JP2010175342A - Automatic analyzer and reaction vessel - Google Patents

Automatic analyzer and reaction vessel Download PDF

Info

Publication number
JP2010175342A
JP2010175342A JP2009017186A JP2009017186A JP2010175342A JP 2010175342 A JP2010175342 A JP 2010175342A JP 2009017186 A JP2009017186 A JP 2009017186A JP 2009017186 A JP2009017186 A JP 2009017186A JP 2010175342 A JP2010175342 A JP 2010175342A
Authority
JP
Japan
Prior art keywords
measurement
optical path
reaction vessel
automatic analyzer
path length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009017186A
Other languages
Japanese (ja)
Inventor
Akiko Watanabe
亜希子 渡辺
Masaki Shiba
正樹 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2009017186A priority Critical patent/JP2010175342A/en
Publication of JP2010175342A publication Critical patent/JP2010175342A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/251Colorimeters; Construction thereof
    • G01N21/253Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0378Shapes
    • G01N2021/0382Frustoconical, tapered cell
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00693Calibration
    • G01N2035/00702Curve-fitting; Parameter matching; Calibration constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0451Rotary sample carriers, i.e. carousels composed of interchangeable sectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic analyzer adapted to wide-ranging analytical work by using the same reaction vessel, and to provide the reaction vessel. <P>SOLUTION: The automatic analyzer which includes the reaction vessel 4 for putting an object to be measured therein, a light source 26 for irradiating the reaction vessel 4 with measurement light from the side, and a spectrophotometer 10 for detecting transmitted light from the reaction vessel 4 and measuring an absorbance change in the object to be measured is characterized in that the reaction vessel 4 is formed so that its optical path length d is continuously varied in accordance with a height S at which the measurement light is transmitted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、血清や尿等の生体試料の定性・定量分析を行う自動分析装置及び反応容器に関する。   The present invention relates to an automatic analyzer and a reaction container that perform qualitative and quantitative analysis of biological samples such as serum and urine.

自動分析装置では、反応容器に側面から測定光を照射して反応容器の透過光を検出することで反応容器内の検体の吸光度を測定するが、一般に反応容器はガラスやプラスチック等の透光材質で有底角筒状に形成されているため、光路長は反応容器毎に一つの値に定まっている。光路長が一定であると検体によっては測定限界を超える測定項目も増え、検体を一定濃度に希釈してから再検査せざるを得なかった。   In the automatic analyzer, the absorbance of the sample in the reaction vessel is measured by irradiating the reaction vessel with the measurement light from the side and detecting the transmitted light of the reaction vessel. Generally, the reaction vessel is made of a light-transmitting material such as glass or plastic. Therefore, the optical path length is set to one value for each reaction vessel. When the optical path length is constant, the number of measurement items exceeding the measurement limit increases depending on the specimen, and the specimen must be re-examined after diluting to a constant concentration.

それに対し、一回の測定で信頼性の高いデータを得る方法として、反応容器を階段状に形成して1つの反応容器に長さの異なる複数の光路を確保し、測定光を反応容器の各段部を透過させることで複数の異なる吸光度が得る技術が提唱されている(特許文献1等参照)。   On the other hand, as a method of obtaining highly reliable data in one measurement, a reaction vessel is formed in a step shape to secure a plurality of optical paths having different lengths in one reaction vessel, and measurement light is sent to each reaction vessel. A technique has been proposed in which a plurality of different absorbances are obtained by transmitting through a stepped portion (see Patent Document 1, etc.).

特開2004−101381号公報JP 2004-101381 A

しかしながら、特許文献1記載の技術では、反応容器の製作段階で各々の光路長が定まってしまうため、適正な光路長の段差部がない場合には適正な光路長の段差部を持つ別の反応容器を選択する必要があった。   However, in the technique described in Patent Document 1, each optical path length is determined at the production stage of the reaction container, and therefore, when there is no step portion having an appropriate optical path length, another reaction having a step portion having an appropriate optical path length. It was necessary to select a container.

本発明は上記の事情に鑑みなされたもので、同一反応容器でより幅広い分析作業に対応することができる自動分析装置及び反応容器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an automatic analyzer and a reaction vessel that can cope with a wider range of analysis work in the same reaction vessel.

上記目的を達成するために、第1の発明は、被測定物を入れる反応容器と、この反応容器に側方から測定光を照射する光源と、前記反応容器の透過光を検出し被測定物の吸光度変化を測定する光度計とを備えた自動分析装置であって、前記反応容器が、測定光の透過する高さによって光路長が連続的に変化するように形成されていることを特徴とする。   In order to achieve the above object, the first invention provides a reaction container for storing an object to be measured, a light source for irradiating the reaction container with measurement light from the side, and a light to be measured by detecting transmitted light from the reaction container. And a photometer for measuring a change in absorbance of the reaction vessel, wherein the reaction vessel is formed such that the optical path length changes continuously according to the height of transmission of the measurement light. To do.

第2の発明は、第1の発明において、前記反応容器の測定光の入射面及び透過面の少なくともいずれかが上方又は下方に向かって測定光の進行方向に傾斜していることを特徴とする。   According to a second invention, in the first invention, at least one of the incident surface and the transmission surface of the measurement light of the reaction vessel is inclined upward or downward in the traveling direction of the measurement light. .

第3の発明は、第2の発明において、前記反応容器の測定光と平行な面が台形状であることを特徴とする。   A third invention is characterized in that, in the second invention, a surface parallel to the measurement light of the reaction vessel is trapezoidal.

第4の発明は、第2の発明において、前記反応容器の測定光と平行な面が三角形状であることを特徴とする。   A fourth invention is characterized in that, in the second invention, a plane parallel to the measurement light of the reaction vessel is triangular.

第5の発明は、第1−第4のいずれかの発明において、測定項目毎に光路長が選択可能な画面を表示する表示装置を備えたことを特徴とする。   A fifth invention is characterized in that, in any one of the first to fourth inventions, a display device for displaying a screen capable of selecting an optical path length for each measurement item is provided.

第6の発明は、第1−第5のいずれかの発明において、濃度既知の標準液を被測定物として前記反応容器の複数の光路長でそれぞれ取得した測定結果を、濃度の異なる複数の標準液を被測定物としてそれぞれ同一光路長で取得した測定結果に換算し、この換算結果から多点検量線を作成する手段を備えたことを特徴とする。   According to a sixth invention, in any one of the first to fifth inventions, the measurement results obtained by using a standard solution with a known concentration as a measurement object with a plurality of optical path lengths of the reaction vessel are used as a plurality of standards having different concentrations. The liquid is converted into a measurement result obtained with the same optical path length as an object to be measured, and a means for creating a multi-inspection quantity curve from the conversion result is provided.

