JP2010222703A - Method for modifying solid surface, and surface-modified base material - Google Patents

Method for modifying solid surface, and surface-modified base material Download PDF

Info

Publication number
JP2010222703A
JP2010222703A JP2010043506A JP2010043506A JP2010222703A JP 2010222703 A JP2010222703 A JP 2010222703A JP 2010043506 A JP2010043506 A JP 2010043506A JP 2010043506 A JP2010043506 A JP 2010043506A JP 2010222703 A JP2010222703 A JP 2010222703A
Authority
JP
Japan
Prior art keywords
group
contact angle
solid surface
base material
modifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010043506A
Other languages
Japanese (ja)
Other versions
JP5553304B2 (en
Inventor
Atsushi Hozumi
篤 穂積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2010043506A priority Critical patent/JP5553304B2/en
Publication of JP2010222703A publication Critical patent/JP2010222703A/en
Application granted granted Critical
Publication of JP5553304B2 publication Critical patent/JP5553304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for modifying a solid surface, and to provide a surface-modified base material. <P>SOLUTION: Regarding the method for modifying a solid surface, the surface of a base material is coated with organic molecules composed of an annular, branched or straight-chain structure via covalent bonding so as to form a molecular film, thus interaction between the liquid and the surface of the solid is remarkably suppressed, and a difference between a progress contact angle (θ<SB>A</SB>) and a retreat contact angle (θ<SB>R</SB>), (θ<SB>A</SB>-θ<SB>R</SB>, hysteresis) is reduced, thus, the sliding-down of droplets-water gliding properties, water resistance and the removability of droplets from the surface of the solid are improved so as to obtain corrosion resistance or corrosion preventability, and the surface is modified into the one exhibiting water repellency having hysteresis of 5° or super-water repellency. The base material is obtained by performing the surface modification. In this way, the method for modifying a solid surface which can modify a solid surface into a surface having extremely reduced hysteresis, and the base material in which salt water hardly remains on the surface owing to an extremely narrow dynamic contact angle, and which exhibits excellent corrosion resistance are obtainable. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、固体表面の改質方法及び表面改質された基材に関するものであり、更に詳しくは、固体表面に、環状、枝状、又は直鎖構造からなる有機分子を共有結合を介して被覆し、分子膜を形成することにより、液体と固体表面の相互作用を著しく抑制して、前進接触角(θ)と後退接触角(θ)の差(θ−θ、ヒステリシス)を小さくすることにより、液滴の滑落・滑水性、耐水性、固体表面からの液滴の除去性を向上させて耐食性あるいは防食性にする固体表面の改質方法及び表面改質された基材に関するものである。 The present invention relates to a method for modifying a solid surface and a surface-modified substrate, and more specifically, an organic molecule having a cyclic, branched, or straight chain structure is covalently bonded to a solid surface. By coating and forming a molecular film, the interaction between the liquid and the solid surface is remarkably suppressed, and the difference (θ A −θ R , hysteresis) between the advancing contact angle (θ A ) and the receding contact angle (θ R ) Method for improving the surface of a solid and improving the anti-corrosion or anti-corrosion properties by improving the drop sliding / sliding water resistance, water resistance, and droplet removal from the solid surface It is about.

本発明は、金属、金属酸化膜、金属酸化物、合金、半導体、ポリマー、セラミックス、ガラス基材表面に関して、従来法では困難であった「ヒステリシスのない」撥水、超撥水性を示す表面に改質することにより、液滴の滑落・滑水性、耐水性、固体表面からの液滴の除去性を向上させて耐食性あるいは防食性にすることを可能とする固体表面の表面処理に関する新技術・新製品を提供するものである。   The present invention provides a metal, metal oxide film, metal oxide, alloy, semiconductor, polymer, ceramics, and glass substrate surface that exhibits “no hysteresis” water repellency and super water repellency, which is difficult with conventional methods. New technologies for surface treatment of solid surfaces that can improve the anti-corrosion or anti-corrosion properties by improving the sliding and water-sliding properties, water resistance, and droplet removability from the solid surface. Provide new products.

固体表面への有機分子の吸着現象は、分子配向、密度、表面化学反応のkinetics、反応特異性の解明といった表面科学における基礎的な研究分野であるだけでなく、防腐性や密着性の向上、疎水化/親水化といった実用的な表面処理分野においても重要な研究テーマとして認識されている。   The adsorption phenomenon of organic molecules on the solid surface is not only a basic research field in surface science such as molecular orientation, density, kinetics of surface chemical reaction, elucidation of reaction specificity, but also improvement of antiseptic and adhesion, It is recognized as an important research theme in the field of practical surface treatment such as hydrophobization / hydrophilization.

最近、有機分子の化学吸着によって形成される自己組織化単分子膜(SAM:Self−assembled Monolayer)に関する研究が大きく進展し、基礎だけでなく、産業応用面でも注目されるようになった。自己組織化単分子膜は、膜を構成する有機分子を目的に応じて選択することにより、膜構造、固体表面の機能性、反応性などを、任意にデザインすることが可能である。   Recently, research on a self-assembled monolayer (SAM) formed by chemisorption of organic molecules has greatly advanced, and has attracted attention not only in the basics but also in industrial applications. The self-assembled monolayer can be arbitrarily designed with respect to the membrane structure, the functionality of the solid surface, the reactivity, etc. by selecting the organic molecules constituting the membrane according to the purpose.

例えば、NH基やCHO基のような官能基で終端された自己組織化単分子膜を被覆することで、反応性に富んだ表面が形成できるのに対し、CH基やCF基のような不活性な官能基で終端された自己組織化単分子膜を利用すれば、表面エネルギーを低くし、疎水化することもできる。 For example, by coating a self-assembled monolayer terminated with a functional group such as NH 2 group or CHO group, a highly reactive surface can be formed, whereas a CH 3 group or CF 3 group can be formed. If a self-assembled monolayer terminated with such an inert functional group is used, the surface energy can be lowered and the surface can be hydrophobized.

自己組織化単分子膜を形成する有機分子と基板との組み合わせの代表的な例として,金属単結晶やGaAsなどの表面とチオールなどの有機硫黄化合物、Si(自然酸化膜[SiO])表面やガラス表面と有機シラン化合物(R’SiX4−n,n=1,2,3,一般的にX=Cl,OR基)の例がよく知られている。特に、有機シラン化合物の自己組織化単分子膜においては、1980年に、イスラエルのSagiv教授らのグループによる報告(非特許文献1)以来、この分野の研究が世界中で精力的な研究が行われている。 Representative examples of combinations of organic molecules and substrates that form self-assembled monolayers include surfaces of metal single crystals and GaAs, organosulfur compounds such as thiols, and Si (natural oxide film [SiO 2 ]) surfaces. Also well known are examples of glass surfaces and organosilane compounds (R ′ n SiX 4-n , n = 1, 2, 3, generally X = Cl, OR group). In particular, since self-assembled monolayers of organosilane compounds were reported in 1980 by a group of Prof. Sagiv et al. In Israel (Non-Patent Document 1), research in this field has been energetically conducted around the world. It has been broken.

有機シランは、SiOのような酸化物表面と強固なシロキサン(Si−O−Si)結合を形成するため、機械的強度や化学的安定性に優れた自己組織化単分子膜を形成する。Siやガラス表面への自己組織化単分子膜形成と比較すると、ポリマー、金属、金属酸化膜、金属酸化物、合金表面への自己組織化単分子膜形成に関する研究は少なく、細胞などの生体分子の付着抑制や、低表面エネルギー化/疎水化による防腐特性や耐摩耗性向上を目的にしたものが多い。 Since organic silane forms a strong siloxane (Si—O—Si) bond with an oxide surface such as SiO 2 , it forms a self-assembled monolayer excellent in mechanical strength and chemical stability. Compared with the formation of self-assembled monolayers on Si and glass surfaces, there are few studies on the formation of self-assembled monolayers on the surface of polymers, metals, metal oxide films, metal oxides, and alloys, and biomolecules such as cells Many of them are intended to suppress the adhesion of the resin and to improve the antiseptic properties and wear resistance by reducing the surface energy / hydrophobizing.

ポリマー表面は、一般に、化学的に不活性な上、プラズマなどにより改質して活性化したポリマー表面が、非常に不安定であることと、活性化により生成する極性基の種類が、不均一で、ランダムに配向していることから、高密度/高配向な自己組織化単分子膜を形成することを困難にさせている。また、ポリマー基板の低耐熱性により、高温処理が困難であるという問題もある。   In general, the polymer surface is chemically inert, and the polymer surface modified and activated by plasma or the like is very unstable, and the type of polar groups generated by activation is not uniform. Therefore, since it is randomly oriented, it is difficult to form a high-density / highly oriented self-assembled monolayer. There is also a problem that high temperature processing is difficult due to the low heat resistance of the polymer substrate.

一方、金属(金属酸化膜を含む)、金属酸化物、合金表面では、有機シラン化合物以外に、ホスホン酸(例えば、非特許文献2)、長鎖アルキル脂肪酸(例えば、非特許文献3)が、自己組織化単分子膜を形成することが報告されている。   On the other hand, on the metal (including metal oxide film), metal oxide, and alloy surfaces, in addition to the organic silane compound, phosphonic acid (for example, Non-Patent Document 2), long-chain alkyl fatty acid (for example, Non-Patent Document 3), It has been reported to form a self-assembled monolayer.

前述したように、自己組織化単分子膜形成に使用する分子の末端官能基の種類により、様々な固体の表面特性、特に“濡れ性”を制御することが可能である。固体表面の濡れ性は、一般的に、接触角で測定し、その大きさで評価される。大きいほど濡れ性が悪いこと(疎水的/撥水的)を意味し、反対に、接触角が小さいほど濡れ性が良いこと(親水的)を意味する。   As described above, it is possible to control the surface characteristics of various solids, particularly “wetting”, depending on the type of terminal functional group of the molecule used for forming the self-assembled monolayer. The wettability of a solid surface is generally measured by the contact angle and evaluated by its size. The larger the value, the worse the wettability (hydrophobic / water repellent), and the smaller the contact angle, the better the wettability (hydrophilic).

例えば、ガラス表面に撥水性を示すフッ素系シランカップリング剤を用いて自己組織化単分子膜を形成すると、表面は、非常に疎水的になり、得られる水滴接触角は、117°となる。この水滴接触角は、水平面で水滴が静止した状態で測定した値、すなわち「静的接触角」、である。この表面は、高い撥水性を示すにも関わらず、水は、固体表面に付着し、飛散性、滑水性、水滴除去性に劣る。この現象は、表面の動的濡れ性に大きく関与している。   For example, when a self-assembled monolayer is formed on a glass surface using a fluorine-based silane coupling agent exhibiting water repellency, the surface becomes very hydrophobic, and the resulting water droplet contact angle is 117 °. The water droplet contact angle is a value measured in a state where the water droplet is stationary on a horizontal plane, that is, a “static contact angle”. Although this surface exhibits high water repellency, water adheres to the solid surface and is inferior in scattering properties, water slidability, and water droplet removal properties. This phenomenon is greatly related to the dynamic wettability of the surface.

