JP2010170942A - Battery pack, method for manufacturing the same, battery pack, battery pack module, vehicle mounting the same, and battery mounting equipment - Google Patents

Battery pack, method for manufacturing the same, battery pack, battery pack module, vehicle mounting the same, and battery mounting equipment Download PDF

Info

Publication number
JP2010170942A
JP2010170942A JP2009014311A JP2009014311A JP2010170942A JP 2010170942 A JP2010170942 A JP 2010170942A JP 2009014311 A JP2009014311 A JP 2009014311A JP 2009014311 A JP2009014311 A JP 2009014311A JP 2010170942 A JP2010170942 A JP 2010170942A
Authority
JP
Japan
Prior art keywords
row
battery
cooling medium
secondary battery
assembled battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009014311A
Other languages
Japanese (ja)
Inventor
Aiko Nagano
愛子 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009014311A priority Critical patent/JP2010170942A/en
Publication of JP2010170942A publication Critical patent/JP2010170942A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery pack and a method for manufacturing the same capable of suppressing generation of dispersion caused by high rate deterioration of each unit cell in the battery pack, and to provide a battery pack, a battery pack module, a vehicle mounting the same, and battery mounting equipment. <P>SOLUTION: In the battery pack formed by assembling a plurality of secondary batteries, the amount of an electrolyte of a secondary battery arranged in a region raising temperature during use out of the plurality of secondary batteries is increased than that of an electrolyte of a secondary battery arranged in a region lowering temperature during use out of the plurality of secondary batteries. In the battery pack module having a battery pack formed by assembling a plurality of secondary batteries and a charging state control part controlling the charging state of each secondary battery of the battery pack, the charging state control part lowers the charging state of a secondary battery arranged in a region raising temperature during use than that of a secondary battery arranged in a region lowering temperature during use. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,例えば,複数個のリチウムイオン2次電池等の2次電池のセル(単電池)を組み合わせて互いに接続し,一体的に使用する組電池及びその製造方法と,組電池とその充電状態の制御を行う充電状態制御部とを有する組電池モジュール,さらには,電池パック,組電池あるいは組電池モジュールを搭載した車両や電池搭載機器に関する。さらに詳細には,冷却媒体の流路を形成することにより,個々の2次電池によって使用時の温度が多少異なる組電池及びその製造方法,電池パック,組電池モジュール,それを搭載した車両または電池搭載機器に関するものである。   The present invention provides, for example, a battery pack and a method for manufacturing the battery pack, and a battery pack for charging the battery pack (unit battery) of a plurality of secondary batteries such as lithium ion secondary batteries and connecting them together. The present invention also relates to an assembled battery module having a charge state control unit that controls the state, and further to a battery pack, an assembled battery, or a vehicle or battery-equipped device equipped with the assembled battery module. More specifically, by forming a cooling medium flow path, an assembled battery having a slightly different temperature during use depending on the individual secondary battery, a method for manufacturing the assembled battery, a battery pack, an assembled battery module, a vehicle or battery mounted with the assembled battery It relates to on-board equipment.

従来より,複数個の単電池を互いに接続して,高電圧・大容量の組電池として使用することが行われている。このようなものでは,通常,組電池の全体として充電および放電が行われているにもかかわらず,ある程度,単電池ごとに容量のバラツキが生じる。バラツキが生じたまま使用し続けると,単電池によっては過放電や過充電等の原因となる。そのため従来より,各単電池の電圧値等をモニターし,均等化するシステムが,各種提案されている。   Conventionally, a plurality of unit cells are connected to each other and used as a high voltage / large capacity assembled battery. In such a case, normally, although the assembled battery is charged and discharged as a whole, there is some variation in the capacity of each unit cell. Continued use with variations may cause overdischarge or overcharge depending on the unit cell. For this reason, various systems for monitoring and equalizing the voltage value of each unit cell have been proposed.

例えば,残存容量を検出し,その差が小さくなるように単電池ごとに充電あるいは放電する処理を行うことが行われている。さらには,特許文献1には,各単電池の端子間電圧を検出して制御する技術が開示されている。この技術によれば,電圧値の高いものを放電させるだけで,バラツキが均等化できるとされている。あるいは,特許文献2には,電圧バラツキ量に基づいて,組電池のSOC(State Of Charge;充電状態値)の目標値を決定する技術が開示されている。そして,車両の走行頻度に対応して適切な容量調整ができるとされている。   For example, the remaining capacity is detected, and a process of charging or discharging each cell so as to reduce the difference is performed. Furthermore, Patent Document 1 discloses a technique for detecting and controlling the voltage between terminals of each unit cell. According to this technique, it is said that the variation can be equalized only by discharging a high voltage value. Alternatively, Patent Document 2 discloses a technique for determining a target value of SOC (State Of Charge) of a battery pack based on the amount of voltage variation. And it is supposed that a capacity | capacitance adjustment suitable for the driving | running | working frequency of a vehicle can be performed.

特開2001−218376号公報JP 2001-218376 A 特開2007−87863号公報JP 2007-87863 A

しかしながら,前記した従来の各調整方法は,いずれも,バラツキが生じた組電池に対して,事後的に調整を行うものであり,バラツキの発生自体を抑制するものではなかった。特に,走行モードによっては,ハイレートな充放電を繰り返すことによるハイレート劣化の発生が避けられない。さらに,このハイレート劣化の進行具合は,単電池ごとの使用環境等によってやや異なることが分かってきた。各単電池の劣化の程度にバラツキが生じることにより,電圧や残存容量がさらにばらつくという問題点があった。   However, each of the above-described conventional adjustment methods adjusts the assembled battery after the variation, and does not suppress the occurrence of the variation itself. In particular, depending on the driving mode, high-rate deterioration due to repeated high-rate charge / discharge is inevitable. Furthermore, it has been found that the progress of this high rate deterioration is slightly different depending on the usage environment of each unit cell. Due to variations in the degree of deterioration of each unit cell, there has been a problem that the voltage and remaining capacity further vary.

本発明は,前記した従来の組電池が有する問題点を解決するためになされたものである。すなわちその課題とするところは,組電池における,各単電池のハイレート劣化によるバラツキの発生を抑制することのできる組電池及びその製造方法,電池パック,組電池モジュール,それを搭載した車両,電池搭載機器を提供することにある。   The present invention has been made to solve the problems of the above-described conventional assembled battery. That is, the problem is that an assembled battery that can suppress the occurrence of variations due to high-rate deterioration of each battery cell, a manufacturing method thereof, a battery pack, an assembled battery module, a vehicle on which the battery is mounted, and a battery mounted To provide equipment.

この課題の解決を目的としてなされた本発明の組電池は,複数個の2次電池を組み合わせた組電池であって,複数個の2次電池のうち,使用時により低温となる領域に配置されているものにおける電解液量と比較して,複数個の2次電池のうち,使用時により高温となる領域に配置されているものにおける電解液量が多いものである。   The assembled battery of the present invention, which has been made for the purpose of solving this problem, is an assembled battery in which a plurality of secondary batteries are combined, and is disposed in a region of the plurality of secondary batteries that becomes colder during use. Compared with the amount of electrolytic solution in the battery, the amount of electrolytic solution in the plurality of secondary batteries disposed in the region where the temperature is higher during use is larger.

本発明者は,単電池のハイレート劣化の進行が,高温環境より低温環境においてより速く,また,電解液量の少ないものより電解液量の多いものでより速いことを見出した。本発明の組電池では,低温環境で使用されるものは電解液量をより少なく,高温環境で使用されるものは電解液量をより多くしているので,これらの2つの条件によるハイレート劣化の進行のバラツキが互いに打ち消される。従って,各単電池のハイレート劣化によるバラツキの発生を抑制することのできる組電池となっている。   The inventor has found that the high rate deterioration of the unit cell is faster in the low temperature environment than in the high temperature environment, and faster in the case where the amount of the electrolyte solution is larger than that in which the amount of the electrolyte solution is small. In the assembled battery of the present invention, the amount of electrolyte used in a low temperature environment is smaller, and the amount of electrolyte used in a high temperature environment is larger. Variations in progress are canceled out each other. Therefore, the assembled battery can suppress the occurrence of variations due to the high rate deterioration of each unit cell.

あるいは,本発明の組電池モジュールは,複数個の2次電池を組み合わせた組電池と,組電池の各2次電池の充電状態を制御する充電状態制御部とを有する組電池モジュールであって,充電状態制御部は,複数個の2次電池のうち,使用時により低温となる領域に配置されているものにおける充電状態と比較して,複数個の2次電池のうち,使用時により高温となる領域に配置されているものにおける充電状態を低くするものである。   Alternatively, the assembled battery module of the present invention is an assembled battery module having an assembled battery obtained by combining a plurality of secondary batteries, and a charge state control unit that controls the charge state of each secondary battery of the assembled battery, The charge state control unit has a higher temperature among the plurality of secondary batteries when used, compared to a state of charge of the plurality of secondary batteries disposed in a region where the temperature is lower during use. This lowers the state of charge in those arranged in the region.

本発明者はさらに,単電池のハイレート劣化の進行が,充電状態の高いものより低いものにおいてより速いことをも見出した。本発明の組電池モジュールによれば,使用時の温度によるハイレート劣化の進行のバラツキを,充電状態の高低によって打ち消すことができる。従って,各単電池のハイレート劣化によるバラツキの発生を抑制することのできる組電池モジュールとなっている。   The present inventor has also found that the progress of high-rate deterioration of the unit cell is faster when the cell is lower than when the state of charge is high. According to the assembled battery module of the present invention, it is possible to cancel the variation in the progress of the high-rate deterioration due to the temperature during use, depending on the state of charge. Therefore, the assembled battery module can suppress the occurrence of variation due to the high rate deterioration of each unit cell.

