JP2010139941A - Hard coat film, method of manufacturing hard coat film, sheet polarizer and display device - Google Patents

Hard coat film, method of manufacturing hard coat film, sheet polarizer and display device Download PDF

Info

Publication number
JP2010139941A
JP2010139941A JP2008318177A JP2008318177A JP2010139941A JP 2010139941 A JP2010139941 A JP 2010139941A JP 2008318177 A JP2008318177 A JP 2008318177A JP 2008318177 A JP2008318177 A JP 2008318177A JP 2010139941 A JP2010139941 A JP 2010139941A
Authority
JP
Japan
Prior art keywords
film
hard coat
group
mass
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008318177A
Other languages
Japanese (ja)
Inventor
Masaru Okano
賢 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2008318177A priority Critical patent/JP2010139941A/en
Publication of JP2010139941A publication Critical patent/JP2010139941A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard coat film having high hardness, and restraining blocking due to winding compaction of the film to attain excellent flatness, and a method of manufacturing the hard coat film. <P>SOLUTION: In this hard coat film having a hard coat layer on a transparent film base material, the film thickness of the hard coat layer is 8-40 μm, and the transparent film base contains cellulose ester resin generated by esterification reaction between polybasic acid or its anhydride and polyhydric alcohol, or ring-opening polymerization of L-lactide and D-lactide in the presence of cellulose ester. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はハードコートフィルム、ハードコートフィルムの製造方法、偏光板及び表示装置に関する。   The present invention relates to a hard coat film, a method for producing a hard coat film, a polarizing plate, and a display device.

近年、画像表示装置の最表面の性能として物理的な損傷を受け易く、損傷を受けると表示画像品質を損なうので、ハードコート材を保護層にしたフィルム(以下、ハードコートフィルムという)を表面に設けた液晶ディスプレイ、プラズマディスプレイ等の表示体が、急速に普及している。とりわけ、液晶ディスプレイは大型化し、かつ不特定多数の消費者に使用されるようになったため、それに用いるハードコート材は、より高い硬度が要求されている。しかし、より高い硬度を得ようとして、ハードコート層の厚みを増加させると、ハードコート層の硬化収縮によるカールが大きくなる問題があった。   In recent years, as the performance of the outermost surface of the image display device, it is easily damaged by physical damage, and if it is damaged, the quality of the displayed image is impaired. Therefore, a film having a hard coat material as a protective layer (hereinafter referred to as a hard coat film) is used on the surface. Display bodies such as provided liquid crystal displays and plasma displays are rapidly spreading. In particular, since the liquid crystal display is enlarged and used by an unspecified number of consumers, the hard coat material used for the liquid crystal display is required to have higher hardness. However, if the thickness of the hard coat layer is increased in order to obtain higher hardness, there is a problem that curling due to curing shrinkage of the hard coat layer increases.

また、例えば、夏季のような高温、高湿の時期を想定した状態で、ハードコート層とハードコート層を形成していない面とを重ねておいた際、またはハードコートフィルムをロール状に巻き取った状態で保管しておくと、面同士がくっつき(ブロッキング)、ハードコート層表面にキズ等をつけると言った問題の発生しやすく、特に硬化収縮によるカールが大きい、ハードコートフィルムでは、フィルムの巻き締りが起こり、それによってフィルム間での空気層が得られにくく、よりフィルム同士がブロッキングしやすかった。これによって商品価値や生産性の低下を招いており、早急な解決が望まれていた。   Also, for example, when a hard coat layer and a surface on which a hard coat layer is not formed are overlapped in a state where a high temperature and high humidity period such as summer is assumed, or the hard coat film is wound in a roll shape. If you keep it in a state where it is taken, the surfaces will stick together (blocking), and the hard coat layer surface is likely to be damaged, and the curl due to curing shrinkage is particularly large. As a result, it was difficult to obtain an air layer between the films, and the films were more easily blocked. This has led to a decline in product value and productivity, and an immediate solution has been desired.

ブロッキング防止として、例えば親水性無機質粉体を含む塩化ビニリデン樹脂系水性コーティング剤の技術が知られている(例えば、特許文献1、特許文献2参照)。しかしながら、高硬度ハードコート層を有したフィルムでのブロッキング防止効果は十分な効果が得られなかった。
特開平5−132645号公報 特開平9−291250号公報
As blocking prevention, the technique of the vinylidene chloride resin-type aqueous coating agent containing hydrophilic inorganic powder is known, for example (for example, refer patent document 1 and patent document 2). However, the antiblocking effect of the film having the high hardness hard coat layer was not sufficient.
JP-A-5-132645 JP 9-291250 A

従って、本発明の目的は、高硬度で、且つフィルムの巻き締まりによるブロッキングが抑制された平面性に優れるハードコートフィルム、及び該ハードコートフィルムの製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a hard coat film having high hardness and excellent flatness in which blocking due to film tightening is suppressed, and a method for producing the hard coat film.

本発明の上記課題は以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.透明フィルム基材上にハードコート層を有するハードコートフィルムにおいて、該ハードコート層の膜厚が、8μm以上、40μm以下であって、かつ該透明フィルム基材が下記一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂を含有することを特徴とするハードコートフィルム。   1. In a hard coat film having a hard coat layer on a transparent film substrate, the thickness of the hard coat layer is 8 μm or more and 40 μm or less, and the transparent film substrate is represented by the following general formula (1) or (2 A hard coat film comprising a cellulose ester resin having at least one repeating unit represented by the formula:

Figure 2010139941
Figure 2010139941

[式中、A、Bは、炭素数1〜12の2価の炭化水素基または、水酸基で置換された炭素数1〜12の2価の炭化水素基を表す。但しAとBは同じであっても異なっていてもよい。]
2.前記透明フィルム基材が熱可塑性アクリル樹脂を含有し、該熱可塑性アクリル樹脂を前記セルロースエステル樹脂100質量部に対して10質量部以上含有することを特徴とする前記1に記載のハードコートフィルム。
[In formula, A and B represent a C1-C12 bivalent hydrocarbon group or a C1-C12 bivalent hydrocarbon group substituted by the hydroxyl group. However, A and B may be the same or different. ]
2. 2. The hard coat film as described in 1 above, wherein the transparent film base material contains a thermoplastic acrylic resin, and the thermoplastic acrylic resin is contained in an amount of 10 parts by mass or more based on 100 parts by mass of the cellulose ester resin.

3.前記透明フィルム基材が熱可塑性アクリル樹脂を含有し、該熱可塑性アクリル樹脂を前記セルロースエステル樹脂100質量部に対して50質量部以上含有することを特徴とする前記1に記載のハードコートフィルム。   3. 2. The hard coat film according to 1, wherein the transparent film substrate contains a thermoplastic acrylic resin, and the thermoplastic acrylic resin is contained in an amount of 50 parts by mass or more based on 100 parts by mass of the cellulose ester resin.

4.前記ハードコート層が、重合性不飽和基を有する有機化合物によって表面処理された反応性シリカ粒子(Xa)を含有することを特徴とする前記1〜3のいずれか1項に記載のハードコートフィルム。   4). 4. The hard coat film as described in any one of 1 to 3 above, wherein the hard coat layer contains reactive silica particles (Xa) surface-treated with an organic compound having a polymerizable unsaturated group. .

5.前記ハードコート層のマルテンス硬さ(HMs)が、400N/mm以上、800N/mm以下で有ることを特徴とする前記1〜4のいずれか1項に記載のハードコートフィルム。 5). The Martens hardness of the hard coat layer (HMS) is, 400 N / mm 2 or more, the hard coating film according to any one of the 1 to 4, characterized in that there at 800 N / mm 2 or less.

6.前記透明フィルム基材の膜厚が10μm以上、30μm以下であることを特徴とする前記1〜5のいずれか1項に記載のハードコートフィルム。   6). 6. The hard coat film according to any one of 1 to 5, wherein the transparent film substrate has a thickness of 10 μm or more and 30 μm or less.

7.前記1〜6のいずれか1項に記載のハードコートフィルムのハードコート層の形成において、光照射後、更に加熱処理する工程からなることを特徴とするハードコートフィルムの製造方法。   7). In the formation of the hard coat layer of the hard coat film of any one of said 1-6, it comprises the process of heat-processing after light irradiation, The manufacturing method of the hard coat film characterized by the above-mentioned.

8.前記加熱処理をする工程において搬送方向または巾手方向にハードコートフィルムを300N〜500N/mで張力することを特徴とする前記7に記載のハードコートフィルムの製造方法。   8). 8. The method for producing a hard coat film as described in 7 above, wherein in the heat treatment step, the hard coat film is tensioned at 300 N to 500 N / m in the conveyance direction or the width direction.

9.前記1〜6のいずかれ1項に記載のハードコートフィルムを一方の面に用いたことを特徴とする偏光板。   9. A polarizing plate characterized by using the hard coat film described in any one of items 1 to 6 on one side.

10.前記9に記載の偏光板を用いたことを特徴とする表示装置。   10. 10. A display device using the polarizing plate as described in 9 above.

本発明によれば、高硬度で、且つフィルムの巻き締まりによるブロッキングが抑制された平面性に優れるハードコートフィルム、及び該ハードコートフィルムの製造方法を提供することができる。また、該ハードコートフィルムを用いた偏光板、表示装置を提供できる。   According to the present invention, it is possible to provide a hard coat film having high hardness and excellent flatness in which blocking due to tightening of the film is suppressed, and a method for producing the hard coat film. Moreover, a polarizing plate and a display device using the hard coat film can be provided.

以下本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   The best mode for carrying out the present invention will be described in detail below, but the present invention is not limited thereto.

本発明のハードコートフィルムは、透明フィルム基材上にハードコート層を有するハードコートフィルムであり、該ハードコート層の膜厚が、8μm以上、40μm以下であって、かつ該透明フィルム基材が前記一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂を含有することを特徴とする。   The hard coat film of the present invention is a hard coat film having a hard coat layer on a transparent film substrate, the film thickness of the hard coat layer is 8 μm or more and 40 μm or less, and the transparent film substrate is It contains a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2).

本発明では、高硬度なハードコート層を形成する為にハードコート層の膜厚(ドライ膜厚)を厚くする(8μm以上、40μm以下)際に発生し易い、硬化収縮によるフィルムの巻き締まりによるブロッキングを、該ハードコート層を上記特定構造のセルロースエステル樹脂を用いた透明フィルム上に設けることで顕著に抑制できることを見出し、本発明を成すに至った次第である。   In the present invention, it is likely to occur when the hard coat layer thickness (dry film thickness) is increased (8 μm or more and 40 μm or less) in order to form a hard hard coat layer. It has been found that blocking can be remarkably suppressed by providing the hard coat layer on a transparent film using the cellulose ester resin having the specific structure, and the present invention has been achieved.

以下本発明の特徴の一つであるハードコート層について説明する。   Hereinafter, the hard coat layer which is one of the features of the present invention will be described.

<ハードコート層>
本発明では、高硬度を発揮する点から、ハードコート層の膜厚(ドライ膜厚)は8μm以上、40μm以下であり、好ましくは14μm以上、26μm以下である。膜厚を前記範囲とする事で、表面硬度、ブロッキング耐性、平面性の全てにおいて優れる。膜厚が8μmよりも薄いと本発明の効果である高硬度とブロッキング耐性の両立が得られない。また、膜厚が40μmよりも厚いとハードコート層の平面性が保ちにくく、画像表示装置の保護フィルムとしての品質が得られない。
<Hard coat layer>
In the present invention, the film thickness (dry film thickness) of the hard coat layer is 8 μm or more and 40 μm or less, preferably 14 μm or more and 26 μm or less from the viewpoint of exhibiting high hardness. By setting the film thickness within the above range, the surface hardness, blocking resistance, and flatness are all excellent. When the film thickness is thinner than 8 μm, it is impossible to obtain both high hardness and blocking resistance, which are the effects of the present invention. On the other hand, if the film thickness is larger than 40 μm, it is difficult to maintain the flatness of the hard coat layer, and the quality as a protective film of the image display device cannot be obtained.

高硬度は、LCD等の表示装置の表面における使用や偏光板化工程において傷が付きにくいことから望まれおり、本発明でいう高硬度とは、硬度の指標で有る鉛筆硬度が3H以上であり、より好ましくは4H以上である。   High hardness is desired because it is less likely to be scratched during use on the surface of a display device such as an LCD or in the polarizing plate forming process, and the high hardness in the present invention means that the pencil hardness, which is an index of hardness, is 3H or more. More preferably, it is 4H or more.

鉛筆硬度は、作製したハードコートフィルムを温度23℃、相対湿度55%の条件で2時間以上調湿した後、JIS S 6006が規定する試験用鉛筆を用いて、JIS K 5400が規定する鉛筆硬度評価方法に従い測定した値である。   For the pencil hardness, the prepared hard coat film is conditioned at a temperature of 23 ° C. and a relative humidity of 55% for 2 hours or more, and then using a test pencil specified by JIS S 6006, the pencil hardness specified by JIS K 5400. It is the value measured according to the evaluation method.

また、ハードコートのマルテンス硬さ(HMs)が、400N/mm以上、800N/mm以下であることが好ましい。該範囲にマルテンス硬さを調整することで、表面硬度に優れ、かつ本発明の目的効果がより良く発揮される。 Moreover, Martens hardness of the hard coat (HMS) is, 400 N / mm 2 or more, and preferably 800 N / mm 2 or less. By adjusting the Martens hardness within this range, the surface hardness is excellent, and the object effect of the present invention is more effectively exhibited.

マルテンス硬さ(ビッカース硬さ)とは、ビッカース圧子及び稜線同士の角度が115度の三角錐圧子を用いた微小硬度計で、フィルムのハードコート表面を、ハードコート層の膜厚の略1/10の厚みまで圧子を押し込んだ時の負荷試験力−押し込み深さ曲線において、該負荷試験力−押し込み深さ曲線から求められる最大負荷試験力(Fmax)の50%値から90%値までの押し込み深さが負荷試験力の平方根に比例する傾き(m)より、下記式で定義される値をいう。   Martens hardness (Vickers hardness) is a microhardness meter using a Vickers indenter and a triangular pyramid indenter whose angle between ridges is 115 degrees. The hard coat surface of the film is approximately 1 / th of the film thickness of the hard coat layer. In the load test force-indentation depth curve when the indenter is pushed down to a thickness of 10, the indentation from the 50% value to the 90% value of the maximum load test force (Fmax) obtained from the load test force-indentation depth curve From the slope (m) in which the depth is proportional to the square root of the load test force, it is a value defined by the following formula.

1HMs=1/(26.4m
次に、ハードコート層を形成する樹脂バインダーについて説明する。樹脂バインダーとしては、活性エネルギー線硬化樹脂が好ましい。活性エネルギー線硬化樹脂とは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性エネルギー線硬化樹脂層が形成される。活性エネルギー線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、特に、紫外線硬化樹脂が機械的膜強度(耐擦性、鉛筆硬度)に優れる点から好ましい。
1HMs = 1 / (26.4m 2 )
Next, the resin binder that forms the hard coat layer will be described. As the resin binder, an active energy ray curable resin is preferable. The active energy ray-curable resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays or electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active ray such as an ultraviolet ray or an electron beam. It is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin. Particularly, the ultraviolet curable resin is excellent in mechanical film strength (abrasion resistance, pencil hardness). preferable.

紫外線硬化樹脂としては、多官能アクリレートが好ましい。該多官能アクリレートとしては、ペンタエリスリトール多官能アクリレート、ジペンタエリスリトール多官能アクリレート、ペンタエリスリトール多官能メタクリレート、及びジペンタエリスリトール多官能メタクリレートよりなる群から選ばれることが好ましい。ここで、多官能アクリレートとは、分子中に2個以上のアクリロイルオキシ基及び/またはメタクロイルオキシ基を有する化合物である。   As the ultraviolet curable resin, a polyfunctional acrylate is preferable. The polyfunctional acrylate is preferably selected from the group consisting of pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and dipentaerythritol polyfunctional methacrylate. Here, the polyfunctional acrylate is a compound having two or more acryloyloxy groups and / or methacryloyloxy groups in the molecule.

多官能アクリレートのモノマーとしては、例えばエチレングリコールジアクリレート、ジエチレングリコールジアクリレート、1,6−ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ペンタグリセロールトリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセリントリアクリレート、ジペンタエリスリトールトリアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリス(アクリロイルオキシエチル)イソシアヌレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリメタクリレート、トリメチロールエタントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ペンタグリセロールトリメタクリレート、ペンタエリスリトールジメタクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、グリセリントリメタクリレート、ジペンタエリスリトールトリメタクリレート、ジペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、イソボロニルアクリレート等が好ましく挙げられる。これらの化合物は、それぞれ単独または2種以上を混合して用いられる。また、上記モノマーの2量体、3量体等のオリゴマーであってもよい。エネルギー活性線硬化性樹脂の添加量は、ハードコート層形成組成物中(以下、ハードコート層塗布液とも言う。)では、固形分中の15質量%以上70質量%未満であることが好ましい。   Examples of the polyfunctional acrylate monomer include ethylene glycol diacrylate, diethylene glycol diacrylate, 1,6-hexanediol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, and tetramethylolmethane triacrylate. , Tetramethylolmethane tetraacrylate, pentaglycerol triacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, glycerin triacrylate, dipentaerythritol triacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol Ritolol hexaacrylate, tris (acryloyloxyethyl) isocyanurate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, 1,6-hexanediol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, Tetramethylol methane trimethacrylate, tetramethylol methane tetramethacrylate, pentaglycerol trimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, glycerol trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate Acrylate, dipentaerythritol penta methacrylate, dipentaerythritol hexa methacrylate, isobornyl acrylate and the like preferably. These compounds are used alone or in admixture of two or more. Moreover, oligomers, such as a dimer and a trimer of the said monomer, may be sufficient. In the hard coat layer forming composition (hereinafter also referred to as a hard coat layer coating solution), the amount of the energy active ray curable resin added is preferably 15% by mass or more and less than 70% by mass in the solid content.

