JP2010169600A - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
JP2010169600A
JP2010169600A JP2009013751A JP2009013751A JP2010169600A JP 2010169600 A JP2010169600 A JP 2010169600A JP 2009013751 A JP2009013751 A JP 2009013751A JP 2009013751 A JP2009013751 A JP 2009013751A JP 2010169600 A JP2010169600 A JP 2010169600A
Authority
JP
Japan
Prior art keywords
current
effective value
value
contact current
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009013751A
Other languages
Japanese (ja)
Other versions
JP5575406B2 (en
Inventor
Ryuta Saito
竜太 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2009013751A priority Critical patent/JP5575406B2/en
Publication of JP2010169600A publication Critical patent/JP2010169600A/en
Application granted granted Critical
Publication of JP5575406B2 publication Critical patent/JP5575406B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the effective value on a contact current of an AC waveform on which a DC component is superimposed. <P>SOLUTION: A processing part 7 executes: a measuring processing for measuring a DC component Idc and an AC component Iac from waveform data D1 of a contact current Itc flowing in a human body simulation circuit 2; an effective value calculation processing for calculating q sinusoidal wave effective value Iev of the contact current Itc, by dividing a swinging width Ipp of the contact current Itc calculated from the waveform data D1 by a value (2×√2), when each component Idc, Iac is equal to or more than each reference value Ir1, Ir2 together, and a duration T1 of the contact current Itc is over m times a cardiac cycle Tc, and calculating a sinusoidal wave effective value Iev, by dividing the maximum absolute value Ip of a peak value of the contact current Itc calculated from the waveform data D1 by a value of Ip/√2, when each component Idc, Iac is equal to or more than each reference value Ir1, Ir2 together, and the duration T1 is below n times the cardiac cycle Tc; and an output processing for outputting the sine wave effective value Iev to an output part 10. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、測定対象機器についての接触電流を測定する電流測定装置に関するものである。   The present invention relates to a current measuring device that measures a contact current of a device to be measured.

この種の電流測定装置として、下記の特許文献1において従来の技術として開示されている電流測定装置が知られている。この電流測定装置は、人体模擬回路を備え、「電気用品安全法における電気用品の技術上の基準を定める省令の取扱細則」や「IEC60335−1:1994の国際標準規格」に則って、電気用品(測定対象機器)に接続される2本の交流電源線(以下、「電源線」ともいう)のうちのいずれか1本と電気用品の外装(露出充電部)との間の漏れ電流を測定可能に構成されている。   As this type of current measuring device, a current measuring device disclosed as a conventional technique in Patent Document 1 below is known. This current measuring device is provided with a human body simulation circuit, and in accordance with “Detailed Regulations for Handling Ordinances for Establishing Technical Standards for Electrical Appliances in the Electrical Appliance and Material Safety Law” and “International Standards of IEC 60335-1: 1994”. Measure the leakage current between any one of the two AC power lines (hereinafter also referred to as “power lines”) connected to the (measurement target device) and the exterior (exposed charging part) of the electrical appliance. It is configured to be possible.

特開2004−138565号公報(第2頁)JP 2004-138565 A (second page)

ところで、上記した漏れ電流についての規格以外にも、接触電流についての規格(IEC60990「接触電流及び保護導体電流の測定方法」)があり、この規格に基づいて接触電流を測定可能な電流測定装置も種々開発されている。その一方、上記した各規格のいずれにおいても定められていない波形の接触電流(図3,4に示す直流成分を含む交流電流)も人体に影響を与えるため、正確にその実効値を測定できるのが好ましい。しかしながら、上記した本願出願人の提案した電流測定装置、および上記した接触電流を測定する電流測定装置のいずれも、図3,4に示すような波形(直流成分が重畳した交流波形)の接触電流についての測定を前提としていないため、この接触電流の実効値を正確に測定することができないという課題が存在している。   By the way, in addition to the above-mentioned standard for leakage current, there is a standard for contact current (IEC60990 “Measurement method for contact current and protective conductor current”), and a current measuring device capable of measuring contact current based on this standard is also available. Various developments have been made. On the other hand, since the contact current with a waveform not defined in any of the above standards (AC current including the DC component shown in FIGS. 3 and 4) also affects the human body, its effective value can be measured accurately. Is preferred. However, both the current measuring device proposed by the applicant of the present application and the current measuring device for measuring the contact current described above have a contact current having a waveform as shown in FIGS. Therefore, there is a problem that the effective value of the contact current cannot be measured accurately.

本発明は、かかる課題を解決すべくなされたものであり、直流成分が重畳した交流波形の接触電流についての実効値を正確に測定し得る電流測定装置を提供することを主目的とする。   The present invention has been made to solve such a problem, and a main object of the present invention is to provide a current measuring device capable of accurately measuring an effective value of a contact current having an AC waveform on which a DC component is superimposed.

上記目的を達成すべく請求項1記載の電流測定装置は、人体模擬回路と、アース線を含む交流電源線のいずれか1線および測定対象機器の外装の間、並びに2つの測定対象機器の各漏れ電流測定端子間のいずれかに前記人体模擬回路を接続したときに当該人体模擬回路を流れる接触電流に起因して当該人体模擬回路を構成する所定の素子の両端間に発生する両端間電圧に基づいて前記接触電流の実効値を測定する処理部とを備えた電流測定装置であって、前記両端間電圧をサンプリングして前記接触電流についての波形データを生成するA/D変換部と、出力部とを備え、前記処理部は、前記波形データに基づいて前記接触電流の直流成分および交流成分を測定する測定処理、前記直流成分の絶対値および前記交流成分の大きさが共に各々に予め規定された基準値以上であり、かつ前記接触電流の継続時間が心周期のm倍(mは正の数)を超えるときには、前記波形データに基づいて前記接触電流の振れ幅Ippを算出すると共に当該振れ幅Ippを値(2×√2)で除算して前記接触電流の正弦波実効値を算出し、前記直流成分の絶対値および前記交流成分の大きさが共に前記基準値以上であり、かつ当該継続時間が当該心周期のn倍(nはm未満の正の数)未満となるときには、前記波形データに基づいて前記接触電流のピーク値の最大絶対値Ipを算出すると共に最大絶対値Ipを値Ip/√2で除算して前記接触電流の前記正弦波実効値を算出する実効値算出処理、および当該実効値算出処理において算出した前記正弦波実効値を前記出力部に出力させる出力処理を実行する。   In order to achieve the above object, a current measuring device according to claim 1 is provided between a human body simulation circuit, an AC power supply line including a ground wire and an exterior of a measuring target device, and each of two measuring target devices. When the human body simulation circuit is connected to any of the leakage current measuring terminals, the voltage between both ends generated between both ends of the predetermined element constituting the human body simulation circuit due to the contact current flowing through the human body simulation circuit A current measuring device including a processing unit that measures an effective value of the contact current based on the A / D conversion unit that samples the voltage between both ends and generates waveform data about the contact current; and an output A measurement process for measuring the direct current component and the alternating current component of the contact current based on the waveform data, and the absolute value of the direct current component and the magnitude of the alternating current component are both Therefore, when the duration of the contact current exceeds m times the cardiac cycle (m is a positive number), the fluctuation width Ipp of the contact current is calculated based on the waveform data. And the sine wave effective value of the contact current is calculated by dividing the fluctuation width Ipp by the value (2 × √2), and the absolute value of the DC component and the magnitude of the AC component are both greater than or equal to the reference value. When the duration is less than n times the cardiac cycle (n is a positive number less than m), the maximum absolute value Ip of the peak value of the contact current is calculated based on the waveform data and the maximum absolute An effective value calculation process for calculating the sine wave effective value of the contact current by dividing the value Ip by the value Ip / √2, and causing the output unit to output the sine wave effective value calculated in the effective value calculation process Execute output processing .