第7の発明は、第1−第6のいずれかの発明において、濃度既知の標準液を被測定物として前記反応容器の複数の光路長でそれぞれ取得した測定結果から複数の検量線を作成する手段を備えたことを特徴とする。   According to a seventh invention, in any one of the first to sixth inventions, a plurality of calibration curves are created from measurement results respectively obtained with a plurality of optical path lengths of the reaction vessel using a standard solution having a known concentration as a measurement object. Means are provided.

第8の発明は、第1−第7のいずれかの発明において、複数の濃度既知の標準液を被測定物として前記反応容器の複数の光路長でそれぞれ取得した測定結果から、低濃度領域の長い光路長で取得された測定結果、及び高濃度領域の短い光路長で取得された測定結果を削除し、残りの測定結果から検量線を作成することを特徴とする。   According to an eighth invention, in any one of the first to seventh inventions, from a measurement result obtained by using a plurality of standard solutions with known concentrations as a measurement object at a plurality of optical path lengths of the reaction vessel, The measurement result acquired with a long optical path length and the measurement result acquired with a short optical path length in a high concentration region are deleted, and a calibration curve is created from the remaining measurement results.

第9の発明は、被測定物の吸光度変化を測定する光度計を備えた自動分析装置に用いられ、受け入れた被測定物に測定光を透過させるための反応容器であって、測定光の透過する高さによって光路長が連続的に変化するように形成されていることを特徴とする。   A ninth aspect of the invention is a reaction vessel for transmitting measurement light to an object to be received, which is used in an automatic analyzer equipped with a photometer for measuring a change in absorbance of the object to be measured, and transmits the measurement light. The optical path length is formed so as to continuously change depending on the height of the light.

本発明によれば、同一反応容器でより幅広い分析作業に対応することができる。   According to the present invention, a wider range of analysis work can be handled in the same reaction vessel.

本発明の一実施の形態に係る反応容器の一構成例を測定光の光軸と直交する方向から見た鉛直断面図である。It is the vertical sectional view which looked at the example of 1 composition of the reaction container concerning one embodiment of the present invention from the direction orthogonal to the optical axis of measurement light. 本発明の一実施の形態に係る反応容器を複数有する反応容器ブロックの一構成例の外観構成を表した斜視図である。It is a perspective view showing the appearance composition of the example of 1 composition of the reaction container block which has two or more reaction containers concerning one embodiment of the present invention. 本発明の一実施の形態に係る自動分析装置の全体構成を表す概略図である。It is the schematic showing the whole structure of the automatic analyzer which concerns on one embodiment of this invention. 本発明の一実施の形態に係る自動分析装置で1種類の標準液から作成した多点検量線の一例である。It is an example of the multi-inspection quantity curve created from one type of standard solution with the automatic analyzer which concerns on one embodiment of this invention. 本発明の一実施の形態に係る自動分析装置で1種類の標準液から作成した複数の検量線の一例である。It is an example of the several calibration curve created from one type of standard solution with the automatic analyzer which concerns on one embodiment of this invention. 本発明の一実施の形態に係る自動分析装置による検量線作成のための関係図である。It is a related figure for the calibration curve preparation by the automatic analyzer which concerns on one embodiment of this invention.

以下に図面を用いて本発明の実施の形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図3は本実施の形態の自動分析装置の全体構成を表す概略図である。   FIG. 3 is a schematic diagram showing the overall configuration of the automatic analyzer according to the present embodiment.

図3に示した自動分析装置は、サンプルディスク機構1と、試薬ディスク機構5と、反応ディスク3とを備えている。   The automatic analyzer shown in FIG. 3 includes a sample disk mechanism 1, a reagent disk mechanism 5, and a reaction disk 3.

サンプルディスク機構1には多数の試料容器25が設置されている。このサンプルディスク機構1の傍らには血清サンプリング機構2が配置されており、試料容器25内の試料は、血清サンプリング機構2のサンプルノズル27によって吸引され、反応ディスク3に設置された所定の反応容器4に注入される。   A number of sample containers 25 are installed in the sample disk mechanism 1. A serum sampling mechanism 2 is arranged beside the sample disk mechanism 1, and a sample in the sample container 25 is sucked by the sample nozzle 27 of the serum sampling mechanism 2, and a predetermined reaction container installed in the reaction disk 3. 4 is injected.

試薬ディスク機構5には多数の試薬容器6が設置されている。この試薬ディスク機構5の傍らには試薬ピペッティング機構7が配置されており、試薬容器6内の試薬は、試薬ピペッティング機構7の試薬ノズル28によって吸引され、反応ディスク3に設置された所定の反応容器4に注入される。   A large number of reagent containers 6 are installed in the reagent disk mechanism 5. A reagent pipetting mechanism 7 is disposed beside the reagent disk mechanism 5, and the reagent in the reagent container 6 is sucked by the reagent nozzle 28 of the reagent pipetting mechanism 7 and is installed on the reaction disk 3. It is injected into the reaction vessel 4.

反応ディスク3は、恒温槽9によって全体が所定の温度に保持され、その外周部上には被測定物を入れる多数(例えば120個程度)の反応容器4(詳細は後述)が環状に設置されている。この反応ディスク3の内周側には対向位置に来た反応容器4に側方から測定光を照射する光源26が、外周側には反応容器4の透過光を検出し被測定物の吸光度変化を測定する分光光度計10が配置されており、反応容器4は光源26及び分光光度計10の間に位置している。反応容器4は測光容器を兼ねる。また反応ディスク3の傍らには、反応容器4に注入された試料と試薬の混合液(被測定物)を撹拌棒29によって撹拌する撹拌機構8や、被測定物の吸光度を測定済みの反応容器4や撹拌棒29を洗浄する洗浄機構11が配置されている。   The reaction disk 3 is entirely maintained at a predetermined temperature by a thermostatic chamber 9, and a large number (for example, about 120) of reaction vessels 4 (details will be described later) are placed in an annular shape on the outer periphery thereof. ing. A light source 26 for irradiating measurement light from the side to the reaction container 4 that has come to the opposite position is provided on the inner peripheral side of the reaction disk 3, and the light transmitted through the reaction container 4 is detected on the outer peripheral side to change the absorbance of the object to be measured. The reaction vessel 4 is located between the light source 26 and the spectrophotometer 10. The reaction container 4 also serves as a photometric container. Aside from the reaction disk 3, a stirring mechanism 8 that stirs a mixed solution (measurement object) of the sample and reagent injected into the reaction container 4 with a stirring rod 29, and a reaction container in which the absorbance of the measurement object has been measured. 4 and a cleaning mechanism 11 for cleaning the stirring rod 29 are arranged.

なお、19はマイクロコンピュータ、23はインターフェース、18は変換器(A/D変換器及びLog変換器)、17は試薬用ピペッタ、16は洗浄水ポンプ、15は血清用ピペッタである。また、20はプリンタ、21は表示装置(例えばCRT)、22は記憶装置としてのハードディスク、24は操作パネルである。   Reference numeral 19 is a microcomputer, 23 is an interface, 18 is a converter (A / D converter and Log converter), 17 is a reagent pipettor, 16 is a washing water pump, and 15 is a serum pipettor. Reference numeral 20 denotes a printer, 21 denotes a display device (for example, a CRT), 22 denotes a hard disk as a storage device, and 24 denotes an operation panel.

上記構成の自動分析装置を操作する場合、操作者は、まず操作パネル24で分析依頼情報を入力する。操作者が入力した分析依頼情報はマイクロコンピュータ19内のメモリ(図示せず)に記憶される。マイクロコンピュータ19のメモリに記憶された分析依頼情報に従って、サンプルディスク機構1の所定の位置にセットされた試料容器25内の測定対象試料は、血清用ピペッタ15及び血清サンプリング機構2のサンプルノズル27によって反応容器4に所定量分注される。サンプルノズル27は洗浄機構11によって水洗浄される。また、当該反応容器4には、試薬用ピペッタ17及び試薬ピペッティング機構7の試薬ノズル28によって試薬ディスク5の所定の位置にセットされた試薬容器6内の試薬が所定量分注される。試薬ノズル28は水洗浄された後、次の反応容器4のための試薬を分注する。反応容器4内の試料と試薬の混合液(被測定物)は、撹拌機構8の撹拌棒29により撹拌される。撹拌棒29は水洗浄された後、次の反応容器4内の混合液を撹拌する。   When operating the automatic analyzer configured as described above, the operator first inputs analysis request information on the operation panel 24. The analysis request information input by the operator is stored in a memory (not shown) in the microcomputer 19. In accordance with the analysis request information stored in the memory of the microcomputer 19, the sample to be measured in the sample container 25 set at a predetermined position of the sample disk mechanism 1 is fed by the serum pipettor 15 and the sample nozzle 27 of the serum sampling mechanism 2. A predetermined amount is dispensed into the reaction vessel 4. The sample nozzle 27 is washed with water by the washing mechanism 11. In addition, a predetermined amount of reagent in the reagent container 6 set at a predetermined position of the reagent disk 5 is dispensed into the reaction container 4 by the reagent pipettor 17 and the reagent nozzle 28 of the reagent pipetting mechanism 7. After the reagent nozzle 28 is washed with water, it dispenses a reagent for the next reaction vessel 4. The mixed solution (measurement object) of the sample and the reagent in the reaction container 4 is stirred by the stirring rod 29 of the stirring mechanism 8. After the stirring rod 29 is washed with water, the next mixed solution in the reaction vessel 4 is stirred.

反応容器4は恒温槽9により一定温度に保持されている。反応容器4には、光源26から測定光が入射され、反応容器4及びその内部の被測定物を透過した透過光が分光光度計10によって測光される。反応の過程は一定時間毎に分光光度計10によって測光され、設定された2つの波長を用いて混合液の吸光度が測定される。分光光度計10で測定された吸光度は、変換器(A/D変換器及びLog変換器)18によってディジタル信号化されて濃度値に換算され、インターフェース23を介してマイクロコンピュータ19に取り込まれる。マイクロコンピュータ19に取り込まれた濃度値は、適宜ハードディスク22に保存されたり、プリンタ20やCRT21に出力されたりする。測定が終了した反応容器4は洗浄機構11により水洗浄される。洗浄の終了した反応容器4は次の分析に順次使用される。   The reaction vessel 4 is maintained at a constant temperature by a thermostatic chamber 9. Measurement light is incident on the reaction vessel 4 from the light source 26, and transmitted light that has passed through the reaction vessel 4 and the object to be measured therein is measured by the spectrophotometer 10. The reaction process is measured by the spectrophotometer 10 at regular time intervals, and the absorbance of the mixed solution is measured using two set wavelengths. The absorbance measured by the spectrophotometer 10 is converted into a digital value by a converter (A / D converter and Log converter) 18, converted into a concentration value, and taken into the microcomputer 19 via the interface 23. The density value captured by the microcomputer 19 is appropriately stored in the hard disk 22 or output to the printer 20 or CRT 21. After completion of the measurement, the reaction vessel 4 is washed with water by the washing mechanism 11. The washed reaction vessel 4 is sequentially used for the next analysis.

次に本実施の形態における反応容器4の構成について説明する。   Next, the structure of the reaction container 4 in this Embodiment is demonstrated.

図2は複数の反応容器4を有する反応容器ブロックの一構成例の外観構成を表した斜視図、図1は測定光の光軸と直交する方向から見た反応容器4の一構成例の鉛直断面図である。   FIG. 2 is a perspective view showing an external configuration of a configuration example of a reaction vessel block having a plurality of reaction vessels 4. FIG. 1 is a vertical view of a configuration example of the reaction vessel 4 viewed from a direction orthogonal to the optical axis of measurement light. It is sectional drawing.

図2に示したように、反応容器4は、円弧状のプレート32の外周部に複数並べて設けられており、このプレート32を反応ディスク3に取り付けることで反応ディスク32の外周部に反応容器4の環状の列が形成される。プレート32は固定ピン穴35にピン(図示せず)を入れることで反応ディスク3に対して位置決めされ、固定ネジ穴34にネジ(図示せず)をねじ込むことで反応ディスク3に固定される。また、プレート32には、反応ディスク3に対して取り付け、取り外しをする場合に掴む取っ手33が設けられている。   As shown in FIG. 2, a plurality of reaction vessels 4 are provided side by side on the outer periphery of the arc-shaped plate 32, and the reaction vessel 4 is attached to the outer periphery of the reaction disc 32 by attaching the plate 32 to the reaction disc 3. An annular row of is formed. The plate 32 is positioned with respect to the reaction disk 3 by inserting a pin (not shown) into the fixed pin hole 35, and fixed to the reaction disk 3 by screwing a screw (not shown) into the fixed screw hole 34. The plate 32 is provided with a handle 33 that is gripped when the plate 32 is attached to or detached from the reaction disk 3.

図1に示したように、反応容器4は、成型用の段階で、測光時に光軸に平行となる2面が上底よりも下底の方が短い台形状の形状をしている。反応容器4の測定光の光軸に交わる面、すなわち入射光面(測定光が入射する面)4aと透過光面(透過光が出射する面)4bは測定光の光軸に対して傾斜している。本実施の形態の場合、入射光面4aは下方に向かって、透過光面4bは上方に向かってそれぞれ測定光の進行方向に傾斜しているが、両面4a,4bの傾斜方向が同じであっても、測定光の光軸と平行な2面が上方又は下方に窄まる形状であれば良い。また、入射光面4a、透過光面4bのいずれかが測定光の光軸と直交する構成(鉛直面)であっても良い。また反応容器4は、測定光の光軸に平行な2面が下方に窄まる三角形状に形成された形状をしていても良い。この場合も、入射光面4a、透過光面4bのいずれかが測定光の光軸と直交する構成(鉛直面)であっても良い。   As shown in FIG. 1, the reaction vessel 4 has a trapezoidal shape in which two surfaces parallel to the optical axis at the time of photometry are shorter at the lower base than at the upper base at the stage of molding. The surface of the reaction vessel 4 that intersects the optical axis of the measurement light, that is, the incident light surface (the surface on which the measurement light is incident) 4a and the transmitted light surface (the surface on which the transmitted light is emitted) 4b are inclined with respect to the optical axis of the measurement light. ing. In the case of the present embodiment, the incident light surface 4a is inclined downward and the transmitted light surface 4b is inclined upward in the traveling direction of the measurement light, but the inclination directions of both surfaces 4a and 4b are the same. However, it is sufficient if the two surfaces parallel to the optical axis of the measurement light are constricted upward or downward. Further, either the incident light surface 4a or the transmitted light surface 4b may have a configuration (vertical surface) orthogonal to the optical axis of the measurement light. The reaction container 4 may have a shape formed in a triangular shape in which two surfaces parallel to the optical axis of the measurement light are constricted downward. In this case, either the incident light surface 4a or the transmitted light surface 4b may have a configuration (vertical surface) orthogonal to the optical axis of the measurement light.

このように構成することにより、測定光の透過する反応容器4の底面4cからの高さSによって光路長dが連続的に変化する。反応容器4の底面4cから任意の高さの光路に測定光を透過させる(任意の高さの光路を透過した測定光を受光する)ことで、光路長dを最小値から最大値の間で任意に設定することができる。本例の場合、入射光面4a及び透過光面4bが平面であるため光路長dは高さSに正比例し、例えば底面4cから高さS1,S2,S3(S1<S2<S3)の部分を透過する測定光の光路長d1,d2,d3には、S1:S2:S3=d1:d2:d3の関係が成立する。但し、入射光面4a及び透過光面4bが平面で光路長dが高さSに正比例する構成に限らず、入射光面4a及び透過光面4bを曲面とし、高さSの増減に応じて光路長dが増減する構成とすることもできる。   With this configuration, the optical path length d continuously changes depending on the height S from the bottom surface 4c of the reaction vessel 4 through which the measurement light passes. By transmitting the measurement light from the bottom surface 4c of the reaction vessel 4 to the optical path of any height (receiving the measurement light transmitted through the optical path of any height), the optical path length d is set between the minimum value and the maximum value. It can be set arbitrarily. In this example, since the incident light surface 4a and the transmitted light surface 4b are flat, the optical path length d is directly proportional to the height S. For example, the heights S1, S2, and S3 (S1 <S2 <S3) from the bottom surface 4c. The relationship of S1: S2: S3 = d1: d2: d3 is established in the optical path lengths d1, d2, and d3 of the measurement light that passes through. However, the incident light surface 4a and the transmitted light surface 4b are not limited to the configuration in which the light path length d is directly proportional to the height S, but the incident light surface 4a and the transmitted light surface 4b are curved surfaces, and the height S is increased or decreased. The optical path length d can be increased or decreased.

なお、異なる光路長の測定結果を取得する場合、例えば光源26及び分光光度計10、或いは反応ディスク3が昇降する構成とすることもできるし、光源26及び分光光度計10の受光部の対を上下に多数並設しておき、設定の光路長に対応する対の受光部の検出結果を採用する構成とすることもできる。   In addition, when acquiring the measurement results of different optical path lengths, for example, the light source 26 and the spectrophotometer 10 or the reaction disk 3 can be configured to move up and down, or a pair of light receiving units of the light source 26 and the spectrophotometer 10 can be used. It is also possible to adopt a configuration in which a large number are arranged in parallel vertically and the detection results of the pair of light receiving units corresponding to the set optical path length are adopted.

次に反応容器4を用いた検量線作成方法について説明する。   Next, a calibration curve creation method using the reaction vessel 4 will be described.

本実施の形態の反応容器4を用いれば、最大値から最小値の間の値であれば、反応容器4を交換しなくても光路長dを任意に設定することができるので、同一反応容器でより幅広い分析作業に対応することができる。また、同一の被測定物で異なる任意の複数の光路長の吸光度測定結果を得ることで測定領域の拡大、高濃度検体の希釈や再検査の大幅な減少、低濃度検体の高精度測定の実現を図ることができ、また被測定物中の異物を検知して測定値に対する信頼性を向上させることができる。さらには、以下に説明するように、(1)1種類の標準液による2点以上の多点検量線、(2)1種類の標準液による複数の検量線、が作成可能である。   If the reaction vessel 4 of the present embodiment is used, the optical path length d can be arbitrarily set without replacing the reaction vessel 4 as long as the value is between the maximum value and the minimum value. Can handle a wider range of analytical work. In addition, by obtaining absorbance measurement results for multiple different optical path lengths on the same object, it is possible to expand the measurement area, greatly reduce the dilution and retesting of high-concentration samples, and realize high-accuracy measurement of low-concentration samples In addition, it is possible to improve the reliability of the measured value by detecting foreign matter in the object to be measured. Furthermore, as will be described below, (1) two or more multi-inspection calibration curves with one type of standard solution and (2) a plurality of calibration curves with one type of standard solution can be created.

(1)多点検量線の作成
本実施の形態の反応容器4を用い、1種類の標準液で多点検量線を作成する方法を説明する。ここでは、リニア2点の直線検量線を例示する。
(1) Creation of multi-inspection quantity curve A method for creating a multi-inspection quantity curve with one type of standard solution using the reaction vessel 4 of the present embodiment will be described. Here, two linear calibration curves are illustrated.

まず、オペレーターは濃度0以外の濃度既知の標準液を1本準備する。そして操作パネル24を操作し、表示装置21に表示されるキャリブレーション設定画面(図示せず)で反応容器4の底面4cからの距離S1,S2を2点設定し、これにより異なる距離の光路長d1,d2を決定し、さらにキャリブレーションの実行を操作パネル24で指示する。上記距離S1,S2は測定項目毎に設定可能である。   First, the operator prepares one standard solution with a known concentration other than 0. Then, the operation panel 24 is operated, and two distances S1 and S2 from the bottom surface 4c of the reaction vessel 4 are set on a calibration setting screen (not shown) displayed on the display device 21, and thereby the optical path lengths of different distances are set. d1 and d2 are determined, and the execution of calibration is instructed on the operation panel 24. The distances S1 and S2 can be set for each measurement item.

キャリブレーションの実行の指示を受けたら、マイクロコンピュータ19は、反応容器4の底面4cから距離S1,S2の光路長d1,d2を透過した測定光を測定し、吸光度A1,A2を測定する。このとき、ランベルト・ベールの法則で知られるように「E=ecl」(E:吸光度,e:モル吸光係数,c:モル濃度,I:光路長)の関係が成立し、分光光度計10の吸光度は反応容器4内の光吸収物質の濃度、反応容器4の光路長dに比例する。この原理を基礎としてマイクロコンピュータ19の記憶部には予め所定のプログラムが格納されており、マイクロコンピュータ19は、濃度既知の標準液を被測定物として反応容器4の複数の光路長(この場合d1,d2)でそれぞれ取得した測定結果を、濃度の異なる複数の標準液を被測定物としてそれぞれ同一光路長(例えばd1)で取得した測定結果に換算し、この換算結果から多点検量線を作成することができる。例えばd1:d2=1:2、すなわちd2=2×d1である場合、光路長d2で得られた吸光度A2は、2倍の濃度の標準液を測定した場合の光路長d1の吸光度に置き換えることができる。すなわち、濃度Cxの1種類の標準液の光路長d1,d2の測定結果から、既知の異なる濃度Cx,2Cxの標準液の同一光路長d1の結果を想定し、図4に示した2点検量線を得ることができる。光路長dの設定数を増やすことで、3点以上の直線又は曲線検量線を作成することもできる。   When receiving an instruction to execute calibration, the microcomputer 19 measures the measurement light transmitted through the optical path lengths d1 and d2 at the distances S1 and S2 from the bottom surface 4c of the reaction container 4, and measures the absorbances A1 and A2. At this time, as known from the Lambert-Beer law, the relationship of “E = ecl” (E: absorbance, e: molar extinction coefficient, c: molar concentration, I: optical path length) is established, and the spectrophotometer 10 The absorbance is proportional to the concentration of the light absorbing substance in the reaction vessel 4 and the optical path length d of the reaction vessel 4. On the basis of this principle, a predetermined program is stored in advance in the storage unit of the microcomputer 19, and the microcomputer 19 uses a standard solution with a known concentration as the object to be measured, and a plurality of optical path lengths (in this case d 1). , D2) are converted into measurement results obtained with the same optical path length (for example, d1), using a plurality of standard solutions with different concentrations, and a multi-inspection quantity curve is created from the conversion results. can do. For example, when d1: d2 = 1: 2, that is, d2 = 2 × d1, the absorbance A2 obtained with the optical path length d2 is replaced with the absorbance of the optical path length d1 when a standard solution having a double concentration is measured. Can do. That is, from the measurement results of the optical path lengths d1 and d2 of one type of standard solution having a concentration Cx, the result of the same optical path length d1 of the standard solutions having different known concentrations Cx and 2Cx is assumed, and the two inspection quantities shown in FIG. You can get a line. By increasing the set number of optical path lengths d, it is possible to create three or more straight lines or curve calibration curves.

1種類の標準液で多点検量線を得る場合、通常は濃度の異なる複数の標準液の測定が必要な検量線を1種類の標準液で作成でき、高価な標準液や試薬の使用頻度が減少しランニングコストの低減にもつながる。また、光路長が連続的に変更できるため、プロットする各点の間隔や数を用途に応じて調整することで検量線の信頼性を向上させることができる。また、得られる吸光度は光路長に比例し、光路長は反応容器4の形状に対応するので、検量線の作成の容易化の効果も期待できる。   When obtaining a multi-inspection standard curve with one type of standard solution, a standard curve that normally requires measurement of multiple standard solutions with different concentrations can be created with one type of standard solution, and the frequency of use of expensive standard solutions and reagents is reduced. This also reduces running costs. Moreover, since the optical path length can be changed continuously, the reliability of the calibration curve can be improved by adjusting the interval and the number of points to be plotted according to the application. Moreover, since the obtained absorbance is proportional to the optical path length, and the optical path length corresponds to the shape of the reaction vessel 4, an effect of facilitating the creation of a calibration curve can be expected.

(2)複数の検量線の作成
続いて、本実施の形態の反応容器4を用いて1種類の標準液で同時に複数の検量線を作成する方法を説明する。ここでは、リニア1点の直線検量線を2本作成する場合を例示する。
(2) Creation of a plurality of calibration curves Next, a method of simultaneously creating a plurality of calibration curves with one type of standard solution using the reaction vessel 4 of the present embodiment will be described. Here, a case where two linear calibration curves of one linear point are created is illustrated.

まず、オペレーターは濃度0以外の濃度既知の標準液を1本準備する。そして操作パネル24を操作し、表示装置21に表示されるキャリブレーション設定画面(図示せず)で反応容器4の底面4cからの距離S1,S2を2点設定し、これにより異なる距離の光路長d1,d2を決定し、さらにキャリブレーションの実行を操作パネル24で指示する。上記距離S1,S2は測定項目毎に設定可能である。   First, the operator prepares one standard solution with a known concentration other than 0. Then, the operation panel 24 is operated, and two distances S1 and S2 from the bottom surface 4c of the reaction vessel 4 are set on a calibration setting screen (not shown) displayed on the display device 21, and thereby the optical path lengths of different distances are set. d1 and d2 are determined, and the execution of calibration is instructed on the operation panel 24. The distances S1 and S2 can be set for each measurement item.

キャリブレーションの実行の指示を受けたら、マイクロコンピュータ19は、反応容器4の底面4cから距離S1,S2の光路長d1,d2を透過した測定光を測定し、吸光度A1,A2を測定する。マイクロコンピュータ19の記憶部には予め所定のプログラムが格納されており、マイクロコンピュータ19は、濃度既知の標準液を被測定物として反応容器4の複数の光路長(この場合d1,d2)でそれぞれ取得した測定結果から複数の検量線(検量線1,2)を作成することができる。光路長dの設定数を増やすことで、3本以上の検量線を作成することができる。   When receiving an instruction to execute calibration, the microcomputer 19 measures the measurement light transmitted through the optical path lengths d1 and d2 at the distances S1 and S2 from the bottom surface 4c of the reaction container 4, and measures the absorbances A1 and A2. A predetermined program is stored in the storage unit of the microcomputer 19 in advance, and the microcomputer 19 uses a standard solution with a known concentration as an object to be measured for a plurality of optical path lengths (in this case, d1 and d2) of the reaction vessel 4, respectively. A plurality of calibration curves (calibration curves 1, 2) can be created from the acquired measurement results. By increasing the set number of optical path lengths d, three or more calibration curves can be created.

1種類の標準液で複数の検量線が作成できるので、反応容器4内の気泡や異物の混入によってある光路長で測定結果が大きく逸脱した場合、他の光路長で測定した結果を報告することで再検査を不要とすることができる。   Since multiple calibration curves can be created with one type of standard solution, if the measurement results deviate significantly at a certain optical path length due to the presence of bubbles or foreign substances in the reaction vessel 4, report the measurement results at other optical path lengths. This makes it possible to eliminate the need for re-inspection.

ここで、上記のようにして得られた検量線は、測定感度の関係上、以下の可能性が推定される。光路長d1,d2,d3(d1<d2<d3)を設定した場合、d2を標準光路長、d1は標準光路長d2に対して短い光路長、d3は標準光路長d2にたいした長い光路長としたとき(d1<d2<d3)、光路長d1で得られる直線検量線は、標準液の低濃度域でリニアとなり、高濃度域ではリニアから乖離し易い。一方、光路長d3で得られる直線検量線は、標準液の高濃度域でリニアとなり、低濃度域ではリニアから乖離し易い。   Here, with respect to the calibration curve obtained as described above, the following possibilities are estimated due to the measurement sensitivity. When the optical path lengths d1, d2, and d3 (d1 <d2 <d3) are set, d2 is a standard optical path length, d1 is a short optical path length with respect to the standard optical path length d2, and d3 is a long optical path length with respect to the standard optical path length d2. (D1 <d2 <d3), the linear calibration curve obtained with the optical path length d1 is linear in the low concentration region of the standard solution and easily deviates from linear in the high concentration region. On the other hand, the linear calibration curve obtained with the optical path length d3 is linear in the high concentration region of the standard solution and easily deviates from linear in the low concentration region.

そこで、マイクロコンピュータ19は、図6に示すように複数の濃度既知の標準液を被測定物として反応容器4の複数の光路長dでそれぞれ取得した測定結果から、低濃度領域(低濃度の標準液)の長い光路長で取得された測定結果36、及び高濃度領域(高濃度の標準液)の短い光路長で取得された測定結果37を削除し、残りの測定結果から検量線38を作成する。これにより、適正範囲内で測定された結果のみを使用して検量線を作成することができ、信頼性をより向上させることができる。   Therefore, the microcomputer 19 obtains a low concentration region (a low concentration standard) from the measurement results obtained by using a plurality of standard solutions with known concentrations as a measurement object at a plurality of optical path lengths d as shown in FIG. The measurement result 36 obtained with the long optical path length of liquid) and the measurement result 37 obtained with the short optical path length of the high concentration region (high concentration standard solution) are deleted, and a calibration curve 38 is created from the remaining measurement results To do. As a result, a calibration curve can be created using only the results measured within the appropriate range, and the reliability can be further improved.

患者検体を測定する場合、吸光度が分光光度計10の測定範囲内であれば問題はない。しかし、吸光度が分光光度計10の測定範囲を超える高濃度検体を測定する場合、反応容器4の底面4cからの距離が最短の光路長で測定することで希釈せずに測定が可能となる。   When measuring a patient sample, there is no problem as long as the absorbance is within the measurement range of the spectrophotometer 10. However, when measuring a high-concentration sample whose absorbance exceeds the measurement range of the spectrophotometer 10, measurement can be performed without dilution by measuring the distance from the bottom surface 4c of the reaction vessel 4 with the shortest optical path length.

1 サンプルディスク
2 血清サンプリング機構
3 反応ディスク
4 反応容器
5 試薬ディスク
6 試薬容器
7 試薬ピペッティング機構
8 攪拌機構
9 恒温槽
10 分光光度計
11 洗浄機構
12 吸引ノズル
13 洗浄剤
14 洗剤注入ノズル
15 血清用ピペッタ
16 洗浄水ポンプ
17 試薬用ピペッタ
18 変換器
19 マイクロコンピュータ
20 プリンタ
21 表示装置
22 ハードディスク
23 インターフェース
24 操作パネル
25 試料容器
26 光源
27 サンプルノズル
28 試薬ノズル
29 攪拌棒
33 取っ手
34 固定ネジ穴
35 固定ピン穴
36 高濃度領域の長い光路長で取得された測定結果
37 低濃度領域の短い光路長で取得された測定結果
38 検量線
DESCRIPTION OF SYMBOLS 1 Sample disk 2 Serum sampling mechanism 3 Reaction disk 4 Reaction container 5 Reagent disk 6 Reagent container 7 Reagent pipetting mechanism 8 Stirring mechanism 9 Thermostatic chamber 10 Spectrophotometer 11 Cleaning mechanism 12 Suction nozzle 13 Detergent 14 Detergent injection nozzle 15 For serum Pipetter 16 Washing water pump 17 Reagent pipetter 18 Converter 19 Microcomputer 20 Printer 21 Display device 22 Hard disk 23 Interface 24 Operation panel 25 Sample container 26 Light source 27 Sample nozzle 28 Reagent nozzle 29 Stirring rod 33 Handle 34 Fixing screw hole 35 Fixing pin Hole 36 Measurement result acquired with long optical path length in high concentration region 37 Measurement result acquired with short optical path length in low concentration region 38 Calibration curve

Claims (9)

被測定物を入れる反応容器と、この反応容器に側方から測定光を照射する光源と、前記反応容器の透過光を検出し被測定物の吸光度変化を測定する光度計とを備えた自動分析装置であって、
前記反応容器が、測定光の透過する高さによって光路長が連続的に変化するように形成されていることを特徴とする自動分析装置。
Automatic analysis provided with a reaction container for storing an object to be measured, a light source for irradiating measurement light to the reaction container from the side, and a photometer for detecting a transmitted light of the reaction container and measuring a change in absorbance of the object to be measured A device,
An automatic analyzer characterized in that the reaction container is formed such that the optical path length continuously changes depending on the height at which the measurement light is transmitted.
請求項1の自動分析装置において、前記反応容器の測定光の入射面及び透過面の少なくともいずれかが上方又は下方に向かって測定光の進行方向に傾斜していることを特徴とする自動分析装置。   2. The automatic analyzer according to claim 1, wherein at least one of the measurement light incident surface and the transmission surface of the reaction vessel is inclined upward or downward in the traveling direction of the measurement light. . 請求項2の自動分析装置において、前記反応容器の測定光と平行な面が台形状であることを特徴とする自動分析装置。   3. The automatic analyzer according to claim 2, wherein a surface parallel to the measurement light of the reaction vessel has a trapezoidal shape. 請求項2の自動分析装置において、前記反応容器の測定光と平行な面が三角形状であることを特徴とする自動分析装置。   3. The automatic analyzer according to claim 2, wherein a plane parallel to the measurement light of the reaction vessel is triangular. 請求項1−4のいずれかの自動分析装置において、測定項目毎に光路長が選択可能な画面を表示する表示装置を備えたことを特徴とする自動分析装置。   5. The automatic analyzer according to claim 1, further comprising a display device that displays a screen on which an optical path length can be selected for each measurement item. 請求項1−5のいずれかの自動分析装置において、濃度既知の標準液を被測定物として前記反応容器の複数の光路長でそれぞれ取得した測定結果を、濃度の異なる複数の標準液を被測定物としてそれぞれ同一光路長で取得した測定結果に換算し、この換算結果から多点検量線を作成する手段を備えたことを特徴とする自動分析装置。   The automatic analyzer according to any one of claims 1 to 5, wherein a plurality of standard solutions having different concentrations are measured based on measurement results obtained with a plurality of optical path lengths of the reaction vessel using a standard solution with a known concentration as a measurement object. An automatic analyzer comprising means for converting a measurement result obtained with the same optical path length as an object and creating a multi-inspection quantity curve from the conversion result. 請求項1−6のいずれかの自動分析装置において、濃度既知の標準液を被測定物として前記反応容器の複数の光路長でそれぞれ取得した測定結果から複数の検量線を作成する手段を備えたことを特徴とする自動分析装置。   The automatic analyzer according to any one of claims 1 to 6, further comprising means for creating a plurality of calibration curves from measurement results respectively obtained with a plurality of optical path lengths of the reaction vessel using a standard solution with a known concentration as a measurement object. An automatic analyzer characterized by that. 請求項1−7のいずれかの自動分析装置において、複数の濃度既知の標準液を被測定物として前記反応容器の複数の光路長でそれぞれ取得した測定結果から、低濃度領域の長い光路長で取得された測定結果、及び高濃度領域の短い光路長で取得された測定結果を削除し、残りの測定結果から検量線を作成することを特徴とする自動分析装置。   The automatic analyzer according to any one of claims 1 to 7, wherein a plurality of standard solutions with known concentrations are used as measurement objects, and the measurement results obtained respectively with the plurality of optical path lengths of the reaction container are used to obtain a long optical path length in a low concentration region. An automatic analyzer characterized by deleting an acquired measurement result and a measurement result acquired with a short optical path length in a high concentration region, and creating a calibration curve from the remaining measurement results. 被測定物の吸光度変化を測定する光度計を備えた自動分析装置に用いられ、受け入れた被測定物に測定光を透過させるための反応容器であって、
測定光の透過する高さによって光路長が連続的に変化するように形成されていることを特徴とする反応容器。
A reaction vessel used for an automatic analyzer equipped with a photometer for measuring a change in absorbance of an object to be measured, and for allowing measurement light to pass through the received object to be measured,
A reaction vessel characterized in that the optical path length is continuously changed according to the height at which measurement light is transmitted.
JP2009017186A 2009-01-28 2009-01-28 Automatic analyzer and reaction vessel Pending JP2010175342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009017186A JP2010175342A (en) 2009-01-28 2009-01-28 Automatic analyzer and reaction vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009017186A JP2010175342A (en) 2009-01-28 2009-01-28 Automatic analyzer and reaction vessel

Publications (1)

Publication Number Publication Date
JP2010175342A true JP2010175342A (en) 2010-08-12

Family

ID=42706471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009017186A Pending JP2010175342A (en) 2009-01-28 2009-01-28 Automatic analyzer and reaction vessel

Country Status (1)

Country Link
JP (1) JP2010175342A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036296A1 (en) * 2010-09-17 2012-03-22 ユニバーサル・バイオ・リサーチ株式会社 Cartridge and automatic analysis device
WO2012099215A1 (en) * 2011-01-21 2012-07-26 株式会社日立ハイテクノロジーズ Automatic analysis device
WO2013046806A1 (en) * 2011-09-30 2013-04-04 株式会社日立ハイテクノロジーズ Cell series structure for analysis device
JP2013181781A (en) * 2012-02-29 2013-09-12 Toshiba Corp Automatic analyzer
CN103477197A (en) * 2011-01-21 2013-12-25 提拉诺斯公司 Systems and methods for sample use maximization
JP2014066592A (en) * 2012-09-26 2014-04-17 Hitachi High-Technologies Corp Automatic analyzer
US9128015B2 (en) 2011-09-25 2015-09-08 Theranos, Inc. Centrifuge configurations
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9285366B2 (en) 2007-10-02 2016-03-15 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9592508B2 (en) 2011-09-25 2017-03-14 Theranos, Inc. Systems and methods for fluid handling
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
US9645143B2 (en) 2011-09-25 2017-05-09 Theranos, Inc. Systems and methods for multi-analysis
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US11162936B2 (en) 2011-09-13 2021-11-02 Labrador Diagnostics Llc Systems and methods for multi-analysis
WO2022034702A1 (en) * 2020-08-13 2022-02-17 株式会社日立ハイテク Calibration curve generation method, autonomous analysis device, and calibration curve generation program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144237A (en) * 1986-12-06 1988-06-16 Nippon Kayaku Co Ltd Method and device for measuring absorbance
JPH09257705A (en) * 1996-03-18 1997-10-03 Ricoh Co Ltd Fluid sample concentration measuring device
JP2004101381A (en) * 2002-09-10 2004-04-02 Nittec Co Ltd Double path cell for automatic analyzer, and analysis method using the double path cell
JP2004117322A (en) * 2002-09-30 2004-04-15 Horiba Ltd Infrared gas analyzer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63144237A (en) * 1986-12-06 1988-06-16 Nippon Kayaku Co Ltd Method and device for measuring absorbance
JPH09257705A (en) * 1996-03-18 1997-10-03 Ricoh Co Ltd Fluid sample concentration measuring device
JP2004101381A (en) * 2002-09-10 2004-04-02 Nittec Co Ltd Double path cell for automatic analyzer, and analysis method using the double path cell
JP2004117322A (en) * 2002-09-30 2004-04-15 Horiba Ltd Infrared gas analyzer

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11061022B2 (en) 2007-10-02 2021-07-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US9285366B2 (en) 2007-10-02 2016-03-15 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US11366106B2 (en) 2007-10-02 2022-06-21 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US9588109B2 (en) 2007-10-02 2017-03-07 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US9581588B2 (en) 2007-10-02 2017-02-28 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US11137391B2 (en) 2007-10-02 2021-10-05 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11899010B2 (en) 2007-10-02 2024-02-13 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11092593B2 (en) 2007-10-02 2021-08-17 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US11143647B2 (en) 2007-10-02 2021-10-12 Labrador Diagnostics, LLC Modular point-of-care devices, systems, and uses thereof
US10900958B2 (en) 2007-10-02 2021-01-26 Labrador Diagnostics Llc Modular point-of-care devices, systems, and uses thereof
US9435793B2 (en) 2007-10-02 2016-09-06 Theranos, Inc. Modular point-of-care devices, systems, and uses thereof
US10670588B2 (en) 2007-10-02 2020-06-02 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
US10634667B2 (en) 2007-10-02 2020-04-28 Theranos Ip Company, Llc Modular point-of-care devices, systems, and uses thereof
JPWO2012036296A1 (en) * 2010-09-17 2014-02-03 ユニバーサル・バイオ・リサーチ株式会社 Cartridge and automatic analyzer
WO2012036296A1 (en) * 2010-09-17 2012-03-22 ユニバーサル・バイオ・リサーチ株式会社 Cartridge and automatic analysis device
US11199489B2 (en) 2011-01-20 2021-12-14 Labrador Diagnostics Llc Systems and methods for sample use maximization
US10876956B2 (en) 2011-01-21 2020-12-29 Labrador Diagnostics Llc Systems and methods for sample use maximization
CN103477197A (en) * 2011-01-21 2013-12-25 提拉诺斯公司 Systems and methods for sample use maximization
CN106323875A (en) * 2011-01-21 2017-01-11 提拉诺斯公司 Systems and methods for sample use maximization
US9464981B2 (en) 2011-01-21 2016-10-11 Theranos, Inc. Systems and methods for sample use maximization
WO2012099215A1 (en) * 2011-01-21 2012-07-26 株式会社日立ハイテクノロジーズ Automatic analysis device
US11644410B2 (en) 2011-01-21 2023-05-09 Labrador Diagnostics Llc Systems and methods for sample use maximization
CN106323876A (en) * 2011-01-21 2017-01-11 提拉诺斯公司 Systems and methods for sample use maximization
CN106323876B (en) * 2011-01-21 2020-02-14 西拉诺斯知识产权有限责任公司 System and method for maximizing sample usage
US10557786B2 (en) 2011-01-21 2020-02-11 Theranos Ip Company, Llc Systems and methods for sample use maximization
US9677993B2 (en) 2011-01-21 2017-06-13 Theranos, Inc. Systems and methods for sample use maximization
CN106323875B (en) * 2011-01-21 2019-07-09 西拉诺斯知识产权有限责任公司 Sample uses maximized system and method
US11162936B2 (en) 2011-09-13 2021-11-02 Labrador Diagnostics Llc Systems and methods for multi-analysis
US9128015B2 (en) 2011-09-25 2015-09-08 Theranos, Inc. Centrifuge configurations
US10018643B2 (en) 2011-09-25 2018-07-10 Theranos Ip Company, Llc Systems and methods for multi-analysis
US11009516B2 (en) 2011-09-25 2021-05-18 Labrador Diagnostics Llc Systems and methods for multi-analysis
US9719990B2 (en) 2011-09-25 2017-08-01 Theranos, Inc. Systems and methods for multi-analysis
US10371710B2 (en) 2011-09-25 2019-08-06 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US10518265B2 (en) 2011-09-25 2019-12-31 Theranos Ip Company, Llc Systems and methods for fluid handling
US10534009B2 (en) 2011-09-25 2020-01-14 Theranos Ip Company, Llc Systems and methods for multi-analysis
US10557863B2 (en) 2011-09-25 2020-02-11 Theranos Ip Company, Llc Systems and methods for multi-analysis
US9664702B2 (en) 2011-09-25 2017-05-30 Theranos, Inc. Fluid handling apparatus and configurations
US9645143B2 (en) 2011-09-25 2017-05-09 Theranos, Inc. Systems and methods for multi-analysis
US10627418B2 (en) 2011-09-25 2020-04-21 Theranos Ip Company, Llc Systems and methods for multi-analysis
US9268915B2 (en) 2011-09-25 2016-02-23 Theranos, Inc. Systems and methods for diagnosis or treatment
US9250229B2 (en) 2011-09-25 2016-02-02 Theranos, Inc. Systems and methods for multi-analysis
US9619627B2 (en) 2011-09-25 2017-04-11 Theranos, Inc. Systems and methods for collecting and transmitting assay results
US9592508B2 (en) 2011-09-25 2017-03-14 Theranos, Inc. Systems and methods for fluid handling
US10012664B2 (en) 2011-09-25 2018-07-03 Theranos Ip Company, Llc Systems and methods for fluid and component handling
US11054432B2 (en) 2011-09-25 2021-07-06 Labrador Diagnostics Llc Systems and methods for multi-purpose analysis
US11524299B2 (en) 2011-09-25 2022-12-13 Labrador Diagnostics Llc Systems and methods for fluid handling
US9952240B2 (en) 2011-09-25 2018-04-24 Theranos Ip Company, Llc Systems and methods for multi-analysis
US9632102B2 (en) 2011-09-25 2017-04-25 Theranos, Inc. Systems and methods for multi-purpose analysis
CN103703376A (en) * 2011-09-30 2014-04-02 株式会社日立高新技术 Cell series structure for analysis device
JP2013076622A (en) * 2011-09-30 2013-04-25 Hitachi High-Tech Manufacturing & Service Corp Cell series structure for analysis device
WO2013046806A1 (en) * 2011-09-30 2013-04-04 株式会社日立ハイテクノロジーズ Cell series structure for analysis device
EP2762890A4 (en) * 2011-09-30 2015-05-27 Hitachi High Tech Corp Cell series structure for analysis device
JP2013181781A (en) * 2012-02-29 2013-09-12 Toshiba Corp Automatic analyzer
JP2014066592A (en) * 2012-09-26 2014-04-17 Hitachi High-Technologies Corp Automatic analyzer
US9810704B2 (en) 2013-02-18 2017-11-07 Theranos, Inc. Systems and methods for multi-analysis
WO2022034702A1 (en) * 2020-08-13 2022-02-17 株式会社日立ハイテク Calibration curve generation method, autonomous analysis device, and calibration curve generation program
JP2022032616A (en) * 2020-08-13 2022-02-25 株式会社日立ハイテク Calibration curve generation method, automatic analyzer, and calibration curve generation program
JP7372886B2 (en) 2020-08-13 2023-11-01 株式会社日立ハイテク Calibration curve generation method, automatic analyzer, calibration curve generation program

Similar Documents

Publication Publication Date Title
JP2010175342A (en) Automatic analyzer and reaction vessel
US7618586B2 (en) Automatic blood chemistry analyzer
US9506942B2 (en) Automatic analyzer and method for detecting measurement value abnormalities
WO2009122993A1 (en) Blood coagulation analyzer, method of analyzing blood coagulation and computer program
US9400247B2 (en) Automatic analyzer
JP5216051B2 (en) Automatic analyzer and automatic analysis method
JP2006322841A (en) Spectrometry and spectrophotometer
JP5661124B2 (en) Automatic analyzer
WO2011162113A1 (en) Automatic analysis device
CN113281284A (en) Automatic analysis device and automatic analysis method
JP5222771B2 (en) Automatic analyzer
JP5865713B2 (en) Automatic analyzer
JP2007187445A (en) Autoanalyzer
JP5952180B2 (en) Automatic analyzer, program and recording medium, and sample automatic analysis method
JP2011153942A (en) Autoanalyzer
US20220003685A1 (en) Analyzer and analysis method
JP6896936B2 (en) Automatic analyzer
JP4117253B2 (en) Automatic analyzer
JPH05273118A (en) Analyzing method and analyzer for concentration or constituent of test sample liquid
JPH0743379B2 (en) Immune reaction automatic analyzer
JP6049671B2 (en) Automatic analyzer and its dispensing probe
WO2023037726A1 (en) Automated analyzing device, data processing device, and precision management method for automated analyzing device
JP7229363B2 (en) automatic analyzer
JP2009229140A (en) Autoanalyzer
CN117295955A (en) Automatic analyzer and sample analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218