JP2010151455A - Observing method of magnetic sample, observing device, and observing tool thereof - Google Patents

Observing method of magnetic sample, observing device, and observing tool thereof Download PDF

Info

Publication number
JP2010151455A
JP2010151455A JP2008327002A JP2008327002A JP2010151455A JP 2010151455 A JP2010151455 A JP 2010151455A JP 2008327002 A JP2008327002 A JP 2008327002A JP 2008327002 A JP2008327002 A JP 2008327002A JP 2010151455 A JP2010151455 A JP 2010151455A
Authority
JP
Japan
Prior art keywords
magnetic
sample
magnetic sample
observation
observing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008327002A
Other languages
Japanese (ja)
Inventor
Yukio Takada
幸生 高田
Takeshi Hattori
毅 服部
Yoshiki Senoo
与志木 妹尾
Hiroshi Nozaki
洋 野崎
Naoko Takechi
直子 武市
Akira Manabe
明 真鍋
Shigemasa Suga
滋正 菅
Makoto Imada
真 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2008327002A priority Critical patent/JP2010151455A/en
Publication of JP2010151455A publication Critical patent/JP2010151455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measuring Magnetic Variables (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an observing method of a magnetic sample for acquiring an observation image which shows magnetic domain structure and the like of a magnetized permanent magnet. <P>SOLUTION: The observing method of a magnetic sample is as follows: An observation image which shows micro structure of the magnetic sample is formed by irradiating a magnetized magnet sample with incident beam of radiating light and the like and detecting emission electrons emitted from the magnetic sample. The magnetic sample is observed in a state in which both ends of the magnetic sample in the magnetized direction are magnetically coupled with a coupling tool which has a higher magnetic permeability than that of the atmosphere where the magnetic sample is arranged. With this coupling tool, magnetic closed circuits are formed at both ends of the magnetic sample and the leaked magnetic field from the magnetic sample is suppressed. Consequently, distortion of the trace of the emission electron is reduced, so that a sharp observation image which shows the magnetic domain structure and the like of the magnetic sample is obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、着磁等による磁化された磁性試料の放出電子を介した観察を可能とする磁性試料の観察方法、観察装置およびその観察用治具に関するものである。   The present invention relates to a magnetic sample observation method, an observation apparatus, and an observation jig for the magnetic sample that allow observation of the magnetized magnetic sample obtained by magnetization or the like through emitted electrons.

試料の観察域に励起光または電子線からなる入射ビームを照射し、その試料の表面から放出される放出電子を介して、物質表面近傍の性状または構造を観察、解析、分析等することが従来よりなされている。代表的な装置としては、電子顕微鏡の一種である走査型電子顕微鏡(Scanning Electron Microscope:以下「SEM」という。)がある。また、試料にある一定以上のエネルギー(E=hν/:ν:限界振動数、h:プランク定数)をもつ光を照射したときに試料から電子が放出される(外部)光電効果を利用した観察装置もある。この照射される光として、例えば、超高速で直進する電子の進行方向を偏向電磁石などによって変えた際に発生する電磁波(放射光)などが利用される。特に、大きな輝度(明るさ)の放射光が得られる装置として、SPring−8などが著名である。 Conventionally, an observation beam of a sample is irradiated with an incident beam consisting of excitation light or an electron beam, and the properties or structures near the surface of the material are observed, analyzed, analyzed, etc. via emitted electrons emitted from the surface of the sample. Has been made more. As a typical apparatus, there is a scanning electron microscope (hereinafter referred to as “SEM”) which is a kind of electron microscope. In addition, when the sample is irradiated with light having a certain energy (E = hν 0 /: ν 0 : limit frequency, h: Planck constant), electrons are emitted from the sample (external) photoelectric effect is used. There is also an observation device. As this irradiated light, for example, an electromagnetic wave (radiated light) generated when the traveling direction of electrons traveling straight at an ultrahigh speed is changed by a deflecting electromagnet or the like is used. In particular, SPring-8 and the like are prominent as devices capable of obtaining radiation with high luminance (brightness).

このSPring−8を利用し、磁気円2色性(X-ray Magnetic Circular Dichroism )と光電子顕微鏡(PhotoEmission Electron Microscope)を組み合わせたXMCD−PEEM法を用いて、希土類磁石(永久磁石)の磁区観察した例が下記の文献に報告されている。なお、XMCD−PEEM法自体に関連する記載は、例えば、下記の特許文献1または特許文献2にある。
SPring-8 User Experiment Report(課題番号:2005B0830、2006A0229、2006B0201) 特開平5−45304号公報 特開2008−66080号公報
Using SPring-8, magnetic domain observation of rare earth magnets (permanent magnets) was performed using the XMCD-PEEM method, which combines X-ray Magnetic Circular Dichroism and PhotoEmission Electron Microscope. Examples are reported in the following literature: In addition, the description relevant to XMCD-PEEM method itself exists in the following patent document 1 or patent document 2, for example.
SPring-8 User Experiment Report (Issue Number: 2005B0830, 2006A0229, 2006B0201) Japanese Patent Laid-Open No. 5-45304 JP 2008-66080 A

永久磁石の磁区構造を観察するのであれば、着磁した状態の試料を用いて観察するのが本来望ましいはずである。ところが、上記文献では、熱消磁もしくは磁場消磁させた状態の試料を用いて観察しているに過ぎない。そして本発明者が調査した範囲では、異方性希土類磁石などの超強力な永久磁石を着磁した状態で、その磁区構造などを光電子顕微鏡などで観察した例は報告さていない。   If the magnetic domain structure of a permanent magnet is to be observed, it should be originally desirable to observe using a magnetized sample. However, in the above-mentioned document, the observation is merely performed using a sample in a state of being thermally demagnetized or magnetically demagnetized. In the range investigated by the present inventor, no example has been reported in which a magnetic domain structure or the like is observed with a photoelectron microscope or the like in a state in which a super strong permanent magnet such as an anisotropic rare earth magnet is magnetized.

