JP2010189735A - Titanium alloy - Google Patents

Titanium alloy Download PDF

Info

Publication number
JP2010189735A
JP2010189735A JP2009036987A JP2009036987A JP2010189735A JP 2010189735 A JP2010189735 A JP 2010189735A JP 2009036987 A JP2009036987 A JP 2009036987A JP 2009036987 A JP2009036987 A JP 2009036987A JP 2010189735 A JP2010189735 A JP 2010189735A
Authority
JP
Japan
Prior art keywords
content
hardness
work hardening
equivalent
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009036987A
Other languages
Japanese (ja)
Inventor
Tetsuya Shoji
哲也 庄司
Naoki Nakamura
直樹 中村
Shigeru Kuramoto
繁 倉本
Shuichi Miyazaki
修一 宮崎
Kiei Kin
煕榮 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
University of Tsukuba NUC
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc, University of Tsukuba NUC filed Critical Toyota Motor Corp
Priority to JP2009036987A priority Critical patent/JP2010189735A/en
Publication of JP2010189735A publication Critical patent/JP2010189735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a titanium alloy whose work hardening is suppressed so as to obtain stable, high workability while maintaining its high strength. <P>SOLUTION: The titanium alloy has a chemical composition at least comprising Nb and O among Nb, Zr, Ta and O, and in which Nb equivalent defined by formula (1): Nb equivalent(at%)=Nb content(at%)+0.875×Zr content(at%)+0.75×Ta content(at%)+4×O content(at%) is 32 to 39 at%; wherein, the O content is 0.5 to 1.5 at%, the Zr content is ≤4 at%, and the balance Ti with inevitable impurities; wherein, the hardness of the solution-treated material is ≥200 Hv, the hardness of the 95% cold-worked material is ≤300 Hv, and a work hardening rate defined by formula (2): the work hardening rate (%)=äthe hardness (Hv) of the 95% cold-worked material-the hardness (Hv) of the solution-treated material}/äthe hardness (Hv) of the solution-treated material}×100 is ≤20%. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、チタン合金、特に、加工硬化率が低く加工性の優れたβ型チタン合金に関する。   The present invention relates to a titanium alloy, in particular, a β-type titanium alloy having a low work hardening rate and excellent workability.

チタン合金は、比強度や耐食性に優れるため、航空、宇宙、深海、化学プラントなどの特殊分野で広く用いられている。特にβ型チタン合金は、高い耐食性と低い弾性率を特徴とし、腐食環境下で用いられるネジのような締結部材等への適用が期待される。   Titanium alloys are excellent in specific strength and corrosion resistance, and are therefore widely used in special fields such as aviation, space, deep sea, and chemical plants. In particular, β-type titanium alloys are characterized by high corrosion resistance and low elastic modulus, and are expected to be applied to fastening members such as screws used in corrosive environments.

β型チタン合金は、α型およびα+β型チタン合金に比べて加工性に優れるが、合金組成によっては焼入れ時や加工時にω相が生じて脆化したり、α”マルテンサイト変態が起きたりして、著しい加工硬化を生じ加工性が劣化することが多い。   β-type titanium alloys are superior in workability compared to α-type and α + β-type titanium alloys, but depending on the alloy composition, ω-phase may be generated during quenching or processing, resulting in embrittlement or α ”martensite transformation. In many cases, remarkable work hardening occurs and workability deteriorates.

特許文献1には、Mo、V、W、Nb、Ta、Fe、Cr、Ni、Co、Cu、Alの各含有量の線形式で定義されるMo当量を3〜11質量%とする範囲でこれらの合金元素を1種以上含有し、0.3〜3質量%の、O、NまたはCの1種以上から成る侵入型固溶元素を含有し、Al含有量は1.8質量%以下であり、少なくとも室温でβ単相であることを特徴とする加工性に優れ、低ヤング率のチタン合金が開示されている。   In Patent Document 1, the Mo equivalent defined by the linear form of each content of Mo, V, W, Nb, Ta, Fe, Cr, Ni, Co, Cu, and Al is in the range of 3 to 11% by mass. Contains one or more of these alloy elements, contains 0.3 to 3% by mass of interstitial solid solution elements consisting of one or more of O, N or C, and Al content is 1.8% by mass or less A titanium alloy having excellent workability and having a low Young's modulus, which is characterized by being a β single phase at least at room temperature, is disclosed.