また、ハードコート層にはエネルギー活性線硬化性樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤;エネルギー活性線硬化性樹脂=20:100〜0.01:100で含有することが好ましい。   The hard coat layer preferably contains a photopolymerization initiator in order to accelerate the curing of the energy active ray curable resin. The amount of the photopolymerization initiator is preferably a mass ratio of photopolymerization initiator; energy active ray curable resin = 20: 100 to 0.01: 100.

光重合開始剤としては、具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α−アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることができるが、特にこれらに限定されるものではない。   Specific examples of the photopolymerization initiator include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and derivatives thereof, but are not particularly limited thereto.

ハードコート層には、熱可塑性樹脂、熱硬化性樹脂またはゼラチン等の親水性樹脂等のバインダーを用いることもできる。また、ハードコート層には滑り性や屈折率を調整するために無機化合物または有機化合物の粒子を含んでもよい。   For the hard coat layer, a binder such as a thermoplastic resin, a thermosetting resin, or a hydrophilic resin such as gelatin can also be used. Further, the hard coat layer may contain particles of an inorganic compound or an organic compound in order to adjust slipperiness and refractive index.

ハードコート層に使用される無機粒子としては、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。特に、酸化珪素、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等が好ましく用いられる。   Inorganic particles used for the hard coat layer include silicon oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin And calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. In particular, silicon oxide, titanium oxide, aluminum oxide, zirconium oxide, magnesium oxide and the like are preferably used.

また有機粒子としては、ポリメタアクリル酸メチルアクリレート樹脂粉末、アクリルスチレン系樹脂粉末、ポリメチルメタクリレート樹脂粉末、シリコン系樹脂粉末、ポリスチレン系樹脂粉末、ポリカーボネート樹脂粉末、ベンゾグアナミン系樹脂粉末、メラミン系樹脂粉末、ポリオレフィン系樹脂粉末、ポリエステル系樹脂粉末、ポリアミド系樹脂粉末、ポリイミド系樹脂粉末、またはポリ弗化エチレン系樹脂粉末等紫外線硬化性樹脂組成物を加えることができる。特に好ましくは、架橋ポリスチレン粒子(例えば、綜研化学製SX−130H、SX−200H、SX−350H)、ポリメチルメタクリレート系粒子(例えば、綜研化学製MX150、MX300)、フッ素含有アクリル樹脂微粒子が挙げられる。フッ素含有アクリル樹脂微粒子としては、例えば日本ペイント製:FS−701等の市販品が挙げられる。また、アクリル粒子として、例えば日本ペイント製:S−4000、アクリル−スチレン粒子として、例えば日本ペイント製:S−1200、MG−251等が挙げられる。   Organic particles include polymethacrylic acid methyl acrylate resin powder, acrylic styrene resin powder, polymethyl methacrylate resin powder, silicon resin powder, polystyrene resin powder, polycarbonate resin powder, benzoguanamine resin powder, melamine resin powder. An ultraviolet curable resin composition such as polyolefin resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, or polyfluoroethylene resin powder can be added. Particularly preferred are cross-linked polystyrene particles (for example, SX-130H, SX-200H, SX-350H, manufactured by Soken Chemical), polymethyl methacrylate-based particles (for example, MX150, MX300, manufactured by Soken Chemical), and fluorine-containing acrylic resin fine particles. . Examples of the fluorine-containing acrylic resin fine particles include commercial products such as FS-701 manufactured by Nippon Paint. Examples of the acrylic particles include Nippon Paint: S-4000, and examples of the acrylic-styrene particles include Nippon Paint: S-1200, MG-251.

これらの微粒子粉末の平均粒径としては、0.01〜5μmが好ましく0.1〜5.0μm、更に、0.1〜4.0μmであることが特に好ましい。また、粒径の異なる2種以上の微粒子を含有することが好ましい。硬化性樹脂組成物と微粒子の割合は、硬化性樹脂組成物100質量部に対して、0.1〜30質量部となるように配合することが望ましい。   The average particle diameter of these fine particle powders is preferably 0.01 to 5 μm, more preferably 0.1 to 5.0 μm, and particularly preferably 0.1 to 4.0 μm. Moreover, it is preferable to contain 2 or more types of microparticles | fine-particles from which a particle size differs. The ratio of the curable resin composition and the fine particles is desirably blended so as to be 0.1 to 30 parts by mass with respect to 100 parts by mass of the curable resin composition.

本発明においては、より過酷な耐久性試験後に目的効果をより良く発揮する点から、ハードコート層に重合性不飽和基を有する有機化合物によって表面処理された反応性シリカ粒子(Xa)を含有させることが好ましい。以下、重合性不飽和基を有する有機化合物によって表面処理された反応性シリカ粒子(Xa)について説明する。   In the present invention, reactive silica particles (Xa) surface-treated with an organic compound having a polymerizable unsaturated group are included in the hard coat layer in order to better exhibit the intended effect after a more severe durability test. It is preferable. Hereinafter, the reactive silica particles (Xa) surface-treated with an organic compound having a polymerizable unsaturated group will be described.

〈シリカ粒子〉
シリカ粒子としては、公知のものを使用することができる。また、その形状は、球状でも不定形のものでもよく、通常のコロイダルシリカに限らず中空粒子、多孔質粒子、コア/シェル型粒子等であっても構わない。
<Silica particles>
Known silica particles can be used. Further, the shape may be spherical or irregular, and is not limited to ordinary colloidal silica, and may be hollow particles, porous particles, core / shell particles, or the like.

また、動的光散乱法で求めたシリカ粒子の数平均粒子径は30nm以上が好ましく、更に好ましくは30〜200nmであり、特に好ましくは、40〜80nmである。シリカ粒子の数平均粒子径が30nm未満であると、硬化膜の硬度が低下するおそれがあり、200nmよりも大きいとハードコート層用塗布組成物に添加時した際、液の安定性(沈殿、析出等)が得られにくい。またシリカ粒子としては、pHが2.0〜6.5のコロイダルシリカが好ましい。シリカ粒子の分散媒は、水あるいは有機溶媒が好ましい。有機溶媒としては、メタノール、イソプロピルアルコール、エチレングリコール、ブタノール、エチレングリコールモノプロピルエーテル等のアルコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ−ブチロラクトン等のエステル類;テトラヒドロフラン、1,4−ジオキサン等のエ−テル類等の有機溶剤を挙げることができ、これらの中で、アルコール類及びケトン類が好ましい。これら有機溶剤は、単独で、又は2種以上混合して分散媒として使用することができる。市販品としては、例えば、コロイダルシリカとして、日産化学工業(株)製MEK−ST−L、IPA−ST−L、IPA−ST−ZL等を挙げることができる。
〈重合性不飽和基を有する有機化合物〉
反応性シリカ粒子(Xa)は、重合性不飽和基を有する有機化合物(以下、「有機化合物(X)」という)で表面処理することによって得られる。反応性シリカ粒子(Xa)の製造に用いられる有機化合物(X)は、重合性不飽和基、好ましくはエチレン性不飽和基を有する化合物であり、さらに、下記一般式(a)に示す基を含む有機化合物であることが好ましい。また、[−O−C(=O)−NH−]基を含み、さらに、[−O−C(=S)−NH−]基及び[−S−C(=O)−NH−]基の少なくとも1つを含むものであることが好ましい。また、この有機化合物は、分子内にシラノール基を有する化合物又は加水分解によってシラノール基を生成する化合物であることが好ましい。
Moreover, the number average particle diameter of the silica particles determined by the dynamic light scattering method is preferably 30 nm or more, more preferably 30 to 200 nm, and particularly preferably 40 to 80 nm. If the number average particle diameter of the silica particles is less than 30 nm, the hardness of the cured film may be reduced. If it is greater than 200 nm, the stability of the liquid (precipitation, Is difficult to obtain. The silica particles are preferably colloidal silica having a pH of 2.0 to 6.5. The dispersion medium of silica particles is preferably water or an organic solvent. Examples of organic solvents include alcohols such as methanol, isopropyl alcohol, ethylene glycol, butanol, and ethylene glycol monopropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene; dimethylformamide, dimethyl Examples include amides such as acetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and γ-butyrolactone; and organic solvents such as ethers such as tetrahydrofuran and 1,4-dioxane. Of these, alcohols and ketones are preferred. These organic solvents can be used alone or in combination of two or more as a dispersion medium. As a commercial item, Nissan Chemical Industries Co., Ltd. MEK-ST-L, IPA-ST-L, IPA-ST-ZL etc. can be mentioned as colloidal silica, for example.
<Organic compound having a polymerizable unsaturated group>
The reactive silica particles (Xa) are obtained by surface treatment with an organic compound having a polymerizable unsaturated group (hereinafter referred to as “organic compound (X)”). The organic compound (X) used for the production of the reactive silica particles (Xa) is a compound having a polymerizable unsaturated group, preferably an ethylenically unsaturated group, and further has a group represented by the following general formula (a). It is preferable that it is an organic compound to contain. Further, it includes a [—O—C (═O) —NH—] group, and further includes a [—O—C (═S) —NH—] group and a [—S—C (═O) —NH—] group. It is preferable that at least one of these is included. The organic compound is preferably a compound having a silanol group in the molecule or a compound that generates a silanol group by hydrolysis.

Figure 2010139941
Figure 2010139941

[一般式(a)中、Uは、NH、O(酸素原子)又はS(イオウ原子)を示し、Vは、O又はSを示す。]
[1]エチレン性不飽和基
有機化合物(X)に含まれるエチレン性不飽和基としては特に制限はないが、例えば、アクリロイル基、メタクリロイル基、ビニル基を好適例として挙げることができる。
[In General Formula (a), U represents NH, O (oxygen atom) or S (sulfur atom), and V represents O or S. ]
[1] Ethylenically unsaturated group Although there is no restriction | limiting in particular as an ethylenically unsaturated group contained in organic compound (X), For example, an acryloyl group, a methacryloyl group, and a vinyl group can be mentioned as a suitable example.

このエチレン性不飽和基は、活性ラジカル種により付加重合をする構成単位である。
[2]前記一般式(a)に示す基
有機化合物に含まれる前記式(a)に示す基[−U−C(=V)−NH−]は、具体的には、[−O−C(=O)−NH−]、[−O−C(=S)−NH−]、[−S−C(=O)−NH−]、[−NH−C(=O)−NH−]、[−NH−C(=S)−NH−]、及び[−S−C(=S)−NH−]の6種である。これらの基は、1種単独で又は2種以上を組合わせて用いることができる。中でも、熱安定性の観点から、[−O−C(=O)−NH−]基と、[−O−C(=S)−NH−]基及び[−S−C(=O)−NH−]基の少なくとも1つとを併用することが好ましい。
This ethylenically unsaturated group is a structural unit that undergoes addition polymerization with active radical species.
[2] The group represented by the general formula (a) The group [—UC (═V) —NH—] represented by the formula (a) contained in the organic compound is specifically represented by [—O—C. (═O) —NH—], [—O—C (═S) —NH—], [—S—C (═O) —NH—], [—NH—C (═O) —NH—]. , [—NH—C (═S) —NH—], and [—S—C (═S) —NH—]. These groups can be used individually by 1 type or in combination of 2 or more types. Among them, from the viewpoint of thermal stability, [—O—C (═O) —NH—] group, [—O—C (═S) —NH—] group and [—S—C (═O) — It is preferable to use in combination with at least one of the NH-] groups.

前記式(a)に示す基[−U−C(=V)−NH−]は、分子間において水素結合による適度の凝集力を発生させ、硬化物にした場合、優れた機械的強度、基材や隣接層との密着性に優れる。
[3]シラノール基又は加水分解によってシラノール基を生成する化合物
シラノール基を生成する化合物としては、ケイ素原子にアルコキシ基、アリールオキシ基、アセトキシ基、アミノ基、ハロゲン原子等が結合した化合物を挙げることができるが、ケイ素原子にアルコキシ基又はアリールオキシ基が結合した化合物、即ち、アルコキシシリル基含有化合物又はアリールオキシシリル基含有化合物が好ましい。
[4]好ましい態様
好ましい具体例としては、例えば、下記一般式(b)に示す化合物を挙げることができる。
The group [—UC— (V) —NH—] represented by the formula (a) generates an appropriate cohesive force due to hydrogen bonding between molecules, and has excellent mechanical strength and group when cured. Excellent adhesion to materials and adjacent layers.
[3] Silanol groups or compounds that generate silanol groups by hydrolysis Examples of compounds that generate silanol groups include compounds in which an alkoxy group, aryloxy group, acetoxy group, amino group, halogen atom, or the like is bonded to a silicon atom. However, a compound in which an alkoxy group or an aryloxy group is bonded to a silicon atom, that is, an alkoxysilyl group-containing compound or an aryloxysilyl group-containing compound is preferable.
[4] Preferred embodiment As a preferred specific example, for example, a compound represented by the following general formula (b) can be mentioned.

Figure 2010139941
Figure 2010139941

一般式(b)中、R21、R22は、同一でも異なっていてもよく、水素原子又は炭素数1〜8のアルキル基若しくはアリール基であり、例えば、メチル、エチル、プロピル、ブチル、オクチル、フェニル、キシリル基等を挙げることができる。ここで、jは、1〜3の整数である。 In the general formula (b), R 21 and R 22 may be the same or different, and are a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group, for example, methyl, ethyl, propyl, butyl, octyl , Phenyl, xylyl group and the like. Here, j is an integer of 1 to 3.

[(R21O)22 3−jSi−]で示される基としては、例えば、トリメトキシシリル基、トリエトキシシリル基、トリフェノキシシリル基、メチルジメトキシシリル基、ジメチルメトキシシリル基等を挙げることができる。このような基のうち、トリメトキシシリル基又はトリエトキシシリル基等が好ましい。 Examples of the group represented by [(R 21 O) j R 22 3-j Si—] include a trimethoxysilyl group, a triethoxysilyl group, a triphenoxysilyl group, a methyldimethoxysilyl group, and a dimethylmethoxysilyl group. Can be mentioned. Of these groups, a trimethoxysilyl group or a triethoxysilyl group is preferable.

23は、炭素数1〜12の脂肪族又は芳香族構造を有する2価の有機基であり、鎖状、分岐状又は環状の構造を含んでいてもよい。具体例として、メチレン、エチレン、プロピレン、ブチレン、ヘキサメチレン、シクロヘキシレン、フェニレン、キシリレン、ドデカメチレン等を挙げることができる。 R 23 is a divalent organic group having an aliphatic or aromatic structure having 1 to 12 carbon atoms, and may include a chain, branched, or cyclic structure. Specific examples include methylene, ethylene, propylene, butylene, hexamethylene, cyclohexylene, phenylene, xylylene, dodecamethylene and the like.

24は、2価の有機基であり、通常、分子量14から1万、好ましくは、分子量76から500の2価の有機基の中から選ばれる。具体例として、ヘキサメチレン、オクタメチレン、ドデカメチレン等の鎖状ポリアルキレン基;シクロヘキシレン、ノルボルニレン等の脂環式又は多環式の2価の有機基;フェニレン、ナフチレン、ビフェニレン、ポリフェニレン等の2価の芳香族基;及びこれらのアルキル基置換体、アリール基置換体を挙げることができる。また、これら2価の有機基は炭素及び水素原子以外の元素を含む原子団を含んでいてもよく、ポリエーテル結合、ポリエステル結合、ポリアミド結合、ポリカーボネート結合を含むこともできる。 R 24 is a divalent organic group, and is usually selected from divalent organic groups having a molecular weight of 14 to 10,000, preferably a molecular weight of 76 to 500. Specific examples include a chain polyalkylene group such as hexamethylene, octamethylene, and dodecamethylene; an alicyclic or polycyclic divalent organic group such as cyclohexylene and norbornylene; and 2 such as phenylene, naphthylene, biphenylene, and polyphenylene. Valent aromatic group; and these alkyl group-substituted and aryl group-substituted products. These divalent organic groups may contain an atomic group containing an element other than carbon and hydrogen atoms, and may contain a polyether bond, a polyester bond, a polyamide bond, and a polycarbonate bond.

25は、(k+1)価の有機基であり、好ましくは、鎖状、分岐状又は環状の飽和炭化水素基、不飽和炭化水素基の中から選ばれる。 R 25 is a (k + 1) -valent organic group, and is preferably selected from a chain, branched or cyclic saturated hydrocarbon group and unsaturated hydrocarbon group.

Zは、活性ラジカル種の存在下、分子間架橋反応をする重合性不飽和基を分子中に有する1価の有機基を示す。また、kは、好ましくは、1〜20の整数であり、さらに好ましくは、1〜10の整数、特に好ましくは、1〜5の整数である。   Z represents a monovalent organic group having a polymerizable unsaturated group in the molecule that undergoes an intermolecular crosslinking reaction in the presence of an active radical species. K is preferably an integer of 1 to 20, more preferably an integer of 1 to 10, and particularly preferably an integer of 1 to 5.

一般式(b)で示される化合物の具体例として、下記(b−1)又は下記(b−2)で示される化合物が挙げられる。   Specific examples of the compound represented by the general formula (b) include compounds represented by the following (b-1) or the following (b-2).