また、請求項2記載の電流測定装置は、請求項1記載の電流測定装置において、前記出力部は、表示装置で構成され、前記処理部は、前記実効値算出処理において算出した前記正弦波実効値と予め規定された基準実効値とを比較して、その比較結果を前記表示装置に表示させる。   The current measurement device according to claim 2 is the current measurement device according to claim 1, wherein the output unit is configured by a display device, and the processing unit is the sine wave effective calculated in the effective value calculation processing. The value is compared with a predetermined reference effective value, and the comparison result is displayed on the display device.

請求項1記載の電流測定装置によれば、直流成分の絶対値および交流成分の大きさがそれぞれに対して予め規定された基準値以上であり、かつ接触電流の継続時間が心周期のm倍を超えるときには、波形データに基づいて接触電流の振れ幅Ippを算出すると共に振れ幅Ippを値(2×√2)で除算して接触電流の正弦波実効値を算出することができ、直流成分の絶対値および交流成分の大きさが共に前記基準値以上であり、かつ継続時間が心周期のn倍未満となるときには、波形データに基づいて接触電流のピーク値の最大絶対値Ipを算出すると共に最大絶対値Ipを値Ip/√2で除算して接触電流の正弦波実効値を算出することができるため、直流電流が重畳した交流電流である接触電流についての正弦波実効値の測定および評価をIEC60479−2規格に則って行うことができる。また、この電流測定装置によれば、波形データに基づいて、接触電流が直流電流の重畳した交流電流であるか否か、さらには接触電流の継続時間が心周期を基準としてどのような長さにあるのかを自動的に判別して、正弦波実効値を自動的に算出するため、IEC60479−2に規定される正弦波実効値を正確かつ短時間で算出することができる。   According to the current measuring device of claim 1, the absolute value of the direct current component and the magnitude of the alternating current component are equal to or greater than a predetermined reference value for each, and the duration of the contact current is m times the cardiac cycle. , The sine wave effective value of the contact current can be calculated by calculating the oscillating width Ipp of the contact current based on the waveform data and dividing the oscillating width Ipp by the value (2 × √2). When the absolute value of the current and the magnitude of the alternating current component are both greater than or equal to the reference value and the duration is less than n times the cardiac cycle, the maximum absolute value Ip of the peak value of the contact current is calculated based on the waveform data. In addition, the sine wave effective value of the contact current can be calculated by dividing the maximum absolute value Ip by the value Ip / √2, so that the measurement of the sine wave effective value for the contact current that is an alternating current on which the direct current is superimposed; Evaluation IEC60479-2 can be carried out in accordance with the standard. Further, according to this current measuring device, based on the waveform data, whether or not the contact current is an alternating current superimposed with a direct current, and further, how long the duration of the contact current is based on the cardiac cycle. Since the sine wave effective value is automatically calculated and the sine wave effective value is automatically calculated, the sine wave effective value defined in IEC60479-2 can be calculated accurately and in a short time.

また、請求項2記載の電流測定装置によれば、算出した正弦波実効値と予め規定された基準実効値との比較結果が表示装置で構成された出力部に表示されるため、直流電流が重畳した交流電流である接触電流についての正弦波実効値の評価をIEC60479−2規格に則って自動的に行った結果を確実に認識することができる。   According to the current measuring device of claim 2, since the comparison result between the calculated sine wave effective value and the reference effective value defined in advance is displayed on the output unit configured by the display device, the direct current is It is possible to reliably recognize the result of automatically evaluating the sine wave effective value for the contact current that is the superimposed alternating current according to the IEC60479-2 standard.

電流測定装置1の構成を示すブロック図である。1 is a block diagram showing a configuration of a current measuring device 1. FIG. 図1における人体模擬回路2の回路図である。It is a circuit diagram of the human body simulation circuit 2 in FIG. 接触電流Itcの波形図である。It is a wave form diagram of contact current Itc. 接触電流Itcの他の波形図である。It is another wave form diagram of contact current Itc. 電流測定装置1Aの構成を示すブロック図である。It is a block diagram which shows the structure of 1 A of current measuring devices.

以下、添付図面を参照して、本発明に係る電流測定装置の実施の形態について説明する。   Hereinafter, an embodiment of a current measuring device according to the present invention will be described with reference to the accompanying drawings.

最初に、電流測定装置1の構成について説明する。   First, the configuration of the current measuring device 1 will be described.

電流測定装置1は、図1に示すように、人体模擬回路(模擬人体インピーダンス回路)2、A/D変換部3、スイッチ回路4、入力端子部5、出力端子部6、処理部7、記憶部8、操作部9および出力部10を備え、測定対象機器11についての接触電流Itcの正弦波実効値(本例では後述するようにIEC60479−2で規定される式で求められる等価正弦波電流の実効値)を測定可能に構成されている。また、電流測定装置1では、人体模擬回路2、A/D変換部3、スイッチ回路4、処理部7および記憶部8が1つの筐体1a内に配設され、かつ入力端子部5、出力端子部6、操作部9および出力部10が筐体1aの壁面に取り付けられている。   As shown in FIG. 1, the current measuring device 1 includes a human body simulation circuit (simulated human body impedance circuit) 2, an A / D conversion unit 3, a switch circuit 4, an input terminal unit 5, an output terminal unit 6, a processing unit 7, and a memory. Unit 8, operation unit 9, and output unit 10, and the sine wave effective value of the contact current Itc for the measurement target device 11 (in this example, as described later, an equivalent sine wave current obtained by an expression defined by IEC 60479-2) The effective value) can be measured. Further, in the current measuring device 1, the human body simulation circuit 2, the A / D conversion unit 3, the switch circuit 4, the processing unit 7 and the storage unit 8 are disposed in one housing 1a, and the input terminal unit 5 and the output The terminal part 6, the operation part 9, and the output part 10 are attached to the wall surface of the housing 1a.

人体模擬回路2は、抵抗素子のみで、または抵抗素子および容量素子を組み合わせて構成された公知の回路(例えば、IEC60990において接触電流の測定用として規定されている回路)の少なくとも1つを使用して構成されている。本例では一例として、人体模擬回路2は、図2に示すように、3つの抵抗素子(抵抗R1〜R3)および2つの容量素子(コンデンサC1,C2)を組み合わせて構成されている。具体的には、人体模擬回路2は、端子(電流入力端子)Aと端子(基準端子)Bとの間に2つの抵抗R1,R2が直列にこの順で接続され、抵抗R1にコンデンサC1が並列に接続されている。また、抵抗R2(本発明における所定の素子)の両端間には、抵抗R3およびコンデンサC2で構成される低域通過型フィルタ回路が接続されている。また、抵抗R3およびコンデンサC2の接続点に端子(電圧出力端子)Cが接続されている。また、人体模擬回路2の端子Aは筐体1aに設けられたコネクタ12に接続されている。検出プローブ2aは、このコネクタ12に着脱自在に接続されている。この構成により、この人体模擬回路2では、検出プローブ2aから端子Aを介して端子Bに流れる接触電流Itcを抵抗R2で電圧Vtcに変換し、電圧Vtc(本発明における両端間電圧)を上記の低域通過型フィルタ回路を介して端子Cから出力可能となっている。   The human body simulation circuit 2 uses at least one of a known circuit (for example, a circuit defined for measuring a contact current in IEC 60990) configured by only a resistive element or a combination of a resistive element and a capacitive element. Configured. In this example, as an example, the human body simulation circuit 2 is configured by combining three resistance elements (resistances R1 to R3) and two capacitance elements (capacitors C1 and C2) as shown in FIG. Specifically, in the human body simulation circuit 2, two resistors R1 and R2 are connected in series in this order between a terminal (current input terminal) A and a terminal (reference terminal) B, and a capacitor C1 is connected to the resistor R1. Connected in parallel. Further, a low-pass filter circuit including a resistor R3 and a capacitor C2 is connected between both ends of the resistor R2 (a predetermined element in the present invention). A terminal (voltage output terminal) C is connected to a connection point between the resistor R3 and the capacitor C2. The terminal A of the human body simulation circuit 2 is connected to a connector 12 provided on the housing 1a. The detection probe 2a is detachably connected to the connector 12. With this configuration, in this human body simulation circuit 2, the contact current Itc flowing from the detection probe 2a through the terminal A to the terminal B is converted to the voltage Vtc by the resistor R2, and the voltage Vtc (voltage across the present invention) is converted to Output from the terminal C is possible via a low-pass filter circuit.