本発明は、このような事情に鑑みて為されたものであり、着磁等により磁化された磁性試料の磁区などの観察を可能とする磁性試料の観察方法およびその観察装置を提供することを目的とする。また、そのような磁性試料の観察に有効な観察用治具を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an observation method and an observation apparatus for a magnetic sample capable of observing magnetic domains and the like of a magnetic sample magnetized by magnetization or the like. Objective. It is another object of the present invention to provide an observation jig effective for observing such a magnetic sample.

本発明者はこの課題を解決すべく鋭意研究し、試行錯誤を重ねた結果、試料となる着磁した永久磁石に軟磁性体を連結し閉ループの磁気回路を構成することで、永久磁石(特に強力な磁力を有する異方性希土類磁石)の磁区を、着磁した状態で観察することに初めて成功した。そしてこの成果を発展させることで、本発明者は以降に述べる種々の発明を完成させるに至った。
〈磁性試料の観察方法〉
As a result of extensive research and trial and error, the present inventor has established a closed-loop magnetic circuit by connecting a soft magnetic material to a magnetized permanent magnet to be a sample, and thereby a permanent magnet (particularly, We have succeeded in observing the magnetic domain of an anisotropic rare earth magnet with a strong magnetic force in a magnetized state for the first time. And by developing this result, the present inventor has completed various inventions described below.
<Magnetic sample observation method>

(1)すなわち、本発明の磁性試料の観察方法は、磁化された磁性体からなる磁性試料の観察域に励起光または電子線からなる入射ビームを照射する照射ステップと、該入射ビームが照射された該磁性試料の観察域から放出された放出電子を検出する検出ステップと、該検出ステップで検出された放出電子から得られた情報に基づき該磁性試料の観察域の微細状況を示す観察像を形成する観察像形成ステップと、を備える磁性試料の観察方法であって、 (1) That is, in the method for observing a magnetic sample of the present invention, an irradiation step of irradiating an observation region of a magnetic sample made of a magnetized magnetic material with an incident beam made of excitation light or an electron beam, and the incident beam being irradiated. A detection step for detecting emitted electrons emitted from the observation region of the magnetic sample, and an observation image showing a fine state of the observation region of the magnetic sample based on information obtained from the emitted electrons detected in the detection step. An observation image forming step for forming a magnetic sample, comprising:

前記磁性試料は、該磁性試料の磁化方向の両端が該磁性試料の配置される雰囲気の透磁率よりも高い透磁率を有する連結具により磁気的に連結された状態で観察されることを特徴とする。   The magnetic sample is observed in a state in which both ends in the magnetization direction of the magnetic sample are magnetically coupled by a coupler having a permeability higher than that of an atmosphere in which the magnetic sample is disposed. To do.

(2)本発明の観察方法によれば、着磁等により磁化され、両端の両極から磁力線が出ている磁性試料であっても、その磁区構造等を放出電子を介して適切に観察等することが可能となる。この理由は必ずしも明らかではないが、現状では次のように考えられる。 (2) According to the observation method of the present invention, even a magnetic sample magnetized by magnetization or the like and having magnetic lines of force from both poles at both ends, the magnetic domain structure and the like are appropriately observed through the emitted electrons. It becomes possible. The reason for this is not necessarily clear, but at present it can be considered as follows.

先ず本発明者は、磁化された磁性試料を単独で放出電子を介して観察しようとしたが、望むような観察像は得られなかった。この理由を本発明者は、磁性試料からでる漏洩磁場によって放出電子の進路(軌道)が歪められ、適正な観察が困難になるためと考えた。それ故に従来は、わざわざ消磁した状態または着磁していない状態で、磁性試料の磁区構造を観察していたと考えた。   First, the present inventor tried to observe a magnetized magnetic sample alone through emitted electrons, but could not obtain a desired observation image. The present inventor considered that the path (orbit) of the emitted electrons is distorted by the leakage magnetic field generated from the magnetic sample, and proper observation becomes difficult. Therefore, conventionally, it was considered that the magnetic domain structure of the magnetic sample was observed in a state where it was degaussed or not magnetized.

しかし、本発明によれば、磁性試料の磁化方向の両端(いわゆるN極とS極)から流出および流入する磁力線は磁性試料の両端を連結する透磁率の高い連結具を主に通過するようになり、磁性試料の周囲に磁路を形成することが非常に少なくなる。つまり、磁化された磁性試料から出る磁束は、その多くが磁性試料と連結具とによって形成された閉ループの磁路を流れるようになり、磁性試料の周囲へ漏洩することが少なくなる。   However, according to the present invention, the magnetic field lines flowing out and flowing in from both ends (so-called N pole and S pole) in the magnetization direction of the magnetic sample mainly pass through a high-permeability coupler that connects both ends of the magnetic sample. Therefore, the magnetic path is hardly formed around the magnetic sample. That is, most of the magnetic flux emitted from the magnetized magnetic sample flows through a closed loop magnetic path formed by the magnetic sample and the coupling tool, and is less likely to leak around the magnetic sample.

この結果、磁性試料から出た放出電子の軌道は、その漏洩磁場の影響を受けることが非常に少なくなり、ほとんど歪められなくなる。こうして、放出電子による適切な観察像の形成が可能となり、磁化されたままの磁性試料の磁区等の観察が可能になったと考えられる。   As a result, the trajectory of the emitted electrons emitted from the magnetic sample is very less affected by the leakage magnetic field and is hardly distorted. Thus, it is considered that an appropriate observation image can be formed by the emitted electrons, and the magnetic domain and the like of the magnetic sample that has been magnetized can be observed.