Figure 2010139941
Figure 2010139941

[(b−1)及び(b−2)中、「Acryl」は、アクリロイル基を示す。「Me」は、メチル基を示す。]
有機化合物(X)の合成は、例えば、特開平9−100111号公報に記載された方法を用いることができる。好ましくは、メルカプトプロピルトリメトキシシランとイソホロンジイソシアネートをジブチルスズジラウレート存在下で混合し、60〜70℃で数時間程度反応させた後に、ペンタエリスリトールトリアクリレートを添加して、さらに60〜70℃で数時間程度反応させることにより製造される。
[In (b-1) and (b-2), “Acryl” represents an acryloyl group. “Me” represents a methyl group. ]
For the synthesis of the organic compound (X), for example, the method described in JP-A-9-100111 can be used. Preferably, mercaptopropyltrimethoxysilane and isophorone diisocyanate are mixed in the presence of dibutyltin dilaurate and reacted at 60 to 70 ° C. for several hours, then pentaerythritol triacrylate is added, and further at 60 to 70 ° C. for several hours. Produced by reacting to some extent.

〈(Xa)反応性シリカ粒子〉
有機化合物(X)をシリカ粒子と混合し、加水分解させ、両者を結合させる。
<(Xa) reactive silica particles>
The organic compound (X) is mixed with silica particles, hydrolyzed, and bonded together.

シリカ粒子への有機化合物(X)の結合量は、反応性シリカ粒子(Xa)を100質量%として、好ましくは、0.01質量%以上であり、さらに好ましくは、0.1質量%以上、特に好ましくは、1質量%以上である。上記範囲において分散性に優れ、得られる硬化物の機械強度にも優れる。   The binding amount of the organic compound (X) to the silica particles is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the reactive silica particles (Xa). Especially preferably, it is 1 mass% or more. Within the above range, the dispersibility is excellent, and the mechanical strength of the obtained cured product is also excellent.

また、反応性シリカ粒子(Xa)製造時の原料中のシリカ粒子の配合割合は、好ましくは、5〜99質量%であり、さらに好ましくは、10〜98質量%である。反応性シリカ粒子(Xa)を構成するシリカ粒子の含有量は、65〜95質量%であることが好ましい。   Moreover, the compounding ratio of the silica particles in the raw material during the production of the reactive silica particles (Xa) is preferably 5 to 99% by mass, and more preferably 10 to 98% by mass. The content of the silica particles constituting the reactive silica particles (Xa) is preferably 65 to 95% by mass.

ハードコート層用塗布組成物中の、反応性シリカ粒子(Xa)の含有量は、組成物中の固形分全量を100質量%としたときに、5〜80質量%が好ましく、10〜80質量%がより好ましい。該範囲の割合で用いる事で、組成物中で安定に存在し、本発明の目的効果も発揮しやすい。   The content of the reactive silica particles (Xa) in the hard coat layer coating composition is preferably 5 to 80% by mass, and preferably 10 to 80% by mass when the total solid content in the composition is 100% by mass. % Is more preferable. By using it in the ratio of this range, it exists stably in a composition and it is easy to exhibit the target effect of this invention.

ハードコート層の耐熱性を高めるために、光硬化反応を抑制しないような酸化防止剤を選んで用いることができる。例えば、ヒンダードフェノール誘導体、チオプロピオン酸誘導体、ホスファイト誘導体等を挙げることができる。具体的には、例えば、4,4′−チオビス(6−tert−3−メチルフェノール)、4,4′−ブチリデンビス(6−tert−ブチル−3−メチルフェノール)、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)メシチレン、ジ−オクタデシル−4−ヒドロキシ−3,5−ジ−tert−ブチルベンジルホスフェート等を挙げることができる。   In order to increase the heat resistance of the hard coat layer, an antioxidant that does not inhibit the photocuring reaction can be selected and used. Examples include hindered phenol derivatives, thiopropionic acid derivatives, phosphite derivatives, and the like. Specifically, for example, 4,4′-thiobis (6-tert-3-methylphenol), 4,4′-butylidenebis (6-tert-butyl-3-methylphenol), 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) mesitylene, di-octadecyl-4- Examples thereof include hydroxy-3,5-di-tert-butylbenzyl phosphate.

ハードコート層形成組成物には、溶媒が含まれていてもよく、必要に応じて適宜含有し、希釈されたものであってもよい。塗布液に含有される有機溶媒としては、例えば、炭化水素類(トルエン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン)、エステル類(酢酸メチル、酢酸エチル、乳酸メチル)、グリコールエーテル類、その他の有機溶媒の中から適宜選択し、またはこれらを混合し利用できる。プロピレングリコールモノアルキルエーテル(アルキル基の炭素原子数として1〜4)またはプロピレングリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数として1〜4)等を5質量%以上、より好ましくは5〜80質量%以上含有する上記有機溶媒を用いるのが好ましい。   The hard coat layer forming composition may contain a solvent, or may be appropriately contained and diluted as necessary. Examples of the organic solvent contained in the coating solution include hydrocarbons (toluene, xylene), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), It can be appropriately selected from esters (methyl acetate, ethyl acetate, methyl lactate), glycol ethers, and other organic solvents, or a mixture thereof can be used. Propylene glycol monoalkyl ether (1 to 4 carbon atoms of the alkyl group) or propylene glycol monoalkyl ether acetate ester (1 to 4 carbon atoms of the alkyl group) is 5% by mass or more, more preferably 5 to 80%. It is preferable to use the organic solvent containing at least mass%.

ハードコート層は、JIS B 0601で規定される中心線平均粗さ(Ra)が0.001〜0.1μmのクリアハードコート層、または微粒子等を添加しRaが0.1〜1μmに調整された防眩性ハードコート層であってもよい。中心線平均粗さ(Ra)は光干渉式の表面粗さ測定器で測定することが好ましく、例えばWYKO社製非接触表面微細形状計測装置WYKO NT−2000を用いて測定することができる。   The hard coat layer has a center line average roughness (Ra) defined by JIS B 0601 of 0.001 to 0.1 μm, or a fine hard coat layer and Ra is adjusted to 0.1 to 1 μm. An antiglare hard coat layer may also be used. The center line average roughness (Ra) is preferably measured by an optical interference type surface roughness measuring instrument, and can be measured, for example, using a non-contact surface fine shape measuring device WYKO NT-2000 manufactured by WYKO.

また、防眩性ハードコート層では、ハードコート表面にロールや原盤でエンボスにて凹凸形状を形成してもよい。   Further, in the antiglare hard coat layer, an uneven shape may be formed on the hard coat surface by embossing with a roll or a master.

ハードコート層は上記したフッ素系化合物やシリコーン化合物を含有しても良い。また、以下に示す界面活性剤を含有してもよい。具体的には、花王株式会社製:エマルゲン102KG(6.3)、エマルゲン103(8.1)、エマルゲン104P(9.6)、エマルゲン105(9.7)、エマルゲン106(10.5)、エマルゲン108(12.1)、エマルゲン109P(13.6)、エマルゲン120(15.3)、エマルゲン123P(16.9)、エマルゲン147(16.3)、エマルゲン210P(10.7)、エマルゲン220(14.2)、エマルゲン306P(9.4)、エマルゲン320P(13.9)、エマルゲン404(8.8)、エマルゲン408(10.0)、エマルゲン409PV(12.0)、エマルゲン420(13.6)、エマルゲン430(16.2)、エマルゲン705(10.5)、エマルゲン707(12.1)、エマルゲン709(13.3)、エマルゲン1108(13.5)、エマルゲン1118S−70(16.4)、エマルゲン1135S−70(17.9)、エマルゲン2020G−HA(13.0)、エマルゲン2025G(15.7)、エマルゲンLS−106(12.5)、エマルゲンLS−110(13.4)、エマルゲンLS−114(14.0)、エマルゲンMS−110(12.7)、エマルゲンA−60(12.8)、エマルゲンA−90(14.5)、エマルゲンA−500(18.0)、エマルゲンB−66(13.2)、ラテムルPD−420(12.6)、ラテムルPD−430(14.4)、ラテムルPD−430S(14.4)、ラテムルPD−450(16.2)、レオドールSP−L10(8.6)、レオドールSP−P10(6.7)、レオドールSP−S10V(4.7)、レオドールSP−S20(4.4)、レオドールSP−O10V(4.3)、レオドールスーパーSP−L10(8.6)、レオドールAS10V(4.7)、レオドールAO−10V(4.3)、レオドールAO−15V(3.7)、エマゾールL−10V(8.6)、エマゾールP−10V(6.7)、エマゾールS−10V(4.7)、エマゾールO−10V(4.3)、レオドールTW−L120(16.7)、レオドールTW−L106(13.3)、レオドールTW−P120(15.6)、レオドールTW−S120V(14.9)、レオドールTW−S106V(9.6)、レオドールTW−S320V(10.5)、レオドールTW−O120V(15.0)、レオドールTW−O106V(10.0)、レオドールTW−O320V(11.0)、レオドールスーパーTW−L120(16.7)、レオドール430V(10.5)、レオドール440V(11.8)、レオドール460V(13.8)、レオドールMS−60(3.5)、レオドールMS−165V(11.0)、エキセルT−95(3.8)、エキセルVS−95(3.8)、エキセルO−95R(3.5)、エキセル200(3.5)、エキセル122V(3.5)、エマノーン1112(13.7)、エマノーン4110(11.6)、エマノーンCH−25(10.7)、エマノーンCH−40(12.5)、エマノーンCH−60(K)(14.0)、エマノーンCH−80(15.0)、アミート102(6.3)、アミート105(9.8)、アミート105A(10.8)、アミート302(5.1)、アミート320(15.4)、アミノーンPK−02S(5.5)、アミノーンL−02(5.8)、日信化学工業株式会社製:サーフィノール104E(4)、サーフィノール104H(4)、サーフィノール104A(4)、サーフィノール104BC(4)、サーフィノール104DPM(4)、サーフィノール104PA(4)、サーフィノール104PG−50(4)、サーフィノール104S(4)、サーフィノール420(4)、サーフィノール440(8)、サーフィノール465(13)、サーフィノール485(17)、サーフィノールSE(6)、サーフィノールSE−F(6)、サーフィノール61(6)、サーフィノール604(8)、サーフィノール2502(8)、サーフィノール82(4)、サーフィノールDF110D(3)、サーフィノールCT111(8〜11)、サーフィノールCT121(11〜15)、サーフィノールCT136(13)、サーフィノールTG(9)、サーフィノールGA(13)、オルフィンSTG(9〜10)、オルフィンE1004(7〜9)、オルフィンE1010(13〜14)、信越化学工業株式会社製:X−22−4272(7)、X−22−6266(8)、KF−351(12)、KF−352(7)、KF−353(10)、KF−354L(16)、KF−355A(12)、KF−615A(10)、KF−945(4)、KF−618(11)、KF−6011(12)、KF−6015(4)、KF−6004(5)等が挙げられる。( )内はHLB値を示す。HLB値とは、Hydrophile−Lipophile−Balance、親水性−親油性−バランスのことであり、化合物の親水性又は親油性の大きさを示す値である。HLB値が小さいほど親油性が高く、値が大きいほど親水性が高くなる。   The hard coat layer may contain the above-described fluorine compound or silicone compound. Moreover, you may contain the surfactant shown below. Specifically, Kao Corporation make: Emulgen 102KG (6.3), Emulgen 103 (8.1), Emulgen 104P (9.6), Emulgen 105 (9.7), Emulgen 106 (10.5), Emulgen 108 (12.1), Emulgen 109P (13.6), Emulgen 120 (15.3), Emulgen 123P (16.9), Emulgen 147 (16.3), Emulgen 210P (10.7), Emulgen 220 (14.2), Emulgen 306P (9.4), Emulgen 320P (13.9), Emulgen 404 (8.8), Emulgen 408 (10.0), Emulgen 409PV (12.0), Emulgen 420 (13 .6), Emulgen 430 (16.2), Emulgen 705 (10.5), Emulgen 707 (12.1), Margen 709 (13.3), Emulgen 1108 (13.5), Emulgen 1118S-70 (16.4), Emulgen 1135S-70 (17.9), Emulgen 2020G-HA (13.0), Emulgen 2025G (15 .7), Emulgen LS-106 (12.5), Emulgen LS-110 (13.4), Emulgen LS-114 (14.0), Emulgen MS-110 (12.7), Emulgen A-60 (12) .8), Emulgen A-90 (14.5), Emulgen A-500 (18.0), Emulgen B-66 (13.2), Latemul PD-420 (12.6), Latemulu PD-430 (14 .4), Latemul PD-430S (14.4), Latemul PD-450 (16.2), Rheodor SP-L10 (8.6), Leo SP-P10 (6.7), Rhedol SP-S10V (4.7), Rhedol SP-S20 (4.4), Rhedol SP-O10V (4.3), Rhedol Super SP-L10 (8. 6), Rheodor AS10V (4.7), Rheodor AO-10V (4.3), Rheodor AO-15V (3.7), Emazole L-10V (8.6), Emazole P-10V (6.7) , Emazole S-10V (4.7), Emazole O-10V (4.3), Rhedol TW-L120 (16.7), Rhedol TW-L106 (13.3), Rhedol TW-P120 (15.6) , Rhedol TW-S120V (14.9), Rheodor TW-S106V (9.6), Rhedol TW-S320V (10.5), Rhedol TW-O120V (1 5.0), Rheodor TW-O106V (10.0), Rheodor TW-O320V (11.0), Rheodor Super TW-L120 (16.7), Rheodor 430V (10.5), Rheodor 440V (11. 8), Rhedol 460V (13.8), Rhedol MS-60 (3.5), Rhedol MS-165V (11.0), Excel T-95 (3.8), Excel VS-95 (3.8) , Excel O-95R (3.5), Excel 200 (3.5), Excel 122V (3.5), Emanon 1112 (13.7), Emanon 4110 (11.6), Emanon CH-25 (10. 7), Emanon CH-40 (12.5), Emanon CH-60 (K) (14.0), Emanon CH-80 (15.0), Amite 102 ( .3), Amit 105 (9.8), Amit 105A (10.8), Amit 302 (5.1), Amit 320 (15.4), Aminone PK-02S (5.5), Aminone L-02 (5.8), manufactured by Nissin Chemical Industry Co., Ltd .: Surfinol 104E (4), Surfinol 104H (4), Surfinol 104A (4), Surfinol 104BC (4), Surfinol 104DPM (4), Surfy Nord 104PA (4), Surfinol 104PG-50 (4), Surfinol 104S (4), Surfinol 420 (4), Surfinol 440 (8), Surfinol 465 (13), Surfinol 485 (17), Surfinol SE (6), Surfinol SE-F (6), Surfinol 61 (6), Sir Inol 604 (8), Surfinol 2502 (8), Surfinol 82 (4), Surfinol DF110D (3), Surfinol CT111 (8-11), Surfinol CT121 (11-15), Surfinol CT136 (13 ), Surfinol TG (9), Surfinol GA (13), Orphine STG (9-10), Orphin E1004 (7-9), Orphin E1010 (13-14), Shin-Etsu Chemical Co., Ltd .: X-22 -4272 (7), X-22-6266 (8), KF-351 (12), KF-352 (7), KF-353 (10), KF-354L (16), KF-355A (12), KF-615A (10), KF-945 (4), KF-618 (11), KF-6011 (12), KF-601 5 (4), KF-6004 (5), and the like. Figures in parentheses indicate HLB values. The HLB value is Hydrophile-Lipophile-Balance, hydrophilic-lipophilic-balance, and is a value indicating the hydrophilicity or lipophilicity of a compound. The smaller the HLB value, the higher the lipophilicity, and the higher the value, the higher the hydrophilicity.

前記フッ素系化合物、シリコーン化合物及び界面活性剤は、前記エネルギー活性線硬化性樹脂との含有質量比率をフッ素系化合物、シリコーン化合物及び界面活性剤:活性光線硬化樹脂=0.05:100〜5.00:100で用いることがハードコート層形成組成物中及びハードコート層で安定して存在する。   The fluorine compound, silicone compound and surfactant have a mass ratio of the fluorine compound, silicone compound and surfactant: active light curable resin = 0.05: 100-5. Use at 00: 100 exists stably in the hard coat layer forming composition and in the hard coat layer.

ハードコート層には更に、硬化助剤としてポリウレタン樹脂の側鎖にビニル基とカルボキシル基を有し、重量平均分子量が10000以上30000以下であり、且つ、二重結合当量が500以上2000以下であるポリマーやポリマーの側鎖にビニル基を有し、重量平均分子量(Mw)が10000以上100000以下であり、二重結合当量が1000以下、ポリマーTgが−50℃以上120℃以下であるアクリルポリマー、他官能チオール化合物等を含有させてもよい。他官能チオール化合物としては例えば1,4−ビス(3−メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3−メルカプトブチレート)、1,3,5−トリス(3−メルカブトブチルオキシエチル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン等が挙げられる。市販品としては昭和電工社製、商品名カレンズMTシリーズ等が挙げられる。   The hard coat layer further has a vinyl group and a carboxyl group in the side chain of the polyurethane resin as a curing aid, has a weight average molecular weight of 10,000 to 30,000, and a double bond equivalent of 500 to 2,000. An acrylic polymer having a vinyl group in a polymer or a side chain of the polymer, having a weight average molecular weight (Mw) of 10,000 or more and 100,000 or less, a double bond equivalent of 1,000 or less, and a polymer Tg of −50 ° C. or more and 120 ° C. or less, Other functional thiol compounds may be included. Examples of other functional thiol compounds include 1,4-bis (3-mercaptobutyryloxy) butane, pentaerythritol tetrakis (3-mercaptobutyrate), 1,3,5-tris (3-mercaptobutyloxyethyl)- 1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione and the like. Commercially available products include Showa Denko Co., Ltd., trade name Karenz MT series, and the like.

また、フッ素−アクリル共重合体樹脂を含有しても良い。フッ素−アクリル共重合体樹脂とは、フッ素単量体とアクリル単量体とからなる共重合体樹脂で、特にフッ素単量体セグメントとアクリル単量体セグメントとから成るブロック共重合体が好ましい。フッ素−アクリル共重合体樹脂の分子量は、数平均分子量で5000〜1000000が良く、好ましくは10000〜300000、更に好ましくは10000〜100000である。フッ素−アクリル共重合体樹脂の製造は、ポリメリックペルオキシドを重合開始剤とした。公知の製造プロセス(例えば特公平5−41668号公報、特公平5−59942号公報)により製造できる。ポリメリックペルオキシドとは1分子中に2個以上のペルオキシ結合を持つ化合物である。ポリメリックペルオキシドとしては、特公平5−59942号公報に記載されている各種ポリメリックペルオキシドの一種または二種以上を使用することができる。フッ素−アクリル共重合体樹脂の市販品としては、日本油脂株式会社の商品名、モディパーF−200、モディパーF−600、モディパーF−2020等が挙げられる。   Moreover, you may contain a fluorine-acrylic copolymer resin. The fluorine-acrylic copolymer resin is a copolymer resin composed of a fluorine monomer and an acrylic monomer, and a block copolymer composed of a fluorine monomer segment and an acrylic monomer segment is particularly preferable. The molecular weight of the fluorine-acrylic copolymer resin is 5,000 to 1,000,000 in terms of number average molecular weight, preferably 10,000 to 300,000, and more preferably 10,000 to 100,000. In the production of the fluorine-acrylic copolymer resin, polymeric peroxide was used as a polymerization initiator. It can be produced by a known production process (for example, Japanese Patent Publication No. 5-41668 and Japanese Patent Publication No. 5-59942). Polymeric peroxide is a compound having two or more peroxy bonds in one molecule. As the polymer peroxide, one or more of various polymer peroxides described in JP-B-5-59942 can be used. As a commercial item of fluorine-acrylic copolymer resin, the brand name of Nippon Oil & Fat Co., Ltd. Modiper F-200, Modiper F-600, Modiper F-2020, etc. are mentioned.

また、ハードコート層の屈折率は23℃、波長550nm測定で、屈折率を1.4〜2.2の範囲に調整することが好ましい。屈折率を調整する手段は、金属酸化物微粒子等を添加することで達成できる。金属酸化また、用いる金属酸化物微粒子の屈折率は1.80〜2.60であるものが好ましく、1.85〜2.50であるものが更に好ましい。   Moreover, it is preferable that the refractive index of a hard-coat layer is adjusted to the range of 1.4-2.2 by 23 degreeC and wavelength 550nm measurement. The means for adjusting the refractive index can be achieved by adding metal oxide fine particles and the like. Metal oxide The metal oxide fine particles used preferably have a refractive index of 1.80 to 2.60, more preferably 1.85 to 2.50.

金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。本発明においては、中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。   The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used. In the present invention, at least one metal oxide fine particle selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate is used. It is particularly preferable to use it as the main component. In particular, it is preferable to contain zinc antimonate particles.

これら金属酸化物微粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であり、10〜150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。   The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.

金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%〜5質量%、より好ましくは0.5質量%〜3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でもシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。   The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . For this reason, the surface modification amount with a preferable organic compound is 0.1 mass%-5 mass% with respect to metal oxide particle, More preferably, it is 0.5 mass%-3 mass%. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined.

ハードコート層はπ共役系導電性ポリマーを含有しても良い。π共役系導電性ポリマーとは、主鎖がπ共役系で構成されている有機高分子であれば使用することができる。例えば、ポリチオフェン類、ポリピロール類、ポリアニリン類、ポリフェニレン類、ポリアセチレン類、ポリフェニレンビニレン類、ポリアセン類、ポリチオフェンビニレン類、及びこれらの共重合体が挙げられる。重合の容易さ、安定性点からは、ポリチオフェン類、ポリアニリン類、ポリアセチレン類が好ましい。   The hard coat layer may contain a π-conjugated conductive polymer. The π-conjugated conductive polymer can be used as long as it is an organic polymer having a main chain composed of a π-conjugated system. Examples thereof include polythiophenes, polypyrroles, polyanilines, polyphenylenes, polyacetylenes, polyphenylene vinylenes, polyacenes, polythiophene vinylenes, and copolymers thereof. From the viewpoint of ease of polymerization and stability, polythiophenes, polyanilines, and polyacetylenes are preferable.

π共役系導電性ポリマーは、無置換のままでも十分な導電性やバインダー樹脂への溶解性が得られるが、導電性や溶解性をより高めるために、アルキル基、カルボキシ基、スルホ基、アルコキシ基、ヒドロキシ基、シアノ基等の官能基を導入してもよい。   The π-conjugated conductive polymer can provide sufficient conductivity and solubility in a binder resin even if it is not substituted, but in order to further improve conductivity and solubility, an alkyl group, a carboxy group, a sulfo group, an alkoxy group. A functional group such as a group, a hydroxy group, or a cyano group may be introduced.

また、イオン性化合物を含有しても良い。イオン性化合物としては、イミダゾリウム系、ピリジウム系、脂環式アミン系、脂肪族アミン系、脂肪族ホスホニウム系の陽イオンとBF 、PF 等の無機イオン系、CFSO 、(CFSO、CFCO 等のフッ素系の陰イオンとからなる化合物等が挙げられる。また、イオン性化合物としては、特公昭49−23828号、同49−23827号、同47−28937号にみられるようなアニオン性高分子化合物、特公昭55−734号、特開昭50−54672号、特公昭59−14735号、同57−18175号、同57−18176号、同57−56059号などにみられるような、主鎖中に解離基を持つアイオネン型ポリマー、特公昭53−13223号、同57−15376号、特公昭53−45231号、同55−145783号、同55−65950号、同55−67746号、同57−11342号、同57−19735号、特公昭58−56858号、特開昭61−27853号、同62−9346号にみられるような、側鎖中にカチオン性解離基を持つカチオン性ペンダント型ポリマー等を挙げることが出来る。また、特開平9−203810号に記載されているアイオネン導電性ポリマー或いは分子間架橋を有する第4級アンモニウムカチオン導電性ポリマー樹脂(例えば、以下に示すP−1)などを含有することも望ましい。上記したポリマー化合物は、一般に約0.05μm〜0.5μmの粒子サイズ範囲にあり、好ましくは0.05μm〜0.2μmの範囲の粒子サイズである。該ポリマーとバインダーの比率はポリマー100質量部に対して、バインダーが10〜400質量部が基材フィルムとの密着性の点で好ましく、特に好ましくは、ポリマー100質量部に対して、バインダーが100〜200質量部である。 Moreover, you may contain an ionic compound. The ionic compounds, imidazolium, pyridinium-based, alicyclic amine-based, aliphatic amine, cations and BF 4 aliphatic phosphonium -, PF 6 - inorganic ion system such, CF 3 SO 2 - , (CF 3 SO 2 ) 2 N , CF 3 CO 2 —, etc. Examples of the ionic compound include anionic polymer compounds such as those described in JP-B-49-23828, JP-A-49-23827, and JP-A-47-28937, JP-B-55-734, and JP-A-50-54672. Ionene type polymer having a dissociating group in the main chain, as shown in JP-B-59-14735, JP-B-57-18175, JP-B-57-18176, 57-56059, etc. No. 57-15376, No. 53-45231, No. 55-145783, No. 55-65950, No. 55-67746, No. 57-11342, No. 57-19735, No. 58-56858. No., JP-A 61-27853, 62-9346, and a cationic pendant type having a cationic dissociation group in the side chain Rimmer, etc. can be mentioned. It is also desirable to contain an ionene conductive polymer or a quaternary ammonium cation conductive polymer resin (for example, P-1 shown below) having intermolecular crosslinking described in JP-A-9-203810. The polymer compounds described above are generally in the particle size range of about 0.05 μm to 0.5 μm, preferably in the range of 0.05 μm to 0.2 μm. The ratio of the polymer to the binder is preferably 10 to 400 parts by mass of the binder with respect to 100 parts by mass of the polymer, particularly preferably 100 parts by mass of the binder with respect to 100 parts by mass of the polymer. -200 parts by mass.

Figure 2010139941
Figure 2010139941

その他、種々の表示素子に対する色補正用フィルターとして色調調整機能を有する色調調整剤(染料もしくは顔料等)、電磁波遮断剤または赤外線吸収剤等を含有させても良い。   In addition, as a color correction filter for various display elements, a color tone adjusting agent (dye or pigment, etc.) having a color tone adjusting function, an electromagnetic wave blocking agent, an infrared absorber, or the like may be included.

(塗工工程)
ハードコート層形成において、本発明の効果が得られやすい事から、ハードコート層は塗布乾燥後に、光照射し、更に加熱処理する工程が好ましい。
(Coating process)
In the formation of the hard coat layer, since the effects of the present invention can be easily obtained, the hard coat layer is preferably subjected to light irradiation after coating and drying and further subjected to a heat treatment.

加熱処理する工程は、例えば図1に示すような形態が挙げられる。また、加熱処理する工程としては、温湿度が調整可能な場所で行うことが必要であり、塵のないクリーンルーム等で行うことが好ましい。   An example of the heat treatment step is as shown in FIG. In addition, the heat treatment step needs to be performed in a place where the temperature and humidity can be adjusted, and is preferably performed in a clean room without dust.

加熱処理の好ましい温度は、目的効果がより良く発揮される点から、80℃以上、更に好ましくは120℃以上である。また、加熱処理の時間としては、20分以下が好ましい。20分より長い時間、加熱処理を実施しても、より良く得られる目的効果は変わらず、フィルムが熱による変色や変形等、外観劣化が生じやすくなる。   A preferable temperature for the heat treatment is 80 ° C. or higher, more preferably 120 ° C. or higher, from the viewpoint that the target effect is better exhibited. Further, the heat treatment time is preferably 20 minutes or less. Even if the heat treatment is carried out for a time longer than 20 minutes, the objective effect obtained better is not changed, and the film tends to be deteriorated in appearance such as discoloration or deformation due to heat.

ここでいう加熱処理時間とは、所望の温度に一定に保持されている時間をいい、昇温時の時間、降温時の時間は含まないものとする。   The heat treatment time here refers to a time during which the temperature is kept constant at a desired temperature, and does not include the time when the temperature is raised and the time when the temperature is lowered.

保持する温度は設定温度の±5℃の範囲とすることが好ましい。加熱処理工程は複数室有っても良い。その場合は、各々温度を変えることができるように設計されていても良い。   The temperature to be held is preferably in the range of ± 5 ° C. of the set temperature. There may be a plurality of heat treatment steps. In that case, it may be designed so that each temperature can be changed.

図1は、照射後に連続して加熱処理する工程を示した概略図である。長尺フィルムYは繰り出しロール1より繰り出され、搬送ローラー2により搬送され、押出しコータ3によりハードコート層が塗布される。この時ハードコート層は単層構成でも、複数から構成されている層でもよい。ハードコート層が塗布された長尺フィルムYは、次いで乾燥ゾーン5により乾燥される。乾燥ゾーン5の温度は50〜150℃の範囲で行うことが好ましい。乾燥は長尺フィルムYの表面もしくは裏面或いは両面より、温湿度が制御された温風を吹き付けることにより施される。乾燥後、光線照射ランプユニット6内の空冷活性光線ランプ6aにより活性光線、例えば紫外線などを照射することにより膜を硬化する。或いは照射量や照射条件を制御してハーフキュア状態とすることもできる。活性光線照射は、予め20〜120℃に温度制御された対向ロール4に長尺フィルムYを巻いた状態で行うこともできる。   FIG. 1 is a schematic view showing a step of performing heat treatment continuously after irradiation. The long film Y is fed out from the feed roll 1, transported by the transport roller 2, and a hard coat layer is applied by the extrusion coater 3. At this time, the hard coat layer may be a single layer structure or a plurality of layers. Next, the long film Y coated with the hard coat layer is dried in the drying zone 5. The temperature of the drying zone 5 is preferably 50 to 150 ° C. Drying is performed by blowing warm air whose temperature and humidity are controlled from the front surface, back surface, or both surfaces of the long film Y. After drying, the film is cured by irradiating actinic rays such as ultraviolet rays with an air-cooled actinic ray lamp 6 a in the light irradiation lamp unit 6. Alternatively, the half-cure state can be achieved by controlling the irradiation amount and irradiation conditions. Actinic ray irradiation can also be performed in a state in which the long film Y is wound around the opposing roll 4 whose temperature is controlled to 20 to 120 ° C. in advance.

その際空冷用Air通風口6bから活性光線照射部の温度調整のために冷却風を送ることも好ましく、また、N用供給チャンバーからハードコート層の硬化を促進するためにNガスを供給することも好ましい。 At that time, it is also preferable to send cooling air from the air cooling air vent 6b to adjust the temperature of the actinic ray irradiating unit, and N 2 gas is supplied from the N 2 supply chamber to promote hardening of the hard coat layer. It is also preferable to do.

光照射ランプの例としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。これらの光源は空冷もしくは水冷方式のものが好ましく用いられる。照射条件はそれぞれのランプによって異なるが、活性光線の照射量は好ましくは、50mJ/cm〜1J/cmであり、特に好ましくは50〜500mJ/cmである。また照射部には窒素パージにより酸素濃度を0.01%〜5%に低減することが好ましい。 As examples of the light irradiation lamp, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. These light sources are preferably air-cooled or water-cooled. The irradiation conditions vary depending on individual lamps, the dose of active ray is preferably a 50mJ / cm 2 ~1J / cm 2 , particularly preferably 50 to 500 mJ / cm 2. Further, it is preferable to reduce the oxygen concentration to 0.01% to 5% by nitrogen purge in the irradiated portion.

活性線を照射する際には、フィルムの搬送方向に張力を付与しながら行うことが好ましく、更に好ましくは幅方向にも張力を付与しながら行うことである。付与する張力は30〜500N/mが好ましい。張力を付与する方法は特に限定されず、バックロール上で搬送方向に張力を付与してもよく、テンターにて幅方向、または2軸方向に張力を付与してもよい。これによって更に平面性優れたフィルムを得ることができる。幅手張力付与方法は特に限定されず、フリースパン、バックロール上などでしてもよい。また、幅手方向に幅規制装置を用いて張力を付与する方法も効果があり、好ましくは3.0%以下での延伸、更に好ましくは0.05%〜1.0%である。   When irradiating actinic radiation, it is preferably performed while applying tension in the film transport direction, and more preferably while applying tension in the width direction. The tension to be applied is preferably 30 to 500 N / m. The method for applying tension is not particularly limited, and tension may be applied in the transport direction on the back roll, or tension may be applied in the width direction or biaxial direction by a tenter. This makes it possible to obtain a film with further excellent flatness. The width tension applying method is not particularly limited, and may be a free span, a back roll or the like. Moreover, the method of providing tension | tensile_strength using a width control apparatus in the width direction is also effective, Preferably it is extending | stretching at 3.0% or less, More preferably, it is 0.05%-1.0%.

次いで、光照射後、加熱ゾーン7で熱処理される。加熱ゾーン7は上下に配置された搬送ローラー2により長尺フィルムYを所定の温度で所定の時間、加熱処理を行う。   Next, after the light irradiation, heat treatment is performed in the heating zone 7. In the heating zone 7, the long film Y is heated at a predetermined temperature for a predetermined time by the transport rollers 2 arranged above and below.

加熱処理工程において、フィルムの搬送方向または巾手方向に張力を付与しながら行うことが好ましく、付与する張力は50〜500N/mが好ましく、更に好ましくは、300〜500N/mである。300〜500N/mにおいて、より過酷な耐久性試験後において、本発明の目的効果がより良く発揮される。500N/mを超えると、フィルムの平面性が保ちにくくなる。幅手張力付与方法は特に限定されず、フリースパン、バックロール上などでしてもよい。また、幅手方向に幅規制装置を用いて張力を付与する方法も効果があり、好ましくは3.0%以下での延伸、更に好ましくは0.05%〜1.0%延伸である。   In the heat treatment step, it is preferably performed while applying a tension in the film transport direction or the width direction, and the applied tension is preferably 50 to 500 N / m, more preferably 300 to 500 N / m. At 300 to 500 N / m, the objective effect of the present invention is better exhibited after a more severe durability test. When it exceeds 500 N / m, it becomes difficult to maintain the flatness of the film. The width tension applying method is not particularly limited, and may be a free span, a back roll or the like. Moreover, the method of providing tension | tensile_strength using a width control apparatus in the width direction is also effective, Preferably it is extending | stretching 3.0% or less, More preferably, it is 0.05%-1.0% extending | stretching.

加熱処理を行った長尺フィルムYは、巻き取り室8において、巻き取りロール9として巻き取られる。その際温風吹き出し口10から所定の温度の温風を吹き付けながら行うことも好ましい。帯電防止、ゴミ付着防止対策として、上記温風は相対湿度10〜70%RHの範囲、好ましくは20〜70%RH、特に40〜60%RHに調整することが好ましい。また、温風がイオン風であることが好ましく、巻き取り部近傍に除電装置やエアークリーナーを設置することが好ましい。   The long film Y subjected to the heat treatment is taken up as a take-up roll 9 in the take-up chamber 8. In that case, it is also preferable to carry out while blowing hot air of a predetermined temperature from the hot air outlet 10. As a measure for preventing electrification and dust adhesion, the hot air is preferably adjusted to a relative humidity in the range of 10 to 70% RH, preferably 20 to 70% RH, particularly 40 to 60% RH. Moreover, it is preferable that warm air is an ion wind, and it is preferable to install a static elimination apparatus and an air cleaner in the vicinity of the winding part.

加熱処理は、図2のように塗布、乾燥、光照射後、巻き取られたハードコートフィルムのロールを移動可能な台車12に載せ、加熱処理室Aで加熱処理する方法でもよい。   As shown in FIG. 2, the heat treatment may be performed by applying a roll of the hard coat film wound on the movable carriage 12 after the application, drying, and light irradiation, and performing the heat treatment in the heat treatment chamber A.