A/D変換部3は、人体模擬回路2から出力される電圧Vtcを所定周期でサンプリングすることにより、電圧Vtcの電圧波形(すなわち、電圧Vtcに変換された接触電流Itcの波形)を示す波形データD1を生成して出力する。スイッチ回路4は、一例として複数のリレーが組み合わされて構成されている。また、スイッチ回路4は、アース線Gを含む交流電源線AC1,AC2と人体模擬回路2との間に配設されて、処理部7から出力される制御信号S1によって各リレーの接・断状態が制御されることにより、アース線G、交流電源線AC1および交流電源線AC2のうちの任意の1本(アース線Gを含む交流電源線のいずれか1線)に対して人体模擬回路2の端子Bを接続する。   The A / D conversion unit 3 samples the voltage Vtc output from the human body simulation circuit 2 at a predetermined period, thereby showing a voltage waveform of the voltage Vtc (that is, a waveform of the contact current Itc converted to the voltage Vtc). Data D1 is generated and output. As an example, the switch circuit 4 is configured by combining a plurality of relays. The switch circuit 4 is disposed between the AC power supply lines AC1 and AC2 including the ground wire G and the human body simulation circuit 2, and the connection / disconnection state of each relay according to the control signal S1 output from the processing unit 7. Is controlled so that the human body simulation circuit 2 is connected to any one of the ground line G, the AC power supply line AC1, and the AC power supply line AC2 (any one of the AC power supply lines including the ground line G). Connect terminal B.

入力端子部5は、一例として、アース接続端子および一対の交流入力端子を備えたコネクタ(例えばACインレット)で構成されている。出力端子部6は、一例として、アース接続端子および一対の交流出力端子を備えたコネクタ(例えばACアウトレット)で構成されて、そのアース接続端子が入力端子部5のアース接続端子に接続され、その一対の交流出力端子が入力端子部5の一対の交流入力端子に接続されている。測定対象機器11は、その電源コード(アース線を含むもの)13が出力端子部6に接続されて、電流測定装置1を介して交流電源Vacが供給されると共にアースに接続される。   As an example, the input terminal portion 5 includes a connector (for example, an AC inlet) including a ground connection terminal and a pair of AC input terminals. As an example, the output terminal portion 6 includes a connector (for example, an AC outlet) including a ground connection terminal and a pair of AC output terminals, and the ground connection terminal is connected to the ground connection terminal of the input terminal portion 5. A pair of AC output terminals are connected to a pair of AC input terminals of the input terminal portion 5. The measurement target device 11 has a power cord (including a ground wire) 13 connected to the output terminal unit 6 and is supplied with an AC power source Vac via the current measuring device 1 and connected to the ground.

処理部7は、一例としてCPUで構成されて、測定処理、実効値算出処理、比較処理、出力処理および制御処理を実行する。具体的には、測定処理では、処理部7は、波形データD1に基づいて接触電流Itcについての直流成分Idcの絶対値(直流成分Idcのレベルの絶対値)および交流成分Iacの振幅(本発明における交流成分Iacの大きさ)を測定する。また、実効値算出処理では、処理部7は、直流成分Idcの絶対値および交流成分Iacの振幅が共に各々に対して予め規定された基準値Ir1,Ir2以上であり(つまり、接触電流Itcが直流成分の重畳した交流電流であり)、かつ接触電流Itcの継続時間T1が心周期Tcのm倍(mは正の数)を超えるときには、波形データD1に基づいて接触電流Itcの振れ幅Ippを算出すると共に接触電流Itcの正弦波実効値Iev(=Ipp/(2×√2))を算出し、直流成分Idcの絶対値および交流成分Iacの振幅がそれぞれに対して予め規定された基準値Ir1,Ir2以上であり、かつ継続時間T1が心周期Tcのn倍未満となるときには、波形データD1に基づいて接触電流Itcのピーク値の最大絶対値Ipを算出すると共に接触電流Itcの正弦波実効値Iev(=Ip/√2)を算出する。この場合、正弦波実効値Ievについての上記2つの算出式は、IEC60479−2に規定されている等価正弦波電流の実効値を算出する式である。また、基準値Ir1は0.005mA、基準値Ir2は直流成分Idcの10%である。   The processing unit 7 includes a CPU as an example, and executes measurement processing, effective value calculation processing, comparison processing, output processing, and control processing. Specifically, in the measurement process, the processing unit 7 determines the absolute value of the direct current component Idc (the absolute value of the level of the direct current component Idc) and the amplitude of the alternating current component Iac (the present invention) for the contact current Itc based on the waveform data D1. Measure the magnitude of the AC component Iac at. Further, in the effective value calculation process, the processing unit 7 has both the absolute value of the direct current component Idc and the amplitude of the alternating current component Iac are equal to or greater than the reference values Ir1 and Ir2 defined in advance for each (that is, the contact current Itc is When the duration T1 of the contact current Itc exceeds m times the cardiac cycle Tc (m is a positive number), the fluctuation width Ipp of the contact current Itc is based on the waveform data D1. And the sine wave effective value Iev (= Ipp / (2 × √2)) of the contact current Itc is calculated, and the absolute value of the direct current component Idc and the amplitude of the alternating current component Iac are defined in advance for each reference. When the values are Ir1 and Ir2 or more and the duration T1 is less than n times the cardiac cycle Tc, the maximum absolute value Ip of the peak value of the contact current Itc is calculated based on the waveform data D1. Sinusoidal effective value of Rutotomoni contact current Itc for calculating the Iev (= Ip / √2). In this case, the above two calculation formulas for the sine wave effective value Iev are equations for calculating the effective value of the equivalent sine wave current defined in IEC60479-2. The reference value Ir1 is 0.005 mA, and the reference value Ir2 is 10% of the direct current component Idc.

また、処理部7は、比較処理では、実効値算出処理において算出した正弦波実効値Ievを予め規定された基準実効値Ievrと比較する。また、処理部7は、出力処理では、実効値算出処理で算出した正弦波実効値Iev、および比較処理での比較結果を出力部10に出力する。本例では後述するように、出力部10が表示装置(例えばLCDなどのディスプレイ装置)で構成されているため、処理部7は、出力処理の一例としての表示処理を実行して、正弦波実効値Ievおよび比較処理での比較結果を表示装置に表示させる。また、処理部7は、制御処理では、制御信号S1を出力して、スイッチ回路4に対する制御(リレーの接・断状態の制御)についても実行する。   In the comparison process, the processing unit 7 compares the sine wave effective value Iev calculated in the effective value calculation process with a reference effective value Ievr defined in advance. In the output process, the processing unit 7 outputs the sine wave effective value Iev calculated in the effective value calculation process and the comparison result in the comparison process to the output unit 10. In this example, as will be described later, since the output unit 10 is configured by a display device (for example, a display device such as an LCD), the processing unit 7 executes display processing as an example of output processing and performs sine wave effective. The value Iev and the comparison result in the comparison process are displayed on the display device. Further, in the control process, the processing unit 7 outputs a control signal S1 and executes control for the switch circuit 4 (control of the relay connection / disconnection state).