〈磁性試料の観察装置〉
本発明は、上記の観察方法としてのみならず、その観察装置としても把握できる。
すなわち、本発明は、磁化された磁性体からなる磁性試料の観察域に励起光または電子線からなる入射ビームを照射する照射手段と、該入射ビームが照射された該磁性試料の観察域から放出された放出電子を検出する検出手段と、該検出ステップで検出された放出電子から得られた情報に基づき該磁性試料の観察域の微細状況を示す観察像を形成する観察像形成手段と、さらに、前記磁性試料の配置される雰囲気の透磁率よりも高い透磁率を有すると共に前記磁性試料の磁化方向の両端を磁気的に連結する連結具からなる観察用治具を備えることを特徴とする磁性試料の観察装置であってもよい。
<Magnetic sample observation device>
The present invention can be grasped not only as an observation method described above but also as an observation apparatus.
That is, the present invention provides an irradiating means for irradiating an observation region of a magnetic sample made of magnetized magnetic material with an incident beam made of excitation light or an electron beam, and emitting from the observation region of the magnetic sample irradiated with the incident beam. Detection means for detecting the emitted electrons, observation image forming means for forming an observation image indicating the fine state of the observation area of the magnetic sample based on information obtained from the emission electrons detected in the detection step, and And an observation jig comprising a coupler having a magnetic permeability higher than that of an atmosphere in which the magnetic sample is arranged and magnetically connecting both ends of the magnetization direction of the magnetic sample. It may be a sample observation device.

〈磁性試料の観察用治具〉
さらに本発明は、上記の観察方法や観察装置としてのみならず、それらを使用する際に必要となる観察用治具としても把握できる。この観察用治具は、主に前述した連結具からなるが、その他にも磁性試料を連結具に固定する固定部材や連結具を自立または保持されるための基台などの付属具を備えていてもよい。
<Magnetic specimen observation jig>
Furthermore, this invention can be grasped | ascertained not only as said observation method and observation apparatus but as an observation jig | tool required when using them. This observation jig is mainly composed of the above-described coupling tool, but also includes an attachment such as a fixing member for fixing the magnetic sample to the coupling tool and a base for holding or holding the coupling tool independently. May be.

発明の実施形態を挙げて本発明をより詳しく説明する。
なお、以下の実施形態を含め、本明細書で説明する内容は、本発明に係る磁性試料の観察方法のみならず、その観察装置や観察用治具にも適宜適用できる。また、いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。さらに、上述した構成に加えて、下記に記載する種々の形態から任意に選択した一つまたは二つ以上の構成をさらに付加することができる。この際、選択された構成は、複数の発明に重畳的かつ任意的に付加可能であり、いずれの構成もカテゴリーを越えて相互に適宜組合わせ可能である。一見、「方法」または「物」に関する構成のように見えても、例えば「ステップ」を「手段」と解したり、またはその逆に解することで、いずれの構成も「方法」または「物」の限定要素となり得る。
The present invention will be described in more detail with reference to embodiments of the invention.
The contents described in this specification, including the following embodiments, can be appropriately applied not only to the observation method of the magnetic sample according to the present invention, but also to the observation apparatus and observation jig. Which embodiment is the best depends on the target, required performance, and the like. Furthermore, in addition to the above-described configuration, one or two or more configurations arbitrarily selected from various modes described below can be further added. At this time, the selected configuration can be added to a plurality of inventions in a superimposed manner and arbitrarily, and any configuration can be combined with each other as appropriate across categories. At first glance, even if it looks like a “method” or “thing” configuration, for example, by interpreting “step” as “means” or vice versa, both configurations are “method” or “thing”. Can be a limiting element.

(1)照射ステップ(「手段」でもよい。これは以下同様である。)
照射ステップは、磁化された磁性体からなる磁性試料の観察域に励起光または電子線からなる入射ビームを照射するステップである。
この励起光には、偏光放射光、偏光電子線、偏光レーザー等がある。波長が1nm(10−8〜10−10m)前後の軟X線は、3d遷移金属磁性体で励起光偏光度を変化させたときの吸収差が大きく、磁性体観察に適している。このような発生源は放射光施設であり、日本国内では前述のSPring−8などあがり、世界各国に存在する。
(1) Irradiation step ("Means" may be used. The same applies hereinafter)
The irradiation step is a step of irradiating an observation region of a magnetic sample made of a magnetized magnetic material with an incident beam made of excitation light or an electron beam.
Examples of the excitation light include polarized radiation, polarized electron beam, and polarized laser. Soft X-rays having a wavelength of around 1 nm (10 −8 to 10 −10 m) have a large absorption difference when the excitation light polarization degree is changed with a 3d transition metal magnetic material, and is suitable for magnetic material observation. Such a generation source is a synchrotron radiation facility, and the above-mentioned SPring-8 is raised in Japan and is present all over the world.

電子線は、電子銃などから放出される所定のエネルギーをもつ電子からなる。電子源である電子銃には、熱電子銃、電界放出電子銃、ショットキー電子銃などがある。磁性試料の観察が可能な限り、電子線の種類、強度、電子源などは問わない。電子線を利用するものとして前述したSEMなどがある。磁性試料の大きさ、観察域の大きさ、分解能などは、観察装置に適したものであれば足る。   The electron beam is composed of electrons having a predetermined energy emitted from an electron gun or the like. Examples of electron guns that are electron sources include thermal electron guns, field emission electron guns, and Schottky electron guns. As long as the magnetic sample can be observed, the type, intensity, electron source, etc. of the electron beam are not limited. The SEM described above is one that uses an electron beam. The size of the magnetic sample, the size of the observation area, the resolution, and the like need only be suitable for the observation apparatus.