加熱処理処理Aでは、急激な温度上昇によるフィルムロールの巻き内外の温度差が大きくなり、巻き芯近くに皺等が入るのをさけるため、徐々に温度を上昇または下降させるようにすることが好ましい。具体的には、昇温速度、降温速度は0.3〜5℃/時間が好ましい。   In the heat treatment A, it is preferable to gradually increase or decrease the temperature in order to prevent a temperature difference between the inside and outside of the roll of the film roll due to a rapid temperature increase and avoid wrinkles and the like near the winding core. . Specifically, the rate of temperature increase and the rate of temperature decrease are preferably 0.3 to 5 ° C./hour.

また、ブロッキングを防止したり、巻き姿を良好に保つため、ナーリング加工を施すことが好ましい。ナーリング加工はフィルムの少なくとも一方の面に形成されていればよく、また両面に形成されていてもよい。ナーリング部の厚みは、ハードコート層の膜厚よりも厚くすることが好ましく、ナーリング部の厚みを5〜30μmの範囲にすることが好ましい。好ましくは10〜25μmの範囲である。   Moreover, in order to prevent blocking and to keep a winding form favorable, it is preferable to give a knurling process. The knurling process should just be formed in the at least one surface of the film, and may be formed in both surfaces. The thickness of the knurling part is preferably larger than the film thickness of the hard coat layer, and the thickness of the knurling part is preferably in the range of 5 to 30 μm. Preferably it is the range of 10-25 micrometers.

また、ハードコートフィルムをロール状に巻き取る際の、巻きコアとしては、円筒上のコアであれは、どのような材質のものであってもよいが、好ましくは中空プラスチックコアであり、プラスチック材料としては加熱処理温度に耐える耐熱性プラスチックであればどのようなものであってもよく、例えばフェノール樹脂、キシレン樹脂、メラミン樹脂、ポリエステル樹脂、エポキシ樹脂等の樹脂が挙げられる。またガラス繊維等の充填材により強化した熱硬化性樹脂が好ましい。これらの巻きコアへの巻き数は、100巻き以上であることが好ましく、500巻き以上であることが更に好ましく、巻き厚は5cm以上であることが好ましい。また、ロール状に巻き取ったハードコートフィルムを、巻き取った状態で前記加熱処理を行う時、該ロールを回転させてもよい。   In addition, as the winding core when winding the hard coat film in a roll shape, any material may be used as long as it is a cylindrical core, preferably a hollow plastic core, and a plastic material As long as it is a heat-resistant plastic that can withstand the heat treatment temperature, any resin such as phenol resin, xylene resin, melamine resin, polyester resin, and epoxy resin can be used. A thermosetting resin reinforced with a filler such as glass fiber is preferred. The number of windings on these winding cores is preferably 100 windings or more, more preferably 500 windings or more, and the winding thickness is preferably 5 cm or more. Moreover, when performing the said heat processing in the state which wound the hard coat film wound up in roll shape, you may rotate this roll.

回転は、1分間に1回転以下の速度が好ましく、連続でもよく断続的な回転であってもよい。また、加熱期間中に該ロールの巻き替えを1回以上行うことも好ましい。   The rotation is preferably performed at a speed of 1 rotation or less per minute, and may be continuous or intermittent. Moreover, it is also preferable to perform the roll rewinding once or more during the heating period.

コアに巻き取られた長巻のハードコートフィルムを加熱処理中に回転させるために、加熱処理室に専用の回転台を設けることが好ましい。より好ましくは、耐熱性のある回転機能を有する専用の台車にハードコートフィルムをセットして、加熱室にて加熱処理中に回転させることである。   In order to rotate the long hard coat film wound around the core during the heat treatment, it is preferable to provide a dedicated turntable in the heat treatment chamber. More preferably, the hard coat film is set on a dedicated carriage having a heat-resistant rotation function and rotated during the heat treatment in the heating chamber.

加熱処理が終了したハードコートフィルムロールは例えば、巻き返し工程(不図示)に運ばれ、ハードコートフィルムの巻き返しを行いながら室温まで冷却し、巻き返しロールを得ることも好ましい。更に、巻き返し工程では、相対湿度10〜70%RHの雰囲気を通過させるか、該雰囲気で巻き取ることが好ましい。相対湿度は、好ましくは20〜70%RH、特に40〜60%RHであると、静電気故障や巻き姿の崩れはなく良好なハードコートフィルムロールを得ることができる。フィルム巻き替えの速度は、1〜200m/分、好ましくは10〜100m/分の範囲が好ましい。巻き替え時には、フィルムを引き出した状態で少なくとも1本以上のローラーと接触させて巻き取ることが、フィルム温度を低下させるためにも好ましい。   It is also preferable that the hard coat film roll after the heat treatment is carried, for example, to a rewinding step (not shown) and cooled to room temperature while the hard coat film is rewinded to obtain a rewind roll. Furthermore, in the rewinding step, it is preferable to pass an atmosphere having a relative humidity of 10 to 70% RH or to wind in the atmosphere. When the relative humidity is preferably 20 to 70% RH, particularly 40 to 60% RH, a good hard coat film roll can be obtained without static electricity failure or collapse of the winding shape. The film rewinding speed is in the range of 1 to 200 m / min, preferably 10 to 100 m / min. At the time of rewinding, it is preferable that the film is drawn out and brought into contact with at least one roller in order to lower the film temperature.

これらのロールの回転や巻き替えを行う際は、フィルムに静電気故障や傷が発生する可能性があり、除電装置の設置やクリーンルームでの実施が好ましく、又巻き替え時の接触ローラ表面は平滑性の高いものを用いることが好ましい。   When rotating or rewinding these rolls, there is a possibility that static electricity failure or scratches may occur on the film. It is preferable to install a static eliminator or in a clean room. The surface of the contact roller during rewinding is smooth. It is preferable to use one having a high value.

上記加熱処理工程の加熱手段としては、熱風の吹き付け、加熱ロールによる接触伝熱、マイクロ波による誘導加熱、赤外線ヒーターによる輻射熱加熱等を利用できる。赤外線ヒーターは、電気式、ガス式、オイル式あるいはスチーム式の遠赤外セラミックヒーターが利用できる。市販の赤外線ヒーター(例えば(株)ノリタケカンパニーリミテド製)を用いてもよい。熱媒体が、オイルまたはスチームを用いるオイル式またはスチーム式の赤外ヒーターは、有機溶剤が共存する雰囲気における防爆の観点で好ましい。また、加熱時のフィルム温度や加熱温度は、一般に市販されている非接触式の赤外線温度計で測定できる。また、温度範囲を制御するために、加熱手段に対してフィードバック制御を行ってもよい。   As the heating means in the heat treatment step, hot air blowing, contact heat transfer using a heating roll, induction heating using a microwave, radiant heat heating using an infrared heater, or the like can be used. As the infrared heater, an electric, gas, oil or steam far infrared ceramic heater can be used. A commercially available infrared heater (for example, manufactured by Noritake Company Limited) may be used. An oil-type or steam-type infrared heater using oil or steam as the heat medium is preferable from the viewpoint of explosion prevention in an atmosphere in which an organic solvent coexists. Moreover, the film temperature and heating temperature at the time of a heating can be measured with the non-contact-type infrared thermometer generally marketed. Further, feedback control may be performed on the heating means in order to control the temperature range.

これらのハードコート層の塗布方法としては、グラビアコータ、ディップコータ、リバースコータ、ワイヤーバーコータ、ダイコータ、インクジェット法等公知の方法で塗設することができる。   As a coating method of these hard coat layers, it can be applied by a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, or an ink jet method.

前記塗布方法を用いて基材フィルムの一方の面にウェット膜厚0.1〜100μmで塗布することが好ましい。   It is preferable to apply with a wet film thickness of 0.1 to 100 μm on one surface of the base film using the coating method.

ハードコート層は1層でも2層以上の多層構造でも良い。   The hard coat layer may be a single layer or a multilayer structure of two or more layers.

ハードコート層は以下の表面処理を行って良い。表面処理方法の方法としては、洗浄法、アルカリ鹸化処理法、プラズマ処理法、電子ビーム法、イオンビーム法、スパッタリング法、酸処理、コロナ処理法、大気圧グロー放電プラズマ法等が挙げられる。   The hard coat layer may be subjected to the following surface treatment. Examples of the surface treatment method include a cleaning method, an alkali saponification treatment method, a plasma treatment method, an electron beam method, an ion beam method, a sputtering method, an acid treatment, a corona treatment method, and an atmospheric pressure glow discharge plasma method.

アルカリ鹸化処理方法としては、フィルムをアルカリ溶液に浸潰した後、水洗して乾燥するサイクルで行われるのが、一般的である。また、アルカリ処理後、酸性水工程で中和してから、水洗、及び乾燥を行ってもよい。アルカリ溶液としては、水酸化カリウム溶液、水酸化ナトリウム溶液があげられ、水酸化イオンの規定濃度は0.1〜3Nであることが好ましく、0.5N〜2Nであることが更に好ましい。前記範囲とすることで優れたハードコート層と低屈折率層との接着性が得られる。アルカリ溶液の温度は、アルカリ溶液の析出性等の点から、25〜90℃の範囲が好ましく、40〜70℃が更に好ましい。アルカリ処理時間は5秒〜5分、好ましくは30秒〜3分である。   The alkali saponification treatment is generally carried out in a cycle in which the film is immersed in an alkali solution, washed with water and dried. Further, after the alkali treatment, neutralization in an acidic water step may be performed, followed by washing with water and drying. Examples of the alkaline solution include potassium hydroxide solution and sodium hydroxide solution, and the prescribed concentration of hydroxide ions is preferably 0.1 to 3N, and more preferably 0.5N to 2N. Adhesiveness between the hard coat layer and the low refractive index layer can be obtained by setting the content in the above range. The temperature of the alkaline solution is preferably in the range of 25 to 90 ° C., more preferably 40 to 70 ° C., from the viewpoint of precipitation of the alkaline solution. The alkali treatment time is 5 seconds to 5 minutes, preferably 30 seconds to 3 minutes.

また、アルカリ鹸化処理は、ハードコート層面にアルカリ溶液を塗布する方式でも良く、例えば特開2003−313326号公報、特開2007−332253号公報に記載の方法を用いても良い。   Further, the alkali saponification treatment may be performed by applying an alkali solution to the hard coat layer surface. For example, the methods described in JP-A Nos. 2003-313326 and 2007-332253 may be used.

プラズマ処理としては、フレームプラズマ処理、大気圧プラズマ処理、常圧プラズマ処理等が挙げられる。   Examples of the plasma treatment include flame plasma treatment, atmospheric pressure plasma treatment, and atmospheric pressure plasma treatment.

また、プラズマ処理としては、特開2004−352777号公報、特開2004−352777号公報、特開2007−314707号公報等に開示されているプラズマ処理技術も参考にすることができる。   As plasma treatment, plasma treatment techniques disclosed in Japanese Patent Application Laid-Open Nos. 2004-352777, 2004-352777, 2007-314707, and the like can also be referred to.

また、表面処理後のハードコート層表面の純水接触角は、60°以下が、例えば低屈折率層をハードコート層上に設けた場合、とハードコート層との密着性が向上する点から好ましい。接触角はJIS K 2396に基づいて測定を行うことができる。   Further, the pure water contact angle on the surface of the hard coat layer after the surface treatment is 60 ° or less because, for example, when a low refractive index layer is provided on the hard coat layer, the adhesion between the hard coat layer and the hard coat layer is improved. preferable. The contact angle can be measured based on JIS K 2396.

<反射防止フィルム>
本発明に係るハードコート層上に直接又は他の層を介して低屈折率層が積層され反射防止機能を有しても良い。反射防止機能を有することで、画像表示装置に組み込んだ場合の視認性を高める効果が得られる。
<Antireflection film>
The low refractive index layer may be laminated directly or via another layer on the hard coat layer according to the present invention to have an antireflection function. By having an antireflection function, an effect of improving the visibility when incorporated in an image display device can be obtained.

〈低屈折率層〉
低屈折率層とは、フィルム基材の屈折率よりも低い層をいう。具体的な屈折率としては、23℃、波長550nmで1.20〜1.45の範囲のものが好ましい。また、低屈折率層の膜厚は、光学干渉層としての特性から、5nm〜0.5μmが好ましく、10nm〜0.3μmがより好ましく、30nm〜0.2μmであることが更に好ましい。
<Low refractive index layer>
A low refractive index layer means a layer lower than the refractive index of a film base material. A specific refractive index is preferably in the range of 1.20 to 1.45 at 23 ° C. and a wavelength of 550 nm. Further, the film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and further preferably 30 nm to 0.2 μm, from the characteristics as an optical interference layer.

また、低屈折率層の他に、支持体よりも屈折率の高い高屈折率層を更に組み合わせて、反射防止層を構成しても良い。更に、中屈折率層(支持体よりも屈折率が高く、高屈折率層よりも屈折率の低い層)が積層されても良い。また、フィルム裏面にはバックコート層を設けてもよい。   Further, in addition to the low refractive index layer, an antireflection layer may be configured by further combining a high refractive index layer having a higher refractive index than the support. Further, a medium refractive index layer (a layer having a higher refractive index than the support and a lower refractive index than the high refractive index layer) may be laminated. Moreover, you may provide a backcoat layer in the film back surface.

具体的な反射防止フィルムの層構成としては下記のような構成が考えられるが、これに限定されるものではない。   Specific examples of the layer structure of the antireflection film include the following, but are not limited thereto.

透明フィルム/ハードコート層/中屈折率層/低屈折率層
透明フィルム/ハードコート層/中屈折率層/高屈折率層/低屈折率層
透明フィルム/ハードコート層/低屈折率層
透明フィルム/ハードコート層/導電性層/低屈折率層
透明フィルム/ハードコート層/高屈折率層(導電性層)/低屈折率層
透明フィルム/ハードコート層/防眩性層/低屈折率層
バックコート層/透明フィルム/ハードコート層/低屈折率層
バックコート層/透明フィルム/ハードコート層/中屈折率層/低屈折率層
バックコート層/透明フィルム/ハードコート層/防眩性層/低屈折率層
バックコート層/透明フィルム/ハードコート層/導電性層/低屈折率層
バックコート層/透明フィルム/ハードコート層/高屈折率層(導電性層)/低屈折率層
低屈折率層形成用組成物は、シリカ系微粒子として、特に外殻層を有し内部が多孔質または空洞の粒子を少なくとも1種類以上含有しても良く、中でも該外殻層を有し内部が多孔質または空洞である粒子が、中空シリカ系微粒子が好ましい。
Transparent film / Hard coat layer / Medium refractive index layer / Low refractive index layer Transparent film / Hard coat layer / Medium refractive index layer / High refractive index layer / Low refractive index layer Transparent film / Hard coat layer / Low refractive index layer Transparent film / Hard coat layer / conductive layer / low refractive index layer Transparent film / hard coat layer / high refractive index layer (conductive layer) / low refractive index layer Transparent film / hard coat layer / antiglare layer / low refractive index layer Back coat layer / transparent film / hard coat layer / low refractive index layer Back coat layer / transparent film / hard coat layer / medium refractive index layer / low refractive index layer Back coat layer / transparent film / hard coat layer / antiglare layer / Low refractive index layer Back coat layer / Transparent film / Hard coat layer / Conductive layer / Low refractive index layer Back coat layer / Transparent film / Hard coat layer / High refractive index layer (conductive layer) / Low refractive index layer Low The composition for forming a refractive layer may contain at least one kind of particles having an outer shell layer and porous or hollow inside as silica-based fine particles. The porous or hollow particles are preferably hollow silica-based fine particles.

(中空シリカ系微粒子)
中空シリカ系微粒子は、(I)多孔質粒子と該多孔質粒子表面に設けられた被覆層とからなる複合粒子、または(II)内部に空洞を有し、かつ内容物が溶媒、気体または多孔質物質で充填された空洞粒子である。なお、低屈折率層には(I)複合粒子または(II)空洞粒子のいずれかが含まれていればよく、また双方が含まれていてもよい。
(Hollow silica fine particles)
The hollow silica-based fine particles are (I) composite particles comprising porous particles and a coating layer provided on the surface of the porous particles, or (II) having cavities inside, and the contents are solvent, gas or porous It is a hollow particle filled with a porous material. Note that the low refractive index layer only needs to contain either (I) composite particles or (II) hollow particles, or both.

なお、空洞粒子は内部に空洞を有する粒子であり、空洞は被覆層(粒子壁ともいう。)で覆われている。空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填されている。このような中空微粒子の平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあることが望ましい。使用される中空微粒子の平均粒子径は、形成される低屈折率層の平均膜厚の3/2〜1/10好ましくは2/3〜1/10の範囲にあることが望ましい。これらの中空微粒子は、低屈折率層の形成のため、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、アルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例えば、メチルエチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジアセトンアルコール)、或いはこれらを含む混合溶媒が好ましい。   Note that the cavity particles are particles having a cavity inside, and the cavity is covered with a coating layer (also referred to as a particle wall). The cavity is filled with contents such as a solvent, a gas, or a porous material used at the time of preparation. It is desirable that the average particle size of such hollow fine particles is in the range of 5 to 300 nm, preferably 10 to 200 nm. The average particle diameter of the hollow fine particles to be used is desirably 3/2 to 1/10, preferably 2/3 to 1/10, of the average film thickness of the low refractive index layer to be formed. These hollow fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol) and ketone (for example, methyl ethyl ketone, methyl isobutyl ketone), ketone alcohol (for example, diacetone alcohol), or a mixed solvent containing these is preferable.