前進接触角(θ)と後退接触角(θ)、すなわち「動的接触角」、を測定すると、両者の値には、差、いわゆるヒステリシス(θ−θ)、が生じる。この値が小さく、あるいはゼロになれば、水滴は、大きな変化を伴うことなく、わずかに基板を傾けただけで、表面を容易に滑落していく。このヒステリシスが生じる原因は、形成した自己組織化単分子膜の被覆率の低さ、低規則性構造により、水滴と表面の極性官能基が相互作用する、いわゆる“ピン留め効果”によるものと考えられている(非特許文献4)。 When the advancing contact angle (θ A ) and the receding contact angle (θ R ), that is, “dynamic contact angle” are measured, a difference, that is, a so-called hysteresis (θ A −θ R ) is generated between the two values. If this value is small or zero, the water droplets will easily slide down the surface with only a slight tilt of the substrate without significant changes. The cause of this hysteresis is thought to be due to the so-called “pinning effect” in which water droplets interact with polar functional groups on the surface due to the low coverage and low regularity structure of the formed self-assembled monolayer. (Non-Patent Document 4).

これまでの自己組織化単分子膜形成に関する研究では、自己組織化単分子膜形成前後の基板表面の濡れ性の変化は、静的接触角を用いて評価することが主流であった。しなしながら、最近、各種の工学分野で“動的濡れ性”の重要性が認識されはじめている。材料表面での水の動的な挙動は、“液滴の除去性能”の指針として特に重要である。   In previous studies on the formation of self-assembled monolayers, changes in the wettability of the substrate surface before and after the formation of self-assembled monolayers have been mainly evaluated using static contact angles. However, the importance of “dynamic wettability” has recently been recognized in various engineering fields. The dynamic behavior of water at the material surface is particularly important as a guide for "droplet removal performance".

これまでに、前述のヒステリシスを小さくし、水滴の滑落性を向上させる表面処理技術が、わずかではあるが幾つか提案されている。McCarthyらは、トリス(トリメチルシロキシ)シリルエチレンジメチルシランを、シリコン基板に共有結合(シロキサン結合、Si−O−Si)で固定化したところ、シリコン表面は、疎水化し、前進接触角(θ)と後退接触角(θ)は、それぞれ104°/103°となった(非特許文献5)。 Until now, a few surface treatment techniques have been proposed to reduce the above-described hysteresis and improve the water drop sliding property. McCarthy et al. Fixed tris (trimethylsiloxy) silylethylenedimethylsilane on a silicon substrate with a covalent bond (siloxane bond, Si—O—Si), and the silicon surface became hydrophobized, and the advancing contact angle (θ A ) The receding contact angle (θ R ) was 104 ° / 103 °, respectively (Non-patent Document 5).

また、ジメチルジクロロシランをシリコン基板に固定化したところ、シリコン表面は、同様に疎水化し、前進接触角(θ)と後退接触角(θ)は、それぞれ104°/103°となった(非特許文献6)。 Further, when dimethyldichlorosilane was immobilized on a silicon substrate, the silicon surface was similarly hydrophobized, and the advancing contact angle (θ A ) and receding contact angle (θ R ) were 104 ° / 103 °, respectively ( Non-patent document 6).

このように、極めて小さいヒステリシスを得たという報告は、いずれもシリコン基板に限定されており、その他の固体表面、特に、金属やポリマーなどの実用基材表面では、ヒステリシスに関する開発例は、皆無であり、ヒステリシスが極めて小さい表面は、実現されていない。   In this way, reports of obtaining extremely small hysteresis are all limited to silicon substrates, and there are no examples of developing hysteresis on other solid surfaces, especially surfaces of practical substrates such as metals and polymers. There are no surfaces with very little hysteresis.

例えば、Hintzeらは、Al合金(2024−T3)表面に、分子鎖長の異なる(デシル基[R’=CH[CH,オクタデシル基[R’=CH[CH17]]有機シラン(X=OCHCH,n=1)の自己組織化単分子膜を形成したが、ヒステリシスは、大きいものであった。 For example, Hintze et al. Have different molecular chain lengths on the surface of an Al alloy (2024-T3) (decyl group [R ′ = CH 3 [CH 2 ] 9 , octadecyl group [R ′ = CH 3 [CH 2 ] 17 ]. Although a self-assembled monolayer of organosilane (X═OCH 2 CH 3 , n = 1) was formed, the hysteresis was large.

すなわち、いずれの分子を用いても、高い疎水性の表面(静的接触角113−117°)は得られるものの、動的水滴接触角の測定では、前進(θ)/後退接触角(θ)の差(ヒステリシス)が、50−70°と大きいため、液残りによる腐食が観察されている(非特許文献7)。 That is, even if any molecule is used, a highly hydrophobic surface (static contact angle 113-117 °) can be obtained, but in the measurement of the dynamic water droplet contact angle, the forward (θ A ) / backward contact angle (θ Since the difference (hysteresis) of R 2 is as large as 50-70 °, corrosion due to liquid residue has been observed (Non-patent Document 7).

以上のように、従来、自己組織化単分子膜の形成については、種々の報告例があるものの、動的濡れ性に対する認識のなさから、静的接触角しか問題とされておらず、また、実際に、ヒステリシスをなくすことや、極めて小さいヒステリシスの表面とすることは、未だ、手探りの状態であって、その実現化は、非常に困難であるものと認識されていた。   As described above, for the formation of self-assembled monolayers, there are various reports, however, only the static contact angle has been a problem because of the lack of recognition for dynamic wettability. Actually, it has been recognized that the elimination of hysteresis and the surface of extremely small hysteresis are still groping and realization thereof is very difficult.

J.Sagiv;J.Am.Chem.Soc.,102,92(1980)J. et al. Sagiv; Am. Chem. Soc. , 102, 92 (1980) J.A.DeRose,E.Hoque,B.Bhushan and H.J.Mathieu;Surf.Sci.,602,1360(2008)J. et al. A. DeRose, E .; Hoque, B.M. Bhushan and H.M. J. et al. Mathieu; Surf. Sci. 602, 1360 (2008) C.O.Timmons and A.W.Zisman,J.Phys.Chem.,69,984(1965)C. O. Timmons and A.M. W. Zisman, J. et al. Phys. Chem. , 69, 984 (1965) Gao,L.McCarthy,T.J.Langmuir,23,3762(2007)Gao, L .; McCarthy, T .; J. et al. Langmuir, 23, 3762 (2007) Fadeev,A.;McCarthy,T.J.Langmuir,15,7328(1999)Fadeev, A.M. McCarthy, T .; J. et al. Langmuir, 15, 7328 (1999) Fadeev,A.;McCarthy,T.J.Langmuir,16,7268(2000)Fadeev, A.M. McCarthy, T .; J. et al. Langmuir, 16, 7268 (2000) P.E.Hintze and L.M.Calle;Electrochimica Acta,51,1761(2006)P. E. Hintze and L. M.M. Calle; Electrochimica Acta, 51, 1761 (2006)

このような状況の中で、本発明者は、上記従来技術に鑑みて、ヒステリシスのないポリマー表面や金属表面の形成を可能とする実用基材の表面処理技術を開発することを目標として鋭意研究を進めた結果、基材表面を、酸素プラズマ、紫外線、オゾンなどにより洗浄して親水化した後、好適には、ポリマー基材では、表面に酸化シリコン皮膜を予め被覆した後、あるいは金属基材では、光洗浄あるいは熱水処理した後、これらの基材表面に、環状、枝状、又は直鎖構造を有する有機分子を気相から付着させて、膜厚が3nm以下の分子膜を形成することで、ヒステリシスの極めて小さい表面を、シリコン基板だけでなく、実用金属であるアルミニウム、酸化チタン、ポリマー基材の表面で、ヒステリシスの極めて小さい表面を実現できることを見いだし、本発明を完成させるに至った。   Under such circumstances, the present inventor, in view of the above-mentioned prior art, has earnestly researched with the goal of developing a surface treatment technology for a practical base material capable of forming a polymer surface and a metal surface without hysteresis. As a result, the surface of the base material is washed with oxygen plasma, ultraviolet light, ozone, or the like to make it hydrophilic. Preferably, the polymer base material is coated with a silicon oxide film on the surface in advance, or a metal base material. Then, after washing with light or hydrothermal treatment, organic molecules having a cyclic, branched, or straight chain structure are attached to the surface of these base materials from the gas phase to form a molecular film having a thickness of 3 nm or less. Therefore, a surface with extremely low hysteresis can be realized not only on a silicon substrate but also on surfaces of practical metals such as aluminum, titanium oxide, and polymer base material. Found, it has led to the completion of the present invention.

本発明は、固体表面に、有機分子を気相から付着させることにより、該有機分子の分子膜を化学結合で固定化して分子膜を形成することにより、液体と固体表面の相互作用を著しく抑制して、前進接触角と後退接触角の差であるヒステリシスが、5°以下の撥水性、超撥水性を示す固体表面に改質することを可能とする固体表面の改質方法及び表面改質された基材を提供することを目的とするものである。   The present invention significantly suppresses the interaction between the liquid and the solid surface by attaching organic molecules to the solid surface from the gas phase and immobilizing the molecular film of the organic molecules by chemical bonding to form a molecular film. A method for modifying a solid surface and a surface modification, in which a hysteresis which is a difference between an advancing contact angle and a receding contact angle can be modified to a solid surface exhibiting water repellency and super water repellency of 5 ° or less An object of the present invention is to provide a finished substrate.

本発明は、“動的濡れ性”を制御することにより、液滴と固体表面の相互作用を抑制し、例えば、自動車・建材用ガラスの雨滴除去性の向上による視界確保、汚れ付着制御、μ−TASやバイオチップなどの水流制御、水溶性のインクジェットノズルなどのマイクロ水滴の制御などにおいて特に有効な固体表面の改質方法及び表面改質された基材を提供することを目的とするものである。   The present invention controls the “dynamic wettability” to suppress the interaction between the liquid droplet and the solid surface, for example, ensuring visibility by improving raindrop removability of glass for automobiles and building materials, controlling dirt adhesion, μ The object is to provide a solid surface modification method and a surface-modified base material that are particularly effective in controlling water flow such as TAS and biochip, and controlling micro water droplets such as water-soluble inkjet nozzles. is there.