記憶部8は、ROMおよびRAMで構成されて、処理部7が実行する各処理において使用される基準値Ir1,Ir2および基準実効値Ievrが記憶されている。また、記憶部8には、各処理における算出結果および比較結果、並びに操作部9から入力された心周期Tcおよび後述する選択データD2が処理部7によって記憶される。操作部9は、テンキーおよび設定スイッチを備え、心周期Tcと、アース線Gおよび交流電源線AC1,AC2のうちの人体模擬回路2に接続される1本の配線を示す選択データD2とを処理部7に対して出力可能に構成されている。出力部10は、一例としてディスプレイ装置などの表示装置で構成されて、処理部7の算出結果や比較結果を表示する。   The storage unit 8 includes a ROM and a RAM, and stores reference values Ir1 and Ir2 and a reference effective value Ievr used in each process executed by the processing unit 7. The storage unit 8 stores calculation results and comparison results in each process, a cardiac cycle Tc input from the operation unit 9 and selection data D2 described later by the processing unit 7. The operation unit 9 includes a numeric keypad and a setting switch, and processes the cardiac cycle Tc and selection data D2 indicating one wiring connected to the human body simulation circuit 2 of the ground line G and the AC power supply lines AC1 and AC2. The unit 7 can be output. The output unit 10 is configured by a display device such as a display device as an example, and displays the calculation result and the comparison result of the processing unit 7.

次に、電流測定装置1の動作について説明する。なお、図1に示すように、測定対象機器11は、その電源コード13が電流測定装置1の出力端子部6に接続されることにより、電流測定装置1を介して交流電源Vacが供給されて、作動状態にあるものとする。また、電流測定装置1も作動状態にあるものとする。   Next, the operation of the current measuring device 1 will be described. As shown in FIG. 1, the measurement target device 11 is supplied with the AC power supply Vac via the current measuring device 1 by connecting the power cord 13 to the output terminal portion 6 of the current measuring device 1. It shall be in the operating state. In addition, it is assumed that the current measuring device 1 is also in an operating state.

この状態において、作業者は、操作部9を操作することにより、心周期Tcおよび選択データD2を処理部7に入力する。処理部7は、入力した心周期Tcおよび選択データD2を記憶部8に記憶させる。また、処理部7は、制御信号S1をスイッチ回路4に対して出力することによってスイッチ回路4内の各リレーの接・断状態を制御して、選択データD2によって示される1本の配線(アース線Gおよび交流電源線AC1,AC2のうちから選択された配線(本例では一例としてアース線G))を人体模擬回路2の端子Bを接続させる。   In this state, the operator operates the operation unit 9 to input the cardiac cycle Tc and selection data D2 to the processing unit 7. The processing unit 7 causes the storage unit 8 to store the input cardiac cycle Tc and selection data D2. Further, the processing unit 7 controls the connection / disconnection state of each relay in the switch circuit 4 by outputting the control signal S1 to the switch circuit 4, and the single wiring (grounding) indicated by the selection data D2 is controlled. A line selected from the line G and the AC power supply lines AC1 and AC2 (in this example, the ground line G as an example) is connected to the terminal B of the human body simulation circuit 2.

その後、作業者は、検出プローブ2aを測定対象機器11の外装(露出充電部)に接触させる。これにより、接触電流Itcが検出プローブ2aおよび人体模擬回路2を介して、測定対象機器11とアース線Gとの間に流れ、この接触電流Itcを示す電圧Vtcが人体模擬回路2の端子Cから出力される。A/D変換部3は、この電圧Vtcをサンプリングすることにより、接触電流Itc(図3または図4に示す波形の電流)についての波形データD1を生成して、処理部7に出力する。   Thereafter, the operator brings the detection probe 2 a into contact with the exterior (exposed charging unit) of the measurement target device 11. Thereby, the contact current Itc flows between the measurement target device 11 and the ground wire G via the detection probe 2a and the human body simulation circuit 2, and the voltage Vtc indicating the contact current Itc is supplied from the terminal C of the human body simulation circuit 2. Is output. The A / D converter 3 samples the voltage Vtc to generate waveform data D1 for the contact current Itc (the current having the waveform shown in FIG. 3 or FIG. 4), and outputs the waveform data D1 to the processing unit 7.

処理部7は、この波形データD1を入力して記憶部8に記憶させる。次いで、処理部7は、測定処理を実行する。この測定処理では、処理部7は、波形データD1に基づいて、接触電流Itcの直流成分Idcの絶対値および交流成分Iacの振幅を測定する。本例では、処理部7は、一例として図3や図4に示す波形の接触電流Itcについては、周期的に変化する波形部分が交流成分Iacの波形に相当するとして、この部分のピーク・トゥ・ピークを交流成分Iacの振幅として算出する。また、交流成分Iacの振幅における中心の電圧の絶対値を直流成分Idcの絶対値として算出する。なお、接触電流Itcの波形に、周期的に変化する部分が存在しないときには、振幅が変動する期間における接触電流Itcの最大値と最小値の差を交流成分Iacの振幅として算出する。また、直流成分Idcの絶対値については、交流成分Iacの振幅を算出した期間での接触電流Itcの平均レベルの絶対値を直流成分Idcの絶対値として算出する。最後に、処理部7は、測定(算出)した接触電流Itcの直流成分Idcの絶対値および交流成分Iacの振幅を記憶部8に記憶させる。これにより、測定処理が完了する。   The processing unit 7 inputs this waveform data D1 and stores it in the storage unit 8. Next, the processing unit 7 performs a measurement process. In this measurement process, the processing unit 7 measures the absolute value of the direct current component Idc and the amplitude of the alternating current component Iac of the contact current Itc based on the waveform data D1. In this example, for example, regarding the contact current Itc having the waveform shown in FIGS. 3 and 4, the processing unit 7 assumes that the periodically changing waveform portion corresponds to the waveform of the AC component Iac, and the peak to Calculate the peak as the amplitude of the AC component Iac. Further, the absolute value of the center voltage in the amplitude of the AC component Iac is calculated as the absolute value of the DC component Idc. When there is no periodically changing portion in the waveform of the contact current Itc, the difference between the maximum value and the minimum value of the contact current Itc during the period in which the amplitude varies is calculated as the amplitude of the AC component Iac. For the absolute value of the DC component Idc, the absolute value of the average level of the contact current Itc during the period in which the amplitude of the AC component Iac is calculated is calculated as the absolute value of the DC component Idc. Finally, the processing unit 7 causes the storage unit 8 to store the absolute value of the DC component Idc and the amplitude of the AC component Iac of the measured (calculated) contact current Itc. Thereby, the measurement process is completed.

続いて、処理部7は、実効値算出処理を実行する。この実効値算出処理では、処理部7は、まず、記憶部8に記憶させた接触電流Itcについての直流成分Idcの絶対値を、記憶部8に記憶されているこの直流成分Idcについての基準値Ir1と比較すると共に、記憶部8に記憶させた接触電流Itcについての交流成分Iacの振幅を、記憶部8に記憶されているこの交流成分Iacについての基準値Ir2と比較する。処理部7は、この比較の結果、直流成分Idcの絶対値が基準値Ir1以上であり、かつ交流成分Iacの振幅が基準値Ir2以上のときには、接触電流Itcが、図3,4に示すような直流成分が重畳している交流電流であると判別して、記憶部8に記憶されている波形データD1に基づいて、接触電流Itcの継続時間T1(図3,4参照)を算出して、記憶部8に記憶させる。この場合、接触電流Itcの継続時間とは、接触電流Itcが発生してから停止するまでの時間をいう。   Subsequently, the processing unit 7 executes an effective value calculation process. In this effective value calculation process, the processing unit 7 first calculates the absolute value of the DC component Idc for the contact current Itc stored in the storage unit 8 and the reference value for the DC component Idc stored in the storage unit 8. In addition to comparison with Ir1, the amplitude of the alternating current component Iac for the contact current Itc stored in the storage unit 8 is compared with the reference value Ir2 for the alternating current component Iac stored in the storage unit 8. As a result of this comparison, when the absolute value of the direct current component Idc is greater than or equal to the reference value Ir1 and the amplitude of the alternating current component Iac is greater than or equal to the reference value Ir2, the processing unit 7 determines that the contact current Itc is as shown in FIGS. It is determined that the direct current component is an alternating current, and the duration T1 (see FIGS. 3 and 4) of the contact current Itc is calculated based on the waveform data D1 stored in the storage unit 8. And stored in the storage unit 8. In this case, the duration of the contact current Itc refers to the time from when the contact current Itc is generated until it stops.

