2014141640A1 (en) Laminate exterior cell
JP5161421B2 (en) Non-aqueous electrolyte battery
JP2011175913A (en) Laminated battery
KR20140125862A (en) Lithium-ion battery
JP6232213B2 (en) Secondary battery and manufacturing method thereof
JP2010086799A (en) Laminated battery
JP5201557B2 (en) Nonaqueous electrolyte battery and nonaqueous electrolyte battery module
JP2011086483A (en) Laminated secondary battery
JP2010244865A (en) Laminated battery
JP2016039041A (en) Power storage element and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140319