(2)検出ステップ
検出ステップは、入射ビームを照射した磁性試料の観察域から放出された放出電子を検出するステップである。
放出電子には、光電効果により放出された光電子の他、入射電子に対する反射電子、二次電子などがある。磁性試料の磁区を観察する場合であれば、光電子および低エネルギー二次電子が用いられる。
(2) Detection step The detection step is a step of detecting emitted electrons emitted from the observation region of the magnetic sample irradiated with the incident beam.
In addition to photoelectrons emitted by the photoelectric effect, the emitted electrons include reflected electrons and secondary electrons with respect to incident electrons. When observing the magnetic domain of a magnetic sample, photoelectrons and low energy secondary electrons are used.

放出電子の検出は、例えば、高電圧を印加して引き寄せた放出電子を光電子増倍管により増倍し、蛍光物質に衝突させ、電気信号として取り出す放出器等により行うことができる。SPring−8などから発生する軟X線を利用した場合においても、上述の通り、放出電子は倍増され、電気信号に変換され検出される。   The detection of the emitted electrons can be performed by, for example, an emitter that multiplies emitted electrons attracted by applying a high voltage with a photomultiplier tube, collides with a fluorescent material, and extracts the electric signal. Even when soft X-rays generated from SPring-8 or the like are used, as described above, emitted electrons are doubled, converted into an electric signal, and detected.

(3)観察像形成ステップ
観察像形成ステップは、検出された放出電子から得られた情報に基づき、磁性試料の観察域の微細状況を示す観察像を形成するステップである。具体的には、放出電子を検出して得られた電気信号に基づいて画像処理することで観察像が形成される。
(3) Observation image forming step The observation image forming step is a step of forming an observation image indicating the fine state of the observation region of the magnetic sample based on the information obtained from the detected emitted electrons. Specifically, an observation image is formed by performing image processing based on an electrical signal obtained by detecting emitted electrons.

(4)連結具
連結具は、磁性試料の配置される雰囲気の透磁率よりも高い透磁率を有し、かつ磁性試料よりも高い磁束密度を有する部材からなり、磁性試料の磁化方向の両端を磁気的に連結する。要するに、磁性試料からの漏洩磁束を減少させるために、磁性試料と連結具とによって閉ループの磁気回路が形成されるものであればよい。連結具を設けない場合よりも、本発明の連結具を設けた場合に、磁性試料の周囲へ漏洩する磁束が少なくなる限り、連結具の材質や形態は問わない。
(4) Connecting tool The connecting tool is made of a member having a magnetic permeability higher than that of the atmosphere in which the magnetic sample is arranged and having a magnetic flux density higher than that of the magnetic sample. Magnetically coupled. In short, in order to reduce the leakage magnetic flux from the magnetic sample, a closed loop magnetic circuit may be formed by the magnetic sample and the coupler. As long as the magnetic flux leaking to the periphery of the magnetic sample is reduced when the connection tool of the present invention is provided rather than when the connection tool is not provided, the material and form of the connection tool are not limited.

ただし、磁性試料の両端から流出入する磁束が、磁性試料の周囲に自然に形成した磁路を通るか、連結具からなる経路を通るかは、本来、両磁路の磁気抵抗の問題である。とすると、本発明の連結具は、磁性試料の周囲に自然に形成される磁路よりも、磁気抵抗が低い磁路を形成するものとすべきかもしれない。ただ、比較対象となる磁性試料の周囲に自然に形成される磁路の磁気抵抗を具体的に特定することは難しい。ちなみに、磁気抵抗(R)は透磁率(μ)、磁路長(l)および磁路断面(S)によりR=l/μSで表される。   However, whether the magnetic flux flowing in and out from both ends of the magnetic sample passes through a magnetic path formed naturally around the magnetic sample or through a path made of a coupling is essentially a problem of the magnetic resistance of both magnetic paths. . Then, the coupler of the present invention may form a magnetic path having a lower magnetic resistance than a magnetic path naturally formed around the magnetic sample. However, it is difficult to specifically specify the magnetic resistance of the magnetic path that is naturally formed around the magnetic sample to be compared. Incidentally, the magnetic resistance (R) is represented by R = 1 / μS by the magnetic permeability (μ), the magnetic path length (l), and the magnetic path section (S).

そこで本発明では、上述したように、磁性試料の周囲の透磁率と連結具の透磁率との大小関係により連結具の磁気的特性を限定することにした。連結具は鉄等の軟磁性材から構成されることが多く、その透磁率は磁性試料の周囲の透磁率(通常は真空の透磁率)よりも遙かに大きいし、また、磁性試料も小さく形成される磁路長も短いため、結局は、磁気抵抗が小さいことが間接的に表現されているに等しいといえ、上記のような表現でも本発明を特定する上で実質的に問題はない。また、軟磁性体の飽和磁化は充分に大きいから、磁性試料と同程度の横断面積を有する限り、磁路の断面積も問題とはなり難い。   Therefore, in the present invention, as described above, the magnetic characteristics of the coupler are limited by the magnitude relationship between the magnetic permeability around the magnetic sample and the permeability of the coupler. The coupling tool is often made of a soft magnetic material such as iron, and its magnetic permeability is much larger than the magnetic permeability around the magnetic sample (usually the magnetic permeability in a vacuum), and the magnetic sample is also small. Since the formed magnetic path length is also short, it can be said that, in the end, the fact that the magnetic resistance is small is equivalent to being indirectly expressed, but even the above expression has no substantial problem in specifying the present invention. . Further, since the saturation magnetization of the soft magnetic material is sufficiently large, the cross-sectional area of the magnetic path is not likely to be a problem as long as it has a cross-sectional area comparable to that of the magnetic sample.

このように連結具は軟磁性材からなるのが好ましい。軟磁性材は強磁性材であるFe、Co、Niなどが代表的であるが、特に、入手コスト、加工性等の点で、純FeまたはFe合金(例えば、Fe−Si合金)などが好ましい。   Thus, it is preferable that a connection tool consists of a soft magnetic material. The soft magnetic material is typically a ferromagnetic material such as Fe, Co, and Ni. In particular, pure Fe or an Fe alloy (for example, an Fe—Si alloy) is preferable from the viewpoint of acquisition cost, workability, and the like. .

また、連結具による磁路短縮や漏洩磁場を抑制するために、連結具は略円環状であったり、その横断面が略円状であると好ましい。もっとも、連結具の汎用性の確保や微調整を可能とするために、種々のサイズの角形ブロックを組み合わせて連結具を構成してもよい。   Moreover, in order to suppress the magnetic path shortening and leakage magnetic field by the coupler, it is preferable that the coupler is substantially annular or the cross section thereof is substantially circular. However, in order to ensure versatility and fine adjustment of the connector, the connector may be configured by combining square blocks of various sizes.

(5)磁性試料および観察対象
磁性試料自体の材質、組成等は、観測装置に適合する限り、本発明では問題ではない。従って、着磁された永久磁石の他、永久磁石または電磁石等により磁化された軟磁石であってもよい。
(5) Magnetic sample and observation object The material, composition, etc. of the magnetic sample itself are not a problem in the present invention as long as they are compatible with the observation apparatus. Therefore, in addition to a magnetized permanent magnet, a soft magnet magnetized by a permanent magnet or an electromagnet may be used.

もっとも、本発明では、漏洩磁場による放出電子の軌道の歪みに帰因した観察障害を回避または抑制することに主眼がある。このように本発明は、磁性試料自体が強力な永久磁石であって、自ら強力な磁力線を放出している場合に特に有効である。このような磁性試料として、例えば、着磁後の希土類磁石、特に、磁化容易軸方向(c軸)に磁化された異方性希土類磁石が挙げられる。このような希土類磁石は、Nd−Fe−B系、Sm−Co系、Sm−Fe−N系等があるがいずれでもよい。また、水素化脱水素処理(HDDR処理)や急冷凝固法など、いずれの方法で製造された磁石でもよい。さらに磁性試料は、いわゆる焼結磁石でもよい。   However, in the present invention, the main purpose is to avoid or suppress the observation obstacle caused by the distortion of the orbit of the emitted electrons due to the leakage magnetic field. As described above, the present invention is particularly effective when the magnetic sample itself is a strong permanent magnet and emits strong magnetic field lines. Examples of such a magnetic sample include a magnetized rare earth magnet, particularly an anisotropic rare earth magnet magnetized in the easy axis direction (c-axis). Such rare earth magnets include Nd—Fe—B, Sm—Co, and Sm—Fe—N, but any of them may be used. Moreover, the magnet manufactured by any method, such as a hydrodehydrogenation process (HDDR process) and a rapid solidification method, may be sufficient. Further, the magnetic sample may be a so-called sintered magnet.

このような磁性試料の観察対象は、磁気的に飽和している磁性体または磁壁で囲まれた磁気モーメントのそろっている領域(スピンが同じ方向を向いた領域)からなる磁区を観察する場合を問わない。   The object of observation of such a magnetic sample is to observe a magnetic domain consisting of a magnetically saturated magnetic material or a magnetic moment-enclosed region surrounded by a domain wall (a region where spins are directed in the same direction). It doesn't matter.

実施例を挙げて本発明をより具体的に説明する。
〈磁性試料〉
磁区構造を観察する対象となる磁性試料として、異方性をもつ希土類系焼結磁石(市販材)を用意した。以下の磁性試料の観察は、全て磁化容易軸方向に着磁されたNd−Fe−B系異方性焼結磁石の残留磁化状態で行った。磁性試料の着磁は全て10Tの磁場を印加して行った。
The present invention will be described more specifically with reference to examples.
<Magnetic sample>
As a magnetic sample for observing the magnetic domain structure, an anisotropic rare earth sintered magnet (commercially available material) was prepared. The following magnetic samples were observed in a remanent magnetization state of an Nd—Fe—B anisotropic sintered magnet that was all magnetized in the easy axis direction. All the magnetic samples were magnetized by applying a magnetic field of 10T.

〈XMCD−PEEM法による観察〉
(1)この磁性試料に対して前述したXMCD−PEEM法による観察を行った。この観察は、放射光施設SPring−8のビームラインBL25SUを用いて行った。XMCD−PEEM法の概要(原理)は図1に示すようである。
<Observation by XMCD-PEEM method>
(1) The magnetic sample was observed by the XMCD-PEEM method described above. This observation was performed using the beam line BL25SU of the synchrotron radiation facility SPring-8. The outline (principle) of the XMCD-PEEM method is as shown in FIG.

すなわち、円偏光X線(励起光、放射光、入射ビーム)を磁性試料へ入射させた際に(照射ステップ、照射手段)、放出する光電子または二次電子(放出電子)の数は、X線偏光ベクトルと磁性試料の磁気スピンベクトルの内積に比例する。この光電子を検出し(検出ステップ、検出手段)、それを画像処理して結像させることで(観察像形成ステップ、観察像形成手段)、磁性試料の観察像(磁区像)を得ることができる。本観察では、ドイツ・エルミテック社製光電子放出顕微鏡を用いて行った。   That is, when circularly polarized X-rays (excitation light, radiated light, incident beam) are incident on a magnetic sample (irradiation step, irradiation means), the number of photoelectrons or secondary electrons (emitted electrons) emitted is X-rays. It is proportional to the inner product of the polarization vector and the magnetic spin vector of the magnetic sample. By detecting this photoelectron (detection step, detection means) and image-processing it to form an image (observation image formation step, observation image formation means), an observation image (magnetic domain image) of the magnetic sample can be obtained. . This observation was performed using a photoelectron emission microscope manufactured by Ermitec, Germany.

(2)先ず、着磁した磁性試料を単独で、XMCD−PEEM法により観察したところ、正常な観察像を得ることはできなかった。これは図2に示すように、着磁した磁性試料にX線を入射させた場合、その磁性試料の周囲に形成される強力な磁場によって、磁性試料から放出された光電子の軌道が歪められたためと思われる。
ちなみに、ここで用いた磁性試料のサイズは5x5x5mmであり、観察時の磁性試料の周囲の雰囲気は真空であった。
(2) First, when a magnetized magnetic sample was observed alone by the XMCD-PEEM method, a normal observation image could not be obtained. As shown in FIG. 2, when X-rays are incident on a magnetized magnetic sample, the orbit of photoelectrons emitted from the magnetic sample is distorted by a strong magnetic field formed around the magnetic sample. I think that the.
Incidentally, the size of the magnetic sample used here was 5 × 5 × 5 mm, and the atmosphere around the magnetic sample at the time of observation was vacuum.

(3)次に、着磁した磁性試料に、軟磁性材からなる軟磁性ブロックを組み合わせて作ったヨーク(連結具、観察用治具)を接続して閉ループ磁路を形成した。ここで用いた軟磁性ブロックは純鉄の溶製材からなる。このような状態の磁性試料に対して、XMCD−PEEM法により次の2つの観察を行った。 (3) Next, a yoke (connector, observation jig) made by combining a soft magnetic block made of a soft magnetic material was connected to the magnetized magnetic sample to form a closed loop magnetic path. The soft magnetic block used here consists of a pure iron melt. The following two observations were performed on the magnetic sample in such a state by the XMCD-PEEM method.

(i)観察1
結晶のc軸が立方体の辺に平行になるように切り出した5x5x5mmのNd−Fe−B系異方性希土類磁石を磁性試料とした。軟磁性ブロックには、この磁性試料の大きさに合わせて、5x5x5mmの立方体1個と5x5x15mmの直方体2個を用意した。これら3つの軟磁性ブロックを略コの字型に配置してヨーク(継鉄)とした。3つの軟磁性ブロックと磁性試料とを図3に示すように組み付け、磁性試料からの磁力線が磁気閉回路を通過するようにした。
(i) Observation 1
A 5 × 5 × 5 mm Nd—Fe—B anisotropic rare earth magnet cut out so that the c-axis of the crystal was parallel to the side of the cube was used as a magnetic sample. For the soft magnetic block, one 5 × 5 × 5 mm cube and two 5 × 5 × 15 mm cuboids were prepared according to the size of the magnetic sample. These three soft magnetic blocks were arranged in a substantially U shape to form a yoke. Three soft magnetic blocks and a magnetic sample were assembled as shown in FIG. 3 so that the magnetic lines of force from the magnetic sample passed through the magnetic closed circuit.

SPring−8のビームラインBL25SUを用いたXMCD−PEEM法による観察は、室温下で、X線を磁性試料の柱面から30°で斜入射した。なお、この磁性試料の周囲の磁界を東陽テクニカ社製ガウスメータで測定したところ、漏洩磁場は80Gであった。こうして得られたXMCD−PEEM観察像を図4に示す。磁区像は磁気円二色性により得られ、円偏光放射光のエネルギーは、Fe−L3吸収端(708.6eV)に合わせ、右回り円偏光と左回り円偏光により結像された像の差をとり、それを両者の和で割ったものであった。   In the observation by the XMCD-PEEM method using the SPring-8 beam line BL25SU, X-rays were obliquely incident at 30 ° from the column surface of the magnetic sample at room temperature. In addition, when the magnetic field around this magnetic sample was measured with a Gauss meter manufactured by Toyo Technica, the leakage magnetic field was 80G. The XMCD-PEEM observation image thus obtained is shown in FIG. The magnetic domain image is obtained by magnetic circular dichroism, and the energy of the circularly polarized radiation is matched to the Fe-L3 absorption edge (708.6 eV), and the difference between the images formed by clockwise circularly polarized light and counterclockwise circularly polarized light. And then divided by the sum of the two.

(ii)観察2
磁性試料および軟磁性ブロックのサイズを変更して、上記の観察1と同様な観察を行った。用意した磁性試料のサイズは3x3x3mmであった。また、この磁性試料の大きさに合わせて、3x3x3mmの立方体状の軟磁性ブロック1個と3x3x9mmの直方体状の軟磁性ブロック2個を用意した。磁性試料と各軟磁性ブロックの配置、観察条件等は観察1の場合と基本的に同様である。但し、観察2では、磁性試料の観察面に酸化防止のためにPtコートを施した。
観察1の場合と同様に、漏洩磁場を測定したところ5Gであった。こうして得られたXMCD−PEEM観察像を図5に示す。
(ii) Observation 2
The same observation as observation 1 was performed by changing the sizes of the magnetic sample and the soft magnetic block. The size of the prepared magnetic sample was 3 × 3 × 3 mm. Also, one 3 × 3 × 3 mm cubic soft magnetic block and two 3 × 3 × 9 mm rectangular soft magnetic blocks were prepared according to the size of the magnetic sample. The arrangement of the magnetic sample and each soft magnetic block, the observation conditions, etc. are basically the same as those in Observation 1. However, in observation 2, the observation surface of the magnetic sample was coated with Pt to prevent oxidation.
As in the case of Observation 1, the leakage magnetic field was measured and found to be 5G. The XMCD-PEEM observation image thus obtained is shown in FIG.