上記課題を解決する本発明は、以下の技術的手段から構成される。
(1)固体表面を改質する方法であって、固体表面を予め親水化した後、該固体表面に、環状、枝状、又は直鎖構造を有する有機分子を気相雰囲気から化学結合で固定化することで有機分子膜を形成することにより、液体と固体表面の相互作用を抑制して、前進接触角と後退接触角の差であるヒステリシスが、5°以下の撥水性、超撥水性を示す表面に改質することを特徴とする固体表面の改質方法。
(2)前進接触角、後退接触角が、それぞれ30〜170°の範囲である、前記(1)に記載の固体表面の改質方法。
(3)有機分子を固定化する際の処理温度が、50〜180℃、処理時間が少なくとも24時間である、前記(1)又は(2)に記載の固体表面の改質方法。
(4)有機分子が、水酸基、水素基、ビニル基、アルコキシ基、クロロ基、カルボキシル基、アルデヒド基、イソシアナート基、アミノ基の内から選択される1〜3個の反応性官能基で末端が終端されている、前記(1)から(3)のいずれかに記載の固体表面の改質方法。
(5)有機分子が、メチル基、フルオロアルキル基、水素基の内から選択される1種類以上の不活性な官能基で終端されている、前記(1)から(4)のいずれかに記載の固体表面の改質方法。
(6)ポリマー基材であって、該基材の表面が、膜厚0.5nm〜1ミクロンの酸化シリコン薄膜(含ナノ細孔酸化シリコン薄膜)で被覆されている、前記(1)から(5)のいずれかに記載の固体表面の改質方法。
(7)固体表面が、金属、金属酸化膜、金属酸化物、合金、半導体、ポリマー、セラミックス(含メソ細孔セラミックス)、及びガラス基材の内から選択される固体表面である、前記(1)から(6)のいずれかに記載の固体表面の改質方法。
(8)金属、金属酸化膜、金属酸化物、合金、半導体、ポリマー、セラミックス(含メソ細孔セラミックス)、及びガラス基材の内から選択される固体表面に、環状、枝状、又は直鎖構造を有する有機分子が化学結合を介して固定化されており、該有機分子の膜厚が、0超〜3nmであり、前進接触角と後退接触角の差であるヒステリシスが、5°以下の撥水性、超撥水性を示すことを特徴とする表面改質された基材。
(9)有機分子が、水酸基、水素基、ビニル基、アルコキシ基、クロロ基、カルボキシル基、アルデヒド基、イソシアナート基、アミノ基の内から選択される1〜3個の反応性官能基で末端が終端されている、前記(8)に記載の表面改質された基材。
(10)有機分子が、メチル基、フルオロアルキル基、水素基の内から選択される1種類以上の不活性な官能基で終端されている、前記(7)に記載の表面改質された基材。
(11)有機分子が、固体表面の水酸基、又は酸素含有極性基との間で化学結合を介して固定化されている、前記(8)に記載の表面改質された基材。
(12)金属基材であって、該基材の表面に、高さ5〜50nmの針状構造が形成されている、前記(8)に記載の表面改質された基材。
(13)前進接触角、後退接触角が、それぞれ30°〜170°の範囲であり、前進接触角と後退接触角の差であるヒステリシスが、5°以下の撥水性、超撥水性を示す、前記(8)から(12)のいずれかに記載の表面改質された基材。
The present invention for solving the above-described problems comprises the following technical means.
(1) A method for modifying a solid surface, wherein after the solid surface has been previously hydrophilized, organic molecules having a cyclic, branched or straight chain structure are fixed to the solid surface by chemical bonding from a gas phase atmosphere. By forming an organic molecular film, the interaction between the liquid and the solid surface is suppressed, and the hysteresis, which is the difference between the advancing contact angle and the receding contact angle, is less than 5 ° for water repellency and super water repellency. A method for modifying a solid surface, comprising modifying the surface to be shown.
(2) The method for modifying a solid surface according to (1), wherein the advancing contact angle and the receding contact angle are in the range of 30 to 170 °, respectively.
(3) The method for modifying a solid surface according to (1) or (2) above, wherein the treatment temperature when immobilizing the organic molecules is 50 to 180 ° C. and the treatment time is at least 24 hours.
(4) The organic molecule is terminated with 1 to 3 reactive functional groups selected from a hydroxyl group, a hydrogen group, a vinyl group, an alkoxy group, a chloro group, a carboxyl group, an aldehyde group, an isocyanate group, and an amino group. The method for modifying a solid surface according to any one of (1) to (3), wherein is terminated.
(5) The organic molecule is terminated with one or more kinds of inert functional groups selected from a methyl group, a fluoroalkyl group, and a hydrogen group, according to any one of (1) to (4) above Method for modifying the surface of a solid.
(6) From the above (1), which is a polymer substrate, and the surface of the substrate is coated with a silicon oxide thin film (nanoporous silicon oxide thin film) having a film thickness of 0.5 nm to 1 micron. The method for modifying a solid surface according to any one of 5).
(7) The above (1), wherein the solid surface is a solid surface selected from among metals, metal oxide films, metal oxides, alloys, semiconductors, polymers, ceramics (containing mesoporous ceramics), and glass substrates. ) To (6).
(8) cyclic, branched, or linear on a solid surface selected from among metals, metal oxide films, metal oxides, alloys, semiconductors, polymers, ceramics (including mesoporous ceramics), and glass substrates An organic molecule having a structure is immobilized through a chemical bond, the thickness of the organic molecule is more than 0 to 3 nm, and a hysteresis that is a difference between an advancing contact angle and a receding contact angle is 5 ° or less. A surface-modified substrate characterized by exhibiting water repellency and super water repellency.
(9) The organic molecule is terminated with 1 to 3 reactive functional groups selected from a hydroxyl group, a hydrogen group, a vinyl group, an alkoxy group, a chloro group, a carboxyl group, an aldehyde group, an isocyanate group, and an amino group. The surface-modified substrate according to (8), wherein is terminated.
(10) The surface-modified group according to (7), wherein the organic molecule is terminated with one or more kinds of inert functional groups selected from a methyl group, a fluoroalkyl group, and a hydrogen group. Wood.
(11) The surface-modified base material according to (8), wherein the organic molecule is immobilized through a chemical bond with a solid surface hydroxyl group or oxygen-containing polar group.
(12) The surface-modified base material according to (8), wherein the needle-like structure having a height of 5 to 50 nm is formed on the surface of the base material.
(13) The advancing contact angle and the receding contact angle are each in the range of 30 ° to 170 °, and the hysteresis, which is the difference between the advancing contact angle and the receding contact angle, exhibits water repellency and super water repellency of 5 ° or less. The surface-modified base material according to any one of (8) to (12).

次に、本発明について更に詳細に説明する。
本発明は、ポリマーや金属などの様々な基材の表面を、予め、プラズマ、紫外線、オゾンなどで不純物除去並びに親水化をした後、ポリマー基材では、表面に酸化シリコン皮膜を予め被覆した後、あるいは金属、例えば、アルミニウムでは、光洗浄あるいは熱水処理した後、これらの基材表面に、環状、枝状、又は直鎖構造を有する有機分子を気相から付着させ、膜厚が0超〜3nmの分子膜を形成させることで、液滴との相互作用を著しく抑制することが可能な、極めて小さいヒステリシスを有する表面を形成させること、に最大の特徴を有するものである。
Next, the present invention will be described in more detail.
In the present invention, after the surface of various base materials such as polymers and metals is previously removed with impurities such as plasma, ultraviolet rays, ozone, etc. and hydrophilized, the surface of the polymer base material is previously coated with a silicon oxide film. Alternatively, in the case of a metal such as aluminum, after light washing or hydrothermal treatment, organic molecules having a cyclic, branched or linear structure are attached to the surface of these substrates from the gas phase, and the film thickness exceeds 0. By forming a molecular film of ˜3 nm, it has the greatest feature in forming a surface having extremely small hysteresis that can remarkably suppress the interaction with the droplet.

本発明では、前進接触角、後退接触角が、それぞれ30°〜170°の範囲であること、また、有機分子を固定化する際の処理温度が、50〜180℃、処理時間が少なくとも24時間であること、また、有機分子が、水酸基、水素基、ビニル基、アルコキシ基、クロロ基、カルボキシル基、アルデヒド基、イソシアナート基、アミノ基の内から選択される1〜3個の反応性官能基で末端が終端されていること、また、有機分子が、メチル基、フルオロアルキル基、水素基の内から選択される1種類以上の不活性な官能基で終端されていること、また、ポリマー基材であって、該基材の表面が、膜厚0.5nm〜1ミクロンの酸化シリコン薄膜(含ナノ細孔酸化シリコン薄膜)で被覆されていること、を好適な実施態様としている。   In the present invention, the advancing contact angle and the receding contact angle are each in the range of 30 ° to 170 °, and the treatment temperature when immobilizing the organic molecules is 50 to 180 ° C., and the treatment time is at least 24 hours. And 1 to 3 reactive functions selected from the group consisting of a hydroxyl group, a hydrogen group, a vinyl group, an alkoxy group, a chloro group, a carboxyl group, an aldehyde group, an isocyanate group, and an amino group. The organic molecule is terminated with one or more inert functional groups selected from a methyl group, a fluoroalkyl group and a hydrogen group, and a polymer. A preferred embodiment is a base material in which the surface of the base material is coated with a silicon oxide thin film (nanoporous silicon oxide thin film) having a film thickness of 0.5 nm to 1 micron.

本発明は、表面改質された基材であって、金属、金属酸化膜、金属酸化物、合金、半導体、ポリマー、セラミックス、及びガラス基材の内から選択される固体表面に、環状、枝状、又は直鎖構造を有する有機分子が化学結合を介して固定化されており、該有機分子の膜厚が、0超〜3nmであり、後退接触角と前進接触角の差であるヒステリシスが、5°以下の撥水性、超撥水性を示すことを特徴とするものである。   The present invention relates to a surface-modified base material, which is formed on a solid surface selected from a metal, a metal oxide film, a metal oxide, an alloy, a semiconductor, a polymer, a ceramic, and a glass base material. Or an organic molecule having a linear structure is immobilized through a chemical bond, the thickness of the organic molecule is more than 0 to 3 nm, and there is hysteresis that is the difference between the receding contact angle and the advancing contact angle. It exhibits water repellency of 5 ° or less and super water repellency.

本発明では、有機分子が、固体表面の水酸基、又は酸素含有極性基との間で化学結合を介して固定化されていること、また、金属基材であって、該基材の表面に、高さ5〜50nmの針状構造が形成されていること、また、前進接触角、後退接触角が、それぞれ30°〜170°の範囲であり、前進接触角と後退接触角の差であるヒステリシスが、5°以下の撥水性、超撥水性を示すこと、を好適な実施態様としている。   In the present invention, the organic molecule is immobilized through a chemical bond between a solid surface hydroxyl group or an oxygen-containing polar group, and is a metal substrate, on the surface of the substrate, Hysteresis in which a needle-like structure having a height of 5 to 50 nm is formed, the advancing contact angle and the receding contact angle are each in the range of 30 ° to 170 °, and the difference between the advancing contact angle and the receding contact angle Exhibiting water repellency of 5 ° or less and super water repellency is a preferred embodiment.

本発明で使用し得る基材としては、金属、金属酸化膜、金属酸化物、合金、半導体、ポリマー、セラミックス、ガラスなどの適宜の材料を任意に使用することができる。これらの基材の形状は、板状、粉末状、チューブ状など、任意な形状の基材を使用することができる。   As a base material that can be used in the present invention, an appropriate material such as a metal, a metal oxide film, a metal oxide, an alloy, a semiconductor, a polymer, ceramics, and glass can be arbitrarily used. As the shape of these base materials, a base material having an arbitrary shape such as a plate shape, a powder shape, or a tube shape can be used.

本発明では、基材表面を、予め、酸素プラズマ、真空紫外光、オゾンなどによる処理を施すことにより、該基材表面に付着した有機物を除去することにより、基材表面を親水化する。この場合、好ましくは、波長172nm以下の真空紫外光が使用される。ポリマー基材では、表面に酸化シリコン皮膜を予め被覆することが好ましい。   In the present invention, the substrate surface is hydrophilized by previously treating the substrate surface with oxygen plasma, vacuum ultraviolet light, ozone, etc. to remove organic substances attached to the substrate surface. In this case, preferably, vacuum ultraviolet light having a wavelength of 172 nm or less is used. In the polymer base material, it is preferable to previously coat the surface with a silicon oxide film.

金属基材、例えば、アルミニウム基材では、熱水で、5分以上処理することが好ましい。基材の具体例としては、シリコン、ガラス、アルミニウム(酸化アルミニウムを含む)、酸化チタン、酸化シリコン(含ナノ細孔酸化シリコン)を被覆したポリマーが好適な基材として例示される。   In the case of a metal substrate, for example, an aluminum substrate, it is preferable to treat with hot water for 5 minutes or more. Specific examples of the substrate include a polymer coated with silicon, glass, aluminum (including aluminum oxide), titanium oxide, and silicon oxide (including nanoporous silicon oxide) as a suitable substrate.