複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、1〜20nm、好ましくは2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが1nm未満の場合は、粒子を完全に被覆することができないことがあり、後述する塗布液成分である重合度の低いケイ酸モノマー、オリゴマー等が容易に複合粒子の内部の空隙部分に進入して粒子の屈折率を増加させ、低屈折率の効果が十分得られなくなることがある。また、被覆層の厚さが20nmを越えると、前記ケイ酸モノマー、オリゴマーが内部に進入することはないが、複合粒子の多孔性(細孔容積)が低下し低屈折率の効果が十分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが1nm未満の場合は、粒子形状を維持できないことがあり、また厚さが20nmを越えても、低屈折率の効果が十分に現れないことがある。   The thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably in the range of 1 to 20 nm, preferably 2 to 15 nm. In the case of composite particles, if the thickness of the coating layer is less than 1 nm, the particles may not be completely covered, and it is easy to use a silicate monomer or oligomer having a low polymerization degree, which is a coating liquid component described later. In some cases, the refractive index of the particles is increased by entering the voids inside the composite particles, and the effect of low refractive index may not be sufficiently obtained. When the thickness of the coating layer exceeds 20 nm, the silicic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficiently obtained. It may not be possible. In the case of hollow particles, if the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the effect of low refractive index may not be sufficiently exhibited. .

複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好ましい。また、シリカ以外の成分が含まれていてもよく、具体的には、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等が挙げられる。複合粒子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化合物とからなるもの、CaF、NaF、NaAlF6、MgF等からなるものが挙げられる。このうち特にシリカとシリカ以外の無機化合物との複合酸化物からなる多孔質粒子が好適である。シリカ以外の無機化合物としては、Al、B、TiO、ZrO、SnO、CeO、P、Sb、MoO、ZnO、WO等との1種または2種以上を挙げることができる。このような多孔質粒子では、シリカをSiOで表し、シリカ以外の無機化合物を酸化物換算(MO)で表したときのモル比MO/SiOが、0.0001〜1.0、好ましくは0.001〜0.3の範囲にあることが望ましい。多孔質粒子のモル比MO/SiOが0.0001未満のものは得ることが困難であり、得られたとしても細孔容積が小さく、屈折率の低い粒子が得られない。また、多孔質粒子のモル比MO/SiOが、1.0を越えると、シリカの比率が少なくなるので、細孔容積が大きくなり、更に屈折率が低いものを得ることが難しいことがある。 The coating layer of the composite particles or the particle wall of the hollow particles is preferably composed mainly of silica. Moreover, components other than silica may be contained, and specifically, Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3. , MoO 3 , ZnO 2 , WO 3 and the like. Examples of the porous particles constituting the composite particles include those made of silica, those made of silica and an inorganic compound other than silica, and those made of CaF 2 , NaF, NaAlF 6, MgF, and the like. Among these, porous particles made of a composite oxide of silica and an inorganic compound other than silica are particularly preferable. Examples of inorganic compounds other than silica include Al 2 O 3 , B 2 O 3 , TiO 2 , ZrO 2 , SnO 2 , CeO 2 , P 2 O 3 , Sb 2 O 3 , MoO 3 , ZnO 2 and WO 3. 1 type or 2 types or more can be mentioned. In such porous particles, the molar ratio MO X / SiO 2 when the silica is expressed by SiO 2 and the inorganic compound other than silica is expressed in terms of oxide (MO X ) is 0.0001 to 1.0, Preferably it is in the range of 0.001 to 0.3. It is difficult to obtain a porous particle having a molar ratio MO X / SiO 2 of less than 0.0001. Even if it is obtained, a pore volume is small and particles having a low refractive index cannot be obtained. In addition, when the molar ratio MO X / SiO 2 of the porous particles exceeds 1.0, the ratio of silica decreases, so that the pore volume increases and it is difficult to obtain a material having a lower refractive index. is there.

このような多孔質粒子の細孔容積は、0.1〜1.5ml/g、好ましくは0.2〜1.5ml/gの範囲であることが望ましい。細孔容積が0.1ml/g未満では、十分に屈折率の低下した粒子が得られず、1.5ml/gを越えると微粒子の強度が低下し、得られる被膜の強度が低下することがある。   The pore volume of such porous particles is desirably in the range of 0.1 to 1.5 ml / g, preferably 0.2 to 1.5 ml / g. If the pore volume is less than 0.1 ml / g, particles having a sufficiently reduced refractive index cannot be obtained. If the pore volume exceeds 1.5 ml / g, the strength of the fine particles is lowered, and the strength of the resulting coating may be lowered. is there.

なお、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。また、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒子で例示した化合物からなるものが挙げられる。これらの内容物は、単一の成分からなるものであってもよいが、複数成分の混合物であってもよい。   In addition, the pore volume of such porous particles can be determined by a mercury intrusion method. Examples of the contents of the hollow particles include a solvent, a gas, and a porous substance used at the time of preparing the particles. The solvent may contain an unreacted particle precursor used when preparing the hollow particles, the catalyst used, and the like. Moreover, what consists of the compound illustrated by the said porous particle as a porous substance is mentioned. These contents may be composed of a single component or may be a mixture of a plurality of components.

このような中空微粒子の製造方法としては、例えば特開平7−133105号公報の段落番号[0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適に採用される。具体的に、複合粒子が、シリカ、シリカ以外の無機化合物とからなる場合、以下の第1〜第3工程から中空微粒子は製造される。   As a method for producing such hollow fine particles, for example, the method for preparing composite oxide colloidal particles disclosed in paragraphs [0010] to [0033] of JP-A-7-133105 is suitably employed. Specifically, when the composite particles are composed of silica and an inorganic compound other than silica, hollow fine particles are produced from the following first to third steps.

第1工程:多孔質粒子前駆体の調製
第1工程では、予め、シリカ原料とシリカ以外の無機化合物原料のアルカリ水溶液を個別に調製するか、または、シリカ原料とシリカ以外の無機化合物原料との混合水溶液を調製しておき、この水溶液を目的とする複合酸化物の複合割合に応じて、pH10以上のアルカリ水溶液中に攪拌しながら徐々に添加して多孔質粒子前駆体を調製する。
First Step: Preparation of Porous Particle Precursor In the first step, an alkali aqueous solution of a silica raw material and an inorganic compound raw material other than silica is separately prepared in advance, or a silica raw material and an inorganic compound raw material other than silica are prepared in advance. A mixed aqueous solution is prepared, and this aqueous solution is gradually added to an aqueous alkaline solution having a pH of 10 or more while stirring according to the composite ratio of the target composite oxide to prepare a porous particle precursor.

シリカ原料としては、アルカリ金属、アンモニウムまたは有機塩基のケイ酸塩を用いる。アルカリ金属のケイ酸塩としては、ケイ酸ナトリウム(水ガラス)やケイ酸カリウムが用いられる。有機塩基としては、テトラエチルアンモニウム塩等の第4級アンモニウム塩、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアミン類を挙げることができる。なお、アンモニウムのケイ酸塩または有機塩基のケイ酸塩には、ケイ酸液にアンモニア、第4級アンモニウム水酸化物、アミン化合物等を添加したアルカリ性溶液も含まれる。   As the silica raw material, alkali metal, ammonium or organic base silicate is used. Sodium silicate (water glass) or potassium silicate is used as the alkali metal silicate. Examples of the organic base include quaternary ammonium salts such as tetraethylammonium salt, and amines such as monoethanolamine, diethanolamine, and triethanolamine. The ammonium silicate or the organic base silicate includes an alkaline solution obtained by adding ammonia, a quaternary ammonium hydroxide, an amine compound or the like to a silicic acid solution.

また、シリカ以外の無機化合物の原料としては、アルカリ可溶の無機化合物が用いられる。具体的には、Al、B、Ti、Zr、Sn、Ce、P、Sb、Mo、Zn、W等から選ばれる元素のオキソ酸、該オキソ酸のアルカリ金属塩またはアルカリ土類金属塩、アンモニウム塩、第4級アンモニウム塩を挙げることができる。より具体的には、アルミン酸ナトリウム、四硼酸ナトリウム、炭酸ジルコニルアンモニウム、アンチモン酸カリウム、錫酸カリウム、アルミノケイ酸ナトリウム、モリブデン酸ナトリウム、硝酸セリウムアンモニウム、燐酸ナトリウムが適当である。   In addition, alkali-soluble inorganic compounds are used as raw materials for inorganic compounds other than silica. Specifically, an oxo acid of an element selected from Al, B, Ti, Zr, Sn, Ce, P, Sb, Mo, Zn, W, etc., an alkali metal salt or alkaline earth metal salt of the oxo acid, ammonium And salts and quaternary ammonium salts. More specifically, sodium aluminate, sodium tetraborate, zirconyl ammonium carbonate, potassium antimonate, potassium stannate, sodium aluminosilicate, sodium molybdate, cerium ammonium nitrate, and sodium phosphate are suitable.

これらの水溶液の添加と同時に混合水溶液のpH値は変化するが、このpH値を所定の範囲に制御するような操作は特に必要ない。水溶液は、最終的に、無機酸化物の種類及びその混合割合によって定まるpH値となる。このときの水溶液の添加速度には特に制限はない。また、複合酸化物粒子の製造に際して、シード粒子の分散液を出発原料と使用することも可能である。当該シード粒子としては、特に制限はないが、SiO、Al、TiOまたはZrO等の無機酸化物またはこれらの複合酸化物の微粒子が用いられ、通常、これらのゾルを用いることができる。更に前記の製造方法によって得られた多孔質粒子前駆体分散液をシード粒子分散液としてもよい。シード粒子分散液を使用する場合、シード粒子分散液のpHを10以上に調整した後、該シード粒子分散液中に前記化合物の水溶液を、上記したアルカリ水溶液中に攪拌しながら添加する。この場合も、必ずしも分散液のpH制御を行う必要はない。このようにしてシード粒子を用いると、調製する多孔質粒子の粒径コントロールが容易であり、粒度の揃ったものを得ることができる。 Although the pH value of the mixed aqueous solution changes simultaneously with the addition of these aqueous solutions, an operation for controlling the pH value within a predetermined range is not particularly required. The aqueous solution finally has a pH value determined by the type of inorganic oxide and the mixing ratio thereof. There is no restriction | limiting in particular in the addition rate of the aqueous solution at this time. Further, in the production of composite oxide particles, a dispersion of seed particles can be used as a starting material. The seed particles are not particularly limited, but inorganic oxides such as SiO 2 , Al 2 O 3 , TiO 2 or ZrO 2 or fine particles of these composite oxides are used. Usually, these sols are used. Can do. Furthermore, the porous particle precursor dispersion obtained by the above production method may be used as a seed particle dispersion. When using a seed particle dispersion, the pH of the seed particle dispersion is adjusted to 10 or higher, and then an aqueous solution of the compound is added to the above-mentioned alkaline aqueous solution while stirring. Also in this case, it is not always necessary to control the pH of the dispersion. When seed particles are used in this way, it is easy to control the particle size of the porous particles to be prepared, and particles with uniform particle sizes can be obtained.

上記したシリカ原料及び無機化合物原料はアルカリ側で高い溶解度を有する。しかしながら、この溶解度の大きいpH領域で両者を混合すると、ケイ酸イオン及びアルミン酸イオン等のオキソ酸イオンの溶解度が低下し、これらの複合物が析出して微粒子に成長したり、または、シード粒子上に析出して粒子成長が起る。従って、微粒子の析出、成長に際して、従来法のようなpH制御は必ずしも行う必要がない。   The silica raw material and the inorganic compound raw material described above have high solubility on the alkali side. However, when both are mixed in this highly soluble pH region, the solubility of oxo acid ions such as silicate ions and aluminate ions decreases, and these composites precipitate and grow into fine particles, or seed particles. It grows on the top and particle growth occurs. Therefore, it is not always necessary to perform pH control as in the conventional method for precipitation and growth of fine particles.

第1工程におけるシリカとシリカ以外の無機化合物との複合割合は、シリカに対する無機化合物を酸化物(MO)に換算し、MO/SiOのモル比が、0.05〜2.0、好ましくは0.2〜2.0の範囲内にあることが望ましい。この範囲内において、シリカの割合が少なくなる程、多孔質粒子の細孔容積が増大する。しかしながら、モル比が2.0を越えても、多孔質粒子の細孔の容積はほとんど増加しない。他方、モル比が0.05未満の場合は、細孔容積が小さくなる。空洞粒子を調製する場合、MO/SiOのモル比は、0.25〜2.0の範囲内にあることが望ましい。 The composite ratio of silica and an inorganic compound other than silica in the first step is that the inorganic compound relative to silica is converted to an oxide (MO X ), and the molar ratio of MO X / SiO 2 is 0.05 to 2.0, Preferably it is in the range of 0.2-2.0. Within this range, the pore volume of the porous particles increases as the proportion of silica decreases. However, even when the molar ratio exceeds 2.0, the pore volume of the porous particles hardly increases. On the other hand, when the molar ratio is less than 0.05, the pore volume becomes small. When preparing the hollow particles, the molar ratio of MO X / SiO 2 is preferably in the range of 0.25 to 2.0.

第2工程:多孔質粒子からのシリカ以外の無機化合物の除去
第2工程では、前記第1工程で得られた多孔質粒子前駆体から、シリカ以外の無機化合物(珪素と酸素以外の元素)の少なくとも一部を選択的に除去する。具体的な除去方法としては、多孔質粒子前駆体中の無機化合物を鉱酸や有機酸を用いて溶解除去したり、または、陽イオン交換樹脂と接触させてイオン交換除去する。
Second step: Removal of inorganic compound other than silica from porous particles In the second step, inorganic compounds other than silica (elements other than silicon and oxygen) are obtained from the porous particle precursor obtained in the first step. At least a portion is selectively removed. As a specific removal method, the inorganic compound in the porous particle precursor is dissolved and removed using a mineral acid or an organic acid, or is contacted with a cation exchange resin for ion exchange removal.

なお、第1工程で得られる多孔質粒子前駆体は、珪素と無機化合物構成元素が酸素を介して結合した網目構造の粒子である。このように多孔質粒子前駆体から無機化合物(珪素と酸素以外の元素)を除去することにより、一層多孔質で細孔容積の大きい多孔質粒子が得られる。また、多孔質粒子前駆体から無機酸化物(珪素と酸素以外の元素)を除去する量を多くすれば、空洞粒子を調製することができる。   The porous particle precursor obtained in the first step is a particle having a network structure in which silicon and an inorganic compound constituent element are bonded through oxygen. By removing the inorganic compound (elements other than silicon and oxygen) from the porous particle precursor in this way, porous particles having a larger porosity and a larger pore volume can be obtained. Further, if the amount of removing the inorganic oxide (elements other than silicon and oxygen) from the porous particle precursor is increased, the hollow particles can be prepared.

また、多孔質粒子前駆体からシリカ以外の無機化合物を除去するに先立って、第1工程で得られる多孔質粒子前駆体分散液に、シリカのアルカリ金属塩を脱アルカリして得られる、フッ素置換アルキル基含有シラン化合物を含有するケイ酸液または加水分解性の有機珪素化合物を添加してシリカ保護膜を形成することが好ましい。シリカ保護膜の厚さは0.5〜15nmの厚さであればよい。なおシリカ保護膜を形成しても、この工程での保護膜は多孔質であり厚さが薄いので、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することは可能である。   In addition, prior to removing inorganic compounds other than silica from the porous particle precursor, fluorine-substituted, obtained by dealkalizing an alkali metal salt of silica into the porous particle precursor dispersion obtained in the first step. It is preferable to add a silicic acid solution containing an alkyl group-containing silane compound or a hydrolyzable organosilicon compound to form a silica protective film. The thickness of the silica protective film may be 0.5 to 15 nm. Even if the silica protective film is formed, the protective film in this step is porous and thin, so that it is possible to remove inorganic compounds other than silica described above from the porous particle precursor.

このようなシリカ保護膜を形成することによって、粒子形状を保持したまま、前記したシリカ以外の無機化合物を、多孔質粒子前駆体から除去することができる。また、後述するシリカ被覆層を形成する際に、多孔質粒子の細孔が被覆層によって閉塞されてしまうことがなく、このため細孔容積を低下させることなく後述するシリカ被覆層を形成することができる。なお、除去する無機化合物の量が少ない場合は粒子が壊れることがないので必ずしも保護膜を形成する必要はない。   By forming such a silica protective film, inorganic compounds other than silica described above can be removed from the porous particle precursor while maintaining the particle shape. Further, when forming the silica coating layer described later, the pores of the porous particles are not blocked by the coating layer, and therefore the silica coating layer described later is formed without reducing the pore volume. Can do. Note that when the amount of the inorganic compound to be removed is small, the particles are not broken, and thus it is not always necessary to form a protective film.

また空洞粒子を調製する場合は、このシリカ保護膜を形成しておくことが望ましい。空洞粒子を調製する際には、無機化合物を除去すると、シリカ保護膜と、該シリカ保護膜内の溶媒、未溶解の多孔質固形分とからなる空洞粒子の前駆体が得られ、該空洞粒子の前駆体に後述の被覆層を形成すると、形成された被覆層が、粒子壁となり空洞粒子が形成される。   When preparing hollow particles, it is desirable to form this silica protective film. When preparing the hollow particles, the inorganic compound is removed to obtain a hollow particle precursor composed of a silica protective film, a solvent in the silica protective film, and an undissolved porous solid content. When a coating layer to be described later is formed on the precursor, the formed coating layer becomes a particle wall to form hollow particles.

上記シリカ保護膜形成のために添加するシリカ源の量は、粒子形状を保持できる範囲で少ないことが好ましい。シリカ源の量が多過ぎると、シリカ保護膜が厚くなり過ぎるので、多孔質粒子前駆体からシリカ以外の無機化合物を除去することが困難となることがある。シリカ保護膜形成用に使用される加水分解性の有機珪素化合物としては、一般式RSi(OR′)4−n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、フッ素置換したテトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。 The amount of the silica source added for forming the silica protective film is preferably small as long as the particle shape can be maintained. If the amount of the silica source is too large, the silica protective film becomes too thick, and it may be difficult to remove inorganic compounds other than silica from the porous particle precursor. The hydrolyzable organic silicon compound used for the silica protective film formed of the general formula R n Si (OR ') 4 -n [R, R': an alkyl group, an aryl group, a vinyl group, such as acrylic group An alkoxysilane represented by a hydrocarbon group, n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as fluorine-substituted tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.

添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子の分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を無機酸化物粒子の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。   As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is added to the dispersion of the porous particles, and the alkoxysilane is hydrolyzed. The produced silicic acid polymer is deposited on the surface of the inorganic oxide particles. At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.

多孔質粒子前駆体の分散媒が、水単独、または有機溶媒に対する水の比率が高い場合には、ケイ酸液を用いてシリカ保護膜を形成することも可能である。ケイ酸液を用いる場合には、分散液中にケイ酸液を所定量添加し、同時にアルカリを加えてケイ酸液を多孔質粒子表面に沈着させる。なお、ケイ酸液と上記アルコキシシランを併用してシリカ保護膜を作製してもよい。   When the dispersion medium of the porous particle precursor is water alone or when the ratio of water to the organic solvent is high, a silica protective film can be formed using a silicic acid solution. When a silicic acid solution is used, a predetermined amount of the silicic acid solution is added to the dispersion, and at the same time an alkali is added to deposit the silicic acid solution on the surface of the porous particles. In addition, you may produce a silica protective film together using a silicic acid liquid and the said alkoxysilane.

第3工程:シリカ被覆層の形成
第3工程では、第2工程で調製した多孔質粒子分散液(空洞粒子の場合は空洞粒子前駆体分散液)に、フッ素置換アルキル基含有シラン化合物を含有する加水分解性の有機珪素化合物またはケイ酸液等を加えることにより、粒子の表面を加水分解性有機珪素化合物またはケイ酸液等の重合物で被覆してシリカ被覆層を形成する。
Third step: Formation of silica coating layer In the third step, the porous particle dispersion prepared in the second step (in the case of hollow particles, the hollow particle precursor dispersion) contains a fluorine-substituted alkyl group-containing silane compound. By adding a hydrolyzable organosilicon compound or silicic acid solution, the surface of the particles is coated with a polymer such as a hydrolyzable organosilicon compound or silicic acid solution to form a silica coating layer.

シリカ被覆層形成用に使用される加水分解性の有機珪素化合物としては、前記したような一般式RSi(OR′)4−n〔R、R′:アルキル基、アリール基、ビニル基、アクリル基等の炭化水素基、n=0、1、2または3〕で表されるアルコキシシランを用いることができる。特に、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランが好ましく用いられる。 The hydrolyzable organic silicon compound used for the silica coating layer formed, the above-mentioned such general formula R n Si (OR ') 4 -n [R, R': an alkyl group, an aryl group, a vinyl group, An alkoxysilane represented by a hydrocarbon group such as an acryl group, n = 0, 1, 2, or 3] can be used. In particular, tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, and tetraisopropoxysilane are preferably used.

添加方法としては、これらのアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液に加え、アルコキシシランを加水分解して生成したケイ酸重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の表面に沈着させる。このとき、アルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。   As an addition method, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these alkoxysilane, pure water, and alcohol is used as a dispersion of the porous particles (in the case of hollow particles, a hollow particle precursor). In addition, the silicic acid polymer produced by hydrolyzing alkoxysilane is deposited on the surface of the porous particles (in the case of hollow particles, hollow particle precursors). At this time, alkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used.

多孔質粒子(空洞粒子の場合は空洞粒子前駆体)の分散媒が水単独、または有機溶媒との混合溶媒であって、有機溶媒に対する水の比率が高い混合溶媒の場合には、ケイ酸液を用いて被覆層を形成してもよい。ケイ酸液とは、水ガラス等のアルカリ金属ケイ酸塩の水溶液をイオン交換処理して脱アルカリしたケイ酸の低重合物の水溶液である。   When the dispersion medium of porous particles (in the case of hollow particles, the hollow particle precursor) is water alone or a mixed solvent with an organic solvent and the mixed solvent has a high ratio of water to the organic solvent, a silicate solution You may form a coating layer using. The silicic acid solution is an aqueous solution of a low silicic acid polymer obtained by dealkalizing an aqueous solution of an alkali metal silicate such as water glass by ion exchange treatment.

ケイ酸液は、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中に添加され、同時にアルカリを加えてケイ酸低重合物を多孔質粒子(空洞粒子の場合は空洞粒子前駆体)表面に沈着させる。なお、ケイ酸液を上記アルコキシシランと併用して被覆層形成用に使用してもよい。被覆層形成用に使用される有機珪素化合物またはケイ酸液の添加量は、コロイド粒子の表面を十分被覆できる程度であればよく、最終的に得られるシリカ被覆層の厚さが1〜20nmとなるような量で、多孔質粒子(空洞粒子の場合は空洞粒子前駆体)分散液中で添加される。また前記シリカ保護膜を形成した場合はシリカ保護膜とシリカ被覆層の合計の厚さが1〜20nmの範囲となるような量で、有機珪素化合物またはケイ酸液は添加される。   The silicic acid solution is added to the dispersion of porous particles (in the case of hollow particles, hollow particle precursors), and at the same time, alkali is added to make the low-silicic acid polymer into porous particles (in the case of hollow particles, hollow particle precursors). ) Deposit on the surface. In addition, you may use a silicic acid liquid for the coating layer formation in combination with the said alkoxysilane. The addition amount of the organosilicon compound or silicic acid solution used for forming the coating layer only needs to be sufficient to cover the surface of the colloidal particles, and the finally obtained silica coating layer has a thickness of 1 to 20 nm. In such an amount, it is added in a dispersion of porous particles (in the case of hollow particles, a hollow particle precursor). When the silica protective film is formed, the organosilicon compound or the silicate solution is added in such an amount that the total thickness of the silica protective film and the silica coating layer is in the range of 1 to 20 nm.

次いで、被覆層が形成された粒子の分散液を加熱処理する。加熱処理によって、多孔質粒子の場合は、多孔質粒子表面を被覆したシリカ被覆層が緻密化し、多孔質粒子がシリカ被覆層によって被覆された複合粒子の分散液が得られる。また空洞粒子前駆体の場合、形成された被覆層が緻密化して空洞粒子壁となり、内部が溶媒、気体または多孔質固形分で充填された空洞を有する空洞粒子の分散液が得られる。   Next, the dispersion liquid of the particles on which the coating layer is formed is heat-treated. By the heat treatment, in the case of porous particles, the silica coating layer covering the surface of the porous particles is densified, and a dispersion of composite particles in which the porous particles are coated with the silica coating layer is obtained. In the case of a hollow particle precursor, the formed coating layer is densified to form hollow particle walls, and a dispersion of hollow particles having cavities filled with a solvent, gas, or porous solid content is obtained.

このときの加熱処理温度は、シリカ被覆層の微細孔を閉塞できる程度であれば特に制限はなく、80〜300℃の範囲が好ましい。加熱処理温度が80℃未満ではシリカ被覆層の微細孔を完全に閉塞して緻密化できないことがあり、また処理時間に長時間を要してしまうことがある。また加熱処理温度が300℃を越えて長時間処理すると緻密な粒子となることがあり、低屈折率の効果が得られないことがある。   The heat treatment temperature at this time is not particularly limited as long as it can close the fine pores of the silica coating layer, and is preferably in the range of 80 to 300 ° C. When the heat treatment temperature is less than 80 ° C., the fine pores of the silica coating layer may not be completely closed and densified, and the treatment time may take a long time. Further, when the heat treatment temperature exceeds 300 ° C. for a long time, fine particles may be formed, and the effect of low refractive index may not be obtained.

このようにして得られた無機微粒子の屈折率は、1.42未満と低い。このような無機微粒子は、多孔質粒子内部の多孔性が保持されているか、内部が空洞であるので、屈折率が低くなるものと推察される。なお、中空シリカ系微粒子は触媒化成(株)から市販されているものも好ましく利用することができる。   The refractive index of the inorganic fine particles thus obtained is as low as less than 1.42. Such inorganic fine particles are presumed to have a low refractive index because the porosity inside the porous particles is maintained or the inside is hollow. As the hollow silica-based fine particles, those commercially available from Catalyst Kasei Co., Ltd. can be preferably used.

外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子の低屈折率層中の含有量は、10〜50質量%であることが好ましい。低屈折率の効果を得る上で、15質量%以上が好ましく、50質量%を超えるとバインダー成分が少なくなり膜強度が不十分となる。特に好ましくは20〜50質量%である。   The content of the hollow silica-based fine particles having an outer shell layer and porous or hollow inside is preferably 10 to 50% by mass. In order to obtain the effect of a low refractive index, the content is preferably 15% by mass or more. Most preferably, it is 20-50 mass%.

低屈折率層への添加方法としては、例えば前記テトラアルコキシシラン、純水、及びアルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前記中空シリカ系微粒子の分散液に加え、テトラアルコキシシランを加水分解して生成したケイ酸重合物を中空シリカ系微粒子の表面に沈着させる。このとき、テトラアルコキシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒としては、アンモニア、アルカリ金属の水酸化物、アミン類を用いることができる。また、酸触媒としては、各種の無機酸と有機酸を用いることができる。また、シリカ系微粒子は、WO2007/099814号公報に記載の製造法により作製されたものを用いても良い。   As a method of adding to the low refractive index layer, for example, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of the tetraalkoxysilane, pure water, and alcohol is added to the dispersion of the hollow silica fine particles. The silicic acid polymer produced by hydrolyzing tetraalkoxysilane is deposited on the surface of the hollow silica fine particles. At this time, tetraalkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, an alkali metal hydroxide, or an amine can be used. As the acid catalyst, various inorganic acids and organic acids can be used. Silica-based fine particles may be those produced by the production method described in WO2007 / 099814.

(バインダー)
また、低屈折率層は、バインダーとして、前述のカチオン重合性化合物を含有することが、目的効果がより良く発揮される点から好ましい。カチオン重合性化合物としては、前述したハードコート層に記載した化合物を用いることが出来る。その他、カチオン重合性化合物の重合を促進する化合物として、上記の酸や光酸発生剤を用いることも好ましい。これらの酸や光酸発生剤は、カチオン重合性化合物100質量部に対して、0.1〜20質量部の割合が好ましく、より好ましくは0.5〜15質量部の割合で添加することが、低屈折率層形成組成物中での安定性、重合反応性等から好ましい。
(binder)
Moreover, it is preferable that the low refractive index layer contains the above-described cationic polymerizable compound as a binder from the viewpoint that the objective effect can be better exhibited. As the cationic polymerizable compound, the compounds described in the hard coat layer described above can be used. In addition, it is also preferable to use the above acid or photoacid generator as a compound that accelerates the polymerization of the cationic polymerizable compound. These acids and photoacid generators are preferably added in a proportion of 0.1 to 20 parts by mass, more preferably 0.5 to 15 parts by mass with respect to 100 parts by mass of the cationic polymerizable compound. From the viewpoint of stability in the composition for forming a low refractive index layer, polymerization reactivity, and the like.

また、バインダーとして、ラジカル重合性化合物を用いても良い。ラジカル重合性化合物としては、前述したハードコート層に記載の化合物を用いることが出来る。   Moreover, you may use a radically polymerizable compound as a binder. As the radical polymerizable compound, the compounds described in the hard coat layer described above can be used.

ラジカル重合性化合物の硬化促進のために、光重合開始剤を用いることが好ましく、光重合開始剤とラジカル重合性化合物とを質量比で20:100〜0.01:100含有することが好ましい。   In order to accelerate curing of the radical polymerizable compound, it is preferable to use a photopolymerization initiator, and it is preferable to contain the photopolymerization initiator and the radical polymerizable compound in a mass ratio of 20: 100 to 0.01: 100.

更に、前記一般式(OSi−2)で表されるフッ素置換アルキル基含有シラン化合物を含有させることもできる。   Furthermore, the fluorine substituted alkyl group containing silane compound represented by the said general formula (OSi-2) can also be contained.

バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、形成される透明被膜自体が疎水性を有しているので、透明被膜が充分緻密化しておらず、多孔質であったり、またクラックやボイドを有している場合であっても、水分や酸・アルカリ等の薬品による透明被膜への進入が抑制される。更に、基板表面や下層である導電性層中に含まれる金属等の微粒子と水分や酸・アルカリ等の薬品とが反応することもない。このため、このような透明被膜は、優れた耐薬品性を有している。   If the fluorine-containing alkyl group-containing silane compound is included as a binder, the transparent film itself is hydrophobic, so the transparent film is not sufficiently densified and is porous or cracked. Even if it has a void or a void, entry into the transparent film by chemicals such as moisture, acid and alkali is suppressed. Furthermore, fine particles such as metals contained in the conductive layer which is the substrate surface or the lower layer do not react with chemicals such as moisture, acid and alkali. For this reason, such a transparent film has excellent chemical resistance.

また、バインダーとして、フッ素置換アルキル基含有シラン化合物を含んでいると、このような疎水性のみならず、滑り性がよく(接触抵抗が低く)、このためスクラッチ強度に優れた透明被膜を得ることができる。更に、バインダーが、このような構成単位を有するフッ素置換アルキル基含有シラン化合物を含んでいると、下層に導電性層が形成されている場合には、バインダーの収縮率が、導電性層と同等か近いものであるため導電性層と密着性に優れた透明被膜を形成することができる。更に、透明被膜を加熱処理する際に、収縮率の違いから、導電性層が剥離して、透明導電性層に電気的接触のない部分が生じることもない。このため、膜全体として充分な導電性を維持できる。   In addition, when a fluorine-substituted alkyl group-containing silane compound is included as a binder, not only the hydrophobic property but also the slipperiness (low contact resistance) is obtained, and thus a transparent film having excellent scratch strength can be obtained. Can do. Further, when the binder contains a fluorine-substituted alkyl group-containing silane compound having such a structural unit, when the conductive layer is formed in the lower layer, the shrinkage rate of the binder is equivalent to that of the conductive layer. Therefore, it is possible to form a transparent film having excellent adhesion to the conductive layer. Furthermore, when the transparent film is heat-treated, the conductive layer is not peeled off due to the difference in shrinkage rate, and a portion having no electrical contact is not generated in the transparent conductive layer. For this reason, sufficient electroconductivity can be maintained as a whole film.

フッ素置換アルキル基含有シラン化合物と、前記外殻層を有し、内部が多孔質または空洞である中空シリカ系微粒子とを含む透明被膜は、スクラッチ強度が高い上に、消しゴム強度または爪強度で評価される膜強度が高く、鉛筆硬度も高く、強度の上で優れた透明被膜を形成することができる。   A transparent film containing a fluorine-substituted alkyl group-containing silane compound and hollow silica-based fine particles having the outer shell layer and being porous or hollow inside has high scratch strength and is evaluated by eraser strength or nail strength. The film strength is high, the pencil hardness is high, and a transparent film excellent in strength can be formed.

低屈折率層にはシランカップリング剤を含有してもよい。シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシエトキシシラン、メチルトリアセトキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリアセトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−クロロプロピルトリエトキシシラン、γ−クロロプロピルトリアセトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリメトキシシラン、γ−グリシジルオキシプロピルトリエトキシシラン、γ−(β−グリシジルオキシエトキシ)プロピルトリメトキシシラン、β−(3,4−エポシシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン及びβ−シアノエチルトリエトキシシランが挙げられる。   The low refractive index layer may contain a silane coupling agent. Silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, vinyltrimethoxysilane, vinyltrimethoxysilane. Ethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, γ-chloropropyltri Acetoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, γ-glycidyloxypropyltri Ethoxysilane, γ- (β-glycidyloxyethoxy) propyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltriethoxysilane, γ- Acryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, N- Examples include β- (aminoethyl) -γ-aminopropyltrimethoxysilane and β-cyanoethyltriethoxysilane.

また、珪素に対して2置換のアルキル基を持つシランカップリング剤の例として、ジメチルジメトキシシラン、フェニルメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジエトキシシラン、γ−グリシジルオキシプロピルメチルジメトキシシラン、γ−グリシジルオキシプロピルフェニルジエトキシシラン、γ−クロロプロピルメチルジエトキシシラン、ジメチルジアセトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが挙げられる。   Examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethyldimethoxysilane, phenylmethyldimethoxysilane, dimethyldiethoxysilane, phenylmethyldiethoxysilane, and γ-glycidyloxypropylmethyldiethoxysilane. Γ-glycidyloxypropylmethyldimethoxysilane, γ-glycidyloxypropylphenyldiethoxysilane, γ-chloropropylmethyldiethoxysilane, dimethyldiacetoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldi Ethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyldiethoxysilane, γ-mercaptopropylmethyldimeth Shishiran, .gamma.-mercaptopropyl methyl diethoxy silane, .gamma.-aminopropyl methyl dimethoxy silane, .gamma.-aminopropyl methyl diethoxy silane, methyl vinyl dimethoxy silane, and methyl vinyl diethoxy silane.

これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシエトキシシラン、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、珪素に対して2置換のアルキル基を持つものとしてγ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−メタクリロイルオキシプロピルメチルジエトキシシラン、メチルビニルジメトキシシラン及びメチルビニルジエトキシシランが好ましく、γ−アクリロイルオキシプロピルトリメトキシシラン及びγ−メタクリロイルオキシプロピルトリメトキシシラン、γ−アクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルメチルジエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン及びγ−メタクリロイルオキシプロピルメチルジエトキシシランが特に好ましい。   Among these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxypropyltrimethoxysilane having a double bond in the molecule. Γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, and γ-methacryloyloxypropylmethyldiethoxy having a disubstituted alkyl group with respect to silicon Silane, methylvinyldimethoxysilane and methylvinyldiethoxysilane are preferred, and γ-acryloyloxypropyltrimethoxysilane and γ-methacryloyloxyp Particularly preferred are propyltrimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, γ-acryloyloxypropylmethyldiethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane and γ-methacryloyloxypropylmethyldiethoxysilane.