〈評価〉
本発明の観察方法等を用いることで、着磁され強力な磁束を出すNd−Fe−B系異方性希土類磁石からなる磁性試料であっても、図4および図5に示すように、その磁区構造をXMCD−PEEM法により観察することが可能となった。
<Evaluation>
As shown in FIGS. 4 and 5, even a magnetic sample made of an Nd—Fe—B anisotropic rare earth magnet that is magnetized and emits a strong magnetic flux by using the observation method of the present invention, It became possible to observe the magnetic domain structure by the XMCD-PEEM method.

そして、漏洩磁場の少ない観察2の方が、鮮明なXMCD−PEEM観察像を得ることができた。これは漏洩磁場を5Gまで低減させたことで、放出された光電子の軌道がほとんど歪めることなく検出され、磁区像を正しく結像できたためと思われる。
いずれにしても、本発明を用いることで、着磁状態の永久磁石(特に強力な異方性希土類磁石)の磁区構造の観察が可能になったことは画期的である。
And the observation 2 with few leakage magnetic fields was able to obtain a clear XMCD-PEEM observation image. This seems to be because the orbit of the emitted photoelectrons was detected with almost no distortion and the magnetic domain image was correctly formed by reducing the leakage magnetic field to 5G.
In any case, the use of the present invention makes it possible to observe the magnetic domain structure of a magnetized permanent magnet (particularly a strong anisotropic rare earth magnet).

磁区構造の観察に用いたXMCD−PEEM法の原理を示す模式図である。It is a schematic diagram which shows the principle of the XMCD-PEEM method used for observation of a magnetic domain structure. 着磁された磁性試料から周囲へ放出される磁力線を示す模式図である。It is a schematic diagram which shows the magnetic force line discharge | released to the circumference | surroundings from the magnetized magnetic sample. 磁性試料と軟磁性ブロックからなるヨーク(連結具)を示す模式図である。It is a schematic diagram which shows the yoke (connector) which consists of a magnetic sample and a soft-magnetic block. 漏洩磁場80Gのときの着磁された磁性試料の磁区構造を示すXMCD−PEEM観察像である。It is a XMCD-PEEM observation image which shows the magnetic domain structure of the magnetic sample magnetized when the leakage magnetic field is 80G. 漏洩磁場5Gのときの着磁された磁性試料の磁区構造を示すXMCD−PEEM観察像である。It is a XMCD-PEEM observation image which shows the magnetic domain structure of the magnetic sample magnetized at the time of the leakage magnetic field 5G.

Claims (5)

磁化された磁性体からなる磁性試料の観察域に励起光または電子線からなる入射ビームを照射する照射ステップと、
該入射ビームが照射された該磁性試料の観察域から放出された放出電子を検出する検出ステップと、
該検出ステップで検出された放出電子から得られた情報に基づき該磁性試料の観察域の微細状況を示す観察像を形成する観察像形成ステップと、を備える磁性試料の観察方法であって、
前記磁性試料は、該磁性試料の磁化方向の両端が該磁性試料の配置される雰囲気の透磁率よりも高い透磁率を有し、かつ磁束が該磁性試料より大きい連結具により磁気的に連結された状態で観察されることを特徴とする磁性試料の観察方法。
An irradiation step of irradiating an observation region of a magnetic sample made of a magnetized magnetic material with an incident beam made of excitation light or an electron beam,
A detection step of detecting emitted electrons emitted from the observation area of the magnetic sample irradiated with the incident beam;
An observation image forming step for forming an observation image indicating a fine state of an observation area of the magnetic sample based on information obtained from the emitted electrons detected in the detection step,
The magnetic sample has magnetic permeability higher than the magnetic permeability of the atmosphere in which the magnetic sample is arranged at both ends in the magnetization direction of the magnetic sample, and the magnetic flux is magnetically coupled by a coupling tool larger than the magnetic sample. A method for observing a magnetic sample, characterized in that the magnetic sample is observed in a heated state.
前記連結具は、軟磁性材からなる請求項1に記載の磁性試料の観察方法。   The method of observing a magnetic sample according to claim 1, wherein the connector is made of a soft magnetic material. 前記磁性試料は、前記磁化方向を磁化容易軸方向(c軸)とする異方性希土類磁石からなる請求項1または2に記載の磁性試料の観察方法。   The magnetic sample observation method according to claim 1, wherein the magnetic sample is made of an anisotropic rare earth magnet having the magnetization direction as an easy axis direction (c-axis). 磁化された磁性体からなる磁性試料の観察域に励起光または電子線からなる入射ビームを照射する照射手段と、
該入射ビームが照射された該磁性試料の観察域から放出された放出電子を検出する検出手段と、
該検出ステップで検出された放出電子から得られた情報に基づき該磁性試料の観察域の微細状況を示す観察像を形成する観察像形成手段と、
さらに、前記磁性試料の配置される雰囲気の透磁率よりも高い透磁率を有すると共に前記磁性試料の磁化方向の両端を磁気的に連結する連結具からなる観察用治具を備えることを特徴とする磁性試料の観察装置。
Irradiating means for irradiating an observation beam of a magnetic sample made of a magnetized magnetic material with an incident beam made of excitation light or an electron beam;
Detecting means for detecting emitted electrons emitted from the observation area of the magnetic sample irradiated with the incident beam;
An observation image forming means for forming an observation image indicating a fine state of an observation area of the magnetic sample based on information obtained from the emitted electrons detected in the detection step;
Furthermore, an observation jig is provided that has a magnetic permeability higher than the magnetic permeability of the atmosphere in which the magnetic sample is disposed, and includes a coupling device that magnetically connects both ends of the magnetization direction of the magnetic sample. Observation device for magnetic samples.
請求項1〜4のいずれかに記載の連結具からなることを特徴とする磁性試料の観察用治具。   A jig for observing a magnetic sample, comprising the connector according to claim 1.
JP2008327002A 2008-12-24 2008-12-24 Observing method of magnetic sample, observing device, and observing tool thereof Pending JP2010151455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327002A JP2010151455A (en) 2008-12-24 2008-12-24 Observing method of magnetic sample, observing device, and observing tool thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327002A JP2010151455A (en) 2008-12-24 2008-12-24 Observing method of magnetic sample, observing device, and observing tool thereof