次いで、処理部7は、算出した継続時間T1が、記憶部8に記憶されている心周期Tcのm倍(mは正の数。一例として1.5)を超えているか、または心周期Tcのn倍(nはm未満の正の数。一例として0.75)未満であるか、または心周期Tcのn倍以上で、かつm倍以下であるかを判別して、心周期Tcのm倍を超えていると判別したときには、波形データD1に基づいて接触電流Itcの振れ幅Ipp(継続時間T1内での最小値と最大値との差。図3,4参照)を算出すると共に、接触電流Itcの正弦波実効値Iev(=Ipp/(2×√2))を算出して、正弦波実効値Iev1として記憶部8に記憶させる。また、処理部7は、継続時間T1が心周期Tcのn倍未満であると判別したときには、波形データD1に基づいて接触電流Itcのピーク値の最大絶対値Ip(図3,4参照)を算出すると共に、接触電流Itcの正弦波実効値Iev(=Ip/√2)を算出して、正弦波実効値Iev2として記憶部8に記憶させる。また、処理部7は、継続時間T1が心周期Tcのn倍以上で、かつm倍以下であると判別したときには、上記した2種類の正弦波実効値Iev1,Iev2(特に区別しないときには、正弦波実効値Ievともいう)を算出して記憶部8に記憶させる。なお、図3,4では、正の直流成分Idcを含む波形の接触電流Itcを示しているが、負の直流成分Idcを含む波形の接触電流Itcについても、この直流成分Idcの絶対値を算出することにより、上記した正の直流成分Idcを含む波形のときと同様にして、正弦波実効値Ievを算出する。   Next, the processing unit 7 determines that the calculated duration T1 exceeds m times the cardiac cycle Tc stored in the storage unit 8 (m is a positive number, 1.5 as an example), or the cardiac cycle Tc. Is determined to be less than n times (n is a positive number less than m, for example, 0.75), or more than n times and less than m times the cardiac cycle Tc. When it is determined that it exceeds m times, the fluctuation width Ipp of the contact current Itc (difference between the minimum value and the maximum value within the duration T1; see FIGS. 3 and 4) is calculated based on the waveform data D1. The sine wave effective value Iev (= Ipp / (2 × √2)) of the contact current Itc is calculated and stored in the storage unit 8 as the sine wave effective value Iev1. Further, when the processing unit 7 determines that the duration T1 is less than n times the cardiac cycle Tc, the processing unit 7 calculates the maximum absolute value Ip of the peak value of the contact current Itc based on the waveform data D1 (see FIGS. 3 and 4). At the same time, the sine wave effective value Iev (= Ip / √2) of the contact current Itc is calculated and stored in the storage unit 8 as the sine wave effective value Iev2. Further, when the processing unit 7 determines that the duration T1 is not less than n times and not more than m times the cardiac cycle Tc, the above two types of sine wave effective values Iev1 and Iev2 (the sine wave is used unless otherwise distinguished). Wave effective value Iev) is calculated and stored in the storage unit 8. 3 and 4 show the waveform of the contact current Itc including the positive DC component Idc, the absolute value of the DC component Idc is also calculated for the waveform of the contact current Itc including the negative DC component Idc. Thus, the sine wave effective value Iev is calculated in the same manner as in the case of the waveform including the positive DC component Idc described above.

一方、上記した直流成分Idcの絶対値と基準値Ir1との比較、および交流成分Iacの振幅と基準値Ir2との比較の結果、直流成分Idcの絶対値が基準値Ir1以上であるが、交流成分Iacの振幅が基準値Ir2未満のときには、処理部7は、接触電流Itcが直流電流であると判別して、IEC60990等の規格で規定されている公知の測定方法(算出方法)に従い、接触電流Itcの実効値(直流値)を測定して、記憶部8に記憶させる。また、交流成分Iacの振幅が基準値Ir2以上であるが、直流成分Idcの絶対値が基準値Ir1未満のときには、処理部7は、接触電流Itcが交流電流であると判別して、IEC60990等の規格で規定されている公知の測定方法(算出方法)に従い、接触電流Itcの実効値(交流電流の実効値)を測定して、記憶部8に記憶させる。これにより、実効値算出処理が完了する。   On the other hand, as a result of the comparison between the absolute value of the DC component Idc and the reference value Ir1 and the comparison between the amplitude of the AC component Iac and the reference value Ir2, the absolute value of the DC component Idc is greater than or equal to the reference value Ir1. When the amplitude of the component Iac is less than the reference value Ir2, the processing unit 7 determines that the contact current Itc is a direct current, and makes contact according to a known measurement method (calculation method) defined by a standard such as IEC60990. The effective value (DC value) of the current Itc is measured and stored in the storage unit 8. Further, when the amplitude of the AC component Iac is equal to or greater than the reference value Ir2, but the absolute value of the DC component Idc is less than the reference value Ir1, the processing unit 7 determines that the contact current Itc is an AC current, IEC60990, etc. The effective value of the contact current Itc (the effective value of the alternating current) is measured and stored in the storage unit 8 in accordance with a known measurement method (calculation method) defined in the above standard. Thereby, the effective value calculation process is completed.

続いて、処理部7は、実効値算出処理において算出した実効値と基準実効値とを比較する比較処理を実行する。この比較処理では、処理部7は、実効値算出処理において正弦波実効値Ievを算出したときには、この正弦波実効値Ievを記憶部8に記憶されている基準実効値Ievrと比較して、正弦波実効値Ievが基準実効値Ievrを超えるときには、接触電流Itcが人体に影響を与えるレベルにあると判別し、また正弦波実効値Ievが基準実効値Ievr以下のときには、接触電流Itcが人体に影響を与えるレベルではないと判別して、この比較結果を記憶部8に記憶させる。一方、処理部7は、実効値算出処理において正弦波実効値Ievではなく、IEC60990等の規格で規定されている公知の測定方法(算出方法)に従って接触電流Itcの実効値を測定したときには、対応する規格で規定された基準実効値と比較して、接触電流Itcの人体への影響を判別し、その比較結果を記憶部8に記憶させる。   Subsequently, the processing unit 7 executes a comparison process that compares the effective value calculated in the effective value calculation process with the reference effective value. In this comparison process, when the processing unit 7 calculates the sine wave effective value Iev in the effective value calculation process, the processing unit 7 compares the sine wave effective value Iev with the reference effective value Ievr stored in the storage unit 8 to determine the sine wave. When the wave effective value Iev exceeds the reference effective value Ievr, it is determined that the contact current Itc is at a level that affects the human body. When the sine wave effective value Iev is less than or equal to the reference effective value Ievr, the contact current Itc is applied to the human body. It is determined that the level is not influential, and the comparison result is stored in the storage unit 8. On the other hand, when the processing unit 7 measures the effective value of the contact current Itc in accordance with a known measurement method (calculation method) defined in a standard such as IEC60990, instead of the sine wave effective value Iev, in the effective value calculation process, The effect on the human body of the contact current Itc is determined by comparison with the reference effective value defined by the standard, and the comparison result is stored in the storage unit 8.