また,本発明は,組電池あるいは組電池モジュールを,複数個の2次電池を冷却するための冷却媒体を取り入れる入口と,冷却媒体を排出する出口とを有する組電池パックとし,使用時により低温となる領域は,組電池中の入口から最も近い電池を含む領域であり,使用時により高温となる領域は,組電池中のそれ以外の領域であるものにも及ぶ。
冷却媒体を入口から取り入れ,出口から排出するように構成された電池パックであれば,組電池中の入口から最も近い電池を含む領域の電池は,入口から取り入れられた冷却媒体によってよく冷却されるので,使用時により低温となる。
In addition, the present invention provides an assembled battery or an assembled battery module as an assembled battery pack having an inlet for taking in a cooling medium for cooling a plurality of secondary batteries and an outlet for discharging the cooling medium. Is a region including the battery closest to the inlet in the assembled battery, and the region that becomes hotter during use extends to other regions in the assembled battery.
In the case of a battery pack configured to take in the cooling medium from the inlet and discharge from the outlet, the battery in the region including the battery closest to the inlet in the assembled battery is well cooled by the cooling medium taken in from the inlet. As a result, it becomes cooler when used.

さらに本発明では,充電状態制御部は,充電状態の高い2次電池を放電させることにより各2次電池の電圧を均等化する制御を行うものであり,使用時により低温となる領域に含まれる2次電池に対しては,放電させないか,または,使用時により高温となる領域に含まれる2次電池より高い充電状態までしか放電させないことが望ましい。
このようにすれば,使用時により低温となる領域に配置されている2次電池の充電状態を,使用時により高温となる領域に配置されているものにおける充電状態に比較して,より高い状態とすることが容易である。
Furthermore, in the present invention, the charge state control unit performs control to equalize the voltage of each secondary battery by discharging a secondary battery having a high charge state, and is included in a region where the temperature becomes lower during use. It is desirable that the secondary battery is not discharged or only discharged to a higher charge state than the secondary battery included in a region that becomes hotter during use.
In this way, the state of charge of the secondary battery arranged in the region that becomes colder during use is higher than the state of charge in the battery that is arranged in the region that becomes hotter during use. It is easy to do.

さらに本発明では,複数個の2次電池が2列に配置されている組電池に対して,第1の列の一端の2次電池における第2の列の反対側から冷却媒体を取り入れ,第1の列の各2次電池における第2の列の反対側に一端から他端に向けて冷却媒体を流し,第1の列および第2の列の他端で折り返し,第2の列の各2次電池における第1の列の反対側に他端から一端に向けて冷却媒体を流し,第2の列の一端の2次電池における第1の列の反対側から冷却媒体を排出する冷却媒体路が形成されているものについて,以下(A)〜(F)のいずれかであることが望ましい。
これらのいずれの構成であっても,各単電池のハイレート劣化によるバラツキの発生を抑制することができる。
Furthermore, in the present invention, with respect to the assembled battery in which a plurality of secondary batteries are arranged in two rows, a cooling medium is introduced from the opposite side of the second row in the secondary battery at one end of the first row, The cooling medium is allowed to flow from one end to the other end on the opposite side of the second row in each secondary battery of the first row, folded at the other end of the first row and the second row, and the second row Cooling medium that allows a cooling medium to flow from the other end toward one end on the opposite side of the first row in the secondary battery and discharges the cooling medium from the opposite side of the first row in the secondary battery at one end of the second row It is desirable that the path is formed as any one of (A) to (F) below.
In any of these configurations, it is possible to suppress the occurrence of variation due to the high rate deterioration of each unit cell.

(A)第1の列を一端側の区間と他端側の区間とに2分したときの一端側の区間に属する2次電池の電解液量が少なく,第1の列の他端側に属する2次電池,および,第2の列に属する2次電池の電解液量が多い組電池。
(B)第2の列を一端側の区間と他端側の区間とに2分したときの他端側の区間に属する2次電池の電解液量が多く,第1の列に属する2次電池,および,第2の列の一端側に属する2次電池の電解液量が少ない組電池。
(C)第1の列を一端側の区間と他端側の区間とに2分するとともに,第2の列を第1の列の2分箇所より一端側に近い箇所で一端側の区間と他端側の区間とに2分したときの,第1の列の一端側の区間に属する2次電池,および,第2の列の一端側の区間に属する2次電池の電解液量が少なく,第1の列の他端側の区間に属する2次電池,および,第2の列の他端側に属する2次電池の電解液量が多い組電池。
(A) When the first row is divided into a section on one end side and a section on the other end side, the amount of the electrolyte of the secondary battery belonging to the section on one end side is small, and the other end side of the first row An assembled battery having a large amount of electrolyte solution of the secondary battery belonging to the secondary battery belonging to the second row.
(B) When the second row is divided into a section on one end side and a section on the other end side, the amount of the secondary battery belonging to the section on the other end side is large, and the secondary battery belonging to the first row A battery and a battery pack having a small amount of electrolyte solution of a secondary battery belonging to one end of the second row.
(C) The first row is divided into two sections, one end side section and the other end side section, and the second row is divided into a section on one end side at a position closer to one end side than the bisection portion of the first row; The amount of electrolyte in the secondary battery belonging to the section on the one end side of the first row and the secondary battery belonging to the section on the one end side of the second row is small when divided into the section on the other end side , A secondary battery belonging to a section on the other end side of the first row, and an assembled battery having a large amount of electrolyte solution of a secondary battery belonging to the other end side of the second row.

(D)第1の列を一端側の区間と他端側の区間とに2分したときの一端側の区間に属する2次電池の充電状態を高く,第1の列の他端側に属する2次電池,および,第2の列に属する2次電池の充電状態を低くする組電池モジュール。
(E)第2の列を一端側の区間と他端側の区間とに2分したときの他端側の区間に属する2次電池の充電状態を低く,第1の列に属する2次電池,および,第2の列の一端側に属する2次電池の充電状態を高くする組電池モジュール。
(F)第1の列を一端側の区間と他端側の区間とに2分するとともに,第2の列を第1の列の2分箇所より一端側に近い箇所で一端側の区間と他端側の区間とに2分したときの,第1の列の一端側の区間に属する2次電池,および,第2の列の一端側の区間に属する2次電池の充電状態を低く,第1の列の他端側の区間に属する2次電池,および,第2の列の他端側に属する2次電池の充電状態を高くする組電池モジュール。
(D) The charge state of the secondary battery belonging to the one end side section when the first row is divided into the one end side section and the other end side section is high, and belongs to the other end side of the first row An assembled battery module that lowers the charge state of the secondary batteries and the secondary batteries belonging to the second row.
(E) The secondary battery belonging to the first column is low and the charge state of the secondary battery belonging to the segment on the other end side is low when the second column is divided into the segment on the one end side and the segment on the other end side. And the assembled battery module which makes high the charge condition of the secondary battery which belongs to the one end side of a 2nd row | line.
(F) The first row is divided into two sections, one end side section and the other end side section, and the second row is divided into a section on one end side at a position closer to one end side than the bisection portion of the first row; The charging state of the secondary battery belonging to the section on one end side of the first row and the secondary battery belonging to the section on one end side of the second row when divided into two sections to the other end side section is low, The assembled battery module which makes high the charge condition of the secondary battery which belongs to the area of the other end side of the 1st row, and the secondary battery which belongs to the other end side of the 2nd row.

また,本発明は,複数個の2次電池を組み合わせた組電池の製造方法であって,内部に収納される電解液量の異なる2次電池を用意し,電解液量の多い2次電池を使用時により低温となる領域に配置し,電解液量の少ない2次電池を使用時により高温となる領域に配置する組電池の製造方法にも及ぶ。   The present invention also relates to a method of manufacturing an assembled battery in which a plurality of secondary batteries are combined. The secondary batteries having different amounts of electrolyte contained therein are prepared, and a secondary battery having a large amount of electrolyte is prepared. The present invention extends to a method of manufacturing an assembled battery in which a secondary battery with a small amount of electrolyte is arranged in a region where the temperature is lower when used, and a secondary battery with a smaller amount of electrolyte is placed in a region where the temperature is higher when used.

さらに本発明は,上記のいずれかの組電池,電池パックあるいは組電池モジュールを搭載した車両にも及ぶ。さらには,上記のいずれかの組電池,電池パックあるいは組電池モジュールを搭載した電池搭載機器にも及ぶ。   Furthermore, the present invention extends to a vehicle equipped with any one of the above assembled batteries, battery packs or assembled battery modules. Further, the present invention extends to battery-equipped devices equipped with any of the above assembled batteries, battery packs, or assembled battery modules.

本発明の組電池及びその製造方法,電池パック,組電池モジュール,それを搭載した車両,電池搭載機器によれば,組電池における,各単電池のハイレート劣化によるバラツキの発生を抑制することができる。   According to the assembled battery and the manufacturing method thereof, the battery pack, the assembled battery module, the vehicle equipped with the assembled battery, and the battery-equipped device according to the present invention, it is possible to suppress the variation due to the high rate deterioration of each unit cell in the assembled battery. .