Publications (1)

Publication Number Publication Date
JP2010151455A true JP2010151455A (en) 2010-07-08

Family

ID=42570748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327002A Pending JP2010151455A (en) 2008-12-24 2008-12-24 Observing method of magnetic sample, observing device, and observing tool thereof

Country Status (1)

Country Link
JP (1) JP2010151455A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853886A1 (en) 2013-09-25 2015-04-01 Toyota Jidosha Kabushiki Kaisha Magnetic measurement method and its system and apparatus
US9835569B2 (en) 2013-09-25 2017-12-05 Toyota Jidosha Kabushiki Kaisha Magnetic measurement system and apparatus utilizing X-ray to measure comparatively thick magnetic materials
WO2019186736A1 (en) * 2018-03-27 2019-10-03 株式会社日立ハイテクノロジーズ Scanning electron microscope and method for analyzing secondary electron spin polarization
JPWO2020245962A1 (en) * 2019-06-06 2020-12-10

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853886A1 (en) 2013-09-25 2015-04-01 Toyota Jidosha Kabushiki Kaisha Magnetic measurement method and its system and apparatus
US9766190B2 (en) 2013-09-25 2017-09-19 Toyota Jidosha Kabushiki Kaisha Method, system and apparatus for measuring comparatively thick materials
US9835569B2 (en) 2013-09-25 2017-12-05 Toyota Jidosha Kabushiki Kaisha Magnetic measurement system and apparatus utilizing X-ray to measure comparatively thick magnetic materials
WO2019186736A1 (en) * 2018-03-27 2019-10-03 株式会社日立ハイテクノロジーズ Scanning electron microscope and method for analyzing secondary electron spin polarization
JPWO2019186736A1 (en) * 2018-03-27 2021-02-12 株式会社日立ハイテク Scanning electron microscope and method for analyzing secondary electron spin polarization
US11170972B2 (en) 2018-03-27 2021-11-09 Hitachi High-Tech Corporation Scanning electron microscope and method for analyzing secondary electron spin polarization
JPWO2020245962A1 (en) * 2019-06-06 2020-12-10
WO2020245962A1 (en) * 2019-06-06 2020-12-10 株式会社日立ハイテク Scanning electron microscope
JP7155425B2 (en) 2019-06-06 2022-10-18 株式会社日立ハイテク scanning electron microscope
US11756763B2 (en) 2019-06-06 2023-09-12 Hitachi High-Tech Corporation Scanning electron microscope

Similar Documents

Publication Publication Date Title
Murakami et al. Magnetism of ultrathin intergranular boundary regions in Nd–Fe–B permanent magnets
JP4795847B2 (en) Electron lens and charged particle beam apparatus using the same
Le Guyader et al. Studying nanomagnets and magnetic heterostructures with X-ray PEEM at the Swiss Light Source
Taniuchi et al. Ultrahigh-spatial-resolution chemical and magnetic imaging by laser-based photoemission electron microscopy
TWI670745B (en) Compact deflecting magnet
JP2010151455A (en) Observing method of magnetic sample, observing device, and observing tool thereof
JPWO2013111467A1 (en) Magnetic measuring device
TW201543966A (en) An undulator
Sugawara et al. A 0.5-T pure-in-plane-field magnetizing holder for in-situ Lorentz microscopy
EP2954549B1 (en) Method and apparatus for generation of a uniform-profile particle beam
US10224173B2 (en) Objective lens and transmission electron microscope
Ryu et al. magnetoARPES: Angle Resolved Photoemission Spectroscopy with magnetic field control
Shindo et al. Material Characterization Using Electron Holography
US9595416B2 (en) Transmission electron microscope
JP5582469B2 (en) Electro-optical equipment
Yamaguchi et al. An XMCD-PEEM study on magnetized Dy-doped Nd-Fe-B permanent magnets
JP2005032588A (en) Magnetic field objective lens for electron microscope
Sugawara et al. In-situ lorentz and electron-holography imaging of domain-wall propagation and grain-boundary pinning within anisotropic Nd-Fe-B sintered-magnet thin films
JP2008128660A (en) Ion beam measuring device
EP3472601A1 (en) Method and detector for microscopic measurement by means of a colour center
Kohashi et al. A spin rotator for spin-polarized scanning electron microscopy
JP6355703B2 (en) Sample holder
JP2005332772A (en) Electron microscope equipped with magnetic microprobe
JP4552191B2 (en) Magnetic circuit for magnetic lens
JP2008053121A (en) Magnetic shield apparatus and magnetic shielding method