最後に、処理部7は、実効値算出処理において算出した正弦波実効値Ievや、比較処理の比較結果(例えば、正弦波実効値Ievが基準実効値Ievr以下であるため、接触電流Itcが人体に影響を与えるレベルではない旨の結果)を出力部10の表示装置に表示させる。これにより、操作部9から入力した所望の心周期Tcを基準として、測定対象機器11から人体模擬回路2を介してアース線Gに流れる接触電流Itcの実効値についての測定が完了する。   Finally, the processing unit 7 calculates the sine wave effective value Iev calculated in the effective value calculation process or the comparison result of the comparison process (for example, since the sine wave effective value Iev is equal to or less than the reference effective value Ievr, the contact current Itc is The result indicating that the level is not affected is displayed on the display device of the output unit 10. Thus, the measurement of the effective value of the contact current Itc flowing from the measurement target device 11 to the ground wire G through the human body simulation circuit 2 is completed with the desired cardiac cycle Tc input from the operation unit 9 as a reference.

引き続き、測定対象機器11からアース線G以外の配線(交流電源線AC1または交流電源線AC2)に流れる接触電流Itcの正弦波実効値Ievを測定する場合には、操作部9を操作して、交流電源線AC1または交流電源線AC2を示す選択データD2を処理部7に入力する。これにより、処理部7によってスイッチ回路4内の各リレーの接・断状態が制御されて、選択データD2によって示される1本の配線(交流電源線AC1,AC2のうちから選択された配線)が人体模擬回路2の端子Bに接続され、この状態において上記した正弦波実効値Ievの測定が処理部7によって実行される。また、心周期Tcを変更して接触電流Itcについての正弦波実効値Ievを測定する場合には、操作部9を操作して、所望の心周期Tcを処理部7に入力する。これにより、処理部7によって新たな心周期Tcが記憶部8に更新記憶されるため、所望の心周期Tcでの接触電流Itcの正弦波実効値Ievについての測定が実行される。   Subsequently, when measuring the sine wave effective value Iev of the contact current Itc flowing from the measurement target device 11 to the wiring other than the ground wire G (AC power supply line AC1 or AC power supply line AC2), the operation unit 9 is operated, Selection data D2 indicating the AC power supply line AC1 or the AC power supply line AC2 is input to the processing unit 7. Thereby, the connection / disconnection state of each relay in the switch circuit 4 is controlled by the processing unit 7, and one wiring (wiring selected from the AC power supply lines AC1 and AC2) indicated by the selection data D2 is obtained. Connected to the terminal B of the human body simulation circuit 2, the measurement of the sine wave effective value Iev is performed by the processing unit 7 in this state. When the sine wave effective value Iev for the contact current Itc is measured by changing the cardiac cycle Tc, the operation unit 9 is operated to input the desired cardiac cycle Tc to the processing unit 7. Thereby, since the new cardiac cycle Tc is updated and stored in the storage unit 8 by the processing unit 7, the measurement of the sine wave effective value Iev of the contact current Itc in the desired cardiac cycle Tc is executed.

このように、この電流測定装置1によれば、直流成分Idcの絶対値および交流成分Iacの振幅がそれぞれに対して予め規定された基準値Ir1,Ir2以上である(つまり、直流電流が重畳した交流電流である)接触電流Itcについて、その継続時間T1が心周期Tcのm倍(上記の例では1.5倍)を超えるときには正弦波実効値Iev1(=Ipp/(2×√2))を算出することができ、その継続時間T1が心周期Tcのn倍(0.75倍)未満となるときに正弦波実効値Iev2(=Ip/√2)を算出することができるため、直流電流が重畳した交流電流である接触電流Itcについての正弦波実効値Ievの測定および評価を、IEC60479−2規格に則って行うことができる。また、処理部7が、波形データD1に基づいて、接触電流Itcが直流電流の重畳した交流電流であるか否か、さらには接触電流Itcの継続時間T1が心周期Tcを基準としてどのような長さにあるのかを自動的に判別して、正弦波実効値Ievを自動的に算出するため、IEC60479−2に規定される正弦波実効値Ievを正確かつ短時間で算出することができる。   Thus, according to the current measuring apparatus 1, the absolute value of the direct current component Idc and the amplitude of the alternating current component Iac are not less than the reference values Ir1 and Ir2 defined in advance for each (that is, the direct current is superimposed). When the duration T1 of the contact current Itc (which is an alternating current) exceeds m times the cardiac cycle Tc (1.5 times in the above example), the sine wave effective value Iev1 (= Ipp / (2 × √2)) Since the sine wave effective value Iev2 (= Ip / √2) can be calculated when the duration T1 is less than n times (0.75 times) the cardiac cycle Tc, DC The measurement and evaluation of the sine wave effective value Iev for the contact current Itc, which is an alternating current on which current is superimposed, can be performed in accordance with the IEC60479-2 standard. Further, based on the waveform data D1, the processing unit 7 determines whether or not the contact current Itc is an alternating current on which a direct current is superimposed, and what the duration T1 of the contact current Itc is based on the cardiac cycle Tc. Since the sine wave effective value Iev is automatically calculated by automatically determining whether it is in the length, the sine wave effective value Iev defined in IEC60479-2 can be calculated accurately and in a short time.

また、この電流測定装置1によれば、処理部7が、算出した正弦波実効値Ievと予め規定された基準実効値Ievrとを比較して、その比較結果(例えば正弦波実効値Ievが基準実効値Ievr以下かどうか)を表示装置で構成された出力部10に表示されるため、直流電流が重畳した交流電流である接触電流Itcについての正弦波実効値Ievの評価をIEC60479−2規格に則って自動的に行った結果を確実に認識することができる。   Further, according to the current measuring apparatus 1, the processing unit 7 compares the calculated sine wave effective value Iev with a reference effective value Ievr specified in advance, and the comparison result (for example, the sine wave effective value Iev is the reference value). The sine wave effective value Iev for the contact current Itc, which is an alternating current on which a direct current is superimposed, is defined in the IEC60479-2 standard. As a result, it is possible to reliably recognize the result automatically performed.

なお、本発明は、上記の構成に限定されない。例えば、1本の配線を人体模擬回路2に接続した状態での接触電流Itcの正弦波実効値Ievについての測定が完了する都度、操作部9を操作して選択データD2を処理部7に入力することにより、人体模擬回路2に接続させる1本の配線(アース線G、交流電源線AC1および交流電源線AC2のうちの任意の1本の配線)を選択し直す構成(人体模擬回路2に接続する配線を手動で変更する構成)について上記したが、処理部7が、1本の配線を人体模擬回路2に接続した状態での接触電流Itcの正弦波実効値Ievについての測定が完了する都度、自動的にスイッチ回路4に対する制御を実行して、すべての配線を順次人体模擬回路2に接続させて、接触電流Itcの正弦波実効値Ievを測定する構成を採用することもできる。この構成によれば、手動による配線(アース線G、交流電源線AC1および交流電源線AC2)の選択を省くことができるため、測定に要する時間を一層短縮することができる。また、人体模擬回路2と配線(アース線G、交流電源線AC1および交流電源線AC2)との接続を手動で行う構成とすることもでき、この構成では、配線を手動で切り替える手間がかかるものの、スイッチ回路4、入力端子部5および出力端子部6を省くことができるため、電流測定装置1の構成を簡略化することができる。   In addition, this invention is not limited to said structure. For example, each time the measurement of the sine wave effective value Iev of the contact current Itc with one wiring connected to the human body simulation circuit 2 is completed, the selection data D2 is input to the processing unit 7 by operating the operation unit 9 By doing this, the configuration (in the human body simulation circuit 2) that reselects one wiring (arbitrary one of the ground wire G, the AC power supply line AC1, and the AC power supply line AC2) to be connected to the human body simulation circuit 2 The configuration in which the wiring to be connected is manually changed is described above, but the measurement of the sine wave effective value Iev of the contact current Itc in a state where one wiring is connected to the human body simulation circuit 2 is completed. It is also possible to adopt a configuration in which the control for the switch circuit 4 is automatically executed each time, all the wirings are sequentially connected to the human body simulation circuit 2 and the sine wave effective value Iev of the contact current Itc is measured. According to this configuration, the manual wiring (the ground line G, the AC power supply line AC1, and the AC power supply line AC2) can be omitted, so that the time required for measurement can be further shortened. Further, it is possible to manually connect the human body simulation circuit 2 and the wiring (the ground wire G, the AC power supply line AC1, and the AC power supply line AC2). In this configuration, it takes time to manually switch the wiring. Since the switch circuit 4, the input terminal unit 5, and the output terminal unit 6 can be omitted, the configuration of the current measuring device 1 can be simplified.

また、上記の電流測定装置1では、1つの測定対象機器11の外装と、アース線Gを含む交流電源線AC1,AC2のいずれか1線との間に流れる接触電流Itcを測定する構成を採用したが、図5に示す電流測定装置1Aのように、さらに2つの測定対象機器11a,11bの各漏れ電流測定端子(F形装着部)11t,11t間に流れる接触電流Itcを測定する構成を採用することもできる。以下、この電流測定装置1Aについて説明する。なお、電流測定装置1Aは、1つの測定対象機器11の外装と、アース線Gを含む交流電源線AC1,AC2のいずれか1線との間に流れる接触電流Itcを測定する構成については、電流測定装置1の構成と同一であるため、同一の構成については同一の符号を付して重複する説明を省略し、相違する構成である2つの測定対象機器11a,11bの各漏れ電流測定端子11t,11t間に流れる接触電流Itcを測定する構成について主として説明する。   In addition, the current measuring apparatus 1 employs a configuration that measures the contact current Itc flowing between the exterior of one measurement target device 11 and one of the AC power supply lines AC1 and AC2 including the ground wire G. However, like the current measuring device 1A shown in FIG. 5, a configuration for measuring the contact current Itc flowing between the leakage current measuring terminals (F-type mounting portions) 11t and 11t of the two measuring target devices 11a and 11b is further measured. It can also be adopted. Hereinafter, the current measuring apparatus 1A will be described. The current measuring device 1A measures the contact current Itc flowing between the exterior of one measurement target device 11 and one of the AC power supply lines AC1 and AC2 including the ground wire G. Since the configuration is the same as that of the measuring apparatus 1, the same components are denoted by the same reference numerals and redundant description is omitted, and the leakage current measuring terminals 11t of the two measuring target devices 11a and 11b having different configurations are used. The structure for measuring the contact current Itc flowing between 11t and 11t will be mainly described.

電流測定装置1Aは、その筐体1aに2つのコネクタ12a,12bが設けられている。また、コネクタ12aには検出プローブ2aが接続され、コネクタ12bには検出プローブ2bが接続されている。また、コネクタ12aは、人体模擬回路2の端子Aに接続されている。スイッチ回路4Aは、電流測定装置1のスイッチ回路4よりも1接点多い4接点の回路構成であり、この増えた1接点は、コネクタ12bに接続されている。また、他の3接点は、電流測定装置1のスイッチ回路4(3接点の回路構成)と同様にして、アース線Gと、各交流電源線AC1,AC2に接続されている。   The current measuring device 1A is provided with two connectors 12a and 12b in its housing 1a. The detection probe 2a is connected to the connector 12a, and the detection probe 2b is connected to the connector 12b. The connector 12 a is connected to the terminal A of the human body simulation circuit 2. The switch circuit 4A has a four-contact circuit configuration that is one more contact than the switch circuit 4 of the current measuring device 1, and the increased one contact is connected to the connector 12b. The other three contacts are connected to the ground line G and the AC power supply lines AC1 and AC2 in the same manner as the switch circuit 4 (three-contact circuit configuration) of the current measuring device 1.

この構成により、電流測定装置1Aでは、検出プローブ2aを1つの測定対象機器11aの漏れ電流測定端子11tに接続し、検出プローブ2bを他の1つの測定対象機器11bの漏れ電流測定端子11tに接続する。この状態において、処理部7が、制御処理において、制御信号S1を出力して、スイッチ回路4に対する制御(リレーの接・断状態の制御)を行って、コネクタ12bを人体模擬回路2の端子Bに接続させる(図5の接続状態)。これにより、接触電流Itcが、漏れ電流測定端子11t、検出プローブ2a、人体模擬回路2、検出プローブ2bおよび漏れ電流測定端子11tを介して、2つの測定対象機器11a,11b間に流れ、この接触電流Itcを示す電圧Vtcが人体模擬回路2の端子Cから出力される。したがって、この電流測定装置1Aによれば、2つの測定対象機器11a,11b間に流れる接触電流Itcについても測定することができ、その正弦波実効値を算出することができる。   With this configuration, in the current measurement device 1A, the detection probe 2a is connected to the leakage current measurement terminal 11t of one measurement target device 11a, and the detection probe 2b is connected to the leakage current measurement terminal 11t of the other measurement target device 11b. To do. In this state, in the control process, the processing unit 7 outputs a control signal S1 to control the switch circuit 4 (control of the relay connection / disconnection state), and connect the connector 12b to the terminal B of the human body simulation circuit 2. (The connection state in FIG. 5). Thereby, the contact current Itc flows between the two measurement target devices 11a and 11b via the leakage current measurement terminal 11t, the detection probe 2a, the human body simulation circuit 2, the detection probe 2b, and the leakage current measurement terminal 11t. A voltage Vtc indicating the current Itc is output from the terminal C of the human body simulation circuit 2. Therefore, according to the current measuring apparatus 1A, it is possible to measure the contact current Itc flowing between the two measurement target devices 11a and 11b, and calculate the sine wave effective value.

また、上記の電流測定装置1,1Aでは、処理部7が、算出した正弦波実効値Ievと、この正弦波実効値Ievと予め規定された基準実効値Ievrとの比較結果(例えば、正弦波実効値Ievが基準実効値Ievr以下のときには、接触電流Itcが人体に影響を与えるレベルではない旨)を出力部10の表示装置に表示させる構成を採用しているが、さらに、接触電流Itcについての継続時間T1、振れ幅Ippおよびピーク値の最大絶対値Ipなどを表示させる構成を採用することもできる。また、出力部10について、一例として表示装置を備えた構成について上記したが、プリンタ装置などの印刷装置や、通信装置などを備えた構成を採用してもよいのは勿論である。   In the current measuring devices 1 and 1A, the processing unit 7 compares the calculated sine wave effective value Iev with a comparison result (for example, a sine wave) between the sine wave effective value Iev and a predetermined reference effective value Ievr. When the effective value Iev is equal to or less than the reference effective value Ievr, the display device of the output unit 10 displays that the contact current Itc is not at a level that affects the human body. It is also possible to adopt a configuration for displaying the duration time T1, the fluctuation width Ipp, the maximum absolute value Ip of the peak value, and the like. The output unit 10 has been described above with respect to a configuration including a display device as an example, but it is needless to say that a configuration including a printing device such as a printer device, a communication device, and the like may be employed.

1 電流測定装置
2 人体模擬回路
3 A/D変換部
7 処理部
10 表示部
11 測定対象機器
AC1,AC2 交流電源線
D1 波形データ
G アース線
Iev 正弦波実効値
Itc 接触電流
T1 継続時間
Vtc 電圧(両端間電圧)
1 Current measuring device
2 Human body simulation circuit
3 A / D converter
7 Processing unit 10 Display unit 11 Device to be measured AC1, AC2 AC power supply line D1 Waveform data
G ground wire Iev sine wave effective value Itc contact current T1 duration Vtc voltage (voltage between both ends)

Claims (2)

人体模擬回路と、アース線を含む交流電源線のいずれか1線および測定対象機器の外装の間、並びに2つの測定対象機器の各漏れ電流測定端子間のいずれかに前記人体模擬回路を接続したときに当該人体模擬回路を流れる接触電流に起因して当該人体模擬回路を構成する所定の素子の両端間に発生する両端間電圧に基づいて前記接触電流の実効値を測定する処理部とを備えた電流測定装置であって、
前記両端間電圧をサンプリングして前記接触電流についての波形データを生成するA/D変換部と、出力部とを備え、
前記処理部は、前記波形データに基づいて前記接触電流の直流成分および交流成分を測定する測定処理、前記直流成分の絶対値および前記交流成分の大きさが共に各々に予め規定された基準値以上であり、かつ前記接触電流の継続時間が心周期のm倍(mは正の数)を超えるときには、前記波形データに基づいて前記接触電流の振れ幅Ippを算出すると共に当該振れ幅Ippを値(2×√2)で除算して前記接触電流の正弦波実効値を算出し、前記直流成分の絶対値および前記交流成分の大きさが共に前記基準値以上であり、かつ当該継続時間が当該心周期のn倍(nはm未満の正の数)未満となるときには、前記波形データに基づいて前記接触電流のピーク値の最大絶対値Ipを算出すると共に最大絶対値Ipを値Ip/√2で除算して前記接触電流の前記正弦波実効値を算出する実効値算出処理、および当該実効値算出処理において算出した前記正弦波実効値を前記出力部に出力させる出力処理を実行する電流測定装置。
The human body simulation circuit is connected to one of the AC power supply line including the ground wire and the exterior of the measurement target device, and between each leakage current measurement terminal of the two measurement target devices. A processing unit that measures an effective value of the contact current based on a voltage across both ends of a predetermined element constituting the human body simulation circuit due to the contact current flowing through the human body simulation circuit. Current measuring device,
An A / D conversion unit that samples the voltage between both ends and generates waveform data about the contact current, and an output unit,
The processing unit is configured to measure a direct current component and an alternating current component of the contact current based on the waveform data, and the absolute value of the direct current component and the magnitude of the alternating current component are both equal to or greater than a predetermined reference value. And when the duration of the contact current exceeds m times the cardiac cycle (m is a positive number), the fluctuation width Ipp of the contact current is calculated based on the waveform data and the fluctuation width Ipp is a value. The effective value of the sine wave of the contact current is calculated by dividing by (2 × √2), the magnitude of the direct current component and the magnitude of the alternating current component are both greater than or equal to the reference value, and the duration is When the cardiac cycle is less than n times (n is a positive number less than m), the maximum absolute value Ip of the peak value of the contact current is calculated based on the waveform data, and the maximum absolute value Ip is calculated as the value Ip / √. Divide by 2 Serial contact effective value calculating process for calculating the sine wave effective value of the current, and the current measuring apparatus of the sine wave effective value calculated in the effective value calculating process to execute the output process of outputting to the output unit.
前記出力部は、表示装置で構成され、
前記処理部は、前記実効値算出処理において算出した前記正弦波実効値と予め規定された基準実効値とを比較して、その比較結果を前記表示装置に表示させる請求項1記載の電流測定装置。
The output unit includes a display device,
The current measuring device according to claim 1, wherein the processing unit compares the sine wave effective value calculated in the effective value calculating process with a reference effective value defined in advance, and displays the comparison result on the display device. .
JP2009013751A 2009-01-26 2009-01-26 measuring device Expired - Fee Related JP5575406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013751A JP5575406B2 (en) 2009-01-26 2009-01-26 measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013751A JP5575406B2 (en) 2009-01-26 2009-01-26 measuring device

Publications (2)

Publication Number Publication Date
JP2010169600A true JP2010169600A (en) 2010-08-05
JP5575406B2 JP5575406B2 (en) 2014-08-20

Family

ID=42701880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013751A Expired - Fee Related JP5575406B2 (en) 2009-01-26 2009-01-26 measuring device

Country Status (1)

Country Link
JP (1) JP5575406B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181133A (en) * 2011-03-02 2012-09-20 Dkk Toa Corp Measurement method of pwm-controlled ac current and device therefor
CN109358225A (en) * 2018-10-09 2019-02-19 沃尔特电子(苏州)有限公司 A kind of detection device of detection circuit and trolleybus to the earth insulation performance
US10330709B2 (en) 2016-05-24 2019-06-25 Hyundai Motor Company Method and system for estimating RMS of AC voltage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282182A (en) * 1997-04-11 1998-10-23 Excel Kk Leak current measuring apparatus for medical equipment
JP2004138565A (en) * 2002-10-21 2004-05-13 Hioki Ee Corp Leakage current measuring device
JP2008170330A (en) * 2007-01-12 2008-07-24 Omron Corp Fault current detection circuit and fault current detection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10282182A (en) * 1997-04-11 1998-10-23 Excel Kk Leak current measuring apparatus for medical equipment
JP2004138565A (en) * 2002-10-21 2004-05-13 Hioki Ee Corp Leakage current measuring device
JP2008170330A (en) * 2007-01-12 2008-07-24 Omron Corp Fault current detection circuit and fault current detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181133A (en) * 2011-03-02 2012-09-20 Dkk Toa Corp Measurement method of pwm-controlled ac current and device therefor
US10330709B2 (en) 2016-05-24 2019-06-25 Hyundai Motor Company Method and system for estimating RMS of AC voltage
CN109358225A (en) * 2018-10-09 2019-02-19 沃尔特电子(苏州)有限公司 A kind of detection device of detection circuit and trolleybus to the earth insulation performance

Also Published As

Publication number Publication date
JP5575406B2 (en) 2014-08-20

Similar Documents

Publication Publication Date Title
US8762085B2 (en) Method of estimating short circuit current available by analysis of DC charging circuit
JP6069884B2 (en) Insulation inspection method and insulation inspection apparatus
JP2009198487A (en) Liquid leakage detection system and liquid leakage detection method
JP2018535633A (en) Improvement of DC distance protection controller or related improvements
JP5575406B2 (en) measuring device
JP5009950B2 (en) Test method and apparatus for grounding device
JP2011226983A (en) Grounding resistance meter and grounding state discrimination method
CN102466751B (en) A kind of current measuring device
JP2012013590A (en) Measurement device and substrate inspection apparatus
CN210894669U (en) Metering error wiring simulation training device
CN101614758B (en) Electronic type indicator
CN208598395U (en) A kind of bio-impedance analog meter
KR20080039570A (en) Water leakage sensing device of heat piping and its method
JP6018895B2 (en) Ground resistance meter, ground resistance measurement method, and program
JP5474718B2 (en) Leakage current measuring device
JP6491852B2 (en) Circuit element measuring device
TW201514510A (en) Insulation monitoring device
JP6512604B2 (en) Voltage detection sensor and measuring device
CN209446673U (en) A kind of detection system and insulation tester of insulation resistance
JP5501136B2 (en) Test equipment
JP4788868B2 (en) Earthester and ground resistance measurement method
JP5439033B2 (en) Insulation monitoring equipment test equipment
JP6808517B2 (en) Contact condition improvement device
CN115308469B (en) Method and measuring device for detecting leakage current in non-grounded single-phase alternating current power supply system
US20220357411A1 (en) Method and measuring device for detecting a leakage current in an ungrounded, single-phase alternating-current power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5575406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees