JP2010169395A - System and method for evaluating degree of completion of processing of curve-shaped member - Google Patents

System and method for evaluating degree of completion of processing of curve-shaped member Download PDF

Info

Publication number
JP2010169395A
JP2010169395A JP2008177564A JP2008177564A JP2010169395A JP 2010169395 A JP2010169395 A JP 2010169395A JP 2008177564 A JP2008177564 A JP 2008177564A JP 2008177564 A JP2008177564 A JP 2008177564A JP 2010169395 A JP2010169395 A JP 2010169395A
Authority
JP
Japan
Prior art keywords
curved surface
shape
processing
measurement
design
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008177564A
Other languages
Japanese (ja)
Other versions
JP5095531B2 (en
Inventor
Chung Min Hyun
忠旻 玄
Young Chil Doh
永七 都
Dae-Kyung Kim
大經 金
Kwang Hee Ko
光熙 高
Jong Gye Shin
鐘桂 辛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Heavy Industries Co Ltd
Original Assignee
Samsung Heavy Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Heavy Industries Co Ltd filed Critical Samsung Heavy Industries Co Ltd
Priority to JP2008177564A priority Critical patent/JP5095531B2/en
Publication of JP2010169395A publication Critical patent/JP2010169395A/en
Application granted granted Critical
Publication of JP5095531B2 publication Critical patent/JP5095531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating the degree of completion of processing of a curve-shaped member which evaluates and determines the shape of a curved surface of the curve-shaped member after processing, confirming the processing accuracy of the curved surface of the curve-shaped member that is under processing or which has been processed during the course of forming the curved surface. <P>SOLUTION: The method for evaluating the degree of completion of processing of a curve-shaped member includes a step of measuring the shape of a curved surface that is under processing, or has been processed by a measuring apparatus; a step of forming a surface and point by inputting data of the measured shape of the curved surface and data of a designed shape of the curved surface; a step of matching curved surfaces which matches the measured shape of the curved surface with the shape of the curved surface which has been designed in reflection of a margin portion, in a manufacturing process of a ship's hull and specific constraint conditions of a chamfering operation; a step of calculating an error amount between the curved surfaces; and a step of evaluating the degree of completion of processing of the shape of the curved surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は曲形部材の加工完成度評価システム及びその方法に関し、更に詳しくは、計測システムを活用した計測及びそのデータを活用して加工中であるか、加工済みの曲形部材の加工完成度を評価し判断できる曲形部材の加工完成度評価システム及びその方法に関する。   The present invention relates to a curved member processing completeness evaluation system and a method thereof, and more particularly, measurement using a measurement system and data thereof are being processed or processing completeness of a processed curved member. The present invention relates to a system and method for evaluating the degree of completeness of a curved member capable of evaluating and judging the above.

一般的に、3次元曲面形状は、製品の外観を美麗にするだけでなく、実際に流体の抵抗を低減させるのに大きな役割をする。このような理由のため、自動車や、航空、造船など多くの産業分野の製品が多様な曲面形状を有している。特に、船舶の建造に用いられる曲面形状は主に船体の船首部分と船尾部分に集中しており、これらの曲面形状によって船舶の性能偏差が生じる。   In general, the three-dimensional curved shape not only makes the appearance of the product beautiful, but also plays a major role in actually reducing the resistance of the fluid. For these reasons, many industrial products such as automobiles, aviation, shipbuilding, etc. have various curved shapes. In particular, the curved surface shape used for ship construction is concentrated mainly on the bow and stern portions of the hull, and the performance deviation of the ship is caused by these curved surface shapes.

このように船舶の建造時に用いられる3次元曲面形状部材は大部分が鉄鋼材からなり、その大きさ及び重さ、形状は他の業種と比較して大型でありながらも、多様である。このような差は他の業種で主に用いられる金型プレス、無金型プレス、ローリングなどの機械的な成形法を通じて曲面を形成する方法とは異なる方法を要求するようになり、その代表的な加工方法としては、熱加工による成形法が挙げられる。熱加工法は、鉄板の表面にガストーチなどで熱を加えて曲げ変形と収縮変形に代弁される残留熱弾塑性変形を誘発させることで目的とする曲面形状を製作する方法である。近年、作業環境が悪い熱成形法に代わるべく、機械的プレス成形、ロール成形、多点プレス成形などの成形法を船舶用3次元曲面の外板成形に適用するための研究努力が活発に行われているが、まだその成果は乏しいといえる。   As described above, most of the three-dimensional curved surface-shaped members used at the time of building a ship are made of a steel material, and the size, weight, and shape are various although they are large compared to other industries. Such a difference requires a method different from a method of forming a curved surface through a mechanical forming method such as a die press, a non-die press, and a rolling mainly used in other industries. An example of a suitable processing method is a molding method by thermal processing. The thermal processing method is a method for producing a desired curved surface shape by inducing residual thermal elastic-plastic deformation, which is represented by bending deformation and contraction deformation, by applying heat to the surface of an iron plate with a gas torch or the like. In recent years, active efforts have been made to apply molding methods such as mechanical press molding, roll molding, and multi-point press molding to 3D curved outer plate molding for ships in order to replace thermoforming methods with poor working environments. However, the results are still poor.

上述したように、船舶用3次元曲面形状の製作は、大半が熱加工成形法により行われており、熱を利用して部材を設計形状に合うように加工する形態を取るため、加工中に随時形状を確認し、与えられた精度に合うまで複数回の加工過程を行っている。このような確認過程で設計形状との類似度や精度を点検し、その後の熱加工の方向を決定するために3次元設計形状を代弁する木型を用いて曲面形状の加工精度を確認する方法を利用しているが、この方法で木型と加工部材との誤差確認及び評価は作業者の視覚と判断に全的に依存している。   As described above, most of the three-dimensional curved surface shape for ships is manufactured by a heat processing molding method, and in order to take a form in which the member is processed to match the design shape using heat, The shape is checked at any time, and the machining process is performed multiple times until the given accuracy is met. A method of checking the accuracy of the curved surface shape using a wooden mold that represents the three-dimensional design shape in order to check the similarity and accuracy with the design shape in such a confirmation process and to determine the direction of subsequent thermal processing However, in this method, the error confirmation and evaluation between the wooden mold and the workpiece are totally dependent on the operator's vision and judgment.

一方、熱加工が完了した3次元曲面形状であっても設計形状とその大きさが異なり、大部分は設計形状よりも大きくなる。このような現象が発生する理由は、以下の通りである。   On the other hand, even a three-dimensional curved surface shape that has undergone thermal processing is different from the design shape in size, and most of the shape is larger than the design shape. The reason why such a phenomenon occurs is as follows.

熱加工の特性上、加熱時の膨脹と冷却時の収縮により曲げ、収縮などの塑性変形が生じるが、3次元曲面形状の複雑性及び熱加工時の加工不確実性により設計者は、図1に示すようなマージンMという余裕値を、3次元設計形状を平板に展開した初期形状に付与している。図1における☆印は設計者が該当外郭線に対して作業者に計測/切断を行うようにする設計者の表示である。また、後工程における溶接作業などのために、鋼材の外郭には図2に示すように、面取り作業C(ベベリング)を行うように定義されているが、この作業は一般的な切断作業とは比較し難いほど、高難度の作業が求められる。   Due to the characteristics of thermal processing, plastic deformation such as bending and contraction occurs due to expansion during heating and contraction during cooling. However, due to the complexity of the three-dimensional curved surface shape and the processing uncertainty during thermal processing, the designer is The margin value of margin M as shown in FIG. 6 is given to the initial shape in which the three-dimensional design shape is developed on a flat plate. 1 is a display of the designer that allows the designer to measure / cut the worker with respect to the outline. In addition, as shown in FIG. 2, it is defined that a chamfering operation C (beveling) is performed on the outer shell of the steel material for a welding operation in a later process, but this operation is a general cutting operation. The harder it is to compare, the more difficult work is required.

このような工程上の特徴と困難さを反映させるために、一部の外郭線には比較的に作業がし易くなるように、初期平板形状の状態で面取り作業を先に行い、残りの部分に対してのみ熱加工が完了した3次元曲面部材の状態でマージンの切断及び面取り作業を行っている。これは生産性のために、マージンの切断過程では最小限の切断作業を行うように設けられた工程であると見られる。   In order to reflect such process characteristics and difficulties, the chamfering work is first performed in the initial flat plate shape so that the work can be relatively easily performed on some outlines, and the remaining parts The cutting and chamfering of the margin is performed in the state of the three-dimensional curved surface member in which the thermal processing is completed only. This is considered to be a process provided to perform a minimum cutting operation in the margin cutting process for productivity.

しかしながら、上述した熱加工の不確実性及び完成した曲面の比較、評価方法の後進性により先に行われた面取り部分を活用できないようにマージンの切断がなされ、かなりの割合で再び面取り作業を行う場合もある。   However, due to the uncertainties of the thermal processing described above, the comparison of the completed curved surface, and the backwardness of the evaluation method, the margin is cut so that the previously chamfered portion cannot be used, and the chamfering operation is performed again at a considerable rate. In some cases.

これを克服するために、近年、3次元計測器などを活用して加工部材の形状座標を計測し、設計形状における対応する座標と数値比較を通じて加工精度などを管理する方法が提案されている。   In order to overcome this, in recent years, a method has been proposed in which the shape coordinates of a workpiece are measured using a three-dimensional measuring instrument and the like, and the machining accuracy is managed through numerical comparison with the corresponding coordinates in the design shape.

このような方法は、設計座標(又は曲面)と計測座標(又は曲面)との間の座標を最適に一致させる曲面整合技術を利用した後、2つの座標(又は曲面)間の距離誤差及びZ−マップというZ軸方向の誤差を提供する方法である。   Such a method uses a surface matching technique that optimally matches the coordinates between the design coordinates (or curved surface) and the measurement coordinates (or curved surface), and then the distance error between the two coordinates (or curved surface) and Z A method of providing an error in the Z-axis direction called a map.

しかしながら、このような方法は上述した船体曲面部材におけるマージンによる大きさの差及び面取り作業などの特異性を反映できない。また、計測座標が設計座標と一定の対応関係が成立するように測定されなければならないという限界により、加工完了後の最終曲面形状の評価にのみその活用が制限されており、その結果もデータ間の距離誤差の絶対値、Z軸方向の距離誤差など制約的な情報を提供する。しかしながら、結局、前記方法でも計測された曲面形状の加工完成度の評価及び切断量の計算などの問題は作業者の経験と直観に依存するようになる。   However, such a method cannot reflect peculiarities such as a difference in size due to a margin and a chamfering operation in the above-described curved surface member of the hull. In addition, due to the limitation that the measurement coordinates must be measured so that a certain correspondence with the design coordinates is established, its use is limited only to the evaluation of the final curved surface shape after completion of machining, and the result is also between data. It provides restrictive information such as the absolute value of the distance error and the distance error in the Z-axis direction. However, in the end, problems such as evaluation of the degree of processing completion of the curved surface shape measured by the above method and calculation of the amount of cutting depend on the experience and intuition of the operator.

これとは別に最近、多様な研究機関で船体曲面の加工自動化システムの開発を進めているが、熱加工法を応用した自動化システムや、或いは他の機械加工法を利用した自動化システムを開発するようになっても、現在の木型を利用した3次元曲面形状の評価は難しくなる。この時に必要なのが計測システムを活用した計測と、そのデータを活用した曲面形状の評価方法及びそのシステムであるにも拘わらず、従来から研究されてきたのは大半が曲面成形のための加工位置及び強度などに関する内容だけであり、加工中であるか、完了した曲形部材の曲面形状に対する加工完成度を評価し判断する方法及びシステムについての研究は進められていない。   Apart from this, various research institutes have recently developed automated processing systems for curved surfaces of the hull, but it seems to develop automated systems using thermal processing methods or automated systems using other machining methods. Even in this case, it becomes difficult to evaluate the three-dimensional curved surface shape using the current tree pattern. Despite the need for measurement using a measurement system, and a curved surface shape evaluation method and system using the data, most of the work that has been studied so far is the machining position for curved surface forming. In addition, there is no research on a method and a system for evaluating and judging the degree of completeness of the curved shape of a curved member that is being processed or is only content related to strength and the like.

また、繰り返し加工するか否かの判断と成形位置、成形の強度などを作業者の指示により、加工作業だけを自動化するシステムが提案されているが、このような部分的な自動化装置は完全自動化システムに比べて費用及び効率性が低下するという問題がある。   In addition, a system has been proposed that automates only the machining operation based on the operator's instructions on whether to repeatedly process, molding position, molding strength, etc. Such partial automation equipment is fully automated. There is a problem that the cost and efficiency are lower than those of the system.

そこで、本発明は上記事情に鑑みてなされたものであって、その目的は、加工中であるか、完了した曲形部材の曲面成形過程で曲面の加工精度を確認し、加工後の形状を評価し判断できる曲形部材の加工完成度評価システム及びその方法を提供することにある。   Therefore, the present invention has been made in view of the above circumstances, and its purpose is to confirm the processing accuracy of the curved surface in the process of forming the curved surface of the curved member that has been processed, and to determine the shape after processing. It is an object of the present invention to provide a processing member evaluation system and method for a curved member that can be evaluated and judged.

本発明の他の目的は、曲面成形を自動で行える船舶用曲面成形の自動化システムと結合して加工自動化作業の終結時点を提供できる曲形部材の加工完成度評価システム及びその方法を提供することにある。   Another object of the present invention is to provide a curved member processing completeness evaluation system and method that can be combined with a marine curved surface forming automation system capable of automatically performing curved surface forming and provide the end point of the processing automation operation. It is in.

また、本発明の更に別の目的は、船体曲面の製作だけでなく、曲面を有する製品の形状評価及び製作に幅広く利用され得る曲形部材の加工完成度評価システム及びその方法を提供することにある。   Another object of the present invention is to provide a curved member processing completeness evaluation system and method which can be widely used not only for the production of curved hull surfaces but also for the evaluation and production of products having curved surfaces. is there.

前記目的を達成するための本発明は、計測装置により加工中又は加工済みの曲面形状を計測する段階と、計測された曲面形状のデータと設計された曲面形状のデータを入力して表面及びポイントを生成する段階と、船体製造工程のマージン部位及び面取り作業の特定の制約条件を反映して設計された曲面形状と計測された曲面形状とを整合する曲面整合段階と、曲面間の誤差量を計算する段階と、曲面形状の加工完成度を評価する段階とを備える曲形部材の曲面形状評価方法を提供する。   In order to achieve the above object, the present invention includes a step of measuring a curved surface shape being processed or processed by a measuring device, and inputting the measured curved surface shape data and the designed curved surface shape data to obtain the surface and the point. A curve matching stage that matches the measured curved surface shape with the curved surface shape that reflects the marginal part of the hull manufacturing process and the specific constraints of the chamfering operation, and the amount of error between the curved surfaces Provided is a curved surface shape evaluation method for a curved member, comprising a step of calculating and a step of evaluating a processing completeness of a curved surface shape.

また、曲形部材の加工完成度評価システムであって、前記曲形部材の曲面形状に対して計測された計測データと設計情報が入力された入力モジュールと、計測曲面及び設計曲面の表面及びポイントに対する座標の位置を生成する表面及びポイント発生モジュールと、曲面整合及び制約条件を伴う曲面整合を行う最適曲面整合モジュールと、曲面整合の結果に基づいて設計曲面と計測曲面の類似度をパーセント数値で提示する加工完成度モジュールと、前記加工完成度モジュールから提示された数値が曲面完成条件である場合、切断位置及び誤差を算出する切断位置及び誤差算出モジュールとを備える曲形部材の加工完成度評価システムを提供する。   In addition, the curved member processing completeness evaluation system includes an input module in which measurement data and design information measured with respect to the curved surface shape of the curved member, and a surface and points of the measurement curved surface and the design curved surface. The surface and point generation module that generates the position of the coordinates relative to the surface, the optimum surface matching module that performs surface matching with curved surface matching and constraint conditions, and the degree of similarity between the design surface and the measurement surface based on the result of the surface matching as a percentage value Processing perfection evaluation of a curved member comprising a processing perfection module to be presented and a cutting position and error calculation module for calculating a cutting position and an error when the numerical value presented from the processing perfection module is a curved surface completion condition Provide a system.

以上で説明した通り、本発明に係る曲形部材の加工完成度評価システム及びその方法によれば、加工中であるか、完了した曲形部材の曲面成形過程で曲面の加工精度を確認し、加工後の形状を評価し判断できるので、曲面成形を自動で行える船舶用曲面成形の自動化システムと結合して加工自動化作業の終結時点を提供でき、船体曲面の製作だけでなく、類似した加工方法及び曲面の特異性を有する曲面成形製品の形状の評価及び製作に幅広く利用され得るという効果を奏する。   As described above, according to the processing completeness evaluation system and method of a curved member according to the present invention, whether the processing is in progress, or confirming the processing accuracy of the curved surface in the curved surface forming process of the completed curved member, Since the shape after processing can be evaluated and judged, it can be combined with an automated system for curved surface forming for ships that can automatically perform curved surface forming, and the end point of processing automation work can be provided. In addition, there is an effect that it can be widely used for the evaluation and production of the shape of a curved surface molded product having a curved surface specificity.

以下、添付の図面を参照しつつ、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図3は、本発明の好適な一実施形態による曲形部材の加工完成度評価システムの構成と情報の流れを示す図である。   FIG. 3 is a diagram showing a configuration and information flow of a curved member processing completeness evaluation system according to a preferred embodiment of the present invention.

図3に示すように、本発明の曲形部材の加工完成度評価システムは、曲形部材の曲面形状に対して計測された計測データと設計情報が入力された入力モジュール10と、曲面の表面及びポイントに対する座標の位置を生成する表面及びポイント生成モジュール20と、曲面整合及び制約条件を伴う曲面整合を行う最適曲面整合モジュール30と、曲面整合の結果に基づいて設計曲面と計測曲面の類似度をパーセント数値で提示する加工完成度モジュール40と、加工完成度モジュール40で提示された数値が曲面完成条件である場合に切断位置及び誤差を算出する切断位置及び誤差算出モジュール50とを備える。   As shown in FIG. 3, the curved member processing completeness evaluation system of the present invention includes an input module 10 into which measurement data and design information measured with respect to a curved surface shape of a curved member, and a curved surface. And a surface and point generation module 20 that generates a coordinate position with respect to a point, an optimum curved surface matching module 30 that performs curved surface matching and curved surface matching with constraints, and a similarity between a design curved surface and a measured curved surface based on the result of curved surface matching And a cutting position and error calculation module 50 for calculating a cutting position and an error when the numerical value presented by the processing completion module 40 is a curved surface completion condition.

最適曲面整合モジュール30は、加工情報の生成に活用すべく、加工情報生成システム60に最適曲面整合された結果を別途の提供する。加工完成度モジュール40は、提示された数値が曲面完成条件でない場合、加工情報生成システム60に追加的な加工情報を生成するための命令を送信する。   The optimum curved surface matching module 30 separately provides the result of the optimum curved surface matching to the machining information generation system 60 in order to be used for generating machining information. When the presented numerical value is not a curved surface completion condition, the processing completeness module 40 transmits a command for generating additional processing information to the processing information generation system 60.

曲面の完成条件に合わせて切断位置及び誤差量の計算が行われると、該当情報は切断位置表示及び切断システム70に伝達されて切断作業が行われる。   When the cutting position and the error amount are calculated in accordance with the curved surface completion conditions, the corresponding information is transmitted to the cutting position display and cutting system 70 to perform the cutting operation.

本発明の評価システムのあらゆる情報は、格納装置80に自動で格納され、出力モジュール90を介してLCDなどの映像表示装置100及びプリンタ110に伝達され、その進展状況をユーザが視覚的に確認できるように構成されている。   All information of the evaluation system of the present invention is automatically stored in the storage device 80 and transmitted to the video display device 100 such as an LCD and the printer 110 via the output module 90, and the user can visually confirm the progress. It is configured as follows.

図4は、本発明システムの曲形部材の加工完成度評価システムの加工完成度の評価過程を説明するためのフロー図である。   FIG. 4 is a flowchart for explaining the process of evaluating the degree of machining completion of the system for evaluating the degree of machining completion of the curved member of the system of the present invention.

図4に示すように、加工完成度の評価過程は、3次元計測器などの計測装置(図示せず)により曲面の加工過程における状態又は加工済みの曲面形状を計測する段階S100と、計測された曲面形状のデータと設計された曲面形状のデータを入力装置10に入力して表面及びポイントを生成する段階S200と、船体製造工程のマージン部位及び面取り作業の特定の制約条件を反映して、設計された曲面形状と計測された曲面形状とを最適曲面整合モジュール30で整合する曲面整合段階S300と、曲面間の誤差量を計算する段階S400と、曲面形状の加工完成度を評価する段階S500とを含む。   As shown in FIG. 4, the process completion degree evaluation process is measured by a step S100 of measuring a state in a curved surface machining process or a processed curved surface shape by a measuring device (not shown) such as a three-dimensional measuring instrument. Reflecting the curved surface shape data and the designed curved surface shape data to the input device 10 to generate the surface and points, the margin part of the hull manufacturing process and the specific constraints of the chamfering operation, A curved surface matching step S300 for matching the designed curved surface shape and the measured curved surface shape by the optimum curved surface matching module 30, a step S400 for calculating an error amount between the curved surfaces, and a step S500 for evaluating the degree of processing completion of the curved surface shape. Including.

そして、切断位置及び誤差算出モジュール50は、誤差量及び評価結果による切断位置情報を、切断位置表示及び切断システム70に伝達する(S600)。   Then, the cutting position and error calculation module 50 transmits the cutting position information based on the error amount and the evaluation result to the cutting position display and cutting system 70 (S600).

計測段階S100における計測は、3次元の点情報で計測するのが一般的であるので、これに基づいて3次元曲面を生成すれば、このとき、計測座標として設計曲面形状のデータと計測形状のデータが対応関係にある場合と、そうでない場合の船体曲面形状の評価に分かれる。   Since the measurement in the measurement step S100 is generally performed using three-dimensional point information, if a three-dimensional curved surface is generated based on the three-dimensional point information, at this time, the design curved surface shape data and the measurement shape It is divided into evaluation of the hull curved surface shape when the data is in a correspondence relationship and when the data is not.

設計データと一対一の対応関係でマッチする位置を判断して計測する場合、まず、設計形状から特定の間隔或いは計測しようとする位置に該当するデータを得る。この得られたデータに基づいて計測すべき曲面形状における該当座標であると判断される部分の計測を行う。このとき、マージンが付与されたコーナー部分における設計形状座標は余裕マージンの切断を考慮すると、実際に測される曲面上では内部に存在するので、このような過程を経ると、計測形状データは設計形状のデータと一対一の対応関係を設定できるようになる。このような方法は、船体の曲面部材には内部構造物の取り付けのために、その位置を予め表示するか、或いは設計座標から抽出して大体の位置を推定できるようになっているため、このような情報を利用することで、現実的に可能になる。   When determining and measuring a position that matches the design data with a one-to-one correspondence, first, data corresponding to a specific interval or position to be measured is obtained from the design shape. Based on the obtained data, a portion that is determined to be the corresponding coordinate in the curved surface shape to be measured is measured. At this time, the design shape coordinates in the corner portion to which the margin is given are present on the actually measured curved surface in consideration of the cutting of the margin margin. A one-to-one correspondence with the shape data can be set. In such a method, since the position of the internal structure is attached to the curved member of the hull, the position can be displayed in advance or extracted from the design coordinates so that the approximate position can be estimated. By using such information, it becomes possible in practice.

一方、設計曲面形状と計測曲面形状との間の対応関係でない場合、計測座標として不特定の内部位置とコーナーの座標を計測するか、一定の規則を有する内部位置とコーナーの座標を計測するか、曲面形状の表面を精密にスキャンする方法で計測する。   On the other hand, if there is no correspondence between the design curved surface shape and the measured curved surface shape, whether to measure unspecified internal position and corner coordinates as measurement coordinates, or to measure the internal position and corner coordinates with a certain rule Measure by the method of scanning the surface of the curved surface precisely.

以上のように、適切な計測装置を用いて計測された計測曲面形状の情報は、設計曲面形状の対応する座標と整合を行って誤差量などを計算する(S300及びS400)。   As described above, the measurement curved surface shape information measured using an appropriate measuring device is matched with the corresponding coordinates of the design curved surface shape to calculate an error amount and the like (S300 and S400).

誤差量の計算において、曲面部材の外郭に対して計測座標と設計座標との間の単純距離だけでなく、マージンの切断のために方向性も提示しなければならないが、それは設計曲面と提供座標を示す図5Aと、計測座標の曲面整合後の位置を示す図5Bを通じて確認できる。図5Aにおける点は設計曲面で抽出された点であり、図5Bにおける点は計測曲面で計測された点である。図5A及び図5Bから確認できるように、誤差が大きい座標が5箇所存在する。このように誤差が大きい座標を、図5B中の矢印の方向に移動させることにより、設計形状と比較的一致する形状が得られる。   In calculating the amount of error, not only the simple distance between the measurement coordinates and the design coordinates but also the directionality for cutting the margin must be presented with respect to the contour of the curved surface. It can be confirmed through FIG. 5A showing the position and FIG. 5B showing the position after the curved surface matching of the measurement coordinates. The points in FIG. 5A are points extracted on the design curved surface, and the points in FIG. 5B are points measured on the measurement curved surface. As can be confirmed from FIGS. 5A and 5B, there are five coordinates with large errors. By moving the coordinates having such a large error in the direction of the arrow in FIG. 5B, a shape that relatively matches the design shape can be obtained.

このように、本発明では図6に示すようなベクトルの内積を活用した方向提示方法を用いることで、計測座標と設計座標との距離誤差だけでなく、方向性まで提示することができる。図6に示すように、設計形状の点Aと、それに対応する計測形状の点B、設計形状又は計測形状の内部に存在する点Cを利用して三角形状を形成すると、各辺をa、b、cのベクトルで表現すれば、ベクトルbとcとの間の角度θは、

Figure 2010169395
であり、
cベクトルは、c=b−aのベクトル計算により求めることができる。 Thus, in the present invention, not only the distance error between the measurement coordinates and the design coordinates but also the directionality can be presented by using the direction presentation method utilizing the inner product of vectors as shown in FIG. As shown in FIG. 6, when a triangular shape is formed using a point A of the design shape, a point B of the measurement shape corresponding thereto, and a point C existing inside the design shape or the measurement shape, each side is represented by a, If expressed as vectors b and c, the angle θ between the vectors b and c is
Figure 2010169395
And
The c vector can be obtained by vector calculation of c = b−a.

このように、図6の場合は、計算された角度θの大きさによってθ>90゜である場合には計測座標が設計座標より外郭に位置するという情報を提供することができ、θ<90゜である場合には計測座標が設計座標より内部に位置するという情報を提供することができる。もちろん、ベクトルaとbがなす角度に応じて90゜の基準は多少変更しなければならないが、類似した曲面形状でもその値は極僅かであると見られるため無視した。   As described above, in the case of FIG. 6, when θ> 90 ° according to the magnitude of the calculated angle θ, it is possible to provide information that the measurement coordinates are located outside the design coordinates, and θ <90. In the case of °, information that the measurement coordinate is located inside the design coordinate can be provided. Of course, the standard of 90 ° must be slightly changed according to the angle formed by the vectors a and b, but it is ignored because the value is considered to be very small even with a similar curved surface shape.

一方、基準座標系が異なる2つの形状の整合技術としては、疑似変換行列と最近点探索アルゴリズムを利用する方法、2つの形状間の正確な対応関係が与えられた時に最適整合を見つける方法(Horn's Method)[Horn, B. K. P, 1987, "Closde-form solution of absolute orientation using unit quaternions", Journal of Optical Society of America, Vol. 4, pp. 629-624.]や、Beslによって2つの形状間の距離に基づく最小二乗関数を活用しながら、収斂性に優れたICP(Interactive Closest Point)方法[Besl, P. J., McKay, N. D., 1992, "A Method for Registration of 3-D Shapes", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256.]などの様々な形態の曲面整合技術が開示されているが、これらを十分に活用する3次元船体曲面形状の評価プロセス及びシステム、方法などは皆無である。特に、船体曲面の製作工程のマージン部位及び面取り(改善)作業などの特異点を曲面整合理論で制約条件として追加することについては、従来は検討すら行われていないのが現状である。   On the other hand, as a technique for matching two shapes having different reference coordinate systems, a method using a pseudo-transformation matrix and a nearest point search algorithm, or a method for finding an optimum match when an exact correspondence between two shapes is given (Horn's Method) [Horn, BK P, 1987, "Closde-form solution of absolute orientation using unit quaternions", Journal of Optical Society of America, Vol. 4, pp. 629-624.] ICP (Interactive Closest Point) method with excellent convergence using the least square function based on distance [Besl, PJ, McKay, ND, 1992, "A Method for Registration of 3-D Shapes", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256.] And other forms of curved surface matching technology are disclosed, but the 3D hull curved surface shape evaluation process is fully utilized. There are no systems, methods, etc. In particular, in the past, no consideration has been given to adding singular points such as margin parts in the manufacturing process of the hull curved surface and chamfering (improvement) work as constraints in the curved surface matching theory.

即ち、既存の曲面整合方法は座標系が異なり、形状が異なる2つの形状間の最適座標整合、形状整合の遂行だけを目的としている。本発明では、船体曲面加工過程のように、曲面整合時に特定の制約条件を反映して座標及び曲面整合できるように理論を開発したものであり、用いられた制約条件は計測形状と設計形状で面取り(改善)加工部分を最大限に一致するようにしたものである。   In other words, the existing curved surface matching methods have different coordinate systems and are intended only to perform optimal coordinate matching and shape matching between two shapes having different shapes. In the present invention, as in the hull curved surface machining process, the theory was developed so that coordinates and curved surfaces can be matched by reflecting specific constraints at the time of curved surface matching, and the used constraints are measured shape and design shape. The chamfered (improved) processed part is matched to the maximum.

このために、設計形状の特定座標と計測形状の座標との間で対応関係にあることを知っている場合は、ホーンの方法を用いるものの、それに以下のような制約条件を考慮した。   For this reason, in the case where it is known that there is a correspondence between the specific coordinates of the design shape and the coordinates of the measurement shape, the following constraints are taken into consideration, although the horn method is used.

ホーンの基本的な方法は、2つの形状に対して整合後の最小二乗誤差を目的関数に定めると、この目的関数を最小となるようにする最適の剛体変形を求めるものであって、最適回転を適用した後、図心に基づく並進を行う過程を通じて整合を行う。   The basic method of the horn is to determine the optimal rigid body deformation that minimizes the objective function when the least square error after matching is determined for the two shapes in the objective function. After applying, alignment is performed through the process of translation based on the centroid.

それに対し、本発明では図7に示すように、曲面形状の一部のコーナーを最適整合する制約条件を反映すべく、制約を加えるコーナーの点と同じ点の追加或いは重畳により、並進の基準になる図心を制約条件になるコーナー側へ移動するようにした。点の追加による重畳は、該当する地点に重みを付ける効果が実現されて図心の位置が制約条件のコーナー方向へ移動するようになる。その後、再び最適回転を行って制約条件を考慮した曲面整合が完了する。このように行われた結果は、既存の方法における図心の位置及び設計−計測ポイント間の誤差値で差を示すようになり、提示されたコーナーに最適に一致した整合結果及び誤差値を抽出する。   On the other hand, in the present invention, as shown in FIG. 7, in order to reflect the constraint condition for optimally matching a part of the corner of the curved surface shape, by adding or superimposing the same point as the corner point to be constrained, it is used as a reference for translation. The centroid is moved to the corner that is the constraint. Superimposition by adding a point realizes an effect of weighting the corresponding point, and the position of the centroid moves in the corner direction of the constraint condition. Thereafter, the optimum rotation is performed again to complete the curved surface matching considering the constraint conditions. The result thus obtained shows a difference in the position of the centroid and the error value between the design and measurement points in the existing method, and the matching result and the error value optimally matched with the presented corner are extracted. To do.

これとは異なり、正確な対応関係が分からない場合には、上述した一般的なICP方法において制約条件を考慮して最適曲面整合及び誤差計算が可能なように距離に基づく最小二乗関数を目的関数とした。   On the other hand, if the exact correspondence is not known, the least square function based on the distance is used so that the optimum surface matching and error calculation can be performed in consideration of the constraints in the general ICP method described above. It was.

即ち、既存に用いられてきた上述したホーンの方法のように、2つの形状に対して整合後の誤差を目的関数とする場合には、この目的関数は式1のように定義される。   That is, as in the case of the above-described horn method that has been used, when the error after matching is used as an objective function for two shapes, this objective function is defined as shown in Equation 1.

(式1)

Figure 2010169395
ここで、P、R(q)、Tはそれぞれ大きさ調整因子、回転因子、並進因子である。
このような目的関数への制約を考慮すれば、制約されるコーナーの頂点の1つを制約基準点として定める場合、並進因子は容易に求められるので、前記目的関数は式2のように定義される。 (Formula 1)
Figure 2010169395
Here, P i , R (q i ), and T are a size adjustment factor, a twiddle factor, and a translation factor, respectively.
In consideration of such constraints on the objective function, the translation factor can be easily obtained when one of the corner vertices to be constrained is defined as the constraint reference point. Therefore, the objective function is defined as shown in Equation 2. The

(式2)

Figure 2010169395
式中において、a部分の値が最大となるとき、目的関数は一部のコーナーを最適整合する制約条件を忠実に反映するようになる。 (Formula 2)
Figure 2010169395
In the equation, when the value of the a part becomes maximum, the objective function faithfully reflects the constraint condition that optimally matches some corners.

その後の過程は通常のICP方法と同一に行われ、以上のように制約条件が考慮された本発明の目的関数は制約条件を反映するホーンの方法でも容易に適用できるようになる。   Subsequent processes are performed in the same way as the normal ICP method, and the objective function of the present invention in which the constraint condition is considered as described above can be easily applied to the Horn method that reflects the constraint condition.

一方、制約条件が付与されたコーナーの頂点の1つを「制約基準点」として定める場合に、並進因子は容易に求めることができるが、「制約基準点」では自由度が0になる現象が発生する。場合によっては、このような現象を利用することもできるが、加工誤差などを考慮した曲面整合では「制約基準点」でも許容可能な誤差範囲での動きを許容するようにして曲面整合結果の多様性を確保する必要性がある。   On the other hand, when one of the corner vertices to which the constraint condition is given is defined as the “constraint reference point”, the translation factor can be easily obtained, but the “constraint reference point” has a phenomenon that the degree of freedom becomes zero. appear. In some cases, such a phenomenon can be used, but with curved surface matching that takes into account machining errors, etc., a variety of curved surface matching results can be obtained by allowing movement within an allowable error range even at the “constraint reference point”. There is a need to ensure sex.

図8は、本発明のシステムを活用した曲面整合前の座標位置と制約条件を反映した曲面整合後の形態を示している。図示のように、本発明では「制約基準点」を3次元の許容可能なエラー球面の領域内で動きを自由にして全体的な曲面形状整合結果の多様性を確保して最終の完成曲面部材後の後加工作業などを最小化できるようにした。   FIG. 8 shows a form after curved surface matching that reflects the coordinate position and constraint conditions before curved surface matching using the system of the present invention. As shown in the figure, in the present invention, the “constraint reference point” can be freely moved within the area of the three-dimensional allowable error spherical surface to ensure the diversity of the overall curved surface shape matching result and to obtain the final completed curved surface member. The subsequent post-processing work can be minimized.

図9は、「制約基準点」の自由度が0である場合の実際の形態であり、図10は、球面エラー領域を利用して許容誤差範囲内で「制約基準点」を動かすことができる状態で最適曲面整合された状態を示している。   FIG. 9 shows an actual configuration when the degree of freedom of the “constraint reference point” is 0, and FIG. 10 shows that the “constraint reference point” can be moved within the allowable error range using the spherical error region. The state in which the optimum curved surface is matched in the state is shown.

上述したように、曲面整合方法を通じて形状間整合がなされると、曲面間の類似性を計算し、判断する基準と方法及びこれを実現するシステムが必要であるので、このために、現在までは船体曲面形状の場合、これを計算し判断する基準として作業者による木型による方法を利用したが、本発明では曲面間の幾何学的距離(又は主曲率)とその方向分析、曲面の分割された領域の広さ、曲率などを通じた方法など多様な基準で曲面形状間の類似度を判断できるようにした。   As described above, when matching between shapes is performed through the curved surface matching method, a standard and method for calculating and judging the similarity between curved surfaces and a system for realizing the same are necessary. In the case of a curved surface of the hull, a method using a tree shape by an operator is used as a criterion for calculating and judging this, but in the present invention, the geometric distance (or principal curvature) between curved surfaces and its direction are analyzed, and curved surfaces are divided. The degree of similarity between curved surface shapes can be judged based on various criteria such as the size of the area and the method through curvature.

まず、幾何学的距離を用いた方法は、計測形状と設計形状で対応関係をなす点を構成して対応点毎に求めた距離データと許容誤差との比較を通じて形状完成度を判断できるので、対応点間の幾何学的距離は、以下のような式3で表現される。   First, the method using the geometric distance can determine the degree of completeness of the shape by comparing the distance data obtained for each corresponding point and the allowable error by configuring the points that correspond with the measured shape and the design shape. The geometric distance between corresponding points is expressed by Equation 3 below.

(式3)

Figure 2010169395
ここで、PとQは、それぞれ形状間の最小距離を有する設計形状と目的形状の対応点である。 (Formula 3)
Figure 2010169395
Here, P i and Q i are corresponding points of the design shape and the target shape having the minimum distance between the shapes, respectively.

前記式3を利用して特定の許容誤差δ内で曲面の類似度を評価できるが、例えば、特定の対応点関係においてε>δであれば、該当地点では2つの形状間の類似度が低下することを意味する。このような過程を2つの曲面上で対応関係が成立する対応点に対していずれも行うようになれば、曲面部材の加工完成度を式4を利用してパーセント(%)で表現可能である。 The degree of similarity of curved surfaces can be evaluated within a specific tolerance δ using the above equation 3. For example, if ε i > δ in a specific corresponding point relationship, the similarity between two shapes at a corresponding point is It means to decline. If such a process is performed for each of the corresponding points for which the correspondence relationship is established on the two curved surfaces, the processing completeness of the curved surface member can be expressed in percent (%) using Equation 4. .

(式4)

Figure 2010169395
ここで、Dは完成度評価を行う2つの形状間の対応点の個数であり、Dεは類似度が低下するε>δである時になす対応点の個数である。 (Formula 4)
Figure 2010169395
Here, D r is the number of corresponding points between the two shapes which performs complete evaluation, D [epsilon] is the number of corresponding points that form when in epsilon i> [delta] similarity decreases.

これとは異なり、曲面形状を特定基準の要素に分割して分割された要素の類似度を分析し、分割された要素の全体数と類似度の高いか、低い要素の割合で曲面部材の加工完成度を計算してみることができ、このときの分割要素間の類似度の評価は、分割要素の特徴点間の幾何学的距離及び曲率の比較、面積の比較など多様な基準が適用され得る。このように類似度の評価を行った後、曲面完成度のパーセント(%)は式5のように表現される。   Unlike this, the curved surface shape is divided into specific reference elements, the similarity of the divided elements is analyzed, and the curved surface member is processed with the ratio of the elements with high or low similarity to the total number of divided elements Completion degree can be calculated, and various criteria such as comparison of geometric distance and curvature between feature points of division elements, and comparison of area are applied to evaluate similarity between division elements at this time. obtain. After evaluating the degree of similarity in this way, the percentage (%) of the degree of completion of the curved surface is expressed as Equation 5.

(式5)

Figure 2010169395
ここで、Eは完成度評価を行う2つの形状間の分割要素の個数であり、Eεは類似度が低下するε>δである時になす分割要素の個数であり、曲面を分割する要素の個数は提供される設計形状の大きさ及び曲率情報に応じてその値が能動的に変わる。 (Formula 5)
Figure 2010169395
Here, E r is the number of division elements between two shapes to be evaluated for completeness, and E ε is the number of division elements when ε i > δ at which the similarity decreases, and divides the curved surface. The number of elements varies actively depending on the size and curvature information of the provided design shape.

一方、主曲率を用いた加工完成度評価では、ガウス曲率(K)と平均曲率(H)を用いて対応関係をなす地点のKとH値を比較して2つの曲面の類似度を評価し、全体的な対応関係地点の個数と、類似度の高い地点の個数と、低い地点の個数の割合で曲面部材の加工完成度を計算し、対応関係をなす地点のKとH値を比較したとき、その差値であるδ=δ=0に近接すれば、2つの曲面の類似度が高いことを意味し、前記加工度数式のように数値で示す。 On the other hand, in the machining completeness evaluation using the principal curvature, the similarity between two curved surfaces is evaluated by comparing the K and H values of the corresponding points using the Gaussian curvature (K) and the average curvature (H). The processing completion degree of the curved surface member is calculated by the ratio of the total number of corresponding points, the number of points with high similarity, and the number of points with low similarity, and the K and H values of the points having the corresponding relationship are compared. When the difference is close to δ K = δ H = 0, it means that the similarity between the two curved surfaces is high, and is represented by a numerical value as in the processing degree formula.

図11は、本発明のシステムを活用したグリッド状の設計形状と計測形状が最適曲面整合をなしている形状であり、曲面加工完成度を計算する前段階を示し、図12は、本発明のシステムを活用した加工完成度の計算を例示するものであり、曲面部材の加工完成度の曲面要素分割法による評価結果を示している。図12において、四角形の分割要素は許容誤差(δ)から外れた要素、即ち、加工が足りない部分を意味する。図12に示すように、四角形分割要素の個数が減少すれば、加工完成度が高いことを意味し、四角形分割要素が存在する領域は加工が不十分な部分であるといえる。   FIG. 11 is a shape in which the grid-like design shape and measurement shape utilizing the system of the present invention are in an optimum curved surface matching, and shows a stage before calculating the curved surface machining completeness. FIG. It illustrates the calculation of the degree of machining completion utilizing the system, and shows the evaluation result by the curved surface element division method of the degree of machining completion of the curved surface member. In FIG. 12, a quadrangular divided element means an element that deviates from the allowable error (δ), that is, a part that is not sufficiently processed. As shown in FIG. 12, if the number of quadrilateral division elements decreases, it means that the degree of completion of machining is high, and it can be said that the area where the quadrilateral division elements exist is an insufficiently machined portion.

このように曲面整合及び加工完成度の評価が完了した曲面形状は付与されたマージンが不要に残っている余裕分に対して切断作業を行わなければならない。従って、本発明では切断位置の最適値を提示して切断作業を最小化した。上述したような曲面整合された設計形状及び計測形状間の大きさの差によって生じる新しい外郭線は主に計測形状の表面上に存在するように投影されなければならない。このとき、3次元の座標をxy平面の座標に投影させる方法は広く知られているが、本発明では設計形状と同様に計測形状も3次元の曲面であるので、図13に示すように、これを適切に投影できるようにした。   In this way, the curved surface shape that has been subjected to the evaluation of the curved surface alignment and the completeness of processing must be cut for the margin where the assigned margin remains unnecessarily. Therefore, the present invention minimizes the cutting work by presenting the optimum value of the cutting position. The new contour line caused by the difference in size between the curved shape-matched design shape and the measurement shape as described above must be projected so as to exist mainly on the surface of the measurement shape. At this time, a method of projecting the three-dimensional coordinates onto the coordinates of the xy plane is widely known. However, in the present invention, the measurement shape is a three-dimensional curved surface as well as the design shape. This can be properly projected.

即ち、図13において、[1]の方向に投影するのはxy平面への投影と同じ方法であり、この方法を用いる場合、設計形状の座標を誤った計測形状の座標に投影する結果が発生し得る。これにより、本発明では[2]のように設計形状の該当位置でノーマルベクトルを利用して計測形状におけるその位置を抽出するようにした。但し、この方法は加工完成度の評価がなされた部材にのみ適用可能であり、2つの曲面間の形状差が大きい場合には[1]の方法と同様に多くのエラーを含むようになる。   That is, in FIG. 13, the projection in the direction [1] is the same method as the projection onto the xy plane. When this method is used, the result of projecting the coordinates of the design shape to the coordinates of the wrong measurement shape is generated. Can do. Accordingly, in the present invention, as in [2], the position in the measurement shape is extracted using the normal vector at the corresponding position of the design shape. However, this method can be applied only to a member whose processing completeness has been evaluated. When the shape difference between two curved surfaces is large, many errors are included as in the method [1].

以上の説明は、本発明による曲形部材の加工完成度評価システム及びその方法を実施するための1つの実施形態に過ぎず、本発明による技術的思想の範囲から逸脱しない範囲内で様々な変更が可能であり、それらも本発明の技術的範囲に属する。   The above description is only one embodiment for carrying out the processing completeness evaluation system and method for a curved member according to the present invention, and various modifications are possible without departing from the scope of the technical idea of the present invention. These are also within the technical scope of the present invention.

3次元曲面の設計形状を平らに開いた初期の形状に設計者が収縮余裕値を反映させたマージン情報と面取り情報を示す図である。It is a figure which shows the margin information and chamfering information which the designer reflected the shrinkage | contraction margin value in the initial shape which opened the design shape of the three-dimensional curved surface flatly. 鋼材の外郭に行われた面取り作業とマージンの切断後の様子を示す図である。It is a figure which shows the mode after the chamfering work performed to the outline of steel materials, and the cutting of a margin. 本発明の好適な一実施形態による曲形部材の加工完成度評価システムの構成と情報の流れを示す図である。It is a figure which shows the structure and flow of information of the process completeness evaluation system of the curved member by one suitable embodiment of this invention. 図3のシステムによる曲形部材の加工完成度評価の順序図である。FIG. 4 is a sequence diagram for evaluating the degree of processing completion of a curved member by the system of FIG. 3. 設計座標と計測座標との間の誤差及び方向を示す図である。It is a figure which shows the error and direction between design coordinates and measurement coordinates. 設計座標と計測座標との間の誤差及び方向を示す図である。It is a figure which shows the error and direction between design coordinates and measurement coordinates. ベクトルの内積を活用した方向提示方法を説明する図である。It is a figure explaining the direction presentation method using the inner product of a vector. 制約条件を考慮した曲面整合のための従来の方法と、本発明の方法を説明するための示す図である。It is a figure shown for demonstrating the conventional method for curved surface matching which considered the constraint conditions, and the method of this invention. 図3のシステムを活用した曲面整合前の座標位置及び制約条件を反映させた曲面整合後の形態を示す図である。It is a figure which shows the form after curved surface matching which reflected the coordinate position and curved surface condition before curved surface matching using the system of FIG. 制約基準点の自由度が0である場合の例示図である。It is an illustration figure in case the freedom degree of a restriction | limiting reference point is 0. 制約基準点の自由度が0でない場合、エラー球面領域を利用して許容誤差範囲内で制約基準点が動ける状態での最適曲面の整合状態を示す例示図である。It is an illustration figure which shows the matching state of the optimal curved surface in the state where a restriction | limiting reference point can move within an allowable error range using an error spherical area | region, when the freedom degree of a restriction | limiting reference point is not 0. 図3のシステムを活用した最適曲面整合の例示図である。It is an illustration figure of the optimal curved surface matching using the system of FIG. 図3のシステムを活用した加工完成度の計算の例示図である。It is an illustration figure of calculation of the processing perfection degree using the system of FIG. 切断位置計算法による位置変化を示す図である。It is a figure which shows the position change by a cutting position calculation method.

符号の説明Explanation of symbols

10 入力モジュール
20 表面及びポイント生成モジュール
30 最適曲面整合モジュール
40 加工完成度モジュール
50 切断位置及び誤差算出モジュール
60 加工情報生成システム
70 切断位置表示及び切断システム
80 格納装置
90 出力装置
100 映像表示装置
110 プリンタ
DESCRIPTION OF SYMBOLS 10 Input module 20 Surface and point generation module 30 Optimum curved surface matching module 40 Processing perfection degree module 50 Cutting position and error calculation module 60 Processing information generation system 70 Cutting position display and cutting system 80 Storage device 90 Output device 100 Video display device 110 Printer

Claims (17)

曲形部材の加工完成度評価方法であって、
計測装置により加工中又は加工済みの曲面形状を計測する段階と、
曲面形状の計測データ及び設計データを入力して表面及びポイントを生成する段階と、
船体製造工程のマージン部位及び面取り作業の特定の制約条件を反映して、設計された曲面形状と計測された曲面形状とを整合させる曲面整合段階と、
曲面間の誤差量を計算する段階と、
曲面形状の加工完成度を評価する段階とを含む方法。
A method for evaluating the degree of processing completion of a curved member,
Measuring a curved surface shape being processed or processed by a measuring device;
Inputting curved surface shape measurement data and design data to generate surfaces and points;
A curved surface matching stage that matches the designed curved surface shape with the measured curved surface shape, reflecting the marginal part of the hull manufacturing process and the specific constraints of the chamfering operation,
Calculating an error amount between curved surfaces;
Evaluating the processing completeness of the curved surface shape.
請求項1に記載の方法であって、
誤差量及び評価結果による切断位置の情報を切断位置表示及び切断システムに伝達する段階を更に含むことを特徴とする方法。
The method of claim 1, comprising:
The method further comprises the step of transmitting information on the cutting position according to the error amount and the evaluation result to the cutting position display and the cutting system.
請求項1に記載の方法であって、
前記計測段階の計測は、3次元の点情報で計測し、計測座標として設計曲面形状のデータと一対一の対応関係でマッチする位置を計測することを特徴とする方法。
The method of claim 1, comprising:
The measurement in the measurement step is performed by measuring three-dimensional point information, and measuring a position that matches the design curved surface shape data in a one-to-one correspondence relationship as measurement coordinates.
請求項1に記載の方法であって、
前記計測段階の計測は、3次元の点情報で計測し、設計曲面形状と計測曲面形状との間の対応関係でない場合は、計測座標として不特定の内部位置とコーナーの座標を計測する、一定の規則を有する内部位置とコーナーの座標を計測する、又は、曲面形状の表面を精密にスキャンする方法で計測することを特徴とする方法。
The method of claim 1, comprising:
The measurement at the measurement stage is measured by three-dimensional point information, and if the correspondence between the design curved surface shape and the measured curved surface shape is not the same, the unspecified internal position and corner coordinates are measured as measurement coordinates. A method of measuring an internal position and a corner coordinate having the above-mentioned rule, or a method of precisely scanning a curved surface.
請求項3に記載の方法であって、
前記対応関係の計測は、
設計形状から計測しようとする位置に該当するデータを得る段階と、
得られたデータに基づいて計測すべき曲面形状における該当座標であると判断される位置の計測を行う段階と
を含むことを特徴とする方法。
The method of claim 3, comprising:
The measurement of the correspondence is as follows:
Obtaining data corresponding to the position to be measured from the design shape;
Measuring a position determined to be a corresponding coordinate in the curved surface shape to be measured based on the obtained data.
請求項1に記載の方法であって、
前記誤差量の計算は、計測座標と設計座標との距離誤差だけでなく、ベクトルの内積から得られ、設計形状のコーナーにおける点Aと、それと対応関係にある計測形状の点B、設計形状又は計測形状で内部に存在する点Cを利用して三角形状を形成するとき、各辺をa、b、cのベクトルで表現すれば、ベクトルbとcとの間の角度θは、
Figure 2010169395
であり、
計算された角度θの大きさによって計測座標が設計座標より外郭か、内部に位置するかが分かることを特徴とする方法。
The method of claim 1, comprising:
The calculation of the error amount is obtained not only from the distance error between the measurement coordinates and the design coordinates but also from the inner product of the vectors, and the point A at the corner of the design shape and the point B of the measurement shape corresponding to the point A, the design shape or When forming a triangular shape using the point C existing in the measurement shape, if each side is expressed by a vector of a, b, c, the angle θ between the vectors b and c is
Figure 2010169395
And
A method characterized in that it can be determined whether the measurement coordinate is located outside or inside the design coordinate according to the calculated angle θ.
請求項1に記載の方法であって、
前記曲面整合段階は、ホーン(Horn)の方法を利用して制約される曲面形状のコーナーにおける頂点の1つを制約基準点として最適に整合する段階であり、制約を加えるコーナーの点と同じ点の追加或いは重畳により並進の基準になる図心を制約条件になるコーナー側へ移動することを特徴とする方法。
The method of claim 1, comprising:
The curved surface matching step is a step of optimally matching one of the vertices in the corner of the curved surface shape that is constrained by using the Horn method as a constraint reference point, and is the same as the corner point to which the constraint is applied. A centroid which becomes a reference for translation is moved to a corner side which becomes a constraint condition by adding or superimposing the above.
請求項4に記載の方法であって、
前記曲面整合段階は、前記対応関係でない場合にICP(Interactive Closet Point)方法により行われることを特徴とする方法。
The method of claim 4, comprising:
The curved surface matching step is performed by an ICP (Interactive Closet Point) method when the correspondence relationship is not satisfied.
請求項1に記載の方法であって、
前記曲面形状の加工完成度を評価する段階は、曲面の対応点間の幾何学的距離又は主曲率とその方向の分析、曲面の分割された領域の広さ、曲率を通じて曲面形状間の類似度を判断することを特徴とする方法。
The method of claim 1, comprising:
The step of evaluating the processing completeness of the curved surface shape includes analyzing the geometric distance or principal curvature between corresponding points of the curved surface and the direction thereof, the size of the divided area of the curved surface, and the similarity between the curved surface shapes through the curvature. A method characterized by judging.
請求項9に記載の方法であって、
前記対応点間の幾何学的距離は、PとQがそれぞれ形状間の最小距離を有する設計形状と目的形状の対応点であるとき、
Figure 2010169395
であり、
特定の許容誤差δ内で特定の対応点における幾何学的距離εと特定の許容誤差δとの関係により曲面の類似度を評価することを特徴とする方法。
The method of claim 9, comprising:
The geometric distance between the corresponding points is the corresponding point of the design shape and the target shape, where P i and Q i each have the minimum distance between the shapes,
Figure 2010169395
And
A method of evaluating the similarity of curved surfaces based on a relationship between a geometric distance ε i at a specific corresponding point and a specific allowable error δ within a specific allowable error δ.
請求項7に記載の方法であって、
前記制約基準点は、エラー球面領域を利用して許容誤差範囲内で動きを自由にしたことを特徴とする方法。
The method of claim 7, comprising:
The constraint reference point is free to move within an allowable error range using an error spherical area.
請求項10に記載の方法であって、
前記対応点間の類似度を評価した後、曲面完成度のパーセント%は、
Figure 2010169395
であり、
ここで、Dは完成度を評価する2つの形状間の対応点の個数であり、Dεは類似度が低下するε>δである時になす対応点の個数であることを特徴とする方法。
The method of claim 10, comprising:
After evaluating the similarity between the corresponding points, the percent completeness of the curved surface is
Figure 2010169395
And
Here, D T is the number of corresponding points between two shapes whose degree of perfection is evaluated, and D ε is the number of corresponding points formed when ε i > δ at which the degree of similarity decreases. Method.
請求項10に記載の方法であって、
曲面形状を特定基準の要素に分割して分割された要素の類似度を評価した後、曲面完成度のパーセント%は、
Figure 2010169395
であり、
ここで、Eは完成度を評価する2つの形状間の分割要素の個数であり、Eεは類似度が低下するε>δである時になす分割要素の個数であり、曲面を分割する要素の個数は提供される設計形状の大きさ及び曲率情報に応じてその値が能動的に変わることを特徴とする方法。
The method of claim 10, comprising:
After dividing the curved surface shape into specific criteria elements and evaluating the similarity of the divided elements, the percent completeness of the curved surface is
Figure 2010169395
And
Here, E T is the number of division elements between two shapes whose completeness is evaluated, and E ε is the number of division elements when ε i > δ at which the degree of similarity decreases, and divides the curved surface. The method is characterized in that the number of elements is actively changed according to the size and curvature information of the provided design shape.
請求項9に記載の方法であって、
主曲率を利用した加工完成度の評価では対応関係をなす地点のガウス曲率と平均曲率とを比較して2つの曲面の類似度を評価し、全体的な対応関係地点の個数と、類似度が高い地点の個数と、低い地点の個数の割合で曲面部材の加工完成度を計算することを特徴とする方法。
The method of claim 9, comprising:
In the evaluation of processing completeness using the main curvature, the Gaussian curvature and the average curvature of the corresponding points are compared to evaluate the similarity of the two curved surfaces, and the overall number of corresponding points and the similarity are A method of calculating the processing completeness of a curved surface member by the ratio of the number of high points and the number of low points.
曲形部材の加工完成度評価システムであって、
前記曲形部材の曲面形状に対して計測された計測データと設計情報が入力された入力モジュールと、
計測曲面及び設計曲面の表面及びポイントに対する座標の位置を生成する表面及びポイント発生モジュールと、
曲面整合及び制約条件を伴う曲面整合を行う最適曲面整合モジュールと、
曲面整合の結果に基づいて設計曲面と計測曲面の類似度をパーセント数値で提示する加工完成度モジュールと、
前記加工完成度モジュールから提示された数値が曲面完成条件である場合、切断位置及び誤差を算出する切断位置及び誤差算出モジュールと
を備えるシステム。
A system for evaluating the degree of processing completion of a curved member,
An input module in which measurement data and design information measured with respect to the curved surface shape of the curved member are input;
A surface and point generation module for generating coordinate positions relative to the surfaces and points of the measurement curved surface and the design curved surface;
An optimum curved surface matching module for performing curved surface matching and curved surface matching with constraint conditions;
A processing completeness module that presents the similarity between the design curved surface and the measured curved surface as a percentage value based on the result of curved surface matching,
A system comprising: a cutting position and an error calculation module for calculating a cutting position and an error when the numerical value presented from the processing completeness module is a curved surface completion condition.
請求項15に記載のシステムであって、
前記最適曲面整合モジュールの最適曲面整合された結果は、加工情報生成システムに提供されて加工情報の生成に活用されることを特徴とするシステム。
The system of claim 15, comprising:
The result obtained by performing the optimum curved surface matching by the optimum curved surface matching module is provided to a machining information generating system and utilized for generating machining information.
請求項15に記載のシステムであって、
前記加工完成度モジュールで提示された数値が曲面完成条件でない場合、加工情報生成システムを通じて追加的な加工情報を生成するようにすることを特徴とするシステム。
The system of claim 15, comprising:
When the numerical value presented in the processing completeness module is not a curved surface completion condition, additional processing information is generated through a processing information generation system.
JP2008177564A 2008-07-08 2008-07-08 System and method for evaluating processing completeness of curved member Active JP5095531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008177564A JP5095531B2 (en) 2008-07-08 2008-07-08 System and method for evaluating processing completeness of curved member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177564A JP5095531B2 (en) 2008-07-08 2008-07-08 System and method for evaluating processing completeness of curved member

Publications (2)

Publication Number Publication Date
JP2010169395A true JP2010169395A (en) 2010-08-05
JP5095531B2 JP5095531B2 (en) 2012-12-12

Family

ID=42701700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177564A Active JP5095531B2 (en) 2008-07-08 2008-07-08 System and method for evaluating processing completeness of curved member

Country Status (1)

Country Link
JP (1) JP5095531B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103697867A (en) * 2013-12-26 2014-04-02 沪东中华造船(集团)有限公司 Method for mounting and quickly detecting curved-surface segmentation member through perspective ray
KR20150008610A (en) * 2013-07-15 2015-01-23 대우조선해양 주식회사 System for visualizing member information of ship design and visualization method thereof
CN104399777A (en) * 2014-11-28 2015-03-11 广东工业大学 Line heating forming evaluation method based on surface vector gradient difference ratio
CN107560585A (en) * 2017-08-30 2018-01-09 中国工程物理研究院激光聚变研究中心 The detection method of large scale correction-plate surface shape error during ring is thrown
CN110705122A (en) * 2019-10-15 2020-01-17 广东迈诺工业技术有限公司 Method and device for automatically forming curved surface of sheet material and storage medium
CN111776164A (en) * 2020-05-22 2020-10-16 沪东中华造船(集团)有限公司 High-precision rapid positioning method for side outer plate body
CN114771767A (en) * 2022-05-26 2022-07-22 中船黄埔文冲船舶有限公司 Design lofting method of jig frame template

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510751A (en) * 1991-07-03 1993-01-19 Mitsutoyo Corp Evaluating method for measured value
JPH0777420A (en) * 1993-09-09 1995-03-20 Nikon Corp Shape parameter measuring method and device for limited multi-dimensional shape
WO1998049524A1 (en) * 1997-04-25 1998-11-05 Riken Method of discriminating shape errors of free-form curved surface
JP2000065560A (en) * 1998-08-19 2000-03-03 Inst Of Physical & Chemical Res Method for evaluating form error of free curved surface
JP2000149067A (en) * 1998-11-05 2000-05-30 Toyota Motor Corp Method and device for generating curved surfaces
JP2001227940A (en) * 1999-12-07 2001-08-24 Mitsutoyo Corp Shape measuring method
JP2002039908A (en) * 2000-07-25 2002-02-06 Canon Inc Method for evaluating shape, and method for manufacturing part
JP2002264013A (en) * 2001-03-09 2002-09-18 Ricoh Co Ltd Curved surface corrective polishing system, nc polishing device, nc program creating method for polishing optical component, nc program creating method for polishing, creating method for two-dimensional coordinate point group file for nc program, nc program creating method, automatic creating program for nc program, recording medium recorded with nc program for polishing, optical component or mold therefor
JP2004074200A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Method for producing metal sheet having curved surface, manufacturing apparatus thereof, and metal sheet having curved surface
JP2004098237A (en) * 2002-09-11 2004-04-02 Ricoh Co Ltd Precision polishing method and polishing device
JP2004212051A (en) * 2002-12-26 2004-07-29 Toyota Motor Corp Measurement data comparing apparatus and shape quality evaluation system
JP2005135348A (en) * 2003-10-31 2005-05-26 Mitsubishi Heavy Ind Ltd Parameter real length development device, method, and program therefor
JP2006231345A (en) * 2005-02-22 2006-09-07 Mitsubishi Heavy Ind Ltd Bending method, metallic sheet, heating position determining program and three-dimensional shape processing apparatus
JP2006268558A (en) * 2005-03-24 2006-10-05 Yamatake Corp Data processing method and program

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510751A (en) * 1991-07-03 1993-01-19 Mitsutoyo Corp Evaluating method for measured value
JPH0777420A (en) * 1993-09-09 1995-03-20 Nikon Corp Shape parameter measuring method and device for limited multi-dimensional shape
WO1998049524A1 (en) * 1997-04-25 1998-11-05 Riken Method of discriminating shape errors of free-form curved surface
JP2000065560A (en) * 1998-08-19 2000-03-03 Inst Of Physical & Chemical Res Method for evaluating form error of free curved surface
JP2000149067A (en) * 1998-11-05 2000-05-30 Toyota Motor Corp Method and device for generating curved surfaces
JP2001227940A (en) * 1999-12-07 2001-08-24 Mitsutoyo Corp Shape measuring method
JP2002039908A (en) * 2000-07-25 2002-02-06 Canon Inc Method for evaluating shape, and method for manufacturing part
JP2002264013A (en) * 2001-03-09 2002-09-18 Ricoh Co Ltd Curved surface corrective polishing system, nc polishing device, nc program creating method for polishing optical component, nc program creating method for polishing, creating method for two-dimensional coordinate point group file for nc program, nc program creating method, automatic creating program for nc program, recording medium recorded with nc program for polishing, optical component or mold therefor
JP2004074200A (en) * 2002-08-13 2004-03-11 Mitsubishi Heavy Ind Ltd Method for producing metal sheet having curved surface, manufacturing apparatus thereof, and metal sheet having curved surface
JP2004098237A (en) * 2002-09-11 2004-04-02 Ricoh Co Ltd Precision polishing method and polishing device
JP2004212051A (en) * 2002-12-26 2004-07-29 Toyota Motor Corp Measurement data comparing apparatus and shape quality evaluation system
JP2005135348A (en) * 2003-10-31 2005-05-26 Mitsubishi Heavy Ind Ltd Parameter real length development device, method, and program therefor
JP2006231345A (en) * 2005-02-22 2006-09-07 Mitsubishi Heavy Ind Ltd Bending method, metallic sheet, heating position determining program and three-dimensional shape processing apparatus
JP2006268558A (en) * 2005-03-24 2006-10-05 Yamatake Corp Data processing method and program

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150008610A (en) * 2013-07-15 2015-01-23 대우조선해양 주식회사 System for visualizing member information of ship design and visualization method thereof
KR102172749B1 (en) 2013-07-15 2020-11-02 대우조선해양 주식회사 System for visualizing member information of ship design and visualization method thereof
CN103697867A (en) * 2013-12-26 2014-04-02 沪东中华造船(集团)有限公司 Method for mounting and quickly detecting curved-surface segmentation member through perspective ray
CN104399777A (en) * 2014-11-28 2015-03-11 广东工业大学 Line heating forming evaluation method based on surface vector gradient difference ratio
CN107560585A (en) * 2017-08-30 2018-01-09 中国工程物理研究院激光聚变研究中心 The detection method of large scale correction-plate surface shape error during ring is thrown
CN110705122A (en) * 2019-10-15 2020-01-17 广东迈诺工业技术有限公司 Method and device for automatically forming curved surface of sheet material and storage medium
CN110705122B (en) * 2019-10-15 2023-04-14 广东迈诺工业技术有限公司 Method and device for automatically forming curved surface of sheet material and storage medium
CN111776164A (en) * 2020-05-22 2020-10-16 沪东中华造船(集团)有限公司 High-precision rapid positioning method for side outer plate body
CN114771767A (en) * 2022-05-26 2022-07-22 中船黄埔文冲船舶有限公司 Design lofting method of jig frame template
CN114771767B (en) * 2022-05-26 2023-06-23 中船黄埔文冲船舶有限公司 Design lofting method of jig frame template

Also Published As

Publication number Publication date
JP5095531B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
KR100913848B1 (en) Completion assessment System of curved plates in manufacturing process and Method thereof
JP5095531B2 (en) System and method for evaluating processing completeness of curved member
Paoli et al. Large yacht hull measurement by integrating optical scanning with mechanical tracking-based methodologies
Li et al. Generating tool-path with smooth posture change for five-axis sculptured surface machining based on cutter’s accessibility map
Phan et al. Scanner path planning with the control of overlap for part inspection with an industrial robot
JP4585165B2 (en) Method of manufacturing metal plate having curved surface, apparatus for manufacturing the same, and metal plate having curved surface
WO2020015624A1 (en) Double-manipulator ultrasonic testing system and method
Béarée et al. An innovative subdivision-ICP registration method for tool-path correction applied to deformed aircraft parts machining
Chang et al. Part localization theory and its application on near-net-shape machining
US6738507B2 (en) Apparatus and method for correlating part design geometry, manufacturing tool geometry, and manufactured part geometry
US10739750B2 (en) Method for correcting deviations in a production process of an article using a head-mounted display
KR100915042B1 (en) Method for matching curved surface of workpiece
Deng et al. A new visual-guided and partition-based multi-setup 3D printing system
KR100972157B1 (en) Method for marking cutting line using 3d measuring system
Yao et al. Modeling of virtual workpiece with machining errors representation in turning
CN114001683A (en) Complex component machining residual wall thickness self-adaptive compensation method based on coordinate origin translation
JP3796207B2 (en) Machining method by 3D laser processing machine and NC program creation method for 3D laser processing
JPH07210230A (en) Pipe surface copying control method using force control robot
Hwang et al. Localization between curved shell plate and its unfolded shape in different coordinate systems for ship-hull plate forming
Qi et al. Trace generation of friction stir welding robot for space weld joint on large thin-walled parts
Li et al. Optimization of abnormal point cloud recognition in robot vision grinding system based on multidimensional improved eigenvalue method (MIEM)
Takezawa et al. Development of Support System for Ship-Hull Plate Forming Using Laser Scanner
Makem et al. A virtual inspection technique for assessing the dimensional accuracy of forged compressor blades using FE modeling and CMM inspection
Lasemi An integrated approach for precision machining of freeform surfaces
KR102432444B1 (en) System and method for checking of plate forming and computer-readable reading medium thereor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111012

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20111017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120919

R150 Certificate of patent or registration of utility model

Ref document number: 5095531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250