JP2010156544A - Terahertz light measuring device - Google Patents

Terahertz light measuring device

Info

Publication number
JP2010156544A
JP2010156544A JP2008333279A JP2008333279A JP2010156544A JP 2010156544 A JP2010156544 A JP 2010156544A JP 2008333279 A JP2008333279 A JP 2008333279A JP 2008333279 A JP2008333279 A JP 2008333279A JP 2010156544 A JP2010156544 A JP 2010156544A
Authority
JP
Japan
Prior art keywords
terahertz light
light
housing
terahertz
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008333279A
Other languages
Japanese (ja)
Inventor
Daisuke Kobayashi
大祐 小林
Masayuki Miyabe
晶之 宮部
Yuzuru Uehara
譲 上原
Yuki Ichikawa
雄貴 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2008333279A priority Critical patent/JP2010156544A/en
Publication of JP2010156544A publication Critical patent/JP2010156544A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a terahertz light measuring device that has improved portability, can save alignment working hours of an optical system, and reduces the amount of attenuation of terahertz light by water vapor in a casing. <P>SOLUTION: The terahertz light measuring device includes: a casing 1; a terahertz light generation means 2 stored in the casing 1; an incidence means 3 stored in the casing 1 to allow terahertz light Lt generated from the generation means 2 to impinge on a target to be measured; a light reception means 4 stored in the casing 1 to receive terahertz light Ltr emitted from the target to be measured; a terahertz light detection means 5 stored in the casing 1 to detect the emitted terahertz light Ltr received by the light reception means 4; and a removing means 6 for removing H<SB>2</SB>O in the air in the casing 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被測定対象に照射されたテラヘルツ光の分光スペクトル又は被測定対象の膜厚等を測定する装置に関する。   The present invention relates to an apparatus for measuring a spectral spectrum of terahertz light irradiated on a measurement target or a film thickness of the measurement target.

テラヘルツ光を被測定対象に照射して分光スペクトルを測定して、分光スペクトルから被測定対象の複素屈折率や物質構造等の物性を求めることができる(たとえば、特許文献1参照。)。また、パルス状のテラヘルツ光を使用することで、タイム・オブ・フライト法を用いて多層膜の各膜厚を測定することができる(たとえば、特許文献2参照。)。   Terahertz light is irradiated onto the object to be measured and the spectrum is measured, and physical properties such as a complex refractive index and a material structure of the object to be measured can be obtained from the spectrum (see, for example, Patent Document 1). Further, by using pulsed terahertz light, each film thickness of the multilayer film can be measured using a time-of-flight method (see, for example, Patent Document 2).

テラヘルツ光は、波長が30〜3000μm(周波数が0.1〜10THz)の電磁波である。そのため、テラヘルツ光が空気中を伝搬すると空気中の水蒸気(HO)で強く吸収され、強度が減衰する。 Terahertz light is an electromagnetic wave having a wavelength of 30 to 3000 μm (frequency is 0.1 to 10 THz). Therefore, when terahertz light propagates in the air, it is strongly absorbed by water vapor (H 2 O) in the air, and the intensity is attenuated.

上記従来のテラヘルツ光測定装置では、その構成要素が開放空間に配置されるため、テラヘルツ光が自由空間中を伝搬する。その結果、空気中の水蒸気で強く吸収され、強度が減衰する。そのため、テラヘルツ光検出器で検出される信号のSN比が低下する。また、測定した分光スペクトルにHOの吸収スペクトルがノイズとして重畳し、被測定対象の物性を求めることが難しくなる。 In the conventional terahertz light measuring apparatus, the constituent elements are arranged in an open space, so that the terahertz light propagates in the free space. As a result, it is strongly absorbed by water vapor in the air and the strength is attenuated. Therefore, the SN ratio of the signal detected by the terahertz photodetector is reduced. In addition, the absorption spectrum of H 2 O is superimposed as noise on the measured spectrum, making it difficult to determine the physical properties of the measurement target.

そこで、上記従来の問題を解決するために、構成要素を筐体に収容し、筐体内を窒素等でパージしたり、筐体内を真空にしたりするテラヘルツ光測定装置が開発された(たとえば、特許文献3参照。)。
特開2002−277393号公報 特許4046158号公報 特許3950818号公報
Therefore, in order to solve the above-described conventional problems, a terahertz light measurement device has been developed in which components are housed in a housing and the inside of the housing is purged with nitrogen or the inside of the housing is evacuated (for example, a patent Reference 3).
JP 2002-277393 A Japanese Patent No. 4046158 Japanese Patent No. 3950818

上記従来のテラヘルツ光測定装置の場合、パージ用の窒素ボンベ或いは真空にするための真空ポンプ等をテラヘルツ光測定装置に常備する必要がある。そのため、テラヘルツ光測定装置の可搬性が著しく損なわれる。   In the case of the conventional terahertz light measuring apparatus, it is necessary to always provide a purge nitrogen cylinder or a vacuum pump for making a vacuum in the terahertz light measuring apparatus. Therefore, the portability of the terahertz light measurement device is significantly impaired.

また、筐体内を真空にするタイプでは、シール性を高めて真空を維持する必要があるため、筐体が複雑且つ大型化してしまう。さらに、構成要素である光学系のアライメントをする際、筐体の真空を破る必要があり、アライメントに時間がかかる。   Further, in the type in which the inside of the housing is evacuated, it is necessary to improve the sealing property and maintain the vacuum, so that the housing becomes complicated and large. Furthermore, when aligning the optical system as a component, it is necessary to break the vacuum of the housing, and alignment takes time.

本発明は、上記の問題に鑑みてなされたものであり、可搬性に優れ、光学系のアライメント工数が省け且つテラヘルツ光の筐体内水蒸気による減衰が少ないテラヘルツ光測定装置を提供することを課題とする。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide a terahertz light measurement apparatus that is excellent in portability, saves the alignment man-hours of the optical system, and is less attenuated by water vapor in the housing of terahertz light. To do.

上記の課題を解決するためになされた本発明のテラヘルツ光測定装置は、筐体と、前記筐体に収容されたテラヘルツ光発生手段と、前記発生手段から発生されるテラヘルツ光を被測定対象に入射させる前記筐体に収容された入射手段と、前記被測定対象から出射される出射テラヘルツ光を受光する前記筐体に収容された受光手段と、前記受光手段で受光された前記出射テラヘルツ光を検出する前記筐体に収容されたテラヘルツ光検出手段と、前記筐体に収容され前記筐体内の空気中のHOを除去する除去手段と、を有することを特徴とする。 The terahertz light measuring device of the present invention made to solve the above-described problems is a housing, terahertz light generating means accommodated in the housing, and terahertz light generated from the generating means as a measurement target. Incident means accommodated in the casing to be incident, light receiving means accommodated in the casing for receiving outgoing terahertz light emitted from the measurement target, and the outgoing terahertz light received by the light receiving means Terahertz light detecting means accommodated in the casing to be detected, and removing means accommodated in the casing and removing H 2 O in the air in the casing.

上記テラヘルツ光測定装置は、前記筐体内の空気中のHO濃度を検出する濃度検出手段を有するとよい。 The terahertz light measurement device may include a concentration detection unit that detects an H 2 O concentration in the air in the housing.

また、上記の濃度検出手段は、前記筐体内に収容された表面反射鏡と、前記入射手段が前記テラヘルツ光を前記表面反射鏡に入射させるように前記入射手段を制御する入射制御手段と、前記受光手段が前記表面反射鏡から反射される前記テラヘルツ光を受光するように前記受光手段を制御する受光制御手段と、を備えるものとするとよい。   The concentration detection means includes a surface reflecting mirror housed in the housing, an incident control means for controlling the incident means so that the incident means causes the terahertz light to be incident on the surface reflecting mirror, and The light receiving means may include a light receiving control means for controlling the light receiving means so as to receive the terahertz light reflected from the surface reflecting mirror.

筐体内の空気中のHOを除去する除去手段を筐体内に収容するだけなので、テラヘルツ光測定装置の可搬性が損なわれることがない。筐体内を真空にする必要がないので、筐体が大型化しない。真空を破る必要がないので光学系のアライメント工数が省ける。 Since the removal means for removing H 2 O in the air in the housing is only housed in the housing, the portability of the terahertz light measurement device is not impaired. Since it is not necessary to evacuate the inside of the housing, the housing does not increase in size. Since there is no need to break the vacuum, the alignment process of the optical system can be saved.

濃度検出手段を有するようにすることで、筐体内の水蒸気濃度を所定値以下にするように、除去手段を制御することができる。   By providing the concentration detection means, the removal means can be controlled so that the water vapor concentration in the housing is not more than a predetermined value.

表面反射鏡と、テラヘルツ光を表面反射鏡に入射させるように入射手段を制御する入射制御手段と、表面反射鏡から反射されるテラヘルツ光を受光するように受光手段を制御する受光制御手段と、を備えることで、表面反射鏡を経由する光路を伝搬するテラヘルツ光の分光スペクトルを得ることができる。この分光スペクトルには筐体内の水蒸気濃度に比例するHOの吸収線が現れるので、別途濃度検出手段を備えなくても筐体内の水蒸気濃度を検出することができる。 A surface reflecting mirror, an incident control means for controlling the incident means so that the terahertz light is incident on the surface reflecting mirror, a light receiving control means for controlling the light receiving means to receive the terahertz light reflected from the surface reflecting mirror, With this, it is possible to obtain a spectrum of terahertz light propagating through an optical path passing through the surface reflecting mirror. Since an absorption line of H 2 O proportional to the water vapor concentration in the housing appears in this spectral spectrum, the water vapor concentration in the housing can be detected without a separate concentration detecting means.

本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described with reference to the drawings.

図1は、本発明のテラヘルツ光測定装置の上面視(z軸方向視)図であり、図2は、図1の要部側方視(y軸方向視)図である。   FIG. 1 is a top view (z-axis direction view) of the terahertz light measurement apparatus of the present invention, and FIG. 2 is a side view of the main part (y-axis direction view) of FIG.

テラヘルツ光測定装置は、図1に示すように、光学要素を二つの筐体1、1Aに収容してなる。筐体1は、テラヘルツ光発生・検出用光学要素を収容し、筐体1Aは、超短光パルスレーザ発生・光学遅延用の光学要素を収容する。筐体1は、外気と筐体1Aの収容空間とから遮断された密閉空間を形成する構造をしている。   As shown in FIG. 1, the terahertz light measuring apparatus is configured by housing an optical element in two housings 1 and 1A. The housing 1 houses optical elements for generating and detecting terahertz light, and the housing 1A houses optical elements for generating and delaying ultrashort light pulse lasers. The housing 1 has a structure that forms a sealed space that is blocked from outside air and the housing space of the housing 1A.

テラヘルツ光測定装置は、図1及び図2に示すように、密閉空間を形成する筐体1と、筐体1に収容されたテラヘルツ光発生手段2と、テラヘルツ光Ltを被測定対象20に入射させる筐体1に収容された入射手段3と、被測定対象20から出射される出射テラヘルツ光Ltrを受光する筐体1に収容された受光手段4と、出射テラヘルツ光Ltrを検出する筐体1に収容されたテラヘルツ光検出手段5と、筐体1に収容され筐体1内の空気中のHOを除去する除去手段6と、水蒸気濃度検出手段を構成する表面反射鏡7a、テラヘルツ光Ltを表面反射鏡7に入射させるように入射手段3を制御する入射制御手段7b及び表面反射鏡7aから出射される出射テラヘルツ光Ltrを受光するように受光手段4を制御する受光制御手段7cと、を有している。 As shown in FIGS. 1 and 2, the terahertz light measuring apparatus is configured to make a case 1 forming a sealed space, terahertz light generating means 2 accommodated in the case 1, and terahertz light Lt incident on a measurement target 20. The incident means 3 housed in the housing 1 to be received, the light receiving means 4 housed in the housing 1 that receives the outgoing terahertz light Ltr emitted from the measurement target 20, and the housing 1 that detects the outgoing terahertz light Ltr. Terahertz light detecting means 5 housed in the housing 1, removing means 6 for removing H 2 O in the air contained in the housing 1, the surface reflecting mirror 7a constituting the water vapor concentration detecting means, terahertz light An incident control means 7b for controlling the incident means 3 so that Lt is incident on the surface reflecting mirror 7, and a light receiving control means 7c for controlling the light receiving means 4 so as to receive the outgoing terahertz light Ltr emitted from the surface reflecting mirror 7a; ,have

テラヘルツ光測定装置は、上記の他に筐体1に連なる筐体1Aに収容された超短光パルス光源8と、超短光パルス光源8から発生された超短光パルスレーザLoをポンプ光Lpuとプローブ光Lprとに分割する光分割手段9と、プローブ光Lprの時間遅延を制御する光学遅延手段10、他を備えている。   In addition to the above, the terahertz light measuring apparatus pumps an ultrashort light pulse light source 8 housed in a housing 1A connected to the housing 1 and an ultrashort light pulse laser Lo generated from the ultrashort light pulse light source 8 by pumping light Lpu. And a light splitting means 9 for splitting the probe light Lpr, an optical delay means 10 for controlling the time delay of the probe light Lpr, and the like.

超短光パルス光源8は、Erドープファイバレーザで、パルス幅17fs、繰り返し周波数50MHz、中心波長1560nm、出力110mWの超短光パルスレーザL0を発生する。   The ultrashort optical pulse light source 8 is an Er-doped fiber laser, and generates an ultrashort optical pulse laser L0 having a pulse width of 17 fs, a repetition frequency of 50 MHz, a center wavelength of 1560 nm, and an output of 110 mW.

繰り返し周波数は、大きいほど出射テラヘルツ光Ltrの電場振幅時間分解波形のSN比を上げることができるが、繰り返し周波数が大き過ぎるとパルス間隔が狭まり、時間領域でのスキャンレンジが狭まるので、計測目的に応じて適切な繰り返し周波数のレーザを用いることが望ましい。   The larger the repetition frequency, the higher the signal-to-noise ratio of the electric field amplitude time-resolved waveform of the outgoing terahertz light Ltr. However, if the repetition frequency is too large, the pulse interval is narrowed and the scan range in the time domain is narrowed. Accordingly, it is desirable to use a laser with an appropriate repetition frequency.

なお、超短光パルス光源8は、上記に限定されるものでなく、例えば、Ybドープファイバレーザやチタンサファイアレーザ等でもよい。   The ultrashort optical pulse light source 8 is not limited to the above, and may be, for example, a Yb-doped fiber laser or a titanium sapphire laser.

光分割手段9は、ビームスプリッタである。超短光パルスレーザL0は、ビームスプリッタ9によって、ポンプ光Lpuとプローブ光Lprとに10対1の割合で分岐され、異なった光路を進む。すなわち、ポンプ光Lpuは、パルス幅17fs、出力100mWであり、プローブ光Lprは、パルス幅17fs、出力10mWである。   The light splitting means 9 is a beam splitter. The ultrashort optical pulse laser L0 is branched by the beam splitter 9 into the pump light Lpu and the probe light Lpr at a ratio of 10: 1 and travels on different optical paths. That is, the pump light Lpu has a pulse width of 17 fs and an output of 100 mW, and the probe light Lpr has a pulse width of 17 fs and an output of 10 mW.

なお、超短光パルス光源8がSHG結晶を備えるErドープファイバレーザの場合、中心波長1560nm、出力100mWの基本波パルスと、中心波長780nm、出力10mWの第2高調波パルスからなる超短光パルスレーザL0を発生するので、この場合は、光分割手段9に2色ミラーを用いるとよい。   When the ultrashort optical pulse light source 8 is an Er-doped fiber laser including an SHG crystal, an ultrashort optical pulse comprising a fundamental wave pulse having a center wavelength of 1560 nm and an output of 100 mW and a second harmonic pulse having a center wavelength of 780 nm and an output of 10 mW. Since the laser L0 is generated, in this case, a two-color mirror may be used as the light dividing means 9.

ポンプ光Lpuは、変調器11を通過して変調を受ける。変調器11による変調周波数は、ポンプ光Lpuの繰り返し周波数の1/10以下程度であれば高い方が好ましい。本実施形態では、変調器11にチョッパが用いられ、ポンプ光Lpuは1kHzで変調される。   The pump light Lpu passes through the modulator 11 and is modulated. The modulation frequency by the modulator 11 is preferably higher if it is about 1/10 or less of the repetition frequency of the pump light Lpu. In this embodiment, a chopper is used for the modulator 11, and the pump light Lpu is modulated at 1 kHz.

なお、変調器11に音響光学変調器(AOM)や電気光学変調器(EOM)等を用いると、高速変調が可能になる。   If an acousto-optic modulator (AOM), an electro-optic modulator (EOM), or the like is used as the modulator 11, high-speed modulation becomes possible.

変調を受けたポンプ光Lpuは、筐体1の壁に嵌め込まれたレンズ15でテラヘルツパルス光発生手段4に集光される。テラヘルツパルス光発生手段4は、DAST結晶である。DASTは、4-dimethylamino-N-methyl-4 stilbazolium tosylateの略称である。   The modulated pump light Lpu is condensed on the terahertz pulse light generation means 4 by the lens 15 fitted in the wall of the housing 1. The terahertz pulse light generation means 4 is a DAST crystal. DAST is an abbreviation for 4-dimethylamino-N-methyl-4 stilbazolium tosylate.

DAST4にポンプ光Lpuが照射されると、結晶のχ(2)効果でテラヘルツ光Ltが発生される。DAST4から発生されたテラヘルツ光Ltは、軸外し放物面鏡16でコリメートされ、その後、入射手段3で窓17を介して筐体1の外に配置された被測定対象20に集光照射される。 When pump light Lpu is irradiated to DAST4, terahertz light Lt is generated by the χ (2) effect of the crystal. The terahertz light Lt generated from the DAST 4 is collimated by the off-axis parabolic mirror 16, and then condensed and irradiated to the measurement target 20 disposed outside the housing 1 through the window 17 by the incident means 3. The

入射手段3は、図2に示すように、軸外し放物面鏡3aをz軸方向の回転軸3bに回転可能に取り付けたものであり、軸外し放物面鏡16でコリメートされたテラヘルツ光Ltを被測定対象20に集光照射する。   As shown in FIG. 2, the incident means 3 includes an off-axis parabolic mirror 3 a rotatably attached to a rotation axis 3 b in the z-axis direction, and the terahertz light collimated by the off-axis parabolic mirror 16. Lt is focused on the object 20 to be measured.

軸外し放物面鏡3aは、入射制御手段7bで後述のパソコン22からの指令信号S4により、回転軸3bの周りを180°回転させられ、点線で示す軸外し放物面鏡3aとなる。そのため、点線で示す軸外し放物面鏡3aは、後述の表面反射鏡7aにテラヘルツ光Ltを集光照射する。   The off-axis parabolic mirror 3a is rotated by 180 ° around the rotation axis 3b by a command signal S4 from the personal computer 22 described later by the incident control means 7b, and becomes an off-axis parabolic mirror 3a indicated by a dotted line. Therefore, the off-axis parabolic mirror 3a indicated by the dotted line collects and irradiates the terahertz light Lt onto the surface reflecting mirror 7a described later.

被測定対象20で正反射した出射テラヘルツ光Ltrは、受光手段4で受光されてコリメートされた後、軸外し放物面鏡16Aでテラヘルツ光検出手段5に集光照射される。   The outgoing terahertz light Ltr specularly reflected by the object 20 to be measured is received by the light receiving means 4 and collimated, and then condensed and irradiated to the terahertz light detecting means 5 by the off-axis parabolic mirror 16A.

受光手段4は、図2に示すように、軸外し放物面鏡4aをz軸方向の回転軸4bに回転可能に取り付けたものであり、被測定対象20で反射された出射テラヘルツ光Ltrを受光コリメートする。   As shown in FIG. 2, the light receiving means 4 has an off-axis parabolic mirror 4 a rotatably attached to a rotation axis 4 b in the z-axis direction, and outputs the outgoing terahertz light Ltr reflected by the measurement target 20. Receive light collimate.

回転軸3bと回転軸4bとは、同軸であり、軸外し放物面鏡3aと軸外し放物面鏡4aとは、z軸方向で上下位置関係にある。   The rotating shaft 3b and the rotating shaft 4b are coaxial, and the off-axis parabolic mirror 3a and the off-axis parabolic mirror 4a are in a vertical position relationship in the z-axis direction.

軸外し放物面鏡4aは、受光制御手段7cで後述のパソコン22からの指令信号S4により、回転軸4bの周りを180°回転させられ、点線で示す軸外し放物面鏡4aとなる。そのため、点線で示す軸外し放物面鏡4aは、後述の表面反射鏡7で反射された出射テラヘルツ光Ltrを受光コリメートする。   The off-axis parabolic mirror 4a is rotated by 180 ° around the rotation axis 4b by a command signal S4 from the personal computer 22 described later by the light receiving control means 7c, and becomes an off-axis parabolic mirror 4a indicated by a dotted line. Therefore, the off-axis parabolic mirror 4a indicated by the dotted line receives and collimates outgoing terahertz light Ltr reflected by the surface reflecting mirror 7 described later.

点線で示す軸外し放物面鏡3aの集光照射位置に、表面反射鏡7が配置されている。すなわち、表面反射鏡7と被測定対象20とは、回転軸3b、4bを鏡面とする、鏡像位置関係にある。   A surface reflecting mirror 7 is arranged at the condensing irradiation position of the off-axis parabolic mirror 3a indicated by a dotted line. That is, the surface reflecting mirror 7 and the measurement target 20 are in a mirror image positional relationship with the rotation axes 3b and 4b as mirror surfaces.

テラヘルツ光検出手段5は、シリコンレンズ51と光伝導スイッチ52を備えている。光伝導スイッチ52は、低温成長GaAs基板にダイポールアンテナを形成したもので、ダイポールアンテナのギャップ部をプローブ光Lprで励起して、そこに出射テラヘルツ光Ltrを入射させてその電場振幅時間波形を得ることができる。   The terahertz light detection means 5 includes a silicon lens 51 and a photoconductive switch 52. The photoconductive switch 52 is formed by forming a dipole antenna on a low-temperature grown GaAs substrate. The gap portion of the dipole antenna is excited by the probe light Lpr, and the outgoing terahertz light Ltr is incident thereon to obtain the electric field amplitude time waveform. be able to.

19は、光伝導スイッチ52からの電気信号を増幅するプリアンプで、増幅した信号S1は、ロックインアンプ21に入力される。   Reference numeral 19 denotes a preamplifier that amplifies the electric signal from the photoconductive switch 52, and the amplified signal S <b> 1 is input to the lock-in amplifier 21.

ロックインアンプ21は、光伝導スイッチ52で検出された信号S1の中からチョッパ11の変調信号S2に同期した成分を抽出して増幅する。   The lock-in amplifier 21 extracts and amplifies a component synchronized with the modulation signal S2 of the chopper 11 from the signal S1 detected by the photoconductive switch 52.

ビームスプリッタ9で分割されたプローブ光Lprは、波長変換素子18で中心波長780nmの光に変換される。波長変換素子18は、たとえば、リチウムニオブ酸等のSHG結晶である。   The probe light Lpr divided by the beam splitter 9 is converted into light having a central wavelength of 780 nm by the wavelength conversion element 18. The wavelength conversion element 18 is, for example, an SHG crystal such as lithium niobic acid.

波長変換素子21で波長変換されたプローブ光Lprは、光学遅延手段10を経て筐体1の壁に嵌め込まれた集光レンズ15Aで検出手段5の光伝導スイッチ52に集光される。   The probe light Lpr wavelength-converted by the wavelength conversion element 21 is condensed on the photoconductive switch 52 of the detection means 5 by the condensing lens 15A fitted in the wall of the housing 1 through the optical delay means 10.

光学遅延手段10は、交差ミラー10aと交差ミラー10aを矢印A方向に移動させる移動機構10bとを備え、ポンプ光Lpuでポンプされて発生するテラヘルツ光Ltに対して、プローブ光Lprに時間的な遅れ、或いは進みを発生させる。移動機構10bは、パソコン22で制御される。光学遅延手段10がラピッドスキャン型の場合、遅延掃引の周期にパソコン22を同期させてもよい。こうすることにより、より高速にデータを取得することができる。   The optical delay means 10 includes an intersecting mirror 10a and a moving mechanism 10b for moving the intersecting mirror 10a in the direction of arrow A. The terahertz light Lt generated by pumping with the pump light Lpu is temporally related to the probe light Lpr. Delay or advance is generated. The moving mechanism 10 b is controlled by the personal computer 22. When the optical delay means 10 is a rapid scan type, the personal computer 22 may be synchronized with the cycle of the delayed sweep. By doing so, data can be acquired at a higher speed.

パソコン22は、光学遅延手段10の位置情報と、ロックインアンプ21からの信号を記録すると共に、光学遅延手段10の移動機構10bと入射制御手段7b、受光制御手段7cを制御する機能も有している。   The personal computer 22 records the position information of the optical delay means 10 and the signal from the lock-in amplifier 21, and also has a function of controlling the moving mechanism 10b, the incident control means 7b, and the light reception control means 7c of the optical delay means 10. ing.

筐体1の壁面の開口から挿入された除去手段6は、容器6aと容器6aの中に収容された水蒸気除去部材6bとからなる。容器6aが筐体1に挿入されると壁面の開口が容器の鍔部で塞がれ、筐体1の機密性が保たれるようになっている。容器6aの筐体1の内部に位置する壁面は、一部が金網で構成されている。除去部材6bは、シリカゲルであるが、酸化アルミニウム、酸化カルシウム、塩化カルシウム、シリカアルミナゲル等でもよい。   The removing means 6 inserted from the opening of the wall surface of the housing 1 includes a container 6a and a water vapor removing member 6b accommodated in the container 6a. When the container 6 a is inserted into the housing 1, the opening of the wall surface is closed with the buttocks of the container, so that the confidentiality of the housing 1 is maintained. A part of the wall surface located inside the housing 1 of the container 6a is formed of a wire mesh. The removing member 6b is silica gel, but may be aluminum oxide, calcium oxide, calcium chloride, silica alumina gel, or the like.

本実施形態の除去手段6は、上記のように、シリカゲル6bの入った容器6aを筐体1内に挿入するものであったが、これに限定されるものではない。たとえば、除去手段6の容器6aが挿入される筐体1の壁面の開口と市販の除湿器(たとえば、西部技研製、デシカント除湿器)の入口を連結し、出口を別の開口と連結してもよい。そうすることで、除湿器の入口から入った筐体1内の空気の水蒸気が除湿器で除去され、除湿された空気が除湿器の出口から出て、筐体1内に循環される。   As described above, the removing means 6 of the present embodiment inserts the container 6a containing the silica gel 6b into the housing 1, but is not limited thereto. For example, the opening of the wall surface of the housing 1 into which the container 6a of the removing means 6 is inserted is connected to the inlet of a commercially available dehumidifier (for example, a desiccant dehumidifier manufactured by Seibu Giken), and the outlet is connected to another opening. Also good. By doing so, water vapor in the air in the housing 1 entering from the inlet of the dehumidifier is removed by the dehumidifier, and the dehumidified air exits from the outlet of the dehumidifier and is circulated in the housing 1.

本発明のテラヘルツ光測定装置においては、テラヘルツ光の伝搬する光路の大部分が筐体1内にあり、筐体1内にHOを除去する除去手段6を有しているのでテラヘルツ光が減衰することがない。 In the terahertz light measuring apparatus of the present invention, most of the optical path through which the terahertz light propagates is in the housing 1 and the housing 1 has the removing means 6 for removing H 2 O. There is no attenuation.

本実施形態の筐体1は、外気から遮断された密閉空間を形成する構造をしており、その密閉性は高い方が望ましい。密閉性が高いほど、除去手段6の除去性能が低くてもよい。なお、筐体1が密閉性が低い構造の場合は、除去性能の高い除去手段6を用いればよい。   The housing 1 of the present embodiment has a structure that forms a sealed space that is shielded from the outside air, and it is desirable that the sealing property be higher. The removal performance of the removing means 6 may be lower as the sealing property is higher. In addition, when the housing | casing 1 is a structure with low airtightness, what is necessary is just to use the removal means 6 with high removal performance.

次に、本テラヘルツ光測定装置の動作(動作間隔があいた場合の予備動作)について説明する。   Next, the operation of the terahertz light measurement apparatus (preliminary operation when there is an operation interval) will be described.

まず、パソコン22から入射制御手段7bと受光制御手段7cに制御信号S4を出し、実線で示す状態の軸外し放物面鏡3aと軸外し放物面鏡4aとを回転軸3bと回転軸4bとの周りに180°回転させ、点線で示す状態の軸外し放物面鏡3aと軸外し放物面鏡4aとに切り換える(図2参照。)。   First, the control signal S4 is issued from the personal computer 22 to the incident control means 7b and the light reception control means 7c, and the off-axis parabolic mirror 3a and the off-axis parabolic mirror 4a in the state indicated by the solid line are rotated with the rotation shaft 3b and the rotation shaft 4b. And is switched between an off-axis parabolic mirror 3a and an off-axis parabolic mirror 4a in the state indicated by the dotted line (see FIG. 2).

超短光パルス光源8から発生された超短光パルスレーザLoは、ビームスプリッタ9でポンプ光Lpuとプローブ光Lprに分割される。   The ultrashort light pulse laser Lo generated from the ultrashort light pulse light source 8 is split by the beam splitter 9 into pump light Lpu and probe light Lpr.

ポンプ光Lpuは、チョッパ11で強度変調された後、レンズ15でDAST結晶2の軸方向に集光照射される。すると、結晶2のχ(2)効果でテラヘルツ光Ltが発生される。 The pump light Lpu is intensity-modulated by the chopper 11 and then condensed and irradiated by the lens 15 in the axial direction of the DAST crystal 2. Then, the terahertz light Lt is generated by the χ (2) effect of the crystal 2.

テラヘルツ光Ltは、軸外し放物面鏡16でコリメートされた後、入射手段3の軸外し放物面鏡3aで表面反射鏡7aに集光照射される。   The terahertz light Lt is collimated by the off-axis parabolic mirror 16, and then condensed and irradiated on the surface reflecting mirror 7a by the off-axis parabolic mirror 3a of the incident means 3.

表面反射鏡7aで反射された出射テラヘルツ光Ltrは、受光手段4の軸外し放物面鏡4aで受光コリメートされ、軸外し放物面鏡16Aでシリコンレンズ51を介して光伝導スイッチ52に集光される。   The outgoing terahertz light Ltr reflected by the surface reflecting mirror 7a is received and collimated by the off-axis parabolic mirror 4a of the light receiving means 4, and collected by the off-axis parabolic mirror 16A via the silicon lens 51 to the photoconductive switch 52. Lighted.

一方、ビームスプリッタ9で分割されたプローブ光Lprは、波長変換素子18で波長変換された後、光学遅延手段10を経て、レンズ15Aにより光伝導スイッチ52に集光される。光学遅延手段10をスキャンすることにより、光伝導スイッチ52で出射テラヘルツ光Ltrの電場振幅時間分解波形を計測する。すなわち、光伝導スイッチ52の信号をプリアンプ19で増幅し、さらに、ロックインアンプ21で増幅し、パソコン22でデータを蓄積して、出射テラヘルツ光Ltrの図3に示すような電場振幅時間分解波形を得る。   On the other hand, the probe light Lpr divided by the beam splitter 9 is wavelength-converted by the wavelength conversion element 18, passes through the optical delay means 10, and is condensed on the photoconductive switch 52 by the lens 15 </ b> A. By scanning the optical delay means 10, the electric field amplitude time-resolved waveform of the outgoing terahertz light Ltr is measured by the photoconductive switch 52. That is, the signal of the photoconductive switch 52 is amplified by the preamplifier 19, and further amplified by the lock-in amplifier 21, the data is accumulated by the personal computer 22, and the electric field amplitude time-resolved waveform of the output terahertz light Ltr as shown in FIG. Get.

次に、この電場振幅時間分解波形をパソコン22でフーリエ変換して、図4に示すような分光スペクトルを得る。   Next, this electric field amplitude time-resolved waveform is Fourier-transformed by the personal computer 22 to obtain a spectrum as shown in FIG.

発生手段2で発生したテラヘルツ光Ltは、発生手段2→入射制御手段3→表面反射鏡7a→受光制御手段4→検出手段5と伝搬する間に光路中の水蒸気により吸収を受ける。したがって、図4は、水蒸気濃度が高い場合のスペクトルであるが、1〜2THzの間にHO分子の回転、並進運動による多数の吸収線B1〜B8(振幅の急激な落ち込み)が見られる。この落ち込み量は、水蒸気濃度に比例するので、吸収線の落ち込み量から水蒸気濃度が計測される。 The terahertz light Lt generated by the generating means 2 is absorbed by water vapor in the optical path while propagating through the generating means 2 → incident control means 3 → surface reflecting mirror 7a → light receiving control means 4 → detecting means 5. Therefore, FIG. 4 shows a spectrum when the water vapor concentration is high, but a large number of absorption lines B1 to B8 (abrupt drop in amplitude) are observed between 1 and 2 THz due to the rotation and translation of the H 2 O molecule. . Since this drop amount is proportional to the water vapor concentration, the water vapor concentration is measured from the drop amount of the absorption line.

たとえば、B1線に注目して、B1線が、たとえば、振幅0.01を切ると警報を発するようにしておき、警報が発せられたら、オペレータがシリカゲル6bを、焼成した新しいシリカゲルに交換する。   For example, paying attention to the B1 line, for example, an alarm is generated when the B1 line drops below an amplitude of 0.01, and when the alarm is issued, the operator replaces the silica gel 6b with a new baked silica gel.

シリカゲル6bを交換して所定の時間経過してから、再度、上記の予備動作を行う。再度の予備動作を行って、警報が発せられなくなったら、以下のような本動作を行う。   After the silica gel 6b is replaced and a predetermined time elapses, the above preliminary operation is performed again. If the preliminary operation is performed again and the alarm cannot be issued, the following operation is performed.

まず、パソコン22から入射制御手段7bと受光制御手段7cに制御信号S4を出し、点線で示す状態の軸外し放物面鏡3aと軸外し放物面鏡4aとを回転軸3bと回転軸4bとの周りに180°回転させ、実線で示す状態の軸外し放物面鏡3aと軸外し放物面鏡4aとに切り換える。   First, the control signal S4 is issued from the personal computer 22 to the incident control means 7b and the light reception control means 7c, and the off-axis parabolic mirror 3a and the off-axis parabolic mirror 4a in the state indicated by the dotted lines are rotated with the rotation shaft 3b and the rotation shaft 4b. And is switched between an off-axis parabolic mirror 3a and an off-axis parabolic mirror 4a in the state indicated by the solid line.

次に、予備動作と同様に動作させ、被測定対象20で反射された出射テラヘルツ光Ltrの電場振幅時間分解波形を得る。   Next, the electric field amplitude time-resolved waveform of the outgoing terahertz light Ltr reflected by the measurement target 20 is obtained by operating in the same manner as the preliminary operation.

次に、この電場振幅時間分解波形がパソコン22でフーリエ変換され、分光スペクトルが得られる。   Next, this electric field amplitude time-resolved waveform is Fourier transformed by the personal computer 22 to obtain a spectral spectrum.

この分光スペクトルには、HOの吸収線がほとんど重畳されず、たとえば、被測定対象20の複素屈折率を高精度に測定することができる。 In this spectrum, H 2 O absorption lines are hardly superimposed, and for example, the complex refractive index of the measurement target 20 can be measured with high accuracy.

本実施形態のテラヘルツ光測定装置では、被測定対象20と共役の関係にある表面反射鏡7aと、入射手段3がテラヘルツ光を表面反射鏡7aに照射するように入射手段3を制御する入射制御手段7bと、受光手段4が表面反射鏡7aから反射されるテラヘルツ光を受光するように受光手段4を制御する受光制御手段7cとを備えることで、筐体1内の水蒸気濃度を検出するようにしたが、別途点線で示す水蒸気濃度検出器7を筐体1内に配置してもよい。水蒸気濃度検出器7としては、金属酸化物セラミックスを用いた湿度センサ等を用いることができる。   In the terahertz light measuring apparatus according to the present embodiment, the surface reflecting mirror 7a conjugated with the measurement target 20 and the incident control for controlling the incident means 3 so that the incident means 3 irradiates the surface reflecting mirror 7a with the terahertz light. Means 7b and a light receiving control means 7c for controlling the light receiving means 4 so that the light receiving means 4 receives the terahertz light reflected from the surface reflecting mirror 7a, so that the water vapor concentration in the housing 1 is detected. However, the water vapor concentration detector 7 indicated by a dotted line may be separately arranged in the housing 1. As the water vapor concentration detector 7, a humidity sensor using metal oxide ceramics or the like can be used.

本実施形態では、被測定対象20が反射物体であったが、例えば、被測定対象20の位置に表面反射鏡を置いて、窓17と表面反射鏡の間に透過物体(気体、液体等)を挿入して透過スペクトルを測定するようにしてもよい。   In the present embodiment, the measurement target 20 is a reflective object. For example, a surface reflection mirror is placed at the position of the measurement target 20, and a transmission object (gas, liquid, etc.) is provided between the window 17 and the surface reflection mirror. May be inserted to measure the transmission spectrum.

次に、筐体1内の湿度を変化させたときの実験結果を以下に示す。実験では、筐体1内の湿度を0%(真空)、7.8%、49%の3水準に設定して行われた。結果を図5及び図6に示す。図5は、電場振幅時間分解波形であり、図6は図5の波形をフーリエ変換して求めた分光スペクトルである。   Next, experimental results when the humidity in the housing 1 is changed are shown below. In the experiment, the humidity in the housing 1 was set to three levels of 0% (vacuum), 7.8%, and 49%. The results are shown in FIGS. FIG. 5 is an electric field amplitude time-resolved waveform, and FIG. 6 is a spectrum obtained by Fourier transforming the waveform of FIG.

評価基準となる0.55THzの吸収線は、真空ではほとんど観測されないが、湿度7.8%では、小さな凹部として観測され、湿度49%になると、大きなディップとなって観測される。スペクトル上で、0.55THzでのスペクトル強度を図6中の破線横に数字で示してある。強度は真空のとき一番強く(967.4)、湿度7.8%で82.3%(796.3)、湿度49%で30%(241.5)に減少する。ここまで水蒸気の吸収が大きくなると、図5に示した時間波形も変動幅が大きくなる。したがって、シリカゲルによる吸湿作用は、ノイズ低減に効果があると結論される。   An absorption line of 0.55 THz that is an evaluation standard is hardly observed in a vacuum, but is observed as a small concave portion at a humidity of 7.8%, and is observed as a large dip at a humidity of 49%. On the spectrum, the spectrum intensity at 0.55 THz is indicated by a number next to the broken line in FIG. The intensity is strongest in a vacuum (967.4), decreasing to 82.3% (796.3) at a humidity of 7.8% and 30% (241.5) at a humidity of 49%. If the absorption of water vapor increases so far, the fluctuation range of the time waveform shown in FIG. 5 also increases. Therefore, it is concluded that the hygroscopic action by silica gel is effective in reducing noise.

本実験では、筐体1の容積12リットル当たり、500ミリリットルのシリカゲルを使用したので、1リットル当たり42ミリリットル程度のシリカゲルが必要になる。   In this experiment, 500 milliliters of silica gel is used per 12 liters of the volume of the casing 1, so that about 42 milliliters of silica gel is required per liter.

本発明に係るテラヘルツ光測定装置の上面視図である。1 is a top view of a terahertz light measuring apparatus according to the present invention. 図1の要部側方視図である。It is a principal part side view of FIG. 電場振幅時間分解波形図ある。It is an electric field amplitude time-resolved waveform diagram. 図3の波形をフーリエ変換した分光スペクトルである。It is the spectrum which carried out the Fourier transform of the waveform of FIG. 筐体内の湿度を変化させたときの電場振幅時間分解波形図である。It is an electric field amplitude time-resolved waveform figure when the humidity in a housing | casing is changed. 図5の波形をフーリエ変換した分光スペクトルである。6 is a spectrum obtained by Fourier transforming the waveform of FIG.

符号の説明Explanation of symbols

1・・・・・・・筐体
2・・・・・・・テラヘルツ光発生手段
3・・・・・・・入射手段
4・・・・・・・受光手段
5・・・・・・・テラヘルツ光検出手段
6・・・・・・・除去手段
7・・・・・・・濃度検出手段
7a・・・・・ 表面反射鏡
7b・・・・・ 入射制御手段
7c・・・・・ 受光制御手段
Lt・・・・・・ テラヘルツ光
Ltr・・・・・・出射テラヘルツ光
1... Case 2... Terahertz light generating means 3 .. Incident means 4... Light receiving means 5. Terahertz light detection means 6 ... Removal means 7 ... Concentration detection means 7a ... Surface reflector 7b ... Incident control means 7c ... Light reception Control means Lt ... Terahertz light Ltr ... Emission terahertz light

Claims (3)

筐体と、
前記筐体に収容されたテラヘルツ光発生手段と、
前記発生手段から発生されるテラヘルツ光を被測定対象に入射させる前記筐体に収容された入射手段と、
前記被測定対象から出射される出射テラヘルツ光を受光する前記筐体に収容された受光手段と、
前記受光手段で受光された前記出射テラヘルツ光を検出する前記筐体に収容されたテラヘルツ光検出手段と、
前記筐体内の空気中のHOを除去する除去手段と、を有することを特徴とするテラヘルツ光測定装置。
A housing,
Terahertz light generating means housed in the housing;
Incident means accommodated in the casing for allowing the terahertz light generated from the generating means to enter the measurement target;
A light receiving means accommodated in the housing for receiving the output terahertz light emitted from the measurement object;
Terahertz light detecting means housed in the casing for detecting the emitted terahertz light received by the light receiving means;
A terahertz light measuring apparatus comprising: removing means for removing H 2 O in the air in the housing.
さらに、前記筐体内の空気中のHO濃度を検出する濃度検出手段を有する請求項1に記載のテラヘルツ光測定装置。 The terahertz light measuring apparatus according to claim 1, further comprising a concentration detection unit that detects a concentration of H 2 O in the air in the housing. 前記濃度検出手段は、前記筐体内に収容された表面反射鏡と、前記入射手段が前記テラヘルツ光を前記表面反射鏡に入射させるように前記入射手段を制御する入射制御手段と、前記受光手段が前記表面反射鏡から反射される前記テラヘルツ光を受光するように前記受光手段を制御する受光制御手段と、を備える請求項2に記載のテラヘルツ光測定装置。   The concentration detection means includes a surface reflecting mirror housed in the housing, an incident control means for controlling the incident means so that the incident means causes the terahertz light to be incident on the surface reflecting mirror, and the light receiving means. The terahertz light measuring apparatus according to claim 2, further comprising: a light receiving control unit that controls the light receiving unit so as to receive the terahertz light reflected from the surface reflecting mirror.
JP2008333279A 2008-12-26 2008-12-26 Terahertz light measuring device Pending JP2010156544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333279A JP2010156544A (en) 2008-12-26 2008-12-26 Terahertz light measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333279A JP2010156544A (en) 2008-12-26 2008-12-26 Terahertz light measuring device

Publications (1)

Publication Number Publication Date
JP2010156544A true JP2010156544A (en) 2010-07-15

Family

ID=42574573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333279A Pending JP2010156544A (en) 2008-12-26 2008-12-26 Terahertz light measuring device

Country Status (1)

Country Link
JP (1) JP2010156544A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175130A (en) * 2011-03-03 2011-09-07 中国石油大学(华东) Real-time measuring device and measuring method for thickness of gas-containing liquid film in interface fluctuation
JP2013004698A (en) * 2011-06-15 2013-01-07 Nippon Telegr & Teleph Corp <Ntt> Terahertz wave generator
JP2013068528A (en) * 2011-09-22 2013-04-18 Aisin Seiki Co Ltd Terahertz wave propagation device, and fixation member of terahertz wave generation part or detection part
CN103776382A (en) * 2012-10-17 2014-05-07 爱信精机株式会社 Method for measuring layer thickness of multilayer ceramic
JP2017211368A (en) * 2016-05-19 2017-11-30 パナソニックIpマネジメント株式会社 Terahertz wave spectroscopic measurement system
JP2020020641A (en) * 2018-07-31 2020-02-06 浜松ホトニクス株式会社 Optical analysis module and optical analyzer
CN111366555A (en) * 2020-02-27 2020-07-03 浙江大学 Detection method for agricultural film residue in farmland soil
CN112485219A (en) * 2020-11-13 2021-03-12 桂林航天工业学院 Sensor for detecting liquid based on terahertz technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120323A (en) * 1993-10-25 1995-05-12 Nissan Motor Co Ltd Measuring apparatus for surface color of metal
JPH08254580A (en) * 1995-03-15 1996-10-01 Iseki & Co Ltd Humidity measuring device and method with near-infrared spectroscopic analysis
JP2004037391A (en) * 2002-07-05 2004-02-05 Olympus Corp Interference device
JP2004354246A (en) * 2003-05-29 2004-12-16 Aisin Seiki Co Ltd Reflection type terahertz spectrometry system and measuring method
JP2006153739A (en) * 2004-11-30 2006-06-15 Dkk Toa Corp Optical water quality measuring instrument

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120323A (en) * 1993-10-25 1995-05-12 Nissan Motor Co Ltd Measuring apparatus for surface color of metal
JPH08254580A (en) * 1995-03-15 1996-10-01 Iseki & Co Ltd Humidity measuring device and method with near-infrared spectroscopic analysis
JP2004037391A (en) * 2002-07-05 2004-02-05 Olympus Corp Interference device
JP2004354246A (en) * 2003-05-29 2004-12-16 Aisin Seiki Co Ltd Reflection type terahertz spectrometry system and measuring method
JP2006153739A (en) * 2004-11-30 2006-06-15 Dkk Toa Corp Optical water quality measuring instrument

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175130A (en) * 2011-03-03 2011-09-07 中国石油大学(华东) Real-time measuring device and measuring method for thickness of gas-containing liquid film in interface fluctuation
JP2013004698A (en) * 2011-06-15 2013-01-07 Nippon Telegr & Teleph Corp <Ntt> Terahertz wave generator
JP2013068528A (en) * 2011-09-22 2013-04-18 Aisin Seiki Co Ltd Terahertz wave propagation device, and fixation member of terahertz wave generation part or detection part
CN103776382A (en) * 2012-10-17 2014-05-07 爱信精机株式会社 Method for measuring layer thickness of multilayer ceramic
JP2017211368A (en) * 2016-05-19 2017-11-30 パナソニックIpマネジメント株式会社 Terahertz wave spectroscopic measurement system
US10345150B2 (en) 2016-05-19 2019-07-09 Panasonic Intellectual Property Management Co., Ltd. Terahertz wave spectrometry system
JP2020020641A (en) * 2018-07-31 2020-02-06 浜松ホトニクス株式会社 Optical analysis module and optical analyzer
JP7041022B2 (en) 2018-07-31 2022-03-23 浜松ホトニクス株式会社 Optical analysis module and optical analysis device
CN111366555A (en) * 2020-02-27 2020-07-03 浙江大学 Detection method for agricultural film residue in farmland soil
CN111366555B (en) * 2020-02-27 2021-01-26 浙江大学 Detection method for agricultural film residue in farmland soil
CN112485219A (en) * 2020-11-13 2021-03-12 桂林航天工业学院 Sensor for detecting liquid based on terahertz technology
CN112485219B (en) * 2020-11-13 2023-09-15 桂林航天工业学院 Sensor for detecting liquid based on terahertz technology

Similar Documents

Publication Publication Date Title
JP2010156544A (en) Terahertz light measuring device
JP6692103B2 (en) System and method for high contrast / near real time acquisition of terahertz images
JP3228423B2 (en) Gas detection system and gas detection method
JP6096725B2 (en) Film thickness measuring apparatus and film thickness measuring method
JP6371706B2 (en) Heterodyne detection system and method
JP3950818B2 (en) Reflective terahertz spectrometer and measurement method
US5946090A (en) Spectrometric method and apparatus for spectrometry
US7522287B2 (en) Photothermal conversion measurement apparatus, photothermal conversion measurement method, and sample cell
JP4854878B2 (en) Laser microscope
JP2004500582A (en) Terahertz transceiver and method for emission and detection of terahertz pulses using such a transceiver
Werle Spectroscopic trace gas analysis using semiconductor diode lasers
JP2014081285A (en) Method of measuring film thickness of multilayer ceramic
US5689334A (en) Intracavity laser spectroscope for high sensitivity detection of contaminants
US5747807A (en) Diode laser-pumped laser system for ultra-sensitive gas detection via intracavity laser spectroscopy (ILS)
CN113092437A (en) Remote Raman spectrum detection module and remote detection spectrometer
US6522402B1 (en) Apparatus and method for analyzing microscopic samples based on optical parametric oscillation
JP2008128942A (en) Device for measuring photothermal conversion
JP2005172774A (en) Method and apparatus for measuring physical properties based on catoptric characteristics
JP2008134076A (en) Gas analyzer
JP4091193B2 (en) Nonlinear optical response measuring device for medium
JP2007057407A (en) Terahertz spectral device
JPS63308543A (en) Scattered light measuring apparatus
JPH04274743A (en) Laser emission analysis method
Englich et al. Continuous-wave cavity-ringdown detection of stimulated Raman gain spectra
JP2008058918A (en) Terahertz electromagnetic wave generation method and spectroscopy/imaging measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521