続いて、基材表面の水酸基、又は酸素含有極性官能基と、環状、枝状、又は直鎖状の有機分子の反応性官能基とを反応させる。反応方法は、特に限定されるものではないが、好ましくは、高価な反応装置、長い処理時間、高い処理温度を必要せず、少量の原料で処理が可能な、気相法による反応が用いられる。   Subsequently, the hydroxyl group or oxygen-containing polar functional group on the substrate surface is reacted with a reactive functional group of a cyclic, branched, or linear organic molecule. The reaction method is not particularly limited. Preferably, a reaction by a gas phase method is used, which does not require an expensive reaction apparatus, a long processing time, and a high processing temperature, and can be processed with a small amount of raw materials. .

金属基材へ有機分子を気相から付着させる処理をする場合、例えば、処理温度は、50〜180℃程度、処理時間は、24〜72時間あるいはそれ以上、であることが望ましい。付着させる分子膜の膜厚は、用いる有機分子の長さに依存し、0超から3nm程度までの範囲で、任意に制御することが可能である。環状、枝状、又は直鎖構造を有する有機分子の末端が不活性な官能基、例えば、メチル基やフルオロアルキル基で終端されている場合、疎水性の表面が形成される。   When processing for attaching organic molecules to the metal substrate from the gas phase, for example, the processing temperature is preferably about 50 to 180 ° C., and the processing time is preferably 24 to 72 hours or more. The thickness of the molecular film to be attached depends on the length of the organic molecule to be used, and can be arbitrarily controlled in the range from over 0 to about 3 nm. When the terminal of an organic molecule having a cyclic, branched or straight chain structure is terminated with an inert functional group such as a methyl group or a fluoroalkyl group, a hydrophobic surface is formed.

上述した方法により、基材表面に、3nm以下の環状、枝状、又は直鎖構造の有機分子の分子膜を形成することにより、液滴との相互作用を抑制する効果が得られる。この現象は、平滑な基材表面に、環状、枝状、又は直鎖構造の有機分子の分子膜を形成することによりはじめて出現する。また、特に、熱水処理した後のアルミニウム基板では、低ヒステリシス表面が形成されるだけでなく、撥水性も著しく向上する。   By forming a molecular film of organic molecules having a cyclic, branched or linear structure of 3 nm or less on the surface of the substrate by the above-described method, an effect of suppressing the interaction with the droplets can be obtained. This phenomenon appears only when a molecular film of organic molecules having a cyclic, branched, or linear structure is formed on a smooth substrate surface. In particular, in the aluminum substrate after the hot water treatment, not only a low hysteresis surface is formed, but also the water repellency is remarkably improved.

この現象は、基材表面に形成された凸凹構造と、環状、枝状、又は直鎖構造の有機分子の分子膜を形成することによりはじめて出現する。分子膜を形成する際に用いる原料は、液体で、蒸気圧が高いものであることが望ましい。固体の場合は、融点が低く、液化した際に十分な蒸気圧が得られるものであることが望ましい。本発明の固体表面の改質方法を用いることにより、従来法では困難であった実用金属やポリマー、セラミックス基材表面の動的濡れ性を向上させることが可能である。   This phenomenon appears only when an uneven structure formed on the substrate surface and a molecular film of organic molecules having a cyclic, branched, or straight chain structure are formed. The raw material used for forming the molecular film is preferably liquid and has a high vapor pressure. In the case of a solid, it is desirable that the melting point is low and a sufficient vapor pressure can be obtained when liquefied. By using the method for modifying a solid surface of the present invention, it is possible to improve the dynamic wettability of the surface of a practical metal, polymer, or ceramic substrate, which was difficult with the conventional method.

本発明において、液体と固体表面の相互作用を抑制するとは、上記の処理基材の表面が、液滴との相互作用を抑制することを意味し、また、該相互作用を抑制できる理由は、例えば、枝状の有機分子では、枝状の有機分子膜が、あたかも“傘”のような役割を果たし、基材表面の未反応の極性官能基との相互作用を抑制すること、また、環状の有機分子では、環状の有機分子があたかも層状に分子が堆積し、下地の極性官能基との相互作用を抑制すること、という化学的効果によるものと推定される。また、熱水処理したアルミニウムなどの金属基板では、これらの化学的効果に加え、表面構造の凸凹化による空気層の形成という物理的効果が相乗的に働いたものと推定される。   In the present invention, to suppress the interaction between the liquid and the solid surface means that the surface of the treatment substrate described above suppresses the interaction with the droplet, and the reason why the interaction can be suppressed is as follows. For example, in the case of branched organic molecules, the branched organic molecular film plays a role like an “umbrella” and suppresses interaction with unreacted polar functional groups on the substrate surface. This organic molecule is presumed to be due to the chemical effect that the cyclic organic molecule is deposited in a layered manner to suppress the interaction with the polar functional group of the base. In addition, in a metal substrate such as aluminum that has been subjected to hydrothermal treatment, it is presumed that in addition to these chemical effects, the physical effect of forming an air layer due to the uneven surface structure worked synergistically.

ガラス表面に、撥水性を示すフッ素系シランカップリング剤を用いて自己組織化単分子膜を形成すると、表面は、非常に疎水的になり、得られる水滴接触角は、117°となる。この表面は、高い撥水性を示すにも関わらず、水は、固体表面に付着し、飛散性、滑水性、水滴除去性に劣るため、これらのことが、これまでの技術では、未解決の大きな課題であった。   When a self-assembled monomolecular film is formed on a glass surface using a fluorine-based silane coupling agent exhibiting water repellency, the surface becomes very hydrophobic, and the resulting water droplet contact angle is 117 °. Although this surface exhibits high water repellency, water adheres to the solid surface and is inferior in scattering properties, water slidability, and water droplet removal properties. It was a big issue.

これに対して、本発明では、平滑な基材表面に、環状、枝状、又は直鎖構造の有機分子を気相法により固定化して、有機分子を3nm以下の膜厚で形成することにより、固体/液体界面の相互作用が抑制されて、当該処理基材の表面のヒステリシスが極めて小さくなり、固体表面からの液滴の除去性を向上させることができるという作用効果が得られ、それにより、上述の未解決の問題を解決することが可能となる。   In contrast, in the present invention, organic molecules having a film thickness of 3 nm or less are formed by immobilizing organic molecules having a cyclic, branched or linear structure on a smooth substrate surface by a vapor phase method. The interaction between the solid / liquid interface is suppressed, the hysteresis of the surface of the treated substrate is extremely reduced, and the effect of improving the removability of droplets from the solid surface is obtained, thereby It becomes possible to solve the above-mentioned unsolved problems.

これらの現象は、前述のように、例えば、基材表面に固定化した枝状構造の有機分子が、あたかも傘の役割を果たし、下地の極性官能基との相互作用を抑制するという化学的な効果により出現するものと推定され、また、環状構造の有機分子では、分子が層状に堆積していくので、表面が環状構造の分子で十分に被覆され、下地の極性官能基との相互作用を抑制するという化学的な効果により出現するものと推定される。   As described above, these phenomena are caused by chemical reactions in which, for example, the organic molecules having a branch structure immobilized on the surface of the base material serve as an umbrella and suppress the interaction with the polar functional group on the base. It is presumed that it appears due to the effect, and in the case of organic molecules with a cyclic structure, the molecules are deposited in layers, so that the surface is sufficiently covered with the molecules of the cyclic structure and interacts with the polar functional group of the base. It is presumed to appear due to the chemical effect of suppression.

本発明で使用される有機分子については、前述のように、液体では、蒸気圧が高いものであることが望ましく、固体では、融点が低く、液化した際に十分な蒸気圧が得られるものであることが望ましい。また、フッ化炭素やメチル基といった表面エネルギーの低い官能基が一つ入っていることが望ましい。フッ化炭素やメチル基は、表面エネルギーが低いため、得られる基板表面を効果的に疎水化することが可能である。   Regarding the organic molecules used in the present invention, as described above, it is desirable that the liquid has a high vapor pressure, and the solid has a low melting point, so that a sufficient vapor pressure can be obtained when liquefied. It is desirable to be. Moreover, it is desirable that one functional group having a low surface energy such as fluorocarbon or methyl group is contained. Since fluorocarbon and methyl groups have low surface energy, the resulting substrate surface can be effectively hydrophobized.

また、基材表面と強固な化学結合を得るために、反応性官能基が1つ以上入っていることが望ましい。反応性官能基がないと、基材表面と吸着した有機分子の界面で十分な密着性が得られない。なお、膜厚は、基材表面の形状や光学特性に変化を起こすことがないために、3nm以下であることが望ましい。   Moreover, in order to obtain a strong chemical bond with the substrate surface, it is desirable that at least one reactive functional group is contained. Without the reactive functional group, sufficient adhesion cannot be obtained at the interface between the substrate surface and the adsorbed organic molecules. The film thickness is desirably 3 nm or less in order to prevent changes in the shape and optical characteristics of the substrate surface.

本発明により、以下のような効果が奏される。
(1)平滑な基材表面に3nm以下の環状、枝状、又は直鎖構造の有機分子の分子膜を形成することにより、固体/液体界面の相互作用が抑制され、当該処理基材の表面のヒステリシスが極めて小さくなるという作用効果が得られる。
(2)本発明により、ポリマー、金属、セラミックス基材表面における、液体と固体表面の相互作用が著しく抑制され、前進接触角(θ)と後退接触角(θ)の差であるヒステリシスが極めて小さくなり、そのため、液滴の滑落性や当該試料表面からの液滴の除去性を大幅に向上させることが可能となる。
(3)有機分子として、例えば、パーフルオロアルキル基終端の分子を用いることで、撥水性の他に撥水油性も兼ね備える固体表面にすることが可能になる。
The following effects are exhibited by the present invention.
(1) By forming a molecular film of organic molecules having a cyclic, branched or linear structure of 3 nm or less on a smooth substrate surface, the solid / liquid interface interaction is suppressed, and the surface of the treated substrate The effect of the extremely small hysteresis is obtained.
(2) According to the present invention, the interaction between the liquid and the solid surface on the surface of the polymer, metal, or ceramic substrate is remarkably suppressed, and the hysteresis that is the difference between the advancing contact angle (θ A ) and the receding contact angle (θ R ) Therefore, it is possible to greatly improve the sliding property of the droplet and the removability of the droplet from the sample surface.
(3) By using, for example, a perfluoroalkyl group-terminated molecule as the organic molecule, it is possible to obtain a solid surface that also has water repellency and oil repellency in addition to water repellency.

第1図は、実施例1、2に係わる、環状のオルガノシリコン水素化物である、1,3,5,7−テトラメチルシクロテトラシロキサンの分子構造を示す。FIG. 1 shows the molecular structure of 1,3,5,7-tetramethylcyclotetrasiloxane, which is a cyclic organosilicon hydride according to Examples 1 and 2. 第2図は、実施例3、4に係わる、枝状の有機シランである、ビス(トリデカフルオロ1,1,2,2−テトラヒドロオクチルシロキシ)メチルクロロシラン(a)、ビス(トリデカフルオロ1,1,2,2−テトラヒドロオクチルシロキシ)メチルシラン(b)、の分子構造を示す。FIG. 2 shows bis (tridecafluoro-1,1,2,2-tetrahydrooctylsiloxy) methylchlorosilane (a) and bis (tridecafluoro 1), which are branched organic silanes according to Examples 3 and 4. , 1,2,2-tetrahydrooctylsiloxy) methylsilane (b). 第3図は、実施例6、7に係わる、熱水処理10分後のアルミニウム表面の原子力間顕微鏡像を示す。FIG. 3 shows an atomic force microscope image of the aluminum surface after 10 minutes of hot water treatment according to Examples 6 and 7. 第4図は、実施例7に係わる、1H,1H,2H,2H−パーフルオロデシルイソシアナート分子膜/熱水処理済みアルミニウムから構成される基板上の水滴の状態を示す。FIG. 4 shows the state of water droplets on a substrate composed of 1H, 1H, 2H, 2H-perfluorodecyl isocyanate molecular film / hot water treated aluminum according to Example 7. 第5図は、実施例8と、比較例4に係わる、試料の耐水性に関わる結果を示す。FIG. 5 shows the results relating to the water resistance of the samples according to Example 8 and Comparative Example 4. 第6図は、実施例9、10に係わる、枝状有機シラン、[ビス(ノナフルオロヘキシルジメチルシロキシ)メチル]シリルエチルジメチルクロロシラン(a)、ビス(ノナフルオロヘキシルジメチルシロキシ)メチルシラン(b)の分子構造を示す。FIG. 6 is a graph of branched organic silanes, [bis (nonafluorohexyldimethylsiloxy) methyl] silylethyldimethylchlorosilane (a), bis (nonafluorohexyldimethylsiloxy) methylsilane (b) according to Examples 9 and 10. The molecular structure is shown. 第7図は、実施例11、12に係わる、枝状有機シラン、ジ−t−ブチルメチルシラン(a)、ジ−t−ブチルメチルクロロシラン(b)の分子構造を示す。FIG. 7 shows the molecular structures of branched organic silane, di-t-butylmethylsilane (a) and di-t-butylmethylchlorosilane (b) according to Examples 11 and 12. 第8図は、実施例13、に係わる、枝状有機シラン、トリ−t−ペントキシシラノールの分子構造を示す。FIG. 8 shows the molecular structure of a branched organosilane and tri-t-pentoxysilanol according to Example 13. 第9図は、実施例14、15に係わる、枝状有機シラン、トリ−t−ブトキシシラノール(a)、トリ−t−ブチルシラン(b)の分子構造を示す。FIG. 9 shows the molecular structures of branched organic silane, tri-t-butoxysilanol (a) and tri-t-butylsilane (b) according to Examples 14 and 15. 第10図は、実施例4、6、7と比較例5に係わる、試料の耐塩水噴霧試験に関わる結果を示す。FIG. 10 shows the results relating to the salt spray resistance test of the samples according to Examples 4, 6, and 7 and Comparative Example 5.

次に、実施例に基づいて本発明を具体的に説明するが、以下の実施例は、本発明の好適な例を示すものであり、本発明は、該実施例によって何ら限定されるものではない。   Next, the present invention will be specifically described based on examples. However, the following examples show preferred examples of the present invention, and the present invention is not limited to the examples. Absent.

シリコン、アルミニウム、酸化チタン、銅、鉄、安定化ジルコニア、スライドガラス、石英基材を、1000Pa下で、30分間、波長172nmの真空紫外光に暴露して洗浄した後、環状のオルガノシリコン水素化物である、1,3,5,7−テトラメチルシクロテトラシロキサン([C16Si],Gelest製)の蒸気を利用して、気相から当該分子を基材表面に化学結合で固定化させる処理を行うことで化学吸着させた。処理温度は、80℃、処理時間は、72時間とした。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は、103°/99°(シリコン)、103°/101°(アルミニウム)、104°/103°(酸化チタン)、104°/102°(銅)102°/100°(鉄)、104°/102°、103°/101°(安定化ジルコニア)、103°/102°(スライドガラス)、102°/99°(石英)となった。 After cleaning silicon, aluminum, titanium oxide, copper, iron, stabilized zirconia, glass slide, and quartz substrate by exposure to vacuum ultraviolet light with a wavelength of 172 nm under 1000 Pa for 30 minutes, cyclic organosilicon hydride Is chemically bonded to the substrate surface from the gas phase using the vapor of 1,3,5,7-tetramethylcyclotetrasiloxane ([C 4 H 16 O 4 Si 4 ], made by Gelest) Chemical adsorption was carried out by immobilization with The treatment temperature was 80 ° C. and the treatment time was 72 hours. The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the surface after treatment are 103 ° / 99 ° (silicon), 103 ° / 101 ° (aluminum), 104 ° / 103 ° (titanium oxide). ), 104 ° / 102 ° (copper) 102 ° / 100 ° (iron), 104 ° / 102 °, 103 ° / 101 ° (stabilized zirconia), 103 ° / 102 ° (slide glass), 102 ° / 99 ° (quartz).

シリコン、アルミニウム、酸化チタン、マグネシウム合金、銅、鉄、安定化ジルコニア、スライドガラス、石英基材を、1000Pa下で、30分間、波長172nmの真空紫外光に暴露して洗浄した後、前述の環状のオルガノシリコン水素化物の1,3,5,7−テトラメチルシクロテトラシロキサンを、気相から基材表面に化学結合で固定化させる処理を行うことで化学吸着させた。処理温度は、180℃、処理時間は、72時間とした。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は、166°/164°(シリコン)、168°/164°(アルミニウム)、163°/161°(酸化チタン)、162°/158°(マグネシウム合金)、165°/162°(銅)164°/162°(鉄)、164°/161°(安定化ジルコニア)、166°/164°(スライドガラス)、165°/163°(石英)となった。 After cleaning silicon, aluminum, titanium oxide, magnesium alloy, copper, iron, stabilized zirconia, glass slide, and quartz substrate by exposing to vacuum ultraviolet light having a wavelength of 172 nm under 1000 Pa for 30 minutes, the above-described ring The organosilicon hydride 1,3,5,7-tetramethylcyclotetrasiloxane was chemically adsorbed by performing a treatment for fixing it from the gas phase to the substrate surface by a chemical bond. The treatment temperature was 180 ° C. and the treatment time was 72 hours. The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the treated surface are 166 ° / 164 ° (silicon), 168 ° / 164 ° (aluminum), 163 ° / 161 ° (titanium oxide). ), 162 ° / 158 ° (magnesium alloy), 165 ° / 162 ° (copper), 164 ° / 162 ° (iron), 164 ° / 161 ° (stabilized zirconia), 166 ° / 164 ° (slide glass), It became 165 ° / 163 ° (quartz).

シリコン基材を、1000Pa下で、30分間、波長172nmの真空紫外光に暴露して洗浄した後、枝状の有機シランである、ビス(トリデカフルオロ1,1,2,2−テトラヒドロオクチルシロキシ)メチルクロロシラン(C2123ClF26Si,Gelest製)の蒸気を利用して、気相から当該分子を基材表面に化学結合で固定化させる処理を行うことで化学吸着させた。処理温度は、70℃、150℃、処理時間は、72時間とした。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は、70℃で、109°/105°、150 ℃で110°/107°となった。また、n−ヘキサデカン(油)の前進接触角(θ)と後退接触角(θ)は70℃で61°/59°、150℃で62°/60°となった。 The silicon substrate was washed by exposure to vacuum ultraviolet light having a wavelength of 172 nm under 1000 Pa for 30 minutes, and then bis (tridecafluoro-1,1,2,2-tetrahydrooctylsiloxy, which is a branched organic silane. ) Using chemical vapor of methylchlorosilane (C 21 H 23 ClF 26 O 2 Si 3 , manufactured by Gelest), the molecule was chemically adsorbed by performing a process of immobilizing the molecule on the substrate surface by a chemical bond from the gas phase. . The treatment temperature was 70 ° C. and 150 ° C., and the treatment time was 72 hours. The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the treated surface were 109 ° / 105 ° at 70 ° C. and 110 ° / 107 ° at 150 ° C. Further, the advancing contact angle (θ A ) and receding contact angle (θ R ) of n-hexadecane (oil) were 61 ° / 59 ° at 70 ° C. and 62 ° / 60 ° at 150 ° C.

シリコン、アルミニウム基材を、1000Pa下で、30分間、波長172nmの真空紫外光に暴露して洗浄した後、枝状の有機シランである、ビス(トリデカフルオロ1,1,2,2−テトラヒドロオクチルシロキシ)メチルシラン(C212426Si,Gelest製)の蒸気を利用して、気相から当該分子を基材表面に化学結合で固定化させる処理を行うことで化学吸着させた。処理温度は、150℃、処理時間は、72時間とした。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は、110°/107°(シリコン)、109°/107°(アルミニウム)となった。また、n−ヘキサデカン(油)の前進接触角(θ)と後退接触角(θ)は64°/63°(シリコン)、52°/50°(アルミニウム)となった。 A silicon and aluminum base material was washed by exposure to vacuum ultraviolet light having a wavelength of 172 nm at 1000 Pa for 30 minutes, and then bis (tridecafluoro-1,1,2,2-tetrahydro, which is a branched organic silane. Octylsiloxy) methylsilane (C 21 H 24 F 26 O 2 Si 3 , manufactured by Gelest) vapor is used to perform chemical adsorption by performing a process of immobilizing the molecule from the gas phase to the substrate surface by chemical bonding. It was. The processing temperature was 150 ° C. and the processing time was 72 hours. The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the treated surface were 110 ° / 107 ° (silicon) and 109 ° / 107 ° (aluminum). Further, the advancing contact angle (θ A ) and receding contact angle (θ R ) of n-hexadecane (oil) were 64 ° / 63 ° (silicon) and 52 ° / 50 ° (aluminum).

アクリル基材(旭化成製、デラグラス(登録商標)A)を、大気圧下で、30分間、波長172nmの真空紫外光に暴露して親水化した基材表面に、環状のオルガノシリコン水素化物である、1,3,5,7−テトラメチルシクロテトラシロキサン([C16Si],Gelest製)の蒸気を利用して、気相から当該分子を化学吸着させた。処理温度は、80℃、処理時間は、1時間とした。この試料表面に、再度、同じ光源を利用して、1000Paで、30分間、真空紫外光を照射した。 Acrylic substrate (Delagrass (registered trademark) A manufactured by Asahi Kasei Co., Ltd.) is a cyclic organosilicon hydride on the surface of a substrate that has been hydrophilized by exposure to vacuum ultraviolet light with a wavelength of 172 nm under atmospheric pressure for 30 minutes. 1,3,5,7-tetramethylcyclotetrasiloxane ([C 4 H 16 O 4 Si 4 ], manufactured by Gelest) was used to chemisorb the molecules from the gas phase. The treatment temperature was 80 ° C. and the treatment time was 1 hour. The sample surface was again irradiated with vacuum ultraviolet light at 1000 Pa for 30 minutes using the same light source.

更に、この試料表面に、枝状の有機シランである、ビス(トリデカフルオロ1,1,2,2−テトラヒドロオクチルシロキシ)メチルクロロシラン(C2123ClF26 Si,Gelest製)の蒸気を利用して、気相から当該分子を基材表面に化学結合で固定化させる処理を行うことで化学吸着させた。処理温度は、70℃、処理時間は、72時間とした。処理後の表面の前進接触角(θ)と後退接触角(θ)は、108°/105°となった。 Further, on the surface of the sample, bis (tridecafluoro1,1,2,2-tetrahydrooctylsiloxy) methylchlorosilane (C 21 H 23 ClF 26 O 2 Si 3 , manufactured by Gelest), which is a branched organic silane, is formed. Chemical adsorption was performed by performing a treatment of immobilizing the molecules from the gas phase on the substrate surface by chemical bonds using vapor. The treatment temperature was 70 ° C. and the treatment time was 72 hours. The advancing contact angle (θ A ) and receding contact angle (θ R ) of the treated surface were 108 ° / 105 °.

アルミニウム基材を熱水中で10分間処理した後、1000Pa下で、30分間、波長172nmの真空紫外光に暴露して洗浄し、直鎖状有機シランである、(ヘプタデカフルオロ−1、1、2、2−テトラヒドロデシル)トリメトキシシラン(FAS:CF[CFCHCHSi[OCH、Gelest製)の蒸気を利用して、気相からFASを基材表面に化学結合で固定化させる処理を行うことで化学吸着させた。処理温度は、150℃、処理時間は、72時間とした。処理後の表面の前進接触角(θ)と後退接触角(θ)は、170°/167°となった。 After the aluminum substrate was treated in hot water for 10 minutes, it was washed by exposure to vacuum ultraviolet light having a wavelength of 172 nm under 1000 Pa for 30 minutes, which is a linear organic silane (heptadecafluoro-1, 1 2,2-tetrahydrodecyl) trimethoxysilane (FAS: CF 3 [CF 2 ] 7 CH 2 CH 2 Si [OCH 3 ] 3 , manufactured by Gelest) is used to vaporize FAS from the gas phase to the substrate surface Chemical adsorption was carried out by carrying out a process of immobilizing them with chemical bonds. The processing temperature was 150 ° C. and the processing time was 72 hours. The advancing contact angle (θ A ) and receding contact angle (θ R ) of the treated surface were 170 ° / 167 °.

アルミニウム基材を、熱水中で、10分間処理した後、1000Pa下で、30分間、波長172nmの真空紫外光に暴露して洗浄し、直鎖状の有機分子である、1H,1H,2H,2H−パーフルオロデシルイソシアナート(PFI:CF[CFCHCHN=C=O,Aldrich製)の蒸気を利用して、気相からPFIを基材表面に化学結合で固定化させる処理を行うことで化学吸着させた。処理温度は、150℃、処理時間は、72時間とした。処理後の表面の前進接触角(θ)と後退接触角(θ)は、167°/165°となった。 The aluminum substrate is treated in hot water for 10 minutes, and then washed by exposure to vacuum ultraviolet light having a wavelength of 172 nm at 1000 Pa for 30 minutes to obtain linear organic molecules 1H, 1H, 2H. , 2H-perfluorodecyl isocyanate (PFI: CF 3 [CF 2 ] 7 CH 2 CH 2 N═C═O, manufactured by Aldrich) is used to chemically bond PFI to the substrate surface from the gas phase. Chemical adsorption was carried out by carrying out the immobilization process. The processing temperature was 150 ° C. and the processing time was 72 hours. The advancing contact angle (θ A ) and receding contact angle (θ R ) of the treated surface were 167 ° / 165 °.

実施例4で作製したアルミニウム基材を、室温下で、Milli−Q水中に浸漬した。   The aluminum base material produced in Example 4 was immersed in Milli-Q water at room temperature.

シリコン基材を、1000Pa下で30分間、波長172nmの真空紫外光に暴露して洗浄した後、枝状の有機シラン、[ビス(ノナフルオロヘキシルジメチルシロキシ)メチル]シリルエチルジメチルクロロシラン(C2133ClF18Si,Gelest製)の蒸気を利用して、気相から当該分子を化学吸着させた(処理温度は70℃、150℃、処理時間は72時間)。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は70℃で108°/106°、150℃で109°/107°となった。また、n−ヘキサデカン(油)の前進接触角(θ)と後退接触角(θ)は70℃で51°/49°、150℃で52°/50°となった。 The silicon substrate was washed by exposure to vacuum ultraviolet light having a wavelength of 172 nm under 1000 Pa for 30 minutes, and then a branched organic silane, [bis (nonafluorohexyldimethylsiloxy) methyl] silylethyldimethylchlorosilane (C 21 H 33 ClF 18 O 2 Si 4 (manufactured by Gelest) was used to chemisorb the molecules from the gas phase (treatment temperatures were 70 ° C., 150 ° C., treatment time was 72 hours). The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the treated surface were 108 ° / 106 ° at 70 ° C. and 109 ° / 107 ° at 150 ° C. Further, the advancing contact angle (θ A ) and receding contact angle (θ R ) of n-hexadecane (oil) were 51 ° / 49 ° at 70 ° C. and 52 ° / 50 ° at 150 ° C.

シリコン基材を、1000Pa下で30分間、波長172nmの真空紫外光に暴露して洗浄した後、枝状の有機シラン、ビス(ノナフルオロヘキシルジメチルシロキシ)メチルシラン(C172418Si,Gelest製)の蒸気を利用して、気相から当該分子を化学吸着させた(処理温度は150℃、処理時間は72時間)。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は109°/107°となった。また、ヘキサデカン(油)の前進接触角(θ)と後退接触角(θ)は51°/48°となった。 The silicon substrate was cleaned by exposure to vacuum ultraviolet light having a wavelength of 172 nm under 1000 Pa for 30 minutes, and then a branched organic silane, bis (nonafluorohexyldimethylsiloxy) methylsilane (C 17 H 24 F 18 O 2 Si 3 and made by Gelest), the molecules were chemisorbed from the gas phase (treatment temperature was 150 ° C., treatment time was 72 hours). The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the surface after the treatment were 109 ° / 107 °. Further, the advancing contact angle (θ A ) and receding contact angle (θ R ) of hexadecane (oil) were 51 ° / 48 °.

シリコン基材を、1000Pa下で30分間、波長172nmの真空紫外光に暴露して洗浄した後、枝状の有機シラン、ジ−t−ブチルメチルシラン(C22Si,Gelest製)の蒸気を利用して、気相から当該分子を化学吸着させた(処理温度は70℃、処理時間は72時間)。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は111°/109°となった。 The silicon substrate was cleaned by exposure to vacuum ultraviolet light having a wavelength of 172 nm under 1000 Pa for 30 minutes, and then a vapor of a branched organic silane, di-t-butylmethylsilane (C 9 H 22 Si, manufactured by Gelest). Was used to chemisorb the molecules from the gas phase (treatment temperature was 70 ° C., treatment time was 72 hours). The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the treated surface were 111 ° / 109 °.

シリコン基材を、1000Pa下で30分間、波長172nmの真空紫外光に暴露して洗浄した後、枝状の有機シラン、ジ−t−ブチルメチルクロロシラン(C21ClSi,Gelest製)の蒸気を利用して、気相から当該分子を化学吸着させた(処理温度は70℃、処理時間は72時間)。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は108°/106°となった。 The silicon substrate was cleaned by exposure to vacuum ultraviolet light with a wavelength of 172 nm under 1000 Pa for 30 minutes, and then a vapor of a branched organic silane, di-t-butylmethylchlorosilane (C 9 H 21 ClSi, manufactured by Gelest). Was used to chemisorb the molecules from the gas phase (treatment temperature was 70 ° C., treatment time was 72 hours). The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the surface after the treatment were 108 ° / 106 °.

シリコン基材を、1000Pa下で30分間、波長172nmの真空紫外光に暴露して洗浄した後、枝状の有機シラン、トリ−t−ペントキシシラノール(C1534Si,Gelest製)の蒸気を利用して、気相から当該分子を化学吸着させた(処理温度は70℃、処理時間は72時間)。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は104°/102°となった。また、n−ヘキサデカン(油)の前進接触角(θ)と後退接触角(θ)は41°/39°となった。 After cleaning the silicon substrate by exposing it to vacuum ultraviolet light having a wavelength of 172 nm under 1000 Pa for 30 minutes, a branched organic silane, tri-t-pentoxysilanol (C 15 H 34 O 4 Si, manufactured by Gelest) The molecules were chemisorbed from the gas phase using the vapor (treatment temperature was 70 ° C., treatment time was 72 hours). The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the surface after the treatment were 104 ° / 102 °. Further, the advancing contact angle (θ A ) and receding contact angle (θ R ) of n-hexadecane (oil) were 41 ° / 39 °.

シリコン基材を、1000Pa下で30分間、波長172nmの真空紫外光に暴露して洗浄した後、枝状の有機シラン、トリ−t−ブトキシシラノール(C1228Si,Gelest製)の蒸気を利用して、気相から当該分子を化学吸着させた(処理温度は80℃、処理時間は72時間)。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は97°/95°となった。 After cleaning the silicon substrate by exposing it to vacuum ultraviolet light having a wavelength of 172 nm under 1000 Pa for 30 minutes, a branched organic silane, tri-t-butoxysilanol (C 12 H 28 O 4 Si, manufactured by Gelest) Using steam, the molecules were chemisorbed from the gas phase (treatment temperature was 80 ° C., treatment time was 72 hours). The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the surface after the treatment were 97 ° / 95 °.

シリコン基材を、1000Pa下で30分間、波長172nmの真空紫外光に暴露して洗浄した後、枝状の有機シラン、トリ−t−ブチルシラン(C1228Si,Gelest製)の蒸気を利用して、気相から当該分子を化学吸着させた(処理温度は80℃、処理時間は72時間)。処理後の表面の水滴の前進接触角(θ)と後退接触角(θ)は100°/99°となった。 After cleaning the silicon substrate by exposing it to vacuum ultraviolet light having a wavelength of 172 nm under 1000 Pa for 30 minutes, a vapor of a branched organic silane, tri-t-butylsilane (C 12 H 28 Si, manufactured by Gelest) is used. Then, the molecules were chemically adsorbed from the gas phase (the processing temperature was 80 ° C. and the processing time was 72 hours). The advancing contact angle (θ A ) and receding contact angle (θ R ) of the water droplets on the surface after the treatment were 100 ° / 99 °.

実施例4、6、7で作製したアルミニウム基材を用いて、塩水噴霧試験(JIS2371;塩水(5wt%)35℃で1000時間)を実施した。   A salt spray test (JIS 2371; salt water (5 wt%) at 35 ° C. for 1000 hours) was carried out using the aluminum base material produced in Examples 4, 6, and 7.

比較例1
シリコン、アルミニウム、酸化チタン基材を、1000Pa下で、30分間、波長172nmの真空紫外光に暴露して洗浄した後、直鎖状有機シランである、(ヘプタデカフルオロ−1、1、2、2−テトラヒドロデシル)トリメトキシシラン(FAS:CF[CFCHCHSi[OCH、Gelest製)の蒸気を利用して、気相からFASを化学吸着させた。処理温度は、150℃、処理時間は、72時間とした。処理後の表面の前進接触角(θ)と後退接触角(θ)は、120°/110°(シリコン)、125°/110°(アルミニウム)、121°/110°(酸化チタン)となった。
Comparative Example 1
After washing the silicon, aluminum, and titanium oxide base materials by exposing them to vacuum ultraviolet light having a wavelength of 172 nm at 1000 Pa for 30 minutes, linear organosilane (heptadecafluoro-1, 1, 2,. FAS was chemisorbed from the vapor phase using the vapor of 2-tetrahydrodecyl) trimethoxysilane (FAS: CF 3 [CF 2 ] 7 CH 2 CH 2 Si [OCH 3 ] 3 , manufactured by Gelest). The processing temperature was 150 ° C. and the processing time was 72 hours. The advancing contact angle (θ A ) and receding contact angle (θ R ) of the treated surface are 120 ° / 110 ° (silicon), 125 ° / 110 ° (aluminum), 121 ° / 110 ° (titanium oxide). became.