特許文献2には、質量比で、Mo:13.5〜16.9%、Nb:0.5〜5.5%、Zr:0.5〜5.0%、O:0.20以下を含有し、残部がTiおよび不可避的不純物から成るとともに、β変態点が700〜750℃の範囲であることを特徴とする生体用β型チタン合金が開示されている。   Patent Document 2 includes, by mass ratio, Mo: 13.5 to 16.9%, Nb: 0.5 to 5.5%, Zr: 0.5 to 5.0%, and O: 0.20 or less. A biomedical β-type titanium alloy is disclosed, characterized in that it contains Ti and the inevitable impurities, and the β transformation point is in the range of 700 to 750 ° C.

しかし、高い強度を維持しつつ安定して高い加工性を確保するためには、加工硬化を抑制する視点からの合金設計が更に必要であった。   However, in order to ensure high workability stably while maintaining high strength, an alloy design from the viewpoint of suppressing work hardening has been further required.

特開2004−162171号公報JP 2004-162171 A 特開2003−73761号公報Japanese Patent Laid-Open No. 2003-73761

本発明は、高い強度を維持しつつ安定して高い加工性が得られるように、加工硬化を抑制したチタン合金を提供することを目的とする。   An object of this invention is to provide the titanium alloy which suppressed work hardening so that high workability may be obtained stably, maintaining high intensity | strength.

上記の目的を達成するために、本発明によれば、Nb、Zr、Ta、Oのうち少なくともNbおよびOを含有し、下記式(1):
Nb当量(at%)=Nb含有量(at%)+0.875×Zr含有量(at%)+0.75×Ta含有量(at%)+4×O含有量(at%)・・・(1)
で定義されるNb当量が32〜39at%であり、O含有量は0.5〜1.5at%、Zr含有量は4at%以下であり、残部がTiおよび不可避的不純物から成る化学組成を有し、
溶体化処理材の硬さが200Hv以上、95%冷間加工材の硬さが300Hv以下であって、下記式(2):
加工硬化率(%)={95%冷間加工材の硬さ(Hv)−溶体化処理材の硬さ(Hv)}/{溶体化処理材の硬さ(Hv)}×100・・・(2)
で定義される加工硬化率が20%以下であることを特徴とするチタン合金が提供される。
In order to achieve the above object, according to the present invention, at least Nb and O among Nb, Zr, Ta, and O are contained, and the following formula (1):
Nb equivalent (at%) = Nb content (at%) + 0.875 × Zr content (at%) + 0.75 × Ta content (at%) + 4 × O content (at%) (1) )
The Nb equivalent defined by the formula is 32 to 39 at%, the O content is 0.5 to 1.5 at%, the Zr content is 4 at% or less, and the balance has a chemical composition consisting of Ti and inevitable impurities. And
The hardness of the solution treatment material is 200 Hv or more, the hardness of the 95% cold-worked material is 300 Hv or less, and the following formula (2):
Work hardening rate (%) = {95% hardness of cold worked material (Hv) −hardness of solution treated material (Hv)} / {hardness of solution treated material (Hv)} × 100. (2)
A titanium alloy characterized in that the work hardening rate defined by is 20% or less is provided.

本発明によれば、Nb当量、O含有量、Zr含有量を規定範囲内に制限すると共に、硬さおよび加工硬化率を規定したことにより、高い強度を維持しつつ高い加工性を確保することができる。   According to the present invention, the Nb equivalent, O content, and Zr content are limited within the specified ranges, and the hardness and work hardening rate are specified to ensure high workability while maintaining high strength. Can do.

本発明においては、冷間加工性を高めるために、マルテンサイト変態開始温度Ms点を室温より十分に低い温度に維持する。ここで本発明者は、Nb当量を式(1)で定義すると、Ms点はNb当量によって式(1A)で表わせることを新規に見出した。   In the present invention, the martensitic transformation start temperature Ms point is maintained at a temperature sufficiently lower than room temperature in order to improve cold workability. Here, when this inventor defined Nb equivalent by Formula (1), it discovered newly that Ms point could be represented by Formula (1A) by Nb equivalent.

Nb当量(at%)=Nb含有量(at%)+0.875×Zr含有量(at%)+0.75×Ta含有量(at%)+4×O含有量(at%)・・・(1)
Ms点(K)=1380−43×Nb当量(at%)・・・(1A)
式(1)で定義されるNb当量とは、Nbを1at%増加したときのMs点の低下量に対して、Nbに代えて式(1)中の他の各元素を1at%増加したときのMs点の低下量の比率を各元素の係数として線形式として表わした数量である。
Nb equivalent (at%) = Nb content (at%) + 0.875 × Zr content (at%) + 0.75 × Ta content (at%) + 4 × O content (at%) (1) )
Ms point (K) = 1380−43 × Nb equivalent (at%) (1A)
The Nb equivalent defined by the formula (1) is when the other elements in the formula (1) are increased by 1 at% in place of Nb with respect to the decrease amount of the Ms point when the Nb is increased by 1 at%. The ratio of the amount of decrease in the Ms point is expressed in a linear form as a coefficient of each element.

本発明において、チタン合金の化学組成を限定した理由は下記のとおりである。   In the present invention, the reason for limiting the chemical composition of the titanium alloy is as follows.

〔Nb当量が32〜39at%〕
Nb当量が32at%未満であると、加工硬化率が20%を超える。Nb当量を32at%以上とすることによりマルテンサイト変態を完全に抑止でき、加工硬化率を容易に20%以下に低減できる。一方、Nb当量が39at%を超えると、融点が高くなり過ぎ製造上不利となる上、材料コストも上昇する。したがってNb等量は32〜39at%に限定する。
[Nb equivalent is 32 to 39 at%]
When the Nb equivalent is less than 32 at%, the work hardening rate exceeds 20%. By setting the Nb equivalent to 32 at% or more, martensitic transformation can be completely suppressed, and the work hardening rate can be easily reduced to 20% or less. On the other hand, if the Nb equivalent exceeds 39 at%, the melting point becomes too high, which is disadvantageous in production, and the material cost also increases. Therefore, the Nb equivalent is limited to 32 to 39 at%.

〔O含有量は0.5〜1.5at%〕
Nb当量が規定範囲の32〜39at%であっても、Oが0.5at%未満であると、加工硬化率が20%を超える。Oが1.5at%を超えると、溶体化硬さが300Hvを超えてしまい、延性が低下する。したがってO含有量は0.5〜1.5at%に限定する。
[O content is 0.5-1.5at%]
Even if the Nb equivalent is in the specified range of 32-39 at%, if O is less than 0.5 at%, the work hardening rate exceeds 20%. When O exceeds 1.5 at%, solution hardness will exceed 300 Hv and ductility will fall. Accordingly, the O content is limited to 0.5 to 1.5 at%.

〔Zr含有量は4at%以下〕
Nb当量が32〜39at%、O含有量が0.5〜1.5at%であっても、Zr含有量が4at%を超えると、加工中に硬さが300Hvを超え、加工が困難になる。
[Zr content is less than 4at%]
Even if the Nb equivalent is 32 to 39 at% and the O content is 0.5 to 1.5 at%, if the Zr content exceeds 4 at%, the hardness exceeds 300 Hv during processing, and processing becomes difficult. .

また、硬さおよび加工硬化率を限定した理由は下記のとおりである。   Moreover, the reason which limited hardness and work hardening rate is as follows.

〔硬さ:溶体化状態で200Hv以上、95%加工状態で300Hv以下〕
溶体化状態の硬さが200Hv未満であると、強度が低すぎて圧延等の諸加工にむしろ支承をきたす。一方、95%加工状態での硬さが300Hvを超えると、延性が不足する。したがって、硬さは、溶体化状態で200Hv以上、95%加工状態で300Hv以下とする。
[Hardness: 200Hv or more in solution state, 300Hv or less in 95% processing state]
When the hardness in the solution state is less than 200 Hv, the strength is too low, and rather supports various processes such as rolling. On the other hand, if the hardness in the 95% processed state exceeds 300 Hv, the ductility is insufficient. Therefore, the hardness is 200 Hv or more in the solution state and 300 Hv or less in the 95% processed state.

〔加工硬化率:20%以下〕
本発明において、加工硬化率は下記式(2)で定義する。
[Work hardening rate: 20% or less]
In the present invention, the work hardening rate is defined by the following formula (2).

加工硬化率(%)={95%冷間圧延材の硬さ(Hv)−溶体化処理材の硬さ(Hv)}/{溶体化処理材の硬さ(Hv)}×100
加工硬化率が20%を越えると、安定して高い加工性を確保できる。したがって、溶体化状態に対する95%加工状態での加工硬化率は20%以下とする。
Work hardening rate (%) = {95% hardness of cold rolled material (Hv) −hardness of solution treated material (Hv)} / {hardness of solution treated material (Hv)} × 100
When the work hardening rate exceeds 20%, high workability can be secured stably. Therefore, the work hardening rate in the 95% processed state with respect to the solution state is 20% or less.

表1に示す種々の化学組成のチタン合金を作製した。合金番号1〜8は本発明例、合金番号9〜18は比較例である。作製の手順および条件は下記のとおりであった。   Titanium alloys having various chemical compositions shown in Table 1 were prepared. Alloy numbers 1 to 8 are examples of the present invention, and alloy numbers 9 to 18 are comparative examples. The production procedure and conditions were as follows.

<インゴット作製>
合金原料としてスポンジTi(純度99.99%)、塊状Nb(純度99.9%)、塊状Ta(純度99.9%)、塊状Zr(純度99.9%)、TiO粉末を用い、非消耗タングステン電極型Arアーク溶解法により、ボタン状合金インゴットを作製した。均質な合金インゴットを得るために、一旦凝固したインゴットを裏返して再溶解する操作を繰返し、合計6回の溶解を行なった。
<Ingot production>
Sponge Ti (purity 99.99%), massive Nb (purity 99.9%), massive Ta (purity 99.9%), massive Zr (purity 99.9%), TiO 2 powder are used as alloy raw materials, A button-shaped alloy ingot was produced by a consumable tungsten electrode type Ar arc melting method. In order to obtain a homogeneous alloy ingot, the operation of turning the once solidified ingot upside down and re-dissolving was repeated for a total of six times of melting.

<均質化処理(溶体化処理を兼ねる)>
更に偏析を少なくするために、下記条件で均質化処理を行った。この処理は溶体化処理を兼ねている。
<Homogenization treatment (also serves as solution treatment)>
In order to further reduce segregation, homogenization was performed under the following conditions. This treatment also serves as a solution treatment.

インゴットを石英管に真空封入し、大気炉内で1273Kに7.2ks保持した後、室温まで空冷した。インゴットを石英管から取り出し、インゴット表面に生成した酸化膜をエッチングにより取り除いた。エッチング液としてHO:HNO:HF=5:4:1の体積比で混合した溶液を使用し、343Kのウォーターバス中でエッチングした。 The ingot was vacuum sealed in a quartz tube, held at 1273 K for 7.2 ks in an atmospheric furnace, and then air-cooled to room temperature. The ingot was taken out from the quartz tube, and the oxide film formed on the ingot surface was removed by etching. Etching was performed in a 343K water bath using a mixed solution of H 2 O: HNO 3 : HF = 5: 4: 1 as an etchant.

<冷間加工>
4段ロールを用いた冷間圧延により、インゴットに加工率95%の冷間加工を施し、厚さ約0.5mmの薄板にした。
<Cold processing>
The ingot was subjected to cold working with a working rate of 95% by cold rolling using a four-stage roll to form a thin plate having a thickness of about 0.5 mm.

冷間圧延前のインゴットおよび冷間圧延後の薄板のビッカース硬さを測定した。結果を表1に示す。   The Vickers hardness of the ingot before cold rolling and the thin plate after cold rolling was measured. The results are shown in Table 1.

Figure 2010189735
Figure 2010189735

本発明例の合金番号1〜8は、硬さ(溶体化処理材、95%冷間加工材)および加工硬化率が全て本発明の規定範囲を満たしている。   In Alloy Nos. 1 to 8 of the present invention example, the hardness (solution treated material, 95% cold worked material) and work hardening rate all satisfy the specified range of the present invention.

これに対して比較例の合金番号9〜18は、化学組成の少なくとも一部が本発明の規定範囲外にあるため、硬さおよび加工硬化率の少なくともいずれかが本発明の規定範囲を満たしていない。   On the other hand, since alloy numbers 9 to 18 of the comparative examples have at least a part of the chemical composition outside the specified range of the present invention, at least one of hardness and work hardening rate satisfies the specified range of the present invention. Absent.

すなわち、比較例の合金番号9〜10、13〜15は、Nb当量が本発明の規定下限値32at%より少ないため、加工硬化率が本発明の規定上限値20%を超えている。   That is, in alloy numbers 9 to 10 and 13 to 15 of the comparative examples, the Nb equivalent is less than the specified lower limit value 32 at% of the present invention, so the work hardening rate exceeds the specified upper limit value 20% of the present invention.

比較例の合金番号11、12は、Nb等量は本発明の規定範囲内であるが、O含有量が本発明の規定下限値0.5at%より少ないため、加工硬化率が本発明の規定上限値20%を超えている。一方、比較例の合金番号16、17は、Nb等量は本発明の規定範囲内であるが、O含有量が本発明の規定上限値1.5at%を超えるため、溶体化処理材の硬さがHv300を超えている。   In Alloy Nos. 11 and 12 of Comparative Examples, the Nb equivalent is within the specified range of the present invention, but the O content is less than the specified lower limit of 0.5 at% of the present invention, so the work hardening rate is specified by the present invention. The upper limit is over 20%. On the other hand, in the alloy numbers 16 and 17 of the comparative examples, the Nb equivalent is within the specified range of the present invention, but the O content exceeds the specified upper limit of 1.5 at% of the present invention. Is over Hv300.

比較例の合金番号18は、Nb等量が本発明の規定範囲内であり、O含有量も本発明の規定範囲内であるが、Zr含有量が本発明の規定上限値4at%を超えるため、95%冷間加工材の硬さが300Hvを超えている。   In Alloy No. 18 of the comparative example, the Nb equivalent is within the specified range of the present invention, and the O content is also within the specified range of the present invention, but the Zr content exceeds the specified upper limit of 4 at% of the present invention. The hardness of the 95% cold-worked material exceeds 300 Hv.

本発明によれば、高い強度を維持しつつ安定して高い加工性が得られるように、加工硬化を抑制したチタン合金が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the titanium alloy which suppressed work hardening is provided so that high workability can be obtained stably, maintaining high intensity | strength.

Claims (1)

Nb、Zr、Ta、Oのうち少なくともNbおよびOを含有し、下記式(1):
Nb当量(at%)=Nb含有量(at%)+0.875×Zr含有量(at%)+0.75×Ta含有量(at%)+4×O含有量(at%)・・・(1)
で定義されるNb当量が32〜39at%であり、O含有量は0.5〜1.5at%、Zr含有量は4at%以下であり、残部がTiおよび不可避的不純物から成る化学組成を有し、
溶体化処理材の硬さが200Hv以上、95%冷間加工材の硬さが300Hv以下であって、下記式(2):
加工硬化率(%)={95%冷間加工材の硬さ(Hv)−溶体化処理材の硬さ(Hv)}/{溶体化処理材の硬さ(Hv)}×100・・・(2)
で定義される加工硬化率が20%以下であることを特徴とするチタン合金。
It contains at least Nb and O among Nb, Zr, Ta, and O, and the following formula (1):
Nb equivalent (at%) = Nb content (at%) + 0.875 × Zr content (at%) + 0.75 × Ta content (at%) + 4 × O content (at%) (1) )
The Nb equivalent defined by the formula is 32 to 39 at%, the O content is 0.5 to 1.5 at%, the Zr content is 4 at% or less, and the balance has a chemical composition consisting of Ti and inevitable impurities. And
The hardness of the solution treatment material is 200 Hv or more, the hardness of the 95% cold-worked material is 300 Hv or less, and the following formula (2):
Work hardening rate (%) = {95% hardness of cold worked material (Hv) −hardness of solution treated material (Hv)} / {hardness of solution treated material (Hv)} × 100. (2)
A titanium alloy characterized in that the work hardening rate defined by is 20% or less.
JP2009036987A 2009-02-19 2009-02-19 Titanium alloy Pending JP2010189735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036987A JP2010189735A (en) 2009-02-19 2009-02-19 Titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036987A JP2010189735A (en) 2009-02-19 2009-02-19 Titanium alloy

Publications (1)

Publication Number Publication Date
JP2010189735A true JP2010189735A (en) 2010-09-02

Family

ID=42816075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036987A Pending JP2010189735A (en) 2009-02-19 2009-02-19 Titanium alloy

Country Status (1)

Country Link
JP (1) JP2010189735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777089C2 (en) * 2017-11-22 2022-08-01 Пари Сьёнсес Е Летрес Three-component alloys ti-zr-o, their production methods and their corresponding applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147511A (en) * 1976-06-02 1977-12-08 Furukawa Electric Co Ltd:The Anticorrosive high strength neobium alloy and its production
JP2002285268A (en) * 2001-03-26 2002-10-03 Toyota Central Res & Dev Lab Inc Titanium alloy and production method therefor
JP2003342654A (en) * 2002-05-28 2003-12-03 Toshiba Corp Titanium alloy
JP2004162171A (en) * 2002-09-20 2004-06-10 Toyota Central Res & Dev Lab Inc Titanium alloy and its production method
JP2005298855A (en) * 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc Titanium alloy, titanium-alloy product and method for manufacturing them

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147511A (en) * 1976-06-02 1977-12-08 Furukawa Electric Co Ltd:The Anticorrosive high strength neobium alloy and its production
JP2002285268A (en) * 2001-03-26 2002-10-03 Toyota Central Res & Dev Lab Inc Titanium alloy and production method therefor
JP2003342654A (en) * 2002-05-28 2003-12-03 Toshiba Corp Titanium alloy
JP2004162171A (en) * 2002-09-20 2004-06-10 Toyota Central Res & Dev Lab Inc Titanium alloy and its production method
JP2005298855A (en) * 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc Titanium alloy, titanium-alloy product and method for manufacturing them

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777089C2 (en) * 2017-11-22 2022-08-01 Пари Сьёнсес Е Летрес Three-component alloys ti-zr-o, their production methods and their corresponding applications

Similar Documents

Publication Publication Date Title
JP4379804B2 (en) High nitrogen austenitic stainless steel
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
JP4939741B2 (en) near β type titanium alloy
JP2009138218A (en) Titanium alloy member and method for manufacturing titanium alloy member
JP2005082892A (en) AGE-HARDENABLE, CORROSION RESISTANT Ni-Cr-Mo ALLOY
KR20050005506A (en) β- TYPE TITANIUM ALLOY AND PROCESS FOR PRODUCING THE SAME
JP2008045161A (en) Aluminum alloy to be anodized and used for plasma treatment apparatus, manufacturing method therefor, aluminum alloy member having anodic oxide film thereon, and plasma treatment apparatus
JP2009503257A (en) Corrosion resistance, cold formability, machinability high strength martensitic stainless steel
JP2008127633A (en) Titanium alloy sheet having excellent bendability and bulging property, and its production method
JP2010209462A (en) Titanium plate
JP2010275606A (en) Titanium alloy
JP5491882B2 (en) High strength titanium plate with excellent cold rolling properties
CN111148854A (en) Austenitic stainless steel and method for producing same
JP2005060821A (en) beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
CN108277385A (en) A kind of titanium alloy plate and processing method
JP2010111928A (en) Titanium alloy, titanium alloy member and method for producing titanium alloy member
JP2010189735A (en) Titanium alloy
JP5035250B2 (en) Nickel materials for chemical plants
JP2006200008A (en) beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP4528109B2 (en) Low elastic β-titanium alloy having an elastic modulus of 65 GPa or less and method for producing the same
JP6927418B2 (en) Titanium alloy and its manufacturing method
EP3899074B1 (en) New use of a nickel-based alloy
JP5218897B2 (en) Titanium alloy
JP5382518B2 (en) Titanium material
JP4065146B2 (en) Titanium alloy having excellent corrosion resistance and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20120314

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120314

A977 Report on retrieval

Effective date: 20130722

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304