組電池の構成を示す説明図である。It is explanatory drawing which shows the structure of an assembled battery. 組電池の使用時の各単電池の温度を示す説明図である。It is explanatory drawing which shows the temperature of each single battery at the time of use of an assembled battery. ハイレートなパルスの例を示すグラフ図である。It is a graph which shows the example of a high rate pulse. 温度とハイレート劣化との関係を示すグラフ図である。It is a graph which shows the relationship between temperature and high-rate degradation. 電解液量とハイレート劣化との関係を示すグラフ図である。It is a graph which shows the relationship between electrolyte amount and high-rate deterioration. SOCとハイレート劣化との関係を示すグラフ図である。It is a graph which shows the relationship between SOC and high rate deterioration. 組電池の区分の例を示す説明図である。It is explanatory drawing which shows the example of the division of an assembled battery. 組電池モジュールを示す説明図である。It is explanatory drawing which shows an assembled battery module. 組電池の区分の例を示す説明図である。It is explanatory drawing which shows the example of the division of an assembled battery. 組電池の区分の例を示す説明図である。It is explanatory drawing which shows the example of the division of an assembled battery. 組電池を使用する車両を示す説明図である。It is explanatory drawing which shows the vehicle which uses an assembled battery. 組電池を使用する電池搭載機器の例を示す説明図である。It is explanatory drawing which shows the example of the battery mounting apparatus which uses an assembled battery.

以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,複数個の単電池を組み合わせた組電池に本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, the present invention is applied to an assembled battery in which a plurality of single cells are combined.

本形態の組電池10は,例えば自動車に搭載して使用される組電池10である。ここでは,図1に示すように,全部で56個の単電池A−1〜A−56が28個ずつ2列に並べられているものである。そして,各列の単電池は,その扁平面同士が対向されており,図ではそれぞれの幅狭の面が見えている。さらに,28個の単電池を並べた2つの列が,それぞれの側面を互いに対向して並べて配置されている。   The assembled battery 10 of this embodiment is an assembled battery 10 that is used by being mounted on, for example, an automobile. Here, as shown in FIG. 1, a total of 56 unit cells A-1 to A-56 are arranged in two rows of 28 cells. The flat cells of the cells in each row are opposed to each other, and the narrow surfaces of the cells are visible in the figure. Further, two rows of 28 unit cells are arranged with their side surfaces facing each other.

また本形態では,図1に示すように,この組電池10の外周を一巡する空気路12が形成されている。組電池10は,使用によってある程度発熱するので,この空気路12に空気を流すことによって冷却されるようになっている。組電池10の使用中には,常時,この空気路12に図中に実線の矢印Wで示すように,空気が流されている。   Further, in this embodiment, as shown in FIG. 1, an air passage 12 that makes a round of the outer periphery of the assembled battery 10 is formed. Since the assembled battery 10 generates heat to some extent when used, it is cooled by flowing air through the air passage 12. During use of the battery pack 10, air is constantly flowing through the air passage 12 as indicated by a solid arrow W in the figure.

本形態では説明のために,この空気流の向きに沿って,各単電池に,図1に示すようにそれぞれ番号を与えている。すなわち,図中右上隅の単電池をA−1とし,そこから図中下方に順にA−2,A−3,…,A−28とした。さらに,A−28の図中左隣をA−29とし,そこから図中上方に順にA−30,A−31,…,A−56とした。さらに,図中右側の単電池A−1〜A−28を含む列を列1,図中左側の単電池A−29〜A−56を含む列を列2とした。また,各列中で図中上側(単電池A−1,A−56の配置されている側)を一端側,図中下側(単電池A−28,A−29の配置されている側)を他端側とした。   In this embodiment, for the sake of explanation, numbers are given to the single cells along the direction of the air flow as shown in FIG. That is, the unit cell in the upper right corner in the figure is designated as A-1, and from there, it is designated as A-2, A-3,. Further, the left side of A-28 in the figure is A-29, and from there, it is A-30, A-31,. Further, the column including the single cells A-1 to A-28 on the right side in the drawing is referred to as column 1, and the column including the single cells A-29 to A-56 on the left side in the drawing is referred to as column 2. In each row, the upper side in the figure (the side where the cells A-1 and A-56 are arranged) is one end side, and the lower side in the figure (the side where the cells A-28 and A-29 are arranged). ) On the other end side.

なお,本形態の組電池10に含まれる各単電池は,いずれも扁平形状の密閉型リチウムイオン2次電池である。さらに,本形態では,すべての単電池が互いに直列に接続されて使用されている。しかし,ここで与えた電池番号は便宜的なものであり,電気的な接続の順序を示すものではない。   Each unit cell included in the assembled battery 10 of the present embodiment is a flat sealed lithium ion secondary battery. Furthermore, in this embodiment, all the single cells are used in series with each other. However, the battery numbers given here are for convenience and do not indicate the order of electrical connection.

本形態の組電池10の空気路12には,図1中右上隅の単電池A−1の図中右上隅の箇所に入口13が設けられている。また,図中左上隅の単電池A−56の図中左上隅の箇所に出口14が設けられている。すなわち,列1の一端側の単電池A−1の列2の反対側に入口13が,列2の一端側の単電池A−56の列1の反対側に出口14が設けられている。このようになっているものを,電池パックという。   In the air passage 12 of the assembled battery 10 according to this embodiment, an inlet 13 is provided at a location in the upper right corner of the cell A-1 in the upper right corner of FIG. Moreover, the outlet 14 is provided in the upper left corner of the cell A-56 in the upper left corner of the drawing. That is, the inlet 13 is provided on the opposite side of the row 2 of the single cells A-1 on one end side of the row 1, and the outlet 14 is provided on the opposite side of the row 1 of the single cells A-56 on the one end side of the row 2. This is called a battery pack.

そして,空気は,入口13から空気路12に入り,列1の図中右側(列2の反対側)を列1に沿って他端へ向けて(図中下方へ)流れる。空気路12は,組電池10の下端部で,その外周に沿って折り返されている。従って,空気は,他端に配置された単電池A−28と単電池A−29の図中下側に沿って,図中右から左へと流れる。さらに,列2の図中左側(列1の反対側)を列2に沿って一端へ向けて(図中上方へ)流れ,出口14から排出されるようになっている。   Then, the air enters the air passage 12 from the inlet 13 and flows on the right side (opposite side of the column 2) in the row 1 toward the other end along the row 1 (downward in the drawing). The air passage 12 is folded along the outer periphery at the lower end portion of the assembled battery 10. Therefore, the air flows from right to left in the drawing along the lower side of the cells A-28 and A-29 arranged at the other end in the drawing. Further, the left side of the column 2 in the figure (the opposite side of the column 1) flows toward the one end along the column 2 (upward in the figure) and is discharged from the outlet 14.

なお,各単電池の扁平面同士の間には,例えば櫛歯状の保持部材を挟み込む等の手段により,多少の隙間が設けられている。そして,空気路12中の空気の一部は,その隙間を通って列1側から列2側へ流れるようになっている。すなわち,図1中に点線の矢印Yで示すように,各単電池の間を通って図中右から左へ向かう空気の流れもできるようになっている。   Note that a slight gap is provided between the flat surfaces of each unit cell by means of, for example, sandwiching a comb-shaped holding member. A part of the air in the air passage 12 flows from the row 1 side to the row 2 side through the gap. That is, as shown by the dotted arrow Y in FIG. 1, the air flows from the right to the left in the figure through each cell.

本発明者は,このような,図1中に矢印W,Yで示した空気流が流れる組電池10において,使用中の各単電池に発生する温度分布を測定した。すなわち,この組電池10を搭載したモニタ用の自動車において,それぞれの単電池A−1〜A−56にサーミスタを設置し,走行中における各単電池の温度の測定を行った。その結果を図2に示す。すなわち,空気路12の流入口に近い単電池(電池番号の小さいもの)が,比較的低温であった。また,空気路12の出口14に近い電池番号の最後の方より,中程のものが高温となっていた。   The inventor measured the temperature distribution generated in each unit cell in use in the assembled battery 10 in which the air flow indicated by arrows W and Y in FIG. 1 flows. That is, in the monitoring vehicle equipped with the assembled battery 10, a thermistor was installed in each of the unit cells A-1 to A-56, and the temperature of each unit cell during traveling was measured. The result is shown in FIG. That is, the unit cell (with a small battery number) close to the inlet of the air passage 12 was relatively low temperature. Further, the middle one was hotter than the last battery number near the outlet 14 of the air passage 12.

また,本発明者は,この組電池10に組み込まれている単電池のハイレート劣化について調査した。ハイレート劣化とは,ハイレート条件において電池を使用することによって進行する劣化のことである。例えば,図3の例に示すように,急激な放電または急激な充電が行われる使用条件がハイレート条件である。特に急激な放電は,組電池10に含まれる各単電池にとって負荷が大きい。そのため,ハイレート条件での使用が繰り返されると,劣化が大きく進行することが分かっている。なお,ハイレート条件は,車両の運転状況等により不可避的に発生するものであり,その発生自体を防止することはできない。   In addition, the inventor investigated the high rate deterioration of the unit cell incorporated in the assembled battery 10. High-rate degradation is degradation that proceeds by using a battery under high-rate conditions. For example, as shown in the example of FIG. 3, a use condition in which rapid discharge or rapid charge is performed is a high rate condition. In particular, a rapid discharge has a heavy load on each single cell included in the assembled battery 10. For this reason, it is known that the deterioration progresses greatly when the use under high-rate conditions is repeated. The high rate condition is inevitably generated depending on the driving condition of the vehicle, and the occurrence itself cannot be prevented.

そこで,本発明者は,このようなハイレート条件での使用における単電池の劣化の進行の程度を,その使用温度や,電解液量,SOCとの関係として調査した。すなわち,以下の3種の試験を行った。
(1)使用温度の差によるハイレート劣化の進行程度の違い
(2)電池に収納する電解液量とハイレート劣化の進行程度との関係
(3)電池を制御する目標SOCとハイレート劣化の進行程度との関係
Therefore, the present inventor investigated the degree of progress of the deterioration of the unit cell in use under such a high rate condition as a relationship with the use temperature, the amount of electrolyte, and SOC. That is, the following three types of tests were performed.
(1) Difference in progress of high rate deterioration due to difference in use temperature (2) Relationship between amount of electrolyte stored in battery and progress of high rate deterioration (3) Target SOC for controlling battery and progress of high rate deterioration connection of

なお,SOC値は,電池の充電状態を示すパラメータである。可逆的に充放電可能な電池電圧の範囲内において,その上限となる電池電圧が得られる充電状態をSOCが100%,下限となる電池電圧が得られる充電状態をSOCが0%であるという。従って,その数値が大きいことは,その電池はより充電された状態にあり,例えばフル充電に近いことを示している。また,この数値が小さいことは,その電池はあまり充電されておらず,充電状態が例えば完全放電に近いことを示している。   The SOC value is a parameter indicating the state of charge of the battery. Within the range of reversibly chargeable / dischargeable battery voltage, the state of charge in which the upper limit battery voltage is obtained is said to be 100% SOC, and the state of charge in which the lower limit battery voltage is obtained is said to be 0% SOC. Therefore, a large value indicates that the battery is more charged, for example, close to full charge. In addition, the small value indicates that the battery is not charged so much and the state of charge is close to complete discharge, for example.

この実験では,評価条件として,まず,電池のSOCの目標値を60%に設定し,次の測定サイクルを用いた。電池に対して150A10s放電と40A120sCCCV(Constant Current Constant Voltage)充電との組を1サイクルとし,所定サイクル数だけ繰り返した。すなわち,150Aで10秒間放電し,次に,40Aの定電流で120秒間充電した。これにより,充電後には電池のSOCは約60%となる。なお,この充放電条件はハイレート条件に相当する。   In this experiment, as an evaluation condition, first, the target value of the SOC of the battery was set to 60%, and the following measurement cycle was used. A set of 150A10s discharge and 40A120sCCCV (Constant Current Constant Voltage) charge was set as one cycle, and the battery was repeated a predetermined number of cycles. That is, it was discharged at 150 A for 10 seconds, and then charged at a constant current of 40 A for 120 seconds. Thereby, the SOC of the battery is about 60% after charging. This charge / discharge condition corresponds to a high rate condition.

(1)使用温度とハイレート劣化
単電池を,25℃,40℃,60℃の3種類の環境にそれぞれおき,上記測定サイクルのサイクル数2000回,5000回,9000回において,単電池の抵抗増加率を測定した。実験(1)の結果は,図4に示す通りであった。低温環境のものほど,少ないサイクル数で抵抗が大きく増加した。この抵抗の増加は単電池の劣化によるものである。すなわち,これらの温度範囲では,高温環境で使用するほど劣化の進行は遅いことが分かった。そして,低温環境では,劣化の進行が速かった。
(1) Operating temperature and high-rate degradation A single cell is placed in three environments of 25 ° C, 40 ° C, and 60 ° C, and the resistance of the single cell increases at the above measurement cycles of 2000, 5000, and 9000 times. The rate was measured. The result of experiment (1) was as shown in FIG. The resistance increased greatly with the lower number of cycles in the low temperature environment. This increase in resistance is due to the deterioration of the cell. In other words, in these temperature ranges, it was found that the deterioration progressed more slowly as it was used in a higher temperature environment. In the low-temperature environment, the deterioration progressed quickly.

(2)電解液量とハイレート劣化
単電池内に収容する電解液量を,標準より+6gまたは+9g多くした単電池,および標準量のものと3種類作成した。なお,一般的に車載される組電池では+6gが標準量の約+10〜13%程度であり,+9gが標準量の約+15〜20%程度である。本形態で使用している単電池では,+6gとは標準量の約+10%,+9gとは標準量の約+15%に相当する。これらの単電池に上記測定サイクルを行い,サイクル数400回,1000回での150A10s抵抗をそれぞれ測定した。すなわち,上記の各サイクル数において,150Aで10秒間放電した直後の抵抗を測定した。
(2) Electrolyte Volume and High Rate Degradation Three types were prepared: a single battery with a +6 g or +9 g amount of electrolyte stored in a single battery, and a standard quantity. In general, in an assembled battery mounted on a vehicle, +6 g is about +10 to 13% of the standard amount, and +9 g is about +15 to 20% of the standard amount. In the cell used in this embodiment, +6 g corresponds to about + 10% of the standard amount, and +9 g corresponds to about + 15% of the standard amount. These single cells were subjected to the above measurement cycle, and the 150A10s resistance was measured at 400 cycles and 1000 cycles, respectively. That is, the resistance immediately after discharging at 150 A for 10 seconds at each cycle number was measured.

実験(2)の結果は,図5に示す通りであった。すなわち,電解液量を多くしたものほど,400回から1000回の間に,抵抗値が大きく上昇した。これは,その間に劣化が大きく進行したことを示している。このことから,電解液量が多いものほどハイレート劣化の進行が速いことが分かった。   The result of experiment (2) was as shown in FIG. That is, as the amount of the electrolyte increased, the resistance value increased significantly between 400 and 1000 times. This indicates that the deterioration has greatly progressed during that time. From this, it was found that the higher the electrolyte amount, the faster the high rate degradation progressed.

(3)SOCとハイレート劣化
同種の単電池を異なる目標SOCで制御し,SOCの目標値が60%のものと40%のものとを比較した。すなわち,先に示した測定条件のものの他に,測定条件のうちSOCの目標値を40%に変更したものについても測定した。SOCを40%とするために,充放電サイクルは先の測定条件と基本的に同じであるが,充電時間を先の条件より短くした。そして,これらの単電池に対して適宜150A10s抵抗を測定しつつ,上記と同様の測定サイクルを1000サイクルまで実施した。
(3) SOC and high-rate deterioration The same type of single cells were controlled with different target SOCs, and the SOC target values were compared between 60% and 40%. In other words, in addition to the measurement conditions described above, measurement was performed on the measurement conditions in which the SOC target value was changed to 40%. In order to set the SOC to 40%, the charge / discharge cycle is basically the same as the previous measurement condition, but the charge time is shorter than the previous condition. And the measurement cycle similar to the above was implemented to 1000 cycles, measuring 150A10s resistance suitably with respect to these single cells.

実験(3)の結果は,図6に示す通りであった。すなわち,SOC60%のものでは,サイクル数に対する抵抗の上昇がさほど大きくないのに対し,SOCが40%のものでは,サイクル数に応じて抵抗がかなり上昇した。これにより,SOC40%では,60%のものに比較して,劣化の進行はかなり速いことがわかった。   The result of experiment (3) was as shown in FIG. In other words, the increase in resistance with respect to the number of cycles was not so great with the SOC of 60%, whereas the resistance increased considerably with the number of cycles when the SOC was 40%. As a result, it was found that the deterioration progressed considerably faster with SOC 40% than with 60%.

以上の3種類の実験により,本形態では,以下の3つの条件によりハイレート劣化の進行が特に速くなることが分かった。(1)温度環境が低温,(2)電解液量が多い,(3)SOCが低いの3つである。これらの逆の条件において,ハイレート劣化の進行は遅くなる。   From the above three types of experiments, it has been found that in this embodiment, the progress of high-rate deterioration is particularly fast under the following three conditions. (1) The temperature environment is low, (2) the amount of electrolyte is large, and (3) the SOC is low. Under these reverse conditions, the progress of high rate degradation is slow.

そこで,上記の各実験結果をふまえて,本形態では,組電池10に含まれる各単電池A−1〜A−56のハイレート劣化の進行状態がほぼ同程度となるようにしている。本形態の組電池10では,前述したように,単電池の配置により使用時の温度環境がやや異なる。そのため,温度環境以外の条件をすべて等しくしておくと,単電池の配置によりハイレート劣化の進行に差が生じてしまうからである。一部の単電池のみに大きく劣化が進むことは,組電池10の内部に大きい電圧バラツキを招くこととなるので好ましくない。そこで,他の(2)または(3)の条件を組み合わせることにより,温度によるハイレート劣化のバラツキをキャンセルするようにしている。これにより,各単電池のハイレート劣化の進行状態を合わせたものとしている。   Therefore, based on the above experimental results, in this embodiment, the high-rate deterioration progress states of the individual cells A-1 to A-56 included in the assembled battery 10 are substantially the same. In the assembled battery 10 of this embodiment, as described above, the temperature environment during use is slightly different depending on the arrangement of the single cells. For this reason, if all the conditions other than the temperature environment are made equal, a difference occurs in the progress of the high rate deterioration due to the arrangement of the single cells. It is not preferable that the deterioration of only a part of the single cells is greatly deteriorated because a large voltage variation is caused inside the assembled battery 10. Therefore, by combining the other conditions (2) or (3), variations in high rate deterioration due to temperature are canceled. As a result, the progress of the high rate deterioration of each unit cell is combined.

温度条件によるハイレート劣化が進行しやすいのは,使用時に低温環境となりがちな単電池であり,空気の流入口近くに配置されるものである。例えば,図2に範囲Pで示した単電池である。この範囲Pは,図7に斜線で示すように,列1を2分して,一端側の区間に属する単電池である。本形態の組電池10では,単電池A−1〜A−12である。そこで,この範囲Pに属する単電池A−1〜A−12と,それ以外(単電池A−13〜A−56)とを区分し,このいずれに属するかによって温度以外の条件を異なるものとしている。   High-rate degradation due to temperature conditions is likely to progress in single cells that tend to be in a low-temperature environment during use, and are placed near the air inlet. For example, it is a single cell indicated by a range P in FIG. This range P is a single cell belonging to a section on one end side by dividing row 1 into two, as indicated by hatching in FIG. In the assembled battery 10 of this embodiment, the cells A-1 to A-12. Therefore, the cells A-1 to A-12 belonging to this range P and the other cells (cells A-13 to A-56) are divided, and the conditions other than the temperature are different depending on which of them belongs. Yes.

すなわち,本形態では,(2)または(3)の条件を用いて,この範囲Pの単電池のハイレート劣化の程度をそれ以外のものと同程度となるようにしている。すなわち,範囲Pの単電池を他のものに比較して電解液量を少なくする(第1の形態)。あるいは,範囲Pの単電池を他のものに比較してSOCを高くする(第2の形態)。   That is, in the present embodiment, the condition of (2) or (3) is used so that the high rate deterioration of the cells in this range P is the same as that of the other cells. That is, the amount of the electrolyte is reduced in the range P unit cell as compared with other cells (first embodiment). Alternatively, the SOC of the single cell in the range P is set higher than that of other cells (second embodiment).

(第1の形態)
第1の形態の組電池10は,図2の範囲Pに相当する単電池の電解液量を,他のものに比較して少なくしたものである。すなわち,収容されている電解液量の異なる2種類の単電池を用意して,少ないものをこの範囲Pに,多いものを他の領域に配置する。範囲Pに配置される単電池は,低温環境であるため,他のものよりハイレート劣化の進行が速い。一方,電解液量の少ないものは多いものよりハイレート劣化の進行が遅い。従って,範囲Pに電解液量の少ない単電池を配置することにより,組電池10の全体でのハイレート劣化の進行の程度を合わせることができる。
(First form)
In the assembled battery 10 of the first embodiment, the amount of the electrolytic solution of the single cell corresponding to the range P in FIG. That is, two types of single cells having different amounts of electrolyte contained therein are prepared, and a small one is placed in this range P and a large one is placed in another region. Since the single cells arranged in the range P are in a low temperature environment, the high rate deterioration proceeds faster than the others. On the other hand, high-rate deterioration progresses more slowly with a small amount of electrolyte than with a large amount of electrolyte. Therefore, by disposing a single battery with a small amount of electrolyte in the range P, it is possible to match the degree of progress of the high rate deterioration in the entire assembled battery 10.

ただし,標準液量はその単電池にとって最適な液量であり,通常,これより少ない液量とすることは困難である。そのため,範囲P以外の単電池の液量を,標準液量よりやや多くする。このようにしても,組電池全体の劣化という観点からはより望ましいものとなる。なお,電解液量をさらに多段階として,温度分布に応じて,少ないものほど低温環境の位置に配置されるようにしてもよい。なおここで,用意するとは,その条件を満たす単電池を社内で製造することによってもよい。あるいは,外注により製造させて入手してもよいし,該当する条件のものが仮に市場に存在した場合には,それを購入することによってもよい。   However, the standard liquid volume is the optimal liquid volume for the unit cell, and it is usually difficult to make the liquid volume smaller than this. For this reason, the liquid amount of the cells outside the range P is slightly increased from the standard liquid amount. Even if it does in this way, it will become more desirable from a viewpoint of deterioration of the whole assembled battery. It should be noted that the amount of the electrolytic solution may be further increased, and the smaller the amount of the electrolytic solution, the smaller the amount may be arranged at a low temperature environment position. Here, preparing may mean that a single cell that satisfies the condition is manufactured in-house. Alternatively, it may be manufactured by subcontracting and obtained, or if a product with the applicable conditions exists in the market, it may be purchased.

(第2の形態)
第2の形態の組電池モジュール20は,図8に示すように,組電池10とこれを制御する制御部21,22とを有するものである。これらの制御部21,22はいずれも,いわゆる均等化制御を行うものである。均等化制御とは,組電池に組み込まれている各単電池の充電状態を均等化する制御である。この制御は,例えば特開2001−218376号公報に記載されているように,電圧が他の電池に比較して高くなりすぎた単電池を放電させることにより行うことができる。本形態の制御部21,22は,それぞれ異なるSOCを目標として均等化制御を行うものである。
(Second form)
As shown in FIG. 8, the assembled battery module 20 according to the second embodiment includes the assembled battery 10 and control units 21 and 22 for controlling the assembled battery 10. Both of these control units 21 and 22 perform so-called equalization control. The equalization control is control for equalizing the state of charge of each unit cell incorporated in the assembled battery. This control can be performed, for example, by discharging a single cell whose voltage has become too high compared to other batteries, as described in Japanese Patent Application Laid-Open No. 2001-218376. The control units 21 and 22 of this embodiment perform equalization control with different SOCs as targets.

本形態の組電池10では,制御部21は,低温環境となる範囲Pに含まれる単電池A−1〜A−12を制御する。制御部22は,範囲P以外の単電池A−13〜A−56を制御する。そして,制御部21は,制御部22に比較して,SOCが高くなるように制御するのである。これにより,低温環境となりがちな単電池を,他のものに比較してSOCが高くなるように制御することができる。   In the assembled battery 10 of this embodiment, the control unit 21 controls the cells A-1 to A-12 included in the range P that is a low temperature environment. The control unit 22 controls the cells A-13 to A-56 other than the range P. And the control part 21 is controlled so that SOC becomes high compared with the control part 22. FIG. Thereby, it is possible to control a single cell, which tends to be in a low temperature environment, to have a higher SOC than other cells.

このようにすることにより,範囲Pに配置される単電池A−1〜A−12は,他のものに比較して,低温環境のためにハイレート劣化の進行が速いとともに,SOCが高いためにハイレート劣化の進行が遅い。従って,組電池10の全体でのハイレート劣化の進行の程度を合わせることができる。なお,均等化制御を行わないことでSOCの高い状態を保持できるのであれば,制御部21はなくてもよい。   As a result, the single cells A-1 to A-12 arranged in the range P have a high rate of deterioration due to a low temperature environment and a high SOC compared to the other cells. High rate degradation is slow. Therefore, it is possible to match the progress of the high rate deterioration in the entire assembled battery 10. Note that the control unit 21 may not be provided as long as the high SOC state can be maintained without performing the equalization control.

なお,上記の第1の形態および第2の形態において,この低温環境となる単電池とそれ以外の単電池との区分の仕方は,図7に示した範囲Pによるものに限らない。図2に示したように,区分のための境界温度の設定により,様々なパターンが可能である。例えば,図2に示した高温となる範囲Qを設定し,それ以外のものを低温環境の範囲としてもよい。この場合には,図9に斜線で示すように,列2を2分して,他端側の区間に属する単電池が,範囲Qに含まれるものである。この例では,範囲Qに含まれる単電池A−29〜A−43を使用時に高温となる領域とし,その他の単電池A−1〜A−28,A−44〜A−56を使用時に低温となる領域とする。   In the first and second embodiments described above, the way of dividing the low-temperature cell into other cells is not limited to the range P shown in FIG. As shown in FIG. 2, various patterns are possible by setting the boundary temperature for classification. For example, the high temperature range Q shown in FIG. 2 may be set, and other ranges may be used as the low temperature environment range. In this case, as indicated by hatching in FIG. 9, the cell 2 is divided into two and the cells belonging to the section on the other end side are included in the range Q. In this example, the single cells A-29 to A-43 included in the range Q are set to a region where the temperature becomes high when used, and the other single cells A-1 to A-28 and A-44 to A-56 are set to a low temperature when used. It becomes an area to become.

あるいは,低温領域と高温領域とがともに列1と列2とにまたがった範囲となるように区分してもよい。そのようにすると,例えば,低温領域に属する単電池の個数と高温領域に属する単電池の個数とがほぼ同数となるように区分することもできる。例えば,図2に低温範囲R1と高温範囲R2とで示したような区分である。この場合には,図10に示すように,列1と列2をそれぞれ2分する。ただし,列1を2分する箇所は他端側寄りであり,列2を2分する箇所は,列1を2分する箇所に比較して一端側寄りである。そして,図10に斜線で示す範囲,すなわち,列1と列2とのそれぞれにおいて,2分箇所より一端側の区間を合わせた範囲に属する単電池A−1〜A−26,A−55〜A−56を低温範囲R1に含まれるものとする。そして,残りの単電池A−27〜A−54を高温範囲R2とする。   Alternatively, the low temperature region and the high temperature region may be divided so as to be in a range extending over the rows 1 and 2. In this case, for example, the number of single cells belonging to the low temperature region and the number of single cells belonging to the high temperature region can be classified so as to be approximately the same. For example, the division is as shown by the low temperature range R1 and the high temperature range R2 in FIG. In this case, as shown in FIG. 10, column 1 and column 2 are each divided into two. However, the portion that divides row 1 into two is closer to the other end side, and the portion that divides row 2 into two is closer to the one end side than the portion that divides row 1 into two. 10, that is, the cells A-1 to A-26, A-55 belonging to the range in which the section on one end side from the bisected portion is combined in each of the columns 1 and 2. A-56 is included in the low temperature range R1. The remaining single cells A-27 to A-54 are set to the high temperature range R2.

さらに,低温となる領域と高温となる領域とに2分するものに限らず,より多段階に分けてもよい。またあるいは,外気温等によって,この区分の仕方を可変のものとしてもよい。   Furthermore, it is not limited to the one that divides into a region where the temperature is low and a region where the temperature is high. Alternatively, this division method may be variable depending on the outside air temperature.

この組電池10または電池パックは,例えば,図11に示すように,車両200に搭載して使用される。この車両200は,エンジン240,フロントモータ220及びリアモータ230を併用して駆動するハイブリッド自動車である。この車両200は,車体290,エンジン240,これに取り付けられたフロントモータ220,リアモータ230,ケーブル250,インバータ260及び複数の2次電池(単電池)を自身の内部に有する組電池10または電池パックを有している。   This assembled battery 10 or battery pack is used by being mounted on a vehicle 200 as shown in FIG. 11, for example. The vehicle 200 is a hybrid vehicle that is driven by using an engine 240, a front motor 220, and a rear motor 230 in combination. The vehicle 200 includes a vehicle body 290, an engine 240, a front motor 220, a rear motor 230, a cable 250, an inverter 260, and a plurality of secondary batteries (unit cells) attached thereto. have.

なお,車両としては,その動力源の全部あるいは一部に電池による電気エネルギを使用している車両であれば良く,例えば,電気自動車,ハイブリッド自動車,プラグインハイブリッド自動車,ハイブリッド鉄道車両,フォークリフト,電気車椅子,電動アシスト自転車,電動スクータ等が挙げられる。   The vehicle may be a vehicle that uses battery-generated electric energy for all or a part of its power source. For example, an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, a hybrid railway vehicle, a forklift, an electric vehicle Wheelchairs, electric assist bicycles, electric scooters, etc. are listed.

組電池10または電池パックは,あるいは,図12に示すように,電池搭載機器に使用することもできる。この図に示すのは,本形態の組電池10を搭載したハンマードリル300である。このハンマードリル300は,組電池10または電池パック,本体320を有する電池搭載機器である。なお,組電池10または電池パックは,ハンマードリル300の本体320のうち底部321に着脱可能に収容されている。   Alternatively, the assembled battery 10 or the battery pack can be used for a battery-equipped device as shown in FIG. Shown in this figure is a hammer drill 300 equipped with the assembled battery 10 of this embodiment. The hammer drill 300 is a battery-equipped device having the assembled battery 10 or the battery pack and the main body 320. The assembled battery 10 or the battery pack is detachably accommodated in the bottom 321 of the main body 320 of the hammer drill 300.

なお,電池搭載機器としては,電池を搭載しこれをエネルギー源の少なくとも1つとして利用する機器であれば良く,例えば,パーソナルコンピュータ,携帯電話,電池駆動の電動工具,無停電電源装置など,電池で駆動される各種の家電製品,オフィス機器,産業機器が挙げられる。車両200または電池搭載機器に搭載される組電池10または電池パックは,第1の形態のものでも第2の形態のものでも構わない。   The battery-equipped device may be any device equipped with a battery and using it as at least one energy source. For example, a personal computer, a mobile phone, a battery-powered electric tool, an uninterruptible power supply, etc. Various types of home appliances, office equipment, and industrial equipment driven by The assembled battery 10 or the battery pack mounted on the vehicle 200 or the battery-equipped device may be of the first form or the second form.

以上詳細に説明したように本形態の組電池10によれば,使用環境によって単電池ごとにその温度が異なっているものであっても,そのハイレート劣化の進行程度を調整できる。すなわち,使用環境が低温であるものではハイレート劣化が進みやすいので,電解液量を少なく,またはSOCを大きくすることにより,他の電池と劣化の程度を合わせることができる。従って,組電池10に含まれている各単電池のハイレート劣化のバラツキを抑制することのできるものとなっている。   As described above in detail, according to the assembled battery 10 of the present embodiment, even if the temperature differs for each unit cell depending on the use environment, the degree of progress of the high rate deterioration can be adjusted. That is, since the high-rate deterioration tends to proceed when the usage environment is low, the degree of deterioration can be matched with other batteries by reducing the amount of the electrolyte or increasing the SOC. Therefore, it is possible to suppress the variation in the high rate deterioration of each unit cell included in the assembled battery 10.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。
例えば,上記の形態では,冷却媒体として空気を使用する例を示しているが,冷却媒体としては空気に限らない。例えば,水による水冷や油による油冷によっても冷却することはできる。また,本形態では,すべての単電池を直列に接続したものとしたが,電気的な接続の形態はこれに限らない。例えば,複数個の単電池を直列に接続したものを複数個並列に接続したものであってもよい。単電池によって使用温度が多少異なる組電池であれば,どのようなものでも適用可能である。また,組電池に組み込まれる単電池は,リチウムイオン2次電池に限らない。
In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.
For example, although the above embodiment shows an example in which air is used as the cooling medium, the cooling medium is not limited to air. For example, it can be cooled by water cooling with water or oil cooling with oil. In this embodiment, all the cells are connected in series, but the form of electrical connection is not limited to this. For example, a plurality of single cells connected in series may be connected in parallel. Any battery can be used as long as it is an assembled battery whose operating temperature differs slightly depending on the unit cell. Further, the unit cell incorporated in the assembled battery is not limited to the lithium ion secondary battery.

10 組電池
12 空気路
13 入口
14 出口
21,22 制御部
200 車両
300 ハンマードリル
A−1〜A−56 単電池
DESCRIPTION OF SYMBOLS 10 Assembly battery 12 Air path 13 Inlet 14 Outlet 21,22 Control part 200 Vehicle 300 Hammer drill A-1 to A-56 Single cell

Claims (16)

複数個の2次電池を組み合わせた組電池において,
前記複数個の2次電池のうち,使用時により低温となる領域に配置されているものにおける電解液量と比較して,
前記複数個の2次電池のうち,使用時により高温となる領域に配置されているものにおける電解液量が多いことを特徴とする組電池。
In an assembled battery combining a plurality of secondary batteries,
Compared with the amount of electrolyte in the plurality of secondary batteries disposed in the region where the temperature is lower during use,
Among the plurality of secondary batteries, an assembled battery having a large amount of electrolyte in a battery disposed in a region that becomes hot when used.
請求項1に記載の組電池を有する電池パックにおいて,
前記複数個の2次電池を冷却するための冷却媒体を取り入れる入口と,
前記冷却媒体を排出する出口とを有し,
前記使用時により低温となる領域は,組電池中の前記入口から最も近い電池を含む領域であり,
前記使用時により高温となる領域は,組電池中のそれ以外の領域であることを特徴とする電池パック。
In the battery pack having the assembled battery according to claim 1,
An inlet for taking in a cooling medium for cooling the plurality of secondary batteries;
An outlet for discharging the cooling medium,
The region where the temperature becomes lower during use is a region including the battery closest to the entrance in the assembled battery,
The battery pack, wherein the region that becomes hotter during use is a region other than that in the assembled battery.
請求項1に記載の組電池において,
前記複数個の2次電池が2列に配置されており,
第1の列の一端の2次電池における第2の列の反対側から冷却媒体を取り入れ,前記第1の列の各2次電池における第2の列の反対側に前記一端から他端に向けて冷却媒体を流し,前記第1の列および第2の列の他端で折り返し,前記第2の列の各2次電池における第1の列の反対側に前記他端から前記一端に向けて冷却媒体を流し,前記第2の列の前記一端の2次電池における第1の列の反対側から冷却媒体を排出する冷却媒体路が形成されており,
前記第1の列を前記一端側の区間と前記他端側の区間とに2分したときの前記一端側の区間に属する2次電池の電解液量が少なく,
前記第1の列の前記他端側に属する2次電池,および,前記第2の列に属する2次電池の電解液量が多いことを特徴とする組電池。
The assembled battery according to claim 1,
The plurality of secondary batteries are arranged in two rows;
A cooling medium is taken in from the opposite side of the second row of secondary batteries at one end of the first row, and the opposite end of the second row of each secondary battery of the first row is directed from the one end to the other end. The cooling medium is then flown, folded at the other ends of the first row and the second row, and from the other end to the one end on the opposite side of the first row in each secondary battery of the second row. A cooling medium path is formed for flowing the cooling medium and discharging the cooling medium from the opposite side of the first row in the secondary battery at the one end of the second row;
The amount of the electrolyte solution of the secondary battery belonging to the one end side section when the first row is divided into the one end side section and the other end side section is small,
An assembled battery, wherein the secondary battery belonging to the other end of the first row and the secondary battery belonging to the second row have a large amount of electrolyte.
請求項1に記載の組電池において,
前記複数個の2次電池が2列に配置されており,
第1の列の一端の2次電池における第2の列の反対側から冷却媒体を取り入れ,前記第1の列の各2次電池における第2の列の反対側に前記一端から他端に向けて冷却媒体を流し,前記第1の列および第2の列の他端で折り返し,前記第2の列の各2次電池における第1の列の反対側に前記他端から前記一端に向けて冷却媒体を流し,前記第2の列の前記一端の2次電池における第1の列の反対側から冷却媒体を排出する冷却媒体路が形成されており,
前記第2の列を前記一端側の区間と前記他端側の区間とに2分したときの前記他端側の区間に属する2次電池の電解液量が多く,
前記第1の列に属する2次電池,および,前記第2の列の前記一端側に属する2次電池の電解液量が少ないことを特徴とする組電池。
The assembled battery according to claim 1,
The plurality of secondary batteries are arranged in two rows;
A cooling medium is taken in from the opposite side of the second row of secondary batteries at one end of the first row, and the opposite end of the second row of each secondary battery of the first row is directed from the one end to the other end. The cooling medium is then flown, folded at the other ends of the first row and the second row, and from the other end to the one end on the opposite side of the first row in each secondary battery of the second row. A cooling medium path is formed for flowing the cooling medium and discharging the cooling medium from the opposite side of the first row in the secondary battery at the one end of the second row;
When the second row is divided into the one end side section and the other end side section, the amount of the electrolyte solution of the secondary battery belonging to the other end side section is large,
The assembled battery, wherein the secondary battery belonging to the first row and the secondary battery belonging to the one end side of the second row have a small amount of electrolyte.
請求項1に記載の組電池において,
前記複数個の2次電池が2列に配置されており,
第1の列の一端の2次電池における第2の列の反対側から冷却媒体を取り入れ,前記第1の列の各2次電池における第2の列の反対側に前記一端から他端に向けて冷却媒体を流し,前記第1の列および第2の列の他端で折り返し,前記第2の列の各2次電池における第1の列の反対側に前記他端から前記一端に向けて冷却媒体を流し,前記第2の列の前記一端の2次電池における第1の列の反対側から冷却媒体を排出する冷却媒体路が形成されており,
前記第1の列を前記一端側の区間と前記他端側の区間とに2分するとともに,第2の列を前記第1の列の2分箇所より前記一端側に近い箇所で前記一端側の区間と前記他端側の区間とに2分したときの,前記第1の列の前記一端側の区間に属する2次電池,および,前記第2の列の前記一端側の区間に属する2次電池の電解液量が少なく,
前記第1の列の前記他端側の区間に属する2次電池,および,前記第2の列の前記他端側に属する2次電池の電解液量が多いことを特徴とする組電池。
The assembled battery according to claim 1,
The plurality of secondary batteries are arranged in two rows;
A cooling medium is taken in from the opposite side of the second row of secondary batteries at one end of the first row, and the opposite end of the second row of each secondary battery of the first row is directed from the one end to the other end. The cooling medium is then flown, folded at the other ends of the first row and the second row, and from the other end to the one end on the opposite side of the first row in each secondary battery of the second row. A cooling medium path is formed for flowing the cooling medium and discharging the cooling medium from the opposite side of the first row in the secondary battery at the one end of the second row;
The first row is divided into a section on the one end side and a section on the other end side, and the second row is arranged on the one end side at a location closer to the one end side than a bisected portion of the first row. And the second battery belonging to the one end side section of the first row and the second battery belonging to the one end side section of the second row. The amount of electrolyte in the secondary battery is small,
A battery pack comprising: a secondary battery belonging to a section on the other end side of the first row; and a secondary battery belonging to the other end side of the second row having a large amount of electrolyte.
複数個の2次電池を組み合わせた組電池の製造方法において,
内部に収納される電解液量の異なる2次電池を用意し,
電解液量の多い2次電池を使用時により低温となる領域に配置し,
電解液量の少ない2次電池を使用時により高温となる領域に配置することを特徴とする組電池の製造方法。
In a method for manufacturing an assembled battery in which a plurality of secondary batteries are combined,
Prepare secondary batteries with different amounts of electrolyte stored inside,
Place a secondary battery with a large amount of electrolyte in an area where the temperature is lower when in use.
A method for producing an assembled battery, characterized in that a secondary battery having a small amount of electrolyte is disposed in a region where the temperature is higher when in use.
複数個の2次電池を組み合わせた組電池と,前記組電池の各2次電池の充電状態を制御する充電状態制御部とを有する組電池モジュールにおいて,前記充電状態制御部は,
前記複数個の2次電池のうち,使用時により低温となる領域に配置されているものにおける充電状態と比較して,
前記複数個の2次電池のうち,使用時により高温となる領域に配置されているものにおける充電状態を低くするものであることを特徴とする組電池モジュール。
In an assembled battery module having an assembled battery in which a plurality of secondary batteries are combined and a charging state control unit that controls a charging state of each secondary battery of the assembled battery, the charging state control unit includes:
Compared to the state of charge in the plurality of secondary batteries that are arranged in a region where the temperature is lower during use,
An assembled battery module, wherein a state of charge of a plurality of secondary batteries disposed in a region that becomes hotter during use is lowered.
請求項7に記載の組電池モジュールにおいて,
前記組電池が,前記複数個の2次電池が2列に配置されているものであり,
第1の列の一端の2次電池における第2の列の反対側から冷却媒体を取り入れ,前記第1の列の各2次電池における第2の列の反対側に前記一端から他端に向けて冷却媒体を流し,前記第1の列および第2の列の他端で折り返し,前記第2の列の各2次電池における第1の列の反対側に前記他端から前記一端に向けて冷却媒体を流し,前記第2の列の前記一端の2次電池における第1の列の反対側から冷却媒体を排出する冷却媒体路が形成されており,
前記第1の列を前記一端側の区間と前記他端側の区間とに2分したときの前記一端側の区間に属する2次電池の充電状態を高く,
前記第1の列の前記他端側に属する2次電池,および,前記第2の列に属する2次電池の充電状態を低くすることを特徴とする組電池モジュール。
The assembled battery module according to claim 7,
The assembled battery is a battery in which the plurality of secondary batteries are arranged in two rows,
A cooling medium is taken in from the opposite side of the second row of secondary batteries at one end of the first row, and the opposite end of the second row of each secondary battery of the first row is directed from the one end to the other end. The cooling medium is then flown, folded at the other ends of the first row and the second row, and from the other end to the one end on the opposite side of the first row in each secondary battery of the second row. A cooling medium path is formed for flowing the cooling medium and discharging the cooling medium from the opposite side of the first row in the secondary battery at the one end of the second row;
The charge state of the secondary battery belonging to the section on the one end side when the first row is divided into the section on the one end side and the section on the other end side is increased,
The assembled battery module, wherein the state of charge of the secondary battery belonging to the other end of the first row and the secondary battery belonging to the second row is lowered.
請求項7に記載の組電池モジュールにおいて,
前記組電池が,前記複数個の2次電池が2列に配置されているものであり,
第1の列の一端の2次電池における第2の列の反対側から冷却媒体を取り入れ,前記第1の列の各2次電池における第2の列の反対側に前記一端から他端に向けて冷却媒体を流し,前記第1の列および第2の列の他端で折り返し,前記第2の列の各2次電池における第1の列の反対側に前記他端から前記一端に向けて冷却媒体を流し,前記第2の列の前記一端の2次電池における第1の列の反対側から冷却媒体を排出する冷却媒体路が形成されており,
前記第2の列を前記一端側の区間と前記他端側の区間とに2分したときの前記他端側の区間に属する2次電池の充電状態を低く,
前記第1の列に属する2次電池,および,前記第2の列の前記一端側に属する2次電池の充電状態を高くすることを特徴とする組電池モジュール。
The assembled battery module according to claim 7,
The assembled battery is a battery in which the plurality of secondary batteries are arranged in two rows,
A cooling medium is taken in from the opposite side of the second row of secondary batteries at one end of the first row, and the opposite end of the second row of each secondary battery of the first row is directed from the one end to the other end. The cooling medium is then flown, folded at the other ends of the first row and the second row, and from the other end to the one end on the opposite side of the first row in each secondary battery of the second row. A cooling medium path is formed for flowing the cooling medium and discharging the cooling medium from the opposite side of the first row in the secondary battery at the one end of the second row;
The charge state of the secondary battery belonging to the section on the other end when the second row is divided into the section on the one end side and the section on the other end side is low,
A battery pack module comprising: a secondary battery belonging to the first row; and a secondary battery belonging to the one end side of the second row being charged.
請求項7に記載の組電池モジュールにおいて,
前記組電池が,前記複数個の2次電池が2列に配置されているものであり,
第1の列の一端の2次電池における第2の列の反対側から冷却媒体を取り入れ,前記第1の列の各2次電池における第2の列の反対側に前記一端から他端に向けて冷却媒体を流し,前記第1の列および第2の列の他端で折り返し,前記第2の列の各2次電池における第1の列の反対側に前記他端から前記一端に向けて冷却媒体を流し,前記第2の列の前記一端の2次電池における第1の列の反対側から冷却媒体を排出する冷却媒体路が形成されており,
前記第1の列を前記一端側の区間と前記他端側の区間とに2分するとともに,第2の列を前記第1の列の2分箇所より前記一端側に近い箇所で前記一端側の区間と前記他端側の区間とに2分したときの,前記第1の列の前記一端側の区間に属する2次電池,および,前記第2の列の前記一端側の区間に属する2次電池の充電状態を低く,
前記第1の列の前記他端側の区間に属する2次電池,および,前記第2の列の前記他端側に属する2次電池の充電状態を高くすることを特徴とする組電池モジュール。
The assembled battery module according to claim 7,
The assembled battery is a battery in which the plurality of secondary batteries are arranged in two rows,
A cooling medium is taken in from the opposite side of the second row of secondary batteries at one end of the first row, and the opposite end of the second row of each secondary battery of the first row is directed from the one end to the other end. The cooling medium is then flown, folded at the other ends of the first row and the second row, and from the other end to the one end on the opposite side of the first row in each secondary battery of the second row. A cooling medium path is formed for flowing the cooling medium and discharging the cooling medium from the opposite side of the first row in the secondary battery at the one end of the second row;
The first row is divided into a section on the one end side and a section on the other end side, and the second row is arranged on the one end side at a location closer to the one end side than a bisected portion of the first row. And the second battery belonging to the one end side section of the first row and the second battery belonging to the one end side section of the second row. The secondary battery has a low charge
The assembled battery module, wherein the state of charge of the secondary battery belonging to the section on the other end side of the first row and the secondary battery belonging to the other end side of the second row is increased.
請求項7から請求項10までのいずれか1つに記載の組電池モジュールにおいて,
前記充電状態制御部は,充電状態の高い2次電池を放電させることにより各2次電池の電圧を均等化する制御を行うものであり,
使用時により低温となる領域に含まれる2次電池に対しては,放電させないか,または,使用時により高温となる領域に含まれる2次電池より高い充電状態までしか放電させないことを特徴とする組電池モジュール。
The assembled battery module according to any one of claims 7 to 10,
The charge state control unit performs control to equalize the voltage of each secondary battery by discharging a secondary battery having a high charge state,
A secondary battery included in a region that becomes colder during use is not discharged or discharged only to a higher state of charge than a secondary battery included in a region that becomes hotter during use. Battery module.
請求項7に記載の組電池モジュールにおいて,
前記組電池が,
前記複数個の2次電池を冷却するための冷却媒体を取り入れる入口と,
前記冷却媒体を排出する出口とを有する電池パックとなっており,
前記使用時により低温となる領域は,組電池中の前記入口から最も近い電池を含む領域であり,
前記使用時により高温となる領域は,組電池中のそれ以外の領域であることを特徴とする組電池モジュール。
The assembled battery module according to claim 7,
The assembled battery is
An inlet for taking in a cooling medium for cooling the plurality of secondary batteries;
A battery pack having an outlet for discharging the cooling medium;
The region where the temperature becomes lower during use is a region including the battery closest to the entrance in the assembled battery,
The assembled battery module, wherein the region that becomes hotter during use is a region other than that in the assembled battery.
請求項1から請求項5までのいずれか1つに記載の組電池または電池パックを搭載することを特徴とする車両。 A vehicle comprising the assembled battery or the battery pack according to any one of claims 1 to 5. 請求項7から請求項12までのいずれか1つに記載の組電池モジュールを搭載することを特徴とする車両。 A vehicle comprising the assembled battery module according to any one of claims 7 to 12. 請求項1から請求項5までのいずれか1つに記載の組電池または電池パックを搭載することを特徴とする電池搭載機器。 A battery-equipped device comprising the assembled battery or the battery pack according to any one of claims 1 to 5. 請求項7から請求項12までのいずれか1つに記載の組電池モジュールを搭載することを特徴とする電池搭載機器。 A battery-mounted device comprising the assembled battery module according to any one of claims 7 to 12.
JP2009014311A 2009-01-26 2009-01-26 Battery pack, method for manufacturing the same, battery pack, battery pack module, vehicle mounting the same, and battery mounting equipment Withdrawn JP2010170942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009014311A JP2010170942A (en) 2009-01-26 2009-01-26 Battery pack, method for manufacturing the same, battery pack, battery pack module, vehicle mounting the same, and battery mounting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009014311A JP2010170942A (en) 2009-01-26 2009-01-26 Battery pack, method for manufacturing the same, battery pack, battery pack module, vehicle mounting the same, and battery mounting equipment

Publications (1)

Publication Number Publication Date
JP2010170942A true JP2010170942A (en) 2010-08-05

Family

ID=42702864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009014311A Withdrawn JP2010170942A (en) 2009-01-26 2009-01-26 Battery pack, method for manufacturing the same, battery pack, battery pack module, vehicle mounting the same, and battery mounting equipment

Country Status (1)

Country Link
JP (1) JP2010170942A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101423595B1 (en) * 2011-07-13 2014-07-25 주식회사 엘지화학 Secondary Battery Pack with Battery Cell Having Improved Low Temperature Property
US8828584B2 (en) 2011-04-12 2014-09-09 Hitachi, Ltd. Lithium-ion rechargeable battery module, vehicle with the battery module and generating system with the battery module
WO2017096465A1 (en) * 2015-12-11 2017-06-15 Blue Solutions Canada Inc. Battery with variable electrochemical cells configuration
JP2017117666A (en) * 2015-12-24 2017-06-29 株式会社豊田自動織機 Manufacturing method of power storage device module
CN107895816A (en) * 2017-11-30 2018-04-10 中航锂电(江苏)有限公司 lithium battery module assembly system
JP2018161524A (en) * 2011-04-15 2018-10-18 コヴィディエン・アクチェンゲゼルシャフト Battery driven hand-held ultrasonic surgery cauterizing device
CN109196710A (en) * 2015-12-11 2019-01-11 加拿大蓝色解决方案有限公司 Battery with the electrochemical cell for having variable impedance
US10426508B2 (en) 2007-12-03 2019-10-01 Covidien Ag Cordless hand-held ultrasonic cautery device
US10456158B2 (en) 2007-12-03 2019-10-29 Covidien Ag Cordless hand-held ultrasonic surgical device
JP2020047529A (en) * 2018-09-20 2020-03-26 Fdk株式会社 Battery pack
US10799913B2 (en) 2007-12-03 2020-10-13 Covidien Lp Battery-powered hand-held ultrasonic surgical cautery cutting device
CN112510315A (en) * 2019-09-13 2021-03-16 丰田自动车株式会社 Battery module
CN113937387A (en) * 2021-12-16 2022-01-14 河北格力钛新能源有限公司 Temperature control method for battery module

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10426508B2 (en) 2007-12-03 2019-10-01 Covidien Ag Cordless hand-held ultrasonic cautery device
US11478820B2 (en) 2007-12-03 2022-10-25 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US10799913B2 (en) 2007-12-03 2020-10-13 Covidien Lp Battery-powered hand-held ultrasonic surgical cautery cutting device
US10456158B2 (en) 2007-12-03 2019-10-29 Covidien Ag Cordless hand-held ultrasonic surgical device
US8828584B2 (en) 2011-04-12 2014-09-09 Hitachi, Ltd. Lithium-ion rechargeable battery module, vehicle with the battery module and generating system with the battery module
JP2018161524A (en) * 2011-04-15 2018-10-18 コヴィディエン・アクチェンゲゼルシャフト Battery driven hand-held ultrasonic surgery cauterizing device
KR101423595B1 (en) * 2011-07-13 2014-07-25 주식회사 엘지화학 Secondary Battery Pack with Battery Cell Having Improved Low Temperature Property
US10487033B2 (en) 2015-12-11 2019-11-26 Blue Solutions Canada Inc. Battery with variable electrochemical cells configuration
EP3387697A4 (en) * 2015-12-11 2019-08-07 Blue Solutions Canada Inc. Battery with electrochemical cells having variable impedance
EP3387698A4 (en) * 2015-12-11 2019-08-07 Blue Solutions Canada Inc. Battery with variable electrochemical cells configuration
CN109196711A (en) * 2015-12-11 2019-01-11 加拿大蓝色解决方案有限公司 Battery with the configuration of variable electrochemical cell
CN109196710A (en) * 2015-12-11 2019-01-11 加拿大蓝色解决方案有限公司 Battery with the electrochemical cell for having variable impedance
WO2017096465A1 (en) * 2015-12-11 2017-06-15 Blue Solutions Canada Inc. Battery with variable electrochemical cells configuration
JP2017117666A (en) * 2015-12-24 2017-06-29 株式会社豊田自動織機 Manufacturing method of power storage device module
CN107895816A (en) * 2017-11-30 2018-04-10 中航锂电(江苏)有限公司 lithium battery module assembly system
JP2020047529A (en) * 2018-09-20 2020-03-26 Fdk株式会社 Battery pack
CN112510315A (en) * 2019-09-13 2021-03-16 丰田自动车株式会社 Battery module
CN112510315B (en) * 2019-09-13 2023-03-24 丰田自动车株式会社 Battery module
CN113937387A (en) * 2021-12-16 2022-01-14 河北格力钛新能源有限公司 Temperature control method for battery module
CN113937387B (en) * 2021-12-16 2022-02-22 河北格力钛新能源有限公司 Temperature control method for battery module

Similar Documents

Publication Publication Date Title
JP2010170942A (en) Battery pack, method for manufacturing the same, battery pack, battery pack module, vehicle mounting the same, and battery mounting equipment
Malik et al. Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling
Fan et al. Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries
Panchal et al. Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions
Feng et al. Mechanisms for the evolution of cell variations within a LiNixCoyMnzO2/graphite lithium-ion battery pack caused by temperature non-uniformity
Song et al. Multi-objective optimization of a semi-active battery/supercapacitor energy storage system for electric vehicles
Liu et al. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge
EP1798100B1 (en) Battery management system
US7971345B2 (en) Reconstituted battery pack, reconstituted battery pack producing method, reconstituted battery pack using method, and reconstituted battery pack control system
US9694699B2 (en) Low temperature fast charge of battery pack
US9205750B2 (en) Method to estimate battery open-circuit voltage based on transient resistive effects
Yeow et al. Thermal analysis of a Li-ion battery system with indirect liquid cooling using finite element analysis approach
JP4135297B2 (en) Battery pack charging device, charging method, and electric vehicle
US20150291055A1 (en) Battery temperature estimation system
US20120081075A1 (en) Battery pack capacity learn algorithm
JP6298920B2 (en) Battery control device
JP2011135656A (en) Battery system, vehicle with the same, and method for detecting internal short circuit in the battery system
Wang et al. Actively controlled thermal management of prismatic Li-ion cells under elevated temperatures
Ma et al. Electro-thermal modeling of a lithium-ion battery system
Gozdur et al. An energy balance evaluation in lithium-ion battery module under high temperature operation
CN109980316A (en) Temperature of powered cell management control system
Worwood et al. Thermal analysis of a lithium-ion pouch cell under aggressive automotive duty cycles with minimal cooling
Peng et al. Thermal management system design for batteries packs of electric vehicles: A survey
JP6696173B2 (en) Method for manufacturing power storage device module
Martellucci et al. Analysis of air-cooling battery thermal management system for formula student car

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120403