比較例2
シリコン、アルミニウム、酸化チタン基材を、1000Pa下で、30分間、波長172nmの真空紫外光に暴露して洗浄した後、直鎖状有機分子である、パーフルオロイソシアナート(PFI:CF[CFCHCHN=C=O,Aldrich製)の蒸気を利用して、気相からPFIを化学吸着させた。処理温度は、150℃、処理時間は、72時間とした。処理後の表面の前進接触角(θ)と後退接触角(θ)は、118°/108°(シリコン)、125°/103°(アルミニウム)、120°/102°(酸化チタン)となった。
Comparative Example 2
After cleaning the silicon, aluminum, and titanium oxide base materials by exposing them to vacuum ultraviolet light having a wavelength of 172 nm at 1000 Pa for 30 minutes, perfluoroisocyanate (PFI: CF 3 [CF 2 ] 7 CH 2 CH 2 N═C═O, manufactured by Aldrich), PFI was chemisorbed from the gas phase. The processing temperature was 150 ° C. and the processing time was 72 hours. The advancing contact angle (θ A ) and receding contact angle (θ R ) of the treated surface are 118 ° / 108 ° (silicon), 125 ° / 103 ° (aluminum), 120 ° / 102 ° (titanium oxide). became.

比較例3
アクリル基材(旭化成製、デラグラス)を、1000Pa下で、30分間、波長172nmの真空紫外光に暴露して親水化した基材表面に、枝状の有機シランである、ビス(トリデカフルオロ1,1,2,2−テトラヒドロオクチルシロキシ)メチルクロロシラン(C2123ClF26 Si,Gelest製)の蒸気を利用して、気相から当該分子を化学吸着させた。処理温度は、70℃、処理時間は、72時間とした。処理後の表面の前進接触角(θ)と後退接触角(θ)は、87°/15°となった。
Comparative Example 3
Bis (tridecafluoro 1), which is a branched organic silane, is formed on the surface of an acrylic substrate (made by Asahi Kasei, Delaglass) exposed to vacuum ultraviolet light having a wavelength of 172 nm at 1000 Pa for 30 minutes to make it hydrophilic. , 1,2,2-tetrahydrooctylsiloxy) methylchlorosilane (C 21 H 23 ClF 26 O 2 Si 3 , manufactured by Gelest) was used to chemisorb the molecules from the gas phase. The treatment temperature was 70 ° C. and the treatment time was 72 hours. The advancing contact angle (θ A ) and receding contact angle (θ R ) of the treated surface were 87 ° / 15 °.

比較例4
比較例1で作製したアルミニウム基材を、室温下で、Milli−Q水中に浸漬した。
Comparative Example 4
The aluminum base material produced in Comparative Example 1 was immersed in Milli-Q water at room temperature.

比較例5
未処理のアルミニウム基材を用いて、塩水噴霧試験(JIS2371;塩水(5wt%)35℃で1000時間)を実施した。
Comparative Example 5
A salt spray test (JIS 2371; salt water (5 wt%) at 35 ° C. for 1000 hours) was performed using an untreated aluminum substrate.

以上の16つの実施例、及び5つの比較例で作製した試料表面を相対的に評価すると、実施例1、3、4、9−15と、比較例1、2との比較では、平滑な基板表面では、環状あるいは枝状の有機分子を利用して分子膜を形成した基板のみが、水滴接触角のヒステリシスの小さい疎水性表面を実現していることが分かった。   When the sample surfaces prepared in the above 16 examples and the five comparative examples are relatively evaluated, a smooth substrate is obtained in the comparison between the examples 1, 3, 4, 9-15 and the comparative examples 1 and 2. On the surface, it was found that only a substrate on which a molecular film was formed using cyclic or branched organic molecules realized a hydrophobic surface with a small hysteresis of the water droplet contact angle.

実施例2では、平滑な基板表面であるにも関わらず、反応温度の違いで、ヒステリシスの小さい超撥水性表面を形成することが分かった。これは、高温下では、環状のオルガノシリコン水素化物である、1,3,5,7−テトラメチルシクロテトラシロキサンが気相中で均一核生成反応し、粒子が優先的に基板表面に析出し、表面に凸凹の構造が導入されるためである。   In Example 2, although it was a smooth substrate surface, it was found that a superhydrophobic surface having a small hysteresis was formed due to a difference in reaction temperature. This is because, at high temperatures, 1,3,5,7-tetramethylcyclotetrasiloxane, which is a cyclic organosilicon hydride, undergoes a uniform nucleation reaction in the gas phase, and particles preferentially precipitate on the substrate surface. This is because an uneven structure is introduced on the surface.

実施例5と、比較例3で作製した試料を相対的に評価すると、ポリマー基材では、分子膜を、直接、基材に被覆した試料では、十分な疎水性は実現できなかったのに対し、表面に、予め酸化シリコン皮膜を被覆した場合のみ、水滴接触角のヒステリシスの小さい疎水性表面を実現することが分かった。実施例6、7と、比較例3を比較すると、金属(アルミニウム)表面に凸凹がある場合、分子構造に関係なく、ヒステリシスの小さい超撥水性表面を形成することが分かった。   When the samples prepared in Example 5 and Comparative Example 3 were evaluated relatively, the polymer substrate could not realize sufficient hydrophobicity with the sample coated with the molecular film directly on the substrate. It was found that only when the surface was previously coated with a silicon oxide film, a hydrophobic surface with small hysteresis of the water droplet contact angle was realized. When Examples 6 and 7 were compared with Comparative Example 3, it was found that when the metal (aluminum) surface had irregularities, a superhydrophobic surface having a small hysteresis was formed regardless of the molecular structure.

更に、実施例8と、比較例3の結果を相対的に評価すると、同じフッ素系分子膜であるにも関わらず、枝状構造の有機シラン分子は、動的接触角の変化が極めて小さいことが分かった。この結果は、表面の枝状の有機シラン分子が傘の役割を果たし、水との相互作用を効率的に抑制していることを証明するものである。   Furthermore, when the results of Example 8 and Comparative Example 3 are evaluated relatively, the organic silane molecules having a branched structure have a very small change in dynamic contact angle despite the same fluorine-based molecular film. I understood. This result proves that the branched organic silane molecules on the surface play a role of umbrella and efficiently suppress the interaction with water.

更に、実施例4、6、7と比較例5の結果を相対的に評価すると、未処理のアルミニウム基板は約96時間で腐食し、表面が真っ白に変化した。一方、枝状構造のフッ素系有機シラン分子で処理したアルミニウム表面及び超撥水性化したアルミニウム表面は、1ヶ月間の塩水噴霧試験にも関わらず、金属光沢を保っていた。これらの表面は、動的接触角の差が極めて小さいため、塩水が表面に残存しにくい。そのため、優れた耐食性を示したとものと考えられる。   Furthermore, when the results of Examples 4, 6, and 7 and Comparative Example 5 were relatively evaluated, the untreated aluminum substrate was corroded in about 96 hours, and the surface was turned white. On the other hand, the aluminum surface treated with the fluorine-based organosilane molecule having a branch structure and the aluminum surface subjected to super water repellency maintained a metallic luster despite the salt spray test for one month. Since these surfaces have a very small difference in dynamic contact angle, salt water hardly remains on the surfaces. Therefore, it is considered that excellent corrosion resistance was exhibited.

以上詳述したように、本発明は、固体表面の改質方法及び表面改質された基材に係るものであり、本発明により、平滑な基材表面に3nm以下の環状、枝状、又は直鎖構造の有機分子の分子膜を形成することにより、固体/液体界面の相互作用が抑制され、当該処理基材表面のヒステリシスが極めて小さくなるという作用効果が得られる。   As described above in detail, the present invention relates to a method for modifying a solid surface and a surface-modified substrate, and according to the present invention, a smooth substrate surface having a ring shape of 3 nm or less, By forming a molecular film of organic molecules having a straight chain structure, the interaction between the solid / liquid interface is suppressed, and the effect that the hysteresis on the surface of the treated substrate is extremely reduced can be obtained.

この現象は、例えば、基材表面に固定化した枝状有機分子が、下地の極性官能基との相互作用を抑制するという化学的な効果により出現するものであり、また、環状有機分子が、下地の極性官能基との相互作用を抑制するという化学的な効果により出現するものである。   This phenomenon appears, for example, due to the chemical effect that the branched organic molecules immobilized on the substrate surface suppress the interaction with the underlying polar functional group, and the cyclic organic molecules It appears due to the chemical effect of suppressing the interaction with the polar functional group of the base.

本発明は、従来技術では困難であった、ポリマー、金属、セラミックス基材表面における、液体と固体表面の相互作用を著しく抑制することを可能とし、前進接触角(θ)と後退接触角(θ)の差(ヒステリシス)が小さくなり、液滴の滑落性や当該試料表面からの液滴の除去性を大幅に向上させることを可能とする、固体表面の新しい表面改質技術を提供するものとして有用である。 The present invention makes it possible to remarkably suppress the interaction between a liquid and a solid surface on the surface of a polymer, metal, or ceramic substrate, which has been difficult with the prior art, and advancing contact angle (θ A ) and receding contact angle ( Provided is a new surface modification technique for a solid surface that reduces the difference (hysteresis) of θ R ), and can greatly improve the sliding property of the droplet and the removal property of the droplet from the sample surface. Useful as a thing.

Claims (13)

固体表面を改質する方法であって、固体表面を予め親水化した後、該固体表面に、環状、枝状、又は直鎖構造を有する有機分子を気相雰囲気から化学結合で固定化することで有機分子膜を形成することにより、液体と固体表面の相互作用を抑制して、前進接触角と後退接触角の差であるヒステリシスが、5°以下の撥水性、超撥水性を示す表面に改質することを特徴とする固体表面の改質方法。   A method for modifying a solid surface, wherein the solid surface is previously hydrophilized, and then organic molecules having a cyclic, branched, or linear structure are immobilized on the solid surface by chemical bonding from a gas phase atmosphere. By forming an organic molecular film in the surface, the interaction between the liquid and the solid surface is suppressed, and the hysteresis that is the difference between the advancing contact angle and the receding contact angle is 5 ° or less on the surface exhibiting water repellency and super water repellency. A method for modifying a solid surface, comprising modifying the solid surface. 前進接触角、後退接触角が、それぞれ30〜170°の範囲である、請求項1に記載の固体表面の改質方法。   The method for modifying a solid surface according to claim 1, wherein the advancing contact angle and the receding contact angle are each in the range of 30 to 170 °. 有機分子を固定化する際の処理温度が、50〜180℃、処理時間が少なくとも24時間である、請求項1又は2に記載の固体表面の改質方法。   The method for modifying a solid surface according to claim 1 or 2, wherein the treatment temperature for immobilizing the organic molecules is 50 to 180 ° C and the treatment time is at least 24 hours. 有機分子が、水酸基、水素基、ビニル基、アルコキシ基、クロロ基、カルボキシル基、アルデヒド基、イソシアナート基、アミノ基の内から選択される1〜3個の反応性官能基で末端が終端されている、請求項1から3のいずれかに記載の固体表面の改質方法。   The organic molecule is terminated with 1 to 3 reactive functional groups selected from hydroxyl group, hydrogen group, vinyl group, alkoxy group, chloro group, carboxyl group, aldehyde group, isocyanate group and amino group. The solid surface modification method according to any one of claims 1 to 3. 有機分子が、メチル基、フルオロアルキル基、水素基の内から選択される1種類以上の不活性な官能基で終端されている、請求項1から4のいずれかに記載の固体表面の改質方法。   The solid surface modification according to any one of claims 1 to 4, wherein the organic molecule is terminated with one or more kinds of inert functional groups selected from a methyl group, a fluoroalkyl group, and a hydrogen group. Method. ポリマー基材であって、該基材の表面が、膜厚0.5nm〜1ミクロンの酸化シリコン薄膜(含ナノ細孔酸化シリコン薄膜)で被覆されている、請求項1から5のいずれかに記載の固体表面の改質方法。   It is a polymer base material, Comprising: The surface of this base material is coat | covered with the silicon oxide thin film (nanopore silicon oxide thin film) with a film thickness of 0.5 nm-1 micron in any one of Claim 1 to 5 The method for modifying a solid surface as described. 固体表面が、金属、金属酸化膜、金属酸化物、合金、半導体、ポリマー、セラミックス(含メソ細孔セラミックス)、及びガラス基材の内から選択される固体表面である、請求項1から6のいずれかに記載の固体表面の改質方法。   The solid surface is a solid surface selected from metals, metal oxide films, metal oxides, alloys, semiconductors, polymers, ceramics (containing mesoporous ceramics), and glass substrates, The method for modifying a solid surface according to any one of the above. 金属、金属酸化膜、金属酸化物、合金、半導体、ポリマー、セラミックス(含メソ細孔セラミックス)、及びガラス基材の内から選択される固体表面に、環状、枝状、又は直鎖構造を有する有機分子が化学結合を介して固定化されており、該有機分子の膜厚が、0超〜3nmであり、前進接触角と後退接触角の差であるヒステリシスが、5°以下の撥水性、超撥水性を示すことを特徴とする表面改質された基材。   A solid surface selected from metals, metal oxide films, metal oxides, alloys, semiconductors, polymers, ceramics (including mesoporous ceramics), and glass substrates has a cyclic, branched, or linear structure. An organic molecule is immobilized through a chemical bond, the film thickness of the organic molecule is more than 0 to 3 nm, and the water repellent property having a hysteresis of 5 ° or less, which is a difference between the advancing contact angle and the receding contact angle, A surface-modified base material characterized by exhibiting super water repellency. 有機分子が、水酸基、水素基、ビニル基、アルコキシ基、クロロ基、カルボキシル基、アルデヒド基、イソシアナート基、アミノ基の内から選択される1〜3個の反応性官能基で末端が終端されている、請求項8に記載の表面改質された基材。   The organic molecule is terminated with 1 to 3 reactive functional groups selected from hydroxyl group, hydrogen group, vinyl group, alkoxy group, chloro group, carboxyl group, aldehyde group, isocyanate group and amino group. The surface-modified substrate according to claim 8. 有機分子が、メチル基、フルオロアルキル基、水素基の内から選択される1種類以上の不活性な官能基で終端されている、請求項7に記載の表面改質された基材。   The surface-modified substrate according to claim 7, wherein the organic molecule is terminated with one or more kinds of inert functional groups selected from a methyl group, a fluoroalkyl group, and a hydrogen group. 有機分子が、固体表面の水酸基、又は酸素含有極性基との間で化学結合を介して固定化されている、請求項8に記載の表面改質された基材。   The surface-modified base material according to claim 8, wherein the organic molecule is immobilized via a chemical bond with a hydroxyl group on the solid surface or an oxygen-containing polar group. 金属基材であって、該基材の表面に、高さ5〜50nmの針状構造が形成されている、請求項8に記載の表面改質された基材。   The surface-modified substrate according to claim 8, which is a metal substrate, and a needle-like structure having a height of 5 to 50 nm is formed on the surface of the substrate. 前進接触角、後退接触角が、それぞれ30°〜170°の範囲であり、前進接触角と後退接触角の差であるヒステリシスが、5°以下の撥水性、超撥水性を示す、請求項8から12のいずれかに記載の表面改質された基材。   The advancing contact angle and the receding contact angle are in the range of 30 ° to 170 °, respectively, and the hysteresis that is the difference between the advancing contact angle and the receding contact angle exhibits water repellency and super water repellency of 5 ° or less. To 12. The surface-modified base material according to any one of 1 to 12.
JP2010043506A 2009-02-27 2010-02-26 Solid surface modification method and surface modified substrate Expired - Fee Related JP5553304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010043506A JP5553304B2 (en) 2009-02-27 2010-02-26 Solid surface modification method and surface modified substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009047415 2009-02-27
JP2009047415 2009-02-27
JP2010043506A JP5553304B2 (en) 2009-02-27 2010-02-26 Solid surface modification method and surface modified substrate

Publications (2)

Publication Number Publication Date
JP2010222703A true JP2010222703A (en) 2010-10-07
JP5553304B2 JP5553304B2 (en) 2014-07-16

Family

ID=43040198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010043506A Expired - Fee Related JP5553304B2 (en) 2009-02-27 2010-02-26 Solid surface modification method and surface modified substrate

Country Status (1)

Country Link
JP (1) JP5553304B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140580A (en) * 2010-12-17 2012-07-26 National Institute Of Advanced Industrial Science & Technology Method for controlling wettability of solid surface, and the solid surface
JP2012174746A (en) * 2011-02-18 2012-09-10 Nagoya City Semiconductor device and manufacturing method of the same
KR20140030999A (en) * 2012-09-04 2014-03-12 삼성디스플레이 주식회사 Display device and method of manufacturing the same
JP2014152389A (en) * 2013-02-13 2014-08-25 Nagoya Univ Manufacturing method of super water repellent material, and super water repellent material
KR20160122211A (en) 2014-02-21 2016-10-21 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Water-repellantoil-repellant film and production method therefor
US10370546B2 (en) 2014-10-31 2019-08-06 Sumitomo Chemical Company, Limited Water/oil-repellent coating composition
US10400137B2 (en) 2014-11-12 2019-09-03 Sumitomo Chemical Company, Limited Water-repellant and oil-repellant coating composition and transparent film
US10472378B2 (en) 2014-10-31 2019-11-12 Sumitomo Chemical Company, Limited Transparent film
CN112981400A (en) * 2021-02-07 2021-06-18 周口师范学院 Preparation method of super-hydrophobic foam iron surface and application of super-hydrophobic foam iron surface in oily wastewater treatment
US11203674B2 (en) 2014-10-31 2021-12-21 Sumitomo Chemical Company, Limited Transparent film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214402A (en) * 2001-01-19 2002-07-31 Toppan Printing Co Ltd Antireflection laminate
JP2004193524A (en) * 2002-12-13 2004-07-08 Canon Inc Columnar structure, electrode having columnar structure, and their manufacturing method
JP2006291266A (en) * 2005-04-08 2006-10-26 Daikin Ind Ltd Method of vapor-phase surface treatment with fluorine compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214402A (en) * 2001-01-19 2002-07-31 Toppan Printing Co Ltd Antireflection laminate
JP2004193524A (en) * 2002-12-13 2004-07-08 Canon Inc Columnar structure, electrode having columnar structure, and their manufacturing method
JP2006291266A (en) * 2005-04-08 2006-10-26 Daikin Ind Ltd Method of vapor-phase surface treatment with fluorine compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. HOZUMI ET AL.: "Formation of aldehyde- and carboxy-terminated self-assembled monolayers on SiO2 surfaces", SURF. INTERFACE ANAL., vol. 40, JPN6013034692, 10 March 2008 (2008-03-10), GB, pages 408 - 411, ISSN: 0002582556 *
A. HOZUMI ET AL.: "Preparation of a well-defined amino-terminated self-assembled monolayer and copper microlines on a p", LANGMUIR, vol. 21, JPN6013034690, 27 July 2005 (2005-07-27), US, pages 8234 - 8242, ISSN: 0002582557 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012140580A (en) * 2010-12-17 2012-07-26 National Institute Of Advanced Industrial Science & Technology Method for controlling wettability of solid surface, and the solid surface
JP2012174746A (en) * 2011-02-18 2012-09-10 Nagoya City Semiconductor device and manufacturing method of the same
KR101977708B1 (en) * 2012-09-04 2019-08-29 삼성디스플레이 주식회사 Display device and method of manufacturing the same
KR20140030999A (en) * 2012-09-04 2014-03-12 삼성디스플레이 주식회사 Display device and method of manufacturing the same
US10416500B2 (en) 2012-09-04 2019-09-17 Samsung Display Co., Ltd. Display device having a moisture barrier layer and method of manufacturing the same
JP2014152389A (en) * 2013-02-13 2014-08-25 Nagoya Univ Manufacturing method of super water repellent material, and super water repellent material
US10138380B2 (en) 2014-02-21 2018-11-27 National Institute Of Advanced Industrial Science And Technology Water/oil repellant coating film and manufacturing method thereof
KR20160122211A (en) 2014-02-21 2016-10-21 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Water-repellantoil-repellant film and production method therefor
US10370546B2 (en) 2014-10-31 2019-08-06 Sumitomo Chemical Company, Limited Water/oil-repellent coating composition
US10472378B2 (en) 2014-10-31 2019-11-12 Sumitomo Chemical Company, Limited Transparent film
US11203674B2 (en) 2014-10-31 2021-12-21 Sumitomo Chemical Company, Limited Transparent film
US10400137B2 (en) 2014-11-12 2019-09-03 Sumitomo Chemical Company, Limited Water-repellant and oil-repellant coating composition and transparent film
CN112981400A (en) * 2021-02-07 2021-06-18 周口师范学院 Preparation method of super-hydrophobic foam iron surface and application of super-hydrophobic foam iron surface in oily wastewater treatment
CN112981400B (en) * 2021-02-07 2023-04-07 周口师范学院 Preparation method of super-hydrophobic foam iron surface and application of super-hydrophobic foam iron surface in oily wastewater treatment

Also Published As

Publication number Publication date
JP5553304B2 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
JP5553304B2 (en) Solid surface modification method and surface modified substrate
JP5950399B2 (en) Organic-inorganic transparent hybrid film and production method thereof
JP5470628B2 (en) Substrate surface treatment method that makes the surface of the substrate highly hydrophobic
Ramezani et al. Preparation of silane-functionalized silica films via two-step dip coating sol–gel and evaluation of their superhydrophobic properties
Rezaei et al. One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication
Song et al. Self-assembly of amino-functionalized monolayers on silicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid dual layers and surface roughening
JP6728067B2 (en) Novel method for producing superhydrophobic or superhydrophilic surface
Daneshmand et al. Fabrication of robust and versatile superhydrophobic coating by two-step spray method: An experimental and molecular dynamics simulation study
WO2014136275A1 (en) Organic/inorganic transparent hybrid coating film and process for producing same
JPH04288349A (en) Water-repellent and oil-repellent film and its production
KR920014909A (en) Water and oil repellent coating and its manufacturing method
Kim et al. Micro-nano hierarchical superhydrophobic electrospray-synthesized silica layers
TW201609385A (en) Hydrophobic article
JP2017523917A (en) Liquid coating composition for use in a method of forming a superhydrophobic, superoleophobic or ultra-hydrophobic layer
JP5396063B2 (en) Functional metal composite substrate and manufacturing method thereof
Carpentier et al. Chemical structure and morphology of thin bilayer and composite organosilicon and fluorocarbon microwave plasma polymer films
KR101463050B1 (en) Article including Ultra Hydrophobic Coating and Method for Fabrication thereof
Zhong et al. High stability superhydrophobic glass-ceramic surface with micro–nano hierarchical structure
Hwang et al. Fabrication of Superhydrophobic Silica Nanoparticles and Nanocomposite Coating on Glass Surfaces.
WO2015013464A1 (en) Process for preparing an optically clear superhydrophobic coating solution
JPH04367721A (en) Chemically adsorbed fluorine contained laminated monomolecular film and method for preparing the same
KR102415046B1 (en) How to modify a solid surface
JP3870253B2 (en) Inorganic-organic hybrid thin film and method for producing the same
JPH04255343A (en) Water repellent and oil repellent coating film and manufacture thereof
JP5768233B2 (en) Method for controlling wettability of solid surface and solid surface thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140520

R150 Certificate of patent or registration of utility model

Ref document number: 5553304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees