JP2010180458A - Method for forming oxide layer on aluminum surface and method for manufacturing semiconductor device - Google Patents

Method for forming oxide layer on aluminum surface and method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2010180458A
JP2010180458A JP2009025813A JP2009025813A JP2010180458A JP 2010180458 A JP2010180458 A JP 2010180458A JP 2009025813 A JP2009025813 A JP 2009025813A JP 2009025813 A JP2009025813 A JP 2009025813A JP 2010180458 A JP2010180458 A JP 2010180458A
Authority
JP
Japan
Prior art keywords
aluminum
film
nitric acid
oxide
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009025813A
Other languages
Japanese (ja)
Inventor
Hikari Kobayashi
光 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Kit KK
Original Assignee
Osaka University NUC
Kit KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC, Kit KK filed Critical Osaka University NUC
Priority to JP2009025813A priority Critical patent/JP2010180458A/en
Publication of JP2010180458A publication Critical patent/JP2010180458A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming an aluminum-oxide film on a surface of an aluminum film formed on a substrate, by immersing the surface of the aluminum film into nitric acid with the concentration of 70%. <P>SOLUTION: The oxide-film-forming method includes immersing the aluminum surface into nitric acid with the concentration of 70% under a condition of room temperature lower than 40°C for ten minutes or longer to form the aluminum oxide film with a thickness of 4 nm or more. The aluminum oxide film has various superior electric characteristics as a high insulative dielectric layer or a passivated layer, and can be used for a high-performance functional element of an electron device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、アルミニウム(Al)又はアルミニウム合金を、高濃度の硝酸に浸して、前記アルミニウム又はアルミニウム合金の表面に酸化アルミニウム(Al)の生成膜を形成すること、および半導体または極薄の酸化物(酸化シリコン)の被膜の形成された半導体の上に存するアルミニウム(Al)又はアルミニウム合金を、高濃度の硝酸に浸して、前記アルミニウム又はアルミニウム合金の表面に酸化アルミニウム(Al)の生成膜を形成することをそなえた半導体装置の製造方法に関する。 In the present invention, aluminum (Al) or an aluminum alloy is immersed in high-concentration nitric acid to form a production film of aluminum oxide (Al 2 O 3 ) on the surface of the aluminum or aluminum alloy, and a semiconductor or ultrathin film. Aluminum (Al) or an aluminum alloy existing on the semiconductor on which the oxide (silicon oxide) film is formed is immersed in high-concentration nitric acid, and aluminum oxide (Al 2 O 3) is formed on the surface of the aluminum or aluminum alloy. ) Of a semiconductor device having a formation film formed thereon.

アルミニウム(Al)又はアルミニウム合金は、通常、空気中に放置するだけで、表面に数ナノメートル(nm)の酸化物(自然酸化物とも呼ばれる)が形成されているが、多くの電子デバイス、とりわけ、半導体装置等の配線や電極部分にアルミニウム合金層を使用する半導体電子デバイスの場合、配線間間隔が微細化されるとともに配線間のリークが増大するという問題が発生しやすくなり、微細化の妨げとなっている。またアルミニウム電極上に良好な酸化アルミニウムが形成できれば、それを容量として用いることが可能となり、アナログ集積回路やガラス基板上の低温ポリシリコントランジスタ集積回路の微細化や高性能化が可能となる。一方、かかる半導体電子デバイスがプラスチックパッケージ中にカプセル封止されているときに生じる上記アルミニウム合金層の腐食を抑制することも、信頼性の重要な課題である。 Aluminum (Al) or an aluminum alloy usually has an oxide (also called a natural oxide) of several nanometers (nm) formed on the surface only by leaving it in the air. In the case of a semiconductor electronic device using an aluminum alloy layer for wiring and electrode parts of a semiconductor device or the like, the problem that the inter-wiring spacing is miniaturized and leakage between the wirings is liable to occur, preventing miniaturization. It has become. If good aluminum oxide can be formed on the aluminum electrode, it can be used as a capacitor, and the analog integrated circuit and the low-temperature polysilicon transistor integrated circuit on the glass substrate can be miniaturized and improved in performance. On the other hand, suppressing the corrosion of the aluminum alloy layer that occurs when the semiconductor electronic device is encapsulated in a plastic package is also an important reliability issue.

それに関して、一例として、アルミニウム−珪素(Al−Si)合金の金属層上に非常に薄い不働体化ホスフェート層またはリン酸化フィルム生成して、同金属層が湿った雰囲気中で応力を受けたときに、同合金層の腐食/ヒドロキシル化作用に抗するのに有効な抑制手段にすることが知られ(特許文献1)、その過程の第1段階(工程1)で同金属層を濃度100%の硝酸に浸漬することも示されているが、この段階での硝酸処理は、次の第2段階(工程2)で少量のリン酸(HPO)を含む混合物中に浸漬して金属層をホスフェートフィルムで被覆する前処理であり、アルミニウム−ケイ素(Al−Si)合金の金属層上に酸化アルミニウムのみの被膜を形成するものではない。 In that regard, as an example, when a very thin passivated phosphate layer or phosphorylated film is formed on a metal layer of an aluminum-silicon (Al-Si) alloy and the metal layer is stressed in a humid atmosphere In addition, it is known to be an effective suppression means for resisting the corrosion / hydroxylation action of the alloy layer (Patent Document 1), and the concentration of the metal layer is 100% in the first stage of the process (Process 1). In this stage, nitric acid treatment is performed by dipping in a mixture containing a small amount of phosphoric acid (H 3 PO 4 ) in the next second stage (step 2). This is a pretreatment for coating a layer with a phosphate film, and does not form an aluminum oxide-only coating on a metal layer of an aluminum-silicon (Al-Si) alloy.

また、近年、超高密度MOSデバイス等で、酸化アルミニウム(Al)膜を半導体界面の応力付加層として利用するという試みもあり、電子材料として酸化アルミニウム(Al)膜を半導体電子デバイスへ広く利用する場合の対応には、安定、かつその膜厚を十分に確保できる等、高いデバイス適応性のある,酸化アルミニウム膜およびその製造方法が望まれている。 In recent years, semiconductor ultra high density MOS devices and the like, are also attempts to use the aluminum oxide (Al 2 O 3) film as a stressing layer of semiconductor interface, the aluminum oxide (Al 2 O 3) film as electronic material In order to cope with a wide range of applications in electronic devices, an aluminum oxide film and a method for manufacturing the same that have high device adaptability, such as being stable and ensuring a sufficient film thickness, are desired.

特開2001−214285号公報JP 2001-214285 A

本発明の主な目的は、アルミニウムまたはアルミニウム合金層に対して、自然酸化物ではなく、かつそれより厚い酸化アルミニウムの被膜を化学的に生成すること、および前記アルミニウム又はアルミニウム合金の表面に酸化アルミニウムの生成膜を形成することをそなえた半導体装置の製造方法を提供することにある。 The main object of the present invention is to chemically generate a coating of aluminum oxide that is not a natural oxide and thicker than that of an aluminum or aluminum alloy layer, and aluminum oxide on the surface of the aluminum or aluminum alloy. It is an object of the present invention to provide a method for manufacturing a semiconductor device, which is provided with the formation of the above-described formed film.

本発明は、アルミニウム(Al)又はアルミニウム合金を、硝酸,好ましくは濃度40〜99wt%の硝酸に浸して、前記アルミニウム又はアルミニウム合金の表面に酸化アルミニウム(Al)の生成膜を形成することを特徴とする酸化アルミニウム被膜の形成方法である。 In the present invention, aluminum (Al) or an aluminum alloy is immersed in nitric acid, preferably nitric acid having a concentration of 40 to 99 wt%, to form a production film of aluminum oxide (Al 2 O 3 ) on the surface of the aluminum or aluminum alloy. This is a method for forming an aluminum oxide film.

本発明は、40℃未満,たとえば室温で、濃度40〜99wt%の範囲の所定の硝酸に浸して、前記アルミニウム又はアルミニウム合金の表面に厚さが通常の自然酸化膜の厚さを超える2ナノメートル(nm)以上の酸化アルミニウム(Al)の生成膜を形成することを特徴とする酸化アルミニウム被膜の形成方法である。 The present invention is to immerse in a predetermined nitric acid having a concentration of 40 to 99 wt% at a temperature of less than 40 ° C., for example, room temperature, so that the thickness of the surface of the aluminum or aluminum alloy exceeds 2 nm. A method of forming an aluminum oxide film, comprising forming a film of aluminum oxide (Al 2 O 3 ) having a thickness of at least meters (nm).

さらに、本発明は、半導体上、もしくは極薄の酸化物被膜を有する半導体上にアルミニウム(Al)又はアルミニウム合金を、40℃未満,たとえば室温で、硝酸,好ましくは濃度40〜99wt%の範囲の所定の硝酸に浸して、前記アルミニウム又はアルミニウム合金の表面に厚さが通常の自然酸化膜の厚さを超える2ナノメートル(nm)以上の酸化アルミニウム(Al)の生成膜を形成することをそなえた半導体装置の製造方法である。 Furthermore, the present invention provides a method of applying aluminum (Al) or an aluminum alloy on a semiconductor or on a semiconductor having an ultra-thin oxide film at a temperature below 40 ° C., for example, room temperature, nitric acid, preferably in the range of 40 to 99 wt%. A film of aluminum oxide (Al 2 O 3 ) having a thickness of 2 nanometers (nm) or more exceeding the thickness of a normal natural oxide film is formed on the surface of the aluminum or aluminum alloy by immersing in predetermined nitric acid. This is a method of manufacturing a semiconductor device.

本発明によると、アルミニウム(Al)表面、または基体上に形成したアルミニウム(Al)成膜を、硝酸,好ましくは濃度40〜99wt%の範囲の所定の硝酸に浸して、厚さが通常の自然酸化膜の厚さを超える2ナノメートル(nm)以上の酸化アルミニウム(Al)被膜を形成することができ、この酸化アルミニウム(Al)被膜は、他金属等の不純物を含まず、高絶縁性の誘電体層として、電気的諸特性に優れており、電子デバイスの高性能な機能要素に利用可能である。 According to the present invention, an aluminum (Al) film formed on an aluminum (Al) surface or a substrate is immersed in nitric acid, preferably a predetermined nitric acid having a concentration in the range of 40 to 99 wt%, so that the thickness is normal natural. An aluminum oxide (Al 2 O 3 ) film having a thickness of 2 nanometers (nm) or more exceeding the thickness of the oxide film can be formed. This aluminum oxide (Al 2 O 3 ) film contains impurities such as other metals. As a highly insulating dielectric layer, it has excellent electrical characteristics and can be used for high-performance functional elements of electronic devices.

本発明によると、半導体の上に存するアルミニウム(Al)又はアルミニウム合金を、40℃未満,たとえば室温で、硝酸,好ましくは濃度40〜99wt%の範囲の所定の硝酸に浸して、前記アルミニウム又はアルミニウム合金の表面に厚さが通常の自然酸化膜の厚さを超える2ナノメートル(nm)以上,望ましくは、10ナノメートル(nm)以上の酸化アルミニウム(Al)の生成膜を形成することが可能である。 According to the present invention, aluminum (Al) or an aluminum alloy existing on a semiconductor is immersed in nitric acid, preferably a predetermined nitric acid having a concentration in the range of 40 to 99 wt% at less than 40 ° C., for example, room temperature, to obtain the aluminum or aluminum. A formed film of aluminum oxide (Al 2 O 3 ) having a thickness of 2 nanometers (nm) or more, preferably 10 nanometers (nm) or more, exceeding the thickness of a normal natural oxide film is formed on the surface of the alloy. It is possible.

X線光電子分光(XPS)のスペクトル分布特性図である。(実施例1)It is a spectrum distribution characteristic view of X-ray photoelectron spectroscopy (XPS). (Example 1) 透過電子顕微鏡(TEM)による断面図である。(実施例1)It is sectional drawing by a transmission electron microscope (TEM). (Example 1) 酸化アルミニウム被膜に関する電圧−電流特性図である。(実施例1)It is a voltage-current characteristic view regarding an aluminum oxide film. (Example 1)

シリコンウェーハ上にアルミニウム合金(Al中に1%のSiを含む)で厚さ200nmの成膜1を設け、同成膜1を室温(25℃)で所定濃度の硝酸に浸漬して、その後、超純水で洗浄し、乾燥した。 A film 1 having a thickness of 200 nm is provided on a silicon wafer with an aluminum alloy (containing 1% Si in Al), and the film 1 is immersed in nitric acid at a predetermined concentration at room temperature (25 ° C.). Washed with ultrapure water and dried.

図1は、シリコン基板上に成膜したアルミニウム薄膜の試料を濃度70wt%の硝酸に室温で浸漬して得られた,Al/Al構造のXPSスペクトル特性図である。硝酸酸化処理を全く行わない試料面にも自然酸化のAl膜が形成されているが、浸漬時間経過とともに、表面部のAl/Al構造が順次、Alのピーク増大へと、表面の変化が観られ、Alの被膜の形成が進むことを示している。また、XPSスペクトル特性図から推定される酸化アルミニウムの膜厚は、3.3nm(0分)、5.4nm(5分)、5.8nm(10分),8.1nm(20分),8.7nm(30分)、11.7nm(40分),12.5nm(50分)および12.9nm(60分)であり、いずれの場合も、表面の鏡面性は保たれていた。 FIG. 1 is an XPS spectral characteristic diagram of an Al 2 O 3 / Al structure obtained by immersing a sample of an aluminum thin film formed on a silicon substrate in nitric acid having a concentration of 70 wt% at room temperature. A naturally oxidized Al 2 O 3 film is also formed on the sample surface where no nitric acid oxidation treatment is performed, but the Al 2 O 3 / Al structure on the surface portion sequentially shows the peak of Al 2 O 3 as the immersion time elapses. As it increases, a change in the surface is observed, indicating that the formation of the Al 2 O 3 coating proceeds. The film thickness of the aluminum oxide estimated from the XPS spectral characteristic diagram is 3.3 nm (0 minute), 5.4 nm (5 minutes), 5.8 nm (10 minutes), 8.1 nm (20 minutes), 8 It was 0.7 nm (30 minutes), 11.7 nm (40 minutes), 12.5 nm (50 minutes) and 12.9 nm (60 minutes), and in all cases, the specularity of the surface was maintained.

図2は、濃度70wt%の硝酸に室温で20分間浸漬して得られた酸化膜の透過電子顕微鏡(TEM)による観察断面図であり、アルミニウム(Al)成膜1上の酸化アルミニウム(Al)被膜2の厚み(図中の矢印先端間寸法で表示)は約20nmであった。なお、図示の試料構造は、酸化アルミニウム(Al)被膜2の表面には樹脂材3を設けてTEM観察用に試料形成したものである。このTEM観察によると、酸化アルミニウム(Al)被膜の均一性も良いことが分かる。 FIG. 2 is a cross-sectional view of an oxide film obtained by immersing in nitric acid having a concentration of 70 wt% at room temperature for 20 minutes by a transmission electron microscope (TEM), and shows aluminum oxide (Al 2 ) on the aluminum (Al) film 1. The thickness of the O 3 ) coating 2 (indicated by the dimension between the tips of the arrows in the figure) was about 20 nm. In the illustrated sample structure, a resin material 3 is provided on the surface of an aluminum oxide (Al 2 O 3 ) coating 2 and a sample is formed for TEM observation. According to this TEM observation, it can be seen that the uniformity of the aluminum oxide (Al 2 O 3 ) film is also good.

図3は、代表的な電気特性として例示の電圧−電流特性図であり、濃度70wt%の硝酸に室温で20分間浸漬して得られた酸化膜の生成直後の特性と、未処理サンプルとして、硝酸酸化処理を全く行わないリファレンス試料で表面には厚さ約3.5nmの自然酸化膜が形成されているものとを対比して示した。 FIG. 3 is an exemplary voltage-current characteristic diagram as typical electrical characteristics. The characteristics immediately after the formation of an oxide film obtained by immersing in nitric acid having a concentration of 70 wt% at room temperature for 20 minutes, and an untreated sample, This is shown in comparison with a reference sample which is not subjected to nitric acid oxidation treatment and has a natural oxide film having a thickness of about 3.5 nm on the surface.

濃度70wt%の硝酸に室温で20分間浸漬して得られた酸化膜について、電気容量(C)の測定結果から、この酸化膜の比誘電率は6.9と見積られた。この値は、従来から知られるバルクAl被膜の比誘電率(約10)と比べると少し小である。この生成酸化アルミニウム膜をTEMとSEMで観察したところ、ナノ構造の細孔が存在しているものが観察された。これが比誘電率のやや小さい理由と考えられる。 With respect to the oxide film obtained by immersing in nitric acid having a concentration of 70 wt% at room temperature for 20 minutes, the dielectric constant of the oxide film was estimated to be 6.9 from the measurement result of the electric capacity (C). This value is slightly smaller than the relative dielectric constant (about 10) of the conventionally known bulk Al 2 O 3 coating. When this generated aluminum oxide film was observed with TEM and SEM, it was observed that nanostructured pores were present. This is considered to be the reason why the relative permittivity is slightly small.

次に、実施例1と同形の試料面を濃度の異なる硝酸(硝酸濃度98wt%,61wt%,40wt%)に各々10〜20分間浸して得た酸化膜の表面について、TEMおよびXPSの結果から評価したところ、生成された酸化膜は平均的な膜厚、および表面の均一性並びに鏡面性に関して、いずれも実施例1の場合と同等で、概ね良好に保たれていた。ただ、濃度98wt%の硝酸の場合には、濃度70wt%の硝酸の場合に比べて、誘電率が少し大であった。TEMとSEMで観察したところ、細孔構造はほとんど観察されなかった。 Next, from the results of TEM and XPS, the surface of the oxide film obtained by immersing the sample surface of the same shape as in Example 1 in nitric acid having different concentrations (nitric acid concentration 98 wt%, 61 wt%, 40 wt%) for 10 to 20 minutes, respectively. As a result of evaluation, the generated oxide film was almost the same as in Example 1 with respect to the average film thickness, surface uniformity and specularity, and was generally kept good. However, in the case of nitric acid having a concentration of 98 wt%, the dielectric constant was slightly larger than in the case of nitric acid having a concentration of 70 wt%. When observed with TEM and SEM, the pore structure was hardly observed.

以上、シリコン基板上のアルミニウム膜を用いた実験について述べたが、半導体として炭化ケイ素(SiC)や化合物半導体またはガラス基板上のポリシリコン膜や非晶質シリコン膜上に形成されたアルミニウム膜にも適用可能である。シリコン等の半導体上に予め、硝酸酸化法を用いて、極薄の酸化物(酸化シリコン)の被膜を形成したものを用いても良い。この場合、酸化アルミニウム膜と酸化シリコン膜のスタック構造が可能となり、高性能なトランジスタ用ゲート酸化膜や不揮発性メモリに適用可能である。 As mentioned above, although the experiment using the aluminum film on the silicon substrate has been described, the silicon film (SiC) or compound semiconductor as a semiconductor or the aluminum film formed on the polysilicon film or the amorphous silicon film on the glass substrate is also described. Applicable. A semiconductor in which a very thin oxide (silicon oxide) film is previously formed on a semiconductor such as silicon by nitric acid oxidation may be used. In this case, a stack structure of an aluminum oxide film and a silicon oxide film is possible, and it can be applied to a high-performance gate oxide film for a transistor or a nonvolatile memory.

本発明は、合金を含むアルミニウム(Al)表面、または基体上に形成したアルミニウム(Al)成膜上に非常に薄い高絶縁性誘電体ないしは酸化アルミニウムの被膜を生成すること、およびかかる高絶縁性誘電体ないしは酸化アルミニウムの被膜を形成する表面処理により、合金を含むアルミニウム表面への酸化アルミニウムの被膜形成を利用する固体の電子デバイスおよびその製造方法に適用できるほか、高絶縁性誘電体ないしは酸化アルミニウムの被膜を電気エネルギー源、たとえば水素等の素材を蓄積する媒体とすることや高容量の電気容量素子に利用可能である。また、ナノ細孔の生じる酸化アルミニウムはメモリ容量や不揮発性メモリの容量絶縁膜に用いることも可能である。 The present invention produces a very thin highly insulating dielectric or aluminum oxide film on an aluminum (Al) surface containing an alloy or on an aluminum (Al) film formed on a substrate, and such high insulation. It can be applied to solid electronic devices using aluminum oxide film formation on aluminum surfaces including alloys by surface treatment to form a dielectric or aluminum oxide film, and a manufacturing method thereof, as well as a highly insulating dielectric or aluminum oxide This film can be used as an electric energy source, for example, a medium for storing a material such as hydrogen, or a high capacity electric capacity element. In addition, aluminum oxide in which nanopores are formed can be used for a memory capacitor or a capacitor insulating film of a nonvolatile memory.

1 アルミニウム(Al)成膜
2 酸化アルミニウム(Al)被膜
3 樹脂材
1 Aluminum (Al) film formation 2 Aluminum oxide (Al 2 O 3 ) coating 3 Resin material

Claims (4)

アルミニウム又はアルミニウム合金を、硝酸に浸して、前記アルミニウム又はアルミニウム合金の表面に酸化アルミニウムの生成膜を形成することを特徴とする酸化アルミニウム被膜の形成方法。 A method of forming an aluminum oxide film, comprising immersing aluminum or an aluminum alloy in nitric acid to form an aluminum oxide production film on the surface of the aluminum or aluminum alloy. アルミニウム又はアルミニウム合金を、濃度40〜99%の硝酸に浸して、前記アルミニウム又はアルミニウム合金の表面に酸化アルミニウムの生成膜を形成することを特徴とする酸化アルミニウム被膜の形成方法。 A method for forming an aluminum oxide film, comprising immersing aluminum or an aluminum alloy in nitric acid having a concentration of 40 to 99% to form an aluminum oxide production film on the surface of the aluminum or aluminum alloy. アルミニウム又はアルミニウム合金を、濃度40〜99%の硝酸に温度40℃未満の条件下で浸漬して、前記アルミニウム又はアルミニウム合金の表面に厚さが2ナノメートル以上の酸化アルミニウムの生成膜を形成することを特徴とする酸化アルミニウム被膜の形成方法。 Aluminum or an aluminum alloy is immersed in nitric acid having a concentration of 40 to 99% under a temperature of less than 40 ° C. to form a production film of aluminum oxide having a thickness of 2 nanometers or more on the surface of the aluminum or aluminum alloy. A method for forming an aluminum oxide film. 半導体または酸化物の被膜の形成された半導体の上に存するアルミニウム又はアルミニウム合金を、濃度40〜99%の硝酸に浸して、前記アルミニウム又はアルミニウム合金の表面に酸化アルミニウムの生成膜を形成することを特徴とする半導体装置の製造方法。
Aluminum or an aluminum alloy existing on a semiconductor or a semiconductor on which an oxide film is formed is immersed in nitric acid having a concentration of 40 to 99% to form a production film of aluminum oxide on the surface of the aluminum or aluminum alloy. A method of manufacturing a semiconductor device.
JP2009025813A 2009-02-06 2009-02-06 Method for forming oxide layer on aluminum surface and method for manufacturing semiconductor device Pending JP2010180458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009025813A JP2010180458A (en) 2009-02-06 2009-02-06 Method for forming oxide layer on aluminum surface and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009025813A JP2010180458A (en) 2009-02-06 2009-02-06 Method for forming oxide layer on aluminum surface and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2010180458A true JP2010180458A (en) 2010-08-19

Family

ID=42762193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009025813A Pending JP2010180458A (en) 2009-02-06 2009-02-06 Method for forming oxide layer on aluminum surface and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2010180458A (en)

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150275375A1 (en) * 2014-03-31 2015-10-01 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems

Cited By (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US11264213B2 (en) 2012-09-21 2022-03-01 Applied Materials, Inc. Chemical control features in wafer process equipment
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en) 2013-02-08 2021-06-01 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US20150275375A1 (en) * 2014-03-31 2015-10-01 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9903020B2 (en) * 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
KR102380085B1 (en) * 2014-03-31 2022-03-30 어플라이드 머티어리얼스, 인코포레이티드 Generation of compact alumina passivation layers on aluminum plasma equipment components
CN106165069B (en) * 2014-03-31 2021-01-01 应用材料公司 Generation of compact aluminum oxide passivation layer on aluminum plasma equipment parts
KR20160138211A (en) * 2014-03-31 2016-12-02 어플라이드 머티어리얼스, 인코포레이티드 Generation of compact alumina passivation layers on aluminum plasma equipment components
CN106165069A (en) * 2014-03-31 2016-11-23 应用材料公司 Aluminum plasma equipment part generates close alumina passivation layer
TWI653682B (en) 2014-03-31 2019-03-11 美商應用材料股份有限公司 Generation of compact alumina passivation layers on aluminum plasma equipment components
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10796922B2 (en) 2014-10-14 2020-10-06 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10707061B2 (en) 2014-10-14 2020-07-07 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US11158527B2 (en) 2015-08-06 2021-10-26 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US11476093B2 (en) 2015-08-27 2022-10-18 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en) 2016-05-19 2023-08-22 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US11049698B2 (en) 2016-10-04 2021-06-29 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10541113B2 (en) 2016-10-04 2020-01-21 Applied Materials, Inc. Chamber with flow-through source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10903052B2 (en) 2017-02-03 2021-01-26 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10325923B2 (en) 2017-02-08 2019-06-18 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10529737B2 (en) 2017-02-08 2020-01-07 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US11101136B2 (en) 2017-08-07 2021-08-24 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699921B2 (en) 2018-02-15 2020-06-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US11004689B2 (en) 2018-03-12 2021-05-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Similar Documents

Publication Publication Date Title
JP2010180458A (en) Method for forming oxide layer on aluminum surface and method for manufacturing semiconductor device
TWI667340B (en) Cleaning liquid for semiconductor element capable of suppressing damage by cobalt and method for cleaning semiconductor element using the cleaning liquid
KR102405631B1 (en) Semiconductor element cleaning solution that suppresses damage to tantalum-containing materials, and cleaning method using same
Tu et al. Growing hydrophobicity on a smooth copper oxide thin film at room temperature and reversible wettability transition
Watanabe et al. La–silicate gate dielectrics fabricated by solid phase reaction between La metal and SiO 2 underlayers
JPS62293608A (en) Manufacture of solid electrolytic capacitor
WO2005008762A1 (en) Low-permittivity film, and production method therefor, and electronic component using it
Seo et al. Effects of two-step plasma treatment on Cu and SiO 2 surfaces for 3D bonding applications
Padmanabhan et al. High-performance metal–insulator–metal capacitors using europium oxide as dielectric
Lin et al. Ultrastrong spontaneous surface wetting of room temperature liquid metal on treated metal surface
JP5224570B2 (en) Insulating film forming method and semiconductor device manufacturing method
JP4326928B2 (en) Composition for removing photoresist residue and method for producing semiconductor circuit element using the composition
Gong et al. Interfacial structure and electrical properties of ultrathin HfO2 dielectric films on Si substrates by surface sol–gel method
JP5930416B2 (en) Wiring structure, semiconductor device provided with wiring structure, and method of manufacturing the semiconductor device
CN104134630B (en) A kind of method for reducing side wall damage of ultralow dielectric constant film
US20120261162A1 (en) Method for manufacturing electrode structure, electrode structure, and capacitor
US20080050930A1 (en) Method of forming insulating film and method of manufacturing semiconductor device
CN103534390A (en) Insulating-layer-covered aluminum conductor, and insulating layer and method for forming the insulating layer
Tu et al. Time-varying wetting behavior on copper wafer treated by wet-etching
JP7021872B2 (en) Composite thermoelectric material and its manufacturing method
Zuruzi et al. Tailored nanostructured titania integrated on titanium micropillars with outstanding wicking properties
JP4854286B2 (en) Copper wiring structure
CN106298556A (en) The manufacture method of a kind of chip pressure welding block and chip
JP7206269B2 (en) Cleaning chemical composition for removing amorphous passivation layers on the surface of crystalline materials
WO2013075209A1 (en) Oxidation of metallic films