2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、オルトケイ酸のアルキルエステル(例えば、オルトケイ酸メチル、オルトケイ酸エチル、オルトケイ酸n−プロピル、オルトケイ酸i−プロピル、オルトケイ酸n−ブチル、オルトケイ酸sec−ブチル、オルトケイ酸t−ブチル)及びその加水分解物が挙げられる。   Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane coupling agents may be used. Other silane coupling agents include alkyl esters of orthosilicate (eg, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, i-propyl orthosilicate, n-butyl orthosilicate, sec-butyl orthosilicate, orthosilicate). Acid t-butyl) and its hydrolyzate.

また、低屈折率層にはCF(CF)nCHCHSi(OR1)で表される珪素化合物を含有しても良い。(式中、R1は、1〜5個の炭素原子を有するアルキル基を表し、そしてnは、0〜12の整数を表す。)具体的化合物としては、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシランなどが挙げられ、これらは単独で又は二種以上組み合わせて用いることができる。また、HNCONH(CH)mSi(OR2)で表される末端位にウレイド基(HNCONH−)を有する珪素化合物を含有しても良い。(式中、R2は、1〜5個の炭素原子を有するアルキル基を表し、mは、1〜5の整数を表す。)具体的化合物としては、γ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−ウレイドプロピルトリプロポキシシランなどが挙げられる。これらの中でもγ−ウレイドプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシランなどが特に好ましい。 The low refractive index layer may contain a silicon compound represented by CF 3 (CF 2 ) nCH 2 CH 2 Si (OR 1 ) 3 . (In the formula, R1 represents an alkyl group having 1 to 5 carbon atoms, and n represents an integer of 0 to 12.) Specific examples of the compound include trifluoropropyltrimethoxysilane and trifluoropropyl. Examples include triethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, and these are used alone or in combination of two or more. Can be used. It may also contain H 2 NCONH (CH) mSi ( OR2) silicon compound in the terminal position represented by 3 having a ureido group (H 2 NCONH-). (In the formula, R2 represents an alkyl group having 1 to 5 carbon atoms, and m represents an integer of 1 to 5.) Specific compounds include γ-ureidopropyltrimethoxysilane and γ-ureido. Examples thereof include propyltriethoxysilane and γ-ureidopropyltripropoxysilane. Among these, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, and the like are particularly preferable.

その他、低屈折率層はバインダーとして、例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、フルオロアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂等を用いることが出来る。   In addition, the low refractive index layer can use, for example, polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, fluoroacrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, alkyd resin, etc. as a binder. .

その他、バインダーとして例えば、ポリビニルアルコール、ポリオキシエチレン、ポリメチルメタクリレート、ポリメチルアクリレート、フルオロアクリレート、ジアセチルセルロース、トリアセチルセルロース、ニトロセルロース、ポリエステル、アルキド樹脂が挙げられる。   In addition, examples of the binder include polyvinyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, fluoroacrylate, diacetyl cellulose, triacetyl cellulose, nitrocellulose, polyester, and alkyd resin.

低屈折率層は、全体で5〜80質量%のバインダーを含むことが好ましい。バインダーは、空隙を含む低屈折率層の構造を維持する機能を有する。バインダーの使用量は、空隙を充填することなく低屈折率層の強度を維持できるように適宜調整する。   The low refractive index layer preferably contains 5 to 80% by mass of binder as a whole. The binder has a function of maintaining the structure of the low refractive index layer including voids. The usage-amount of a binder is suitably adjusted so that the intensity | strength of a low refractive index layer can be maintained, without filling a space | gap.

(溶媒)
低屈折率層は有機溶媒を含有することが好ましい。具体的な有機溶媒の例としては、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。
(solvent)
The low refractive index layer preferably contains an organic solvent. Specific examples of organic solvents include alcohols (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), esters (eg, methyl acetate, ethyl acetate). , Propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene chloride, chloroform, carbon tetrachloride), aromatic Group hydrocarbon (eg, benzene, toluene, xylene), amide (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ether (eg, diethyl ether, dioxane, tetrahydrofuran), ether alcohol (eg, 1-methoxy-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.

低屈折率層塗布組成物中の固形分濃度は1〜4質量%であることが好ましく、該固形分濃度が4質量%以下にすることによって、塗布ムラが生じにくくなり、1質量%以上にすることによって乾燥負荷が軽減される。   The solid content concentration in the low refractive index layer coating composition is preferably 1 to 4% by mass. By making the solid content concentration 4% by mass or less, coating unevenness is less likely to occur, and the content is 1% by mass or more. By doing so, the drying load is reduced.

低屈折率層は、グラビアコータ、ディップコータ、リバースコータ、ワイヤーバーコータ、ダイコータ、インクジェット法等公知の方法を用いて、低屈折率層を形成する上記塗布組成物を塗布し、塗布後、加熱乾燥し、必要に応じて硬化処理することで形成される。   The low refractive index layer is coated with the above coating composition for forming the low refractive index layer using a known method such as a gravure coater, dip coater, reverse coater, wire bar coater, die coater, ink jet method, and the like. It is formed by drying and curing as necessary.

塗布量は、ウェット膜厚として0.05〜100μmが適当で、好ましくは、0.1〜50μmである。また、ドライ膜厚が上記膜厚となるように塗布組成物の固形分濃度は調整される。   The coating amount is suitably 0.05 to 100 μm, preferably 0.1 to 50 μm, as the wet film thickness. Further, the solid content concentration of the coating composition is adjusted so that the dry film thickness becomes the above film thickness.

また、低屈折率層を形成後、温度50〜160℃で加熱処理を行う工程を含んでも良い。加熱処理の期間は、設定される温度によって適宜決定すればよく、例えば50℃であれば、好ましくは3日間以上30日未満の期間、100℃であれば1分以上1日以下の範囲が好ましい。硬化方法としては、加熱することによって熱硬化させる方法、紫外線等の光照射によって硬化させる方法などが挙げられる。熱硬化させる場合は、加熱温度は50〜300℃が好ましく、好ましくは60〜250℃、さらに好ましくは80〜150℃である。光照射によって硬化させる場合は、照射光の露光量は10mJ/cm〜10J/cmであることが好ましく、100mJ/cm〜500mJ/cmがより好ましい。 Moreover, after forming a low refractive index layer, you may include the process of heat-processing at the temperature of 50-160 degreeC. The period of the heat treatment may be appropriately determined depending on the set temperature. For example, if it is 50 ° C., it is preferably a period of 3 days or more and less than 30 days, and if it is 100 ° C., a range of 1 minute or more and 1 day or less is preferable. . Examples of the curing method include a method of thermosetting by heating, a method of curing by irradiation with light such as ultraviolet rays, and the like. In the case of thermosetting, the heating temperature is preferably 50 to 300 ° C, preferably 60 to 250 ° C, more preferably 80 to 150 ° C. When curing by light irradiation, exposure of the irradiation light is preferably, 100mJ / cm 2 ~500mJ / cm 2 and more preferably 10mJ / cm 2 ~10J / cm 2 .

ここで、照射される光の波長域としては特に限定されないが、紫外線領域の波長を有する光が好ましく用いられる。具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。照射条件はそれぞれのランプによって異なるが、活性線の照射量は、通常5〜500mJ/cm、好ましくは5〜150mJ/cmであるが、特に好ましくは20〜100mJ/cmである。 Here, the wavelength range of the irradiated light is not particularly limited, but light having a wavelength in the ultraviolet region is preferably used. Specifically, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is usually 5 to 500 mJ / cm 2 , preferably 5 to 150 mJ / cm 2 , and particularly preferably 20 to 100 mJ / cm 2 .

〈高屈折率層〉
反射防止層は、上述の低屈折率層の他に、下記のような高屈折率層を有してもよい。高屈折率層には、金属酸化物微粒子が含有されることが好ましい。金属酸化物微粒子の種類は特に限定されるものではなく、Ti、Zr、Sn、Sb、Cu、Fe、Mn、Pb、Cd、As、Cr、Hg、Zn、Al、Mg、Si、P及びSから選択される少なくとも一種の元素を有する金属酸化物を用いることができ、これらの金属酸化物微粒子はAl、In、Sn、Sb、Nb、ハロゲン元素、Taなどの微量の原子をドープしてあっても良い。また、これらの混合物でもよい。中でも酸化ジルコニウム、酸化アンチモン、酸化錫、酸化亜鉛、酸化インジウム−スズ(ITO)、アンチモンドープ酸化スズ(ATO)、及びアンチモン酸亜鉛から選ばれる少なくとも1種の金属酸化物微粒子を主成分として用いることが特に好ましい。特にアンチモン酸亜鉛粒子を含有することが好ましい。
<High refractive index layer>
The antireflection layer may have the following high refractive index layer in addition to the above-described low refractive index layer. The high refractive index layer preferably contains metal oxide fine particles. The kind of metal oxide fine particles is not particularly limited, and Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P and S A metal oxide having at least one element selected from the group consisting of Al, In, Sn, Sb, Nb, a halogen element, Ta and the like is doped with a minute amount of atoms. May be. A mixture of these may also be used. Among them, at least one metal oxide fine particle selected from zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate is used as a main component. Is particularly preferred. In particular, it is preferable to contain zinc antimonate particles.

これら金属酸化物微粒子の一次粒子の平均粒子径は10nm〜200nmの範囲であり、10〜150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走査電子顕微鏡(SEM)等による電子顕微鏡写真から計測することができる。動的光散乱法や静的光散乱法等を利用する粒度分布計等によって計測してもよい。粒径が小さ過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘形状、針状或いは不定形状であることが好ましい。   The average particle diameter of the primary particles of these metal oxide fine particles is in the range of 10 nm to 200 nm, particularly preferably 10 to 150 nm. The average particle diameter of the metal oxide fine particles can be measured from an electron micrograph taken with a scanning electron microscope (SEM) or the like. You may measure by the particle size distribution meter etc. which utilize a dynamic light scattering method, a static light scattering method, etc. If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice grain shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an indefinite shape.

高屈折率層の屈折率は、具体的には、支持体であるフィルムの屈折率より高く、23℃、波長550nm測定で、1.5〜2.2の範囲であることが好ましい。高屈折率層の屈折率を調整する手段は、金属酸化物微粒子の種類、添加量が支配的である為、金属酸化物微粒子の屈折率は1.80〜2.60であることが好ましく、1.85〜2.50であることが更に好ましい。   Specifically, the refractive index of the high refractive index layer is higher than the refractive index of the film as the support, and is preferably in the range of 1.5 to 2.2 when measured at 23 ° C. and a wavelength of 550 nm. The means for adjusting the refractive index of the high refractive index layer is that the kind and addition amount of the metal oxide fine particles are dominant, so that the refractive index of the metal oxide fine particles is preferably 1.80 to 2.60, More preferably, it is 1.85 to 2.50.

金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑えることもできる。このため、好ましい有機化合物での表面修飾量は金属酸化物粒子に対して0.1質量%〜5質量%、より好ましくは0.5質量%〜3質量%である。表面処理に用いる有機化合物の例には、ポリオール、アルカノールアミン、ステアリン酸、シランカップリング剤及びチタネートカップリング剤が含まれる。この中でもシランカップリング剤が好ましい。二種以上の表面処理を組み合わせてもよい。   The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. . For this reason, the surface modification amount with a preferable organic compound is 0.1 mass%-5 mass% with respect to metal oxide particle, More preferably, it is 0.5 mass%-3 mass%. Examples of the organic compound used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents, and titanate coupling agents. Of these, silane coupling agents are preferred. Two or more kinds of surface treatments may be combined.

前記金属酸化物微粒子を含有する高屈折率層の厚さは5nm〜1μmであることが好ましく、10nm〜0.2μmであることが更に好ましく、30nm〜0.1μmであることが最も好ましい。   The thickness of the high refractive index layer containing the metal oxide fine particles is preferably 5 nm to 1 μm, more preferably 10 nm to 0.2 μm, and most preferably 30 nm to 0.1 μm.

使用する金属酸化物微粒子と後述する活性光線硬化樹脂等のバインダーとの比は、金属酸化物微粒子の種類、粒子サイズなどにより異なるが体積比で前者1に対して後者2から前者2に対して後者1程度が好ましい。金属酸化物微粒子の使用量は高屈折率層中に5質量%〜85質量%が好ましく、10質量%〜80質量%であることがより好ましく、20〜75質量%が最も好ましい。使用量が少ないと所望の屈折率や本発明の効果が得られず、多過ぎると膜強度の劣化などが発生する。   The ratio of the metal oxide fine particles to be used and a binder such as an actinic ray curable resin to be described later varies depending on the kind of metal oxide fine particles, the particle size, etc. The latter one is preferable. The amount of the metal oxide fine particles used is preferably 5% by mass to 85% by mass, more preferably 10% by mass to 80% by mass, and most preferably 20% by mass to 75% by mass in the high refractive index layer. If the amount used is small, the desired refractive index and the effect of the present invention cannot be obtained, and if it is too large, the film strength deteriorates.

上記金属酸化物微粒子は、媒体に分散した分散体の状態で、高屈折率層を形成するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が60〜170℃の液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケトン(例、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン)、ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル)、脂肪族炭化水素(例、ヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例、メチレンクロライド、クロロホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン)、エーテル(例、ジエチルエーテル、ジオキサン、テトラハイドロフラン)、エーテルアルコール(例、1−メトキシ−2−プロパノール)、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン及びブタノールが特に好ましい。   The metal oxide fine particles are supplied to a coating solution for forming a high refractive index layer in a dispersion state dispersed in a medium. As a dispersion medium for metal oxide particles, it is preferable to use a liquid having a boiling point of 60 to 170 ° C. Specific examples of the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ketone alcohol (eg, diacetone alcohol). , Esters (eg, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene) Chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ethers (eg, diethyl ether, dioxane, Tiger hydrofuran), ether alcohols (e.g., 1-methoxy-2-propanol), propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate. Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.

また金属酸化物微粒子は、分散機を用いて媒体中に分散することができる。分散機の例としては、サンドグラインダーミル(例、ピン付きビーズミル)、高速インペラーミル、ペッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグラインダーミル及び高速インペラーミルが特に好ましい。また、予備分散処理を実施してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミル、ニーダー及びエクストルーダーが挙げられる。分散剤を含有させることも好ましい。   The metal oxide fine particles can be dispersed in the medium using a disperser. Examples of the disperser include a sand grinder mill (eg, a bead mill with pins), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill. A sand grinder mill and a high-speed impeller mill are particularly preferred. Further, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an extruder. It is also preferable to contain a dispersant.

更にコア/シェル構造を有する金属酸化物微粒子を含有させてもよい。シェルはコアの周りに1層形成させてもよいし、耐光性を更に向上させるために複数層形成させてもよい。コアは、シェルにより完全に被覆されていることが好ましい。   Furthermore, metal oxide fine particles having a core / shell structure may be contained. One layer of the shell may be formed around the core, or a plurality of layers may be formed in order to further improve the light resistance. The core is preferably completely covered by the shell.

コアは酸化チタン(ルチル型、アナターゼ型、アモルファス型等)、酸化ジルコニウム、酸化亜鉛、酸化セリウム、スズをドープした酸化インジウム、アンチモンをドープした酸化スズ等を用いることができるが、ルチル型の酸化チタンを主成分としてもよい。   For the core, titanium oxide (rutile type, anatase type, amorphous type, etc.), zirconium oxide, zinc oxide, cerium oxide, indium oxide doped with tin, tin oxide doped with antimony, etc. can be used. Titanium may be the main component.

シェルは酸化チタン以外の無機化合物を主成分とし、金属の酸化物または硫化物から形成することが好ましい。例えば、二酸化珪素(シリカ)、酸化アルミニウム(アルミナ)酸化ジルコニウム、酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、酸化鉄、硫化亜鉛等を主成分とした無機化合物が用いられる。この内アルミナ、シリカ、ジルコニア(酸化ジルコニウム)であることが好ましい。また、これらの混合物でもよい。   The shell is preferably formed of a metal oxide or sulfide containing an inorganic compound other than titanium oxide as a main component. For example, an inorganic compound mainly composed of silicon dioxide (silica), aluminum oxide (alumina) zirconium oxide, zinc oxide, tin oxide, antimony oxide, indium oxide, iron oxide, zinc sulfide, or the like is used. Of these, alumina, silica, and zirconia (zirconium oxide) are preferable. A mixture of these may also be used.

コアに対するシェルの被覆量は、平均の被覆量で2〜50質量%である。好ましくは3〜40質量%、更に好ましくは4〜25質量%である。シェルの被覆量が多いと微粒子の屈折率が低下し、被覆量が少な過ぎると耐光性が劣化する。二種以上の無機微粒子を併用してもよい。   The coating amount of the shell with respect to the core is 2 to 50% by mass as an average coating amount. Preferably it is 3-40 mass%, More preferably, it is 4-25 mass%. When the coating amount of the shell is large, the refractive index of the fine particles is lowered, and when the coating amount is too small, the light resistance is deteriorated. Two or more inorganic fine particles may be used in combination.

コアとなる酸化チタンは、液相法または気相法で作製されたものを使用できる。また、シェルをコアの周りに形成させる手法としては、例えば、米国特許第3,410,708号、特公昭58−47061号、米国特許第2,885,366号、同第3,437,502号、英国特許第1,134,249号、米国特許第3,383,231号、英国特許第2,629,953号、同第1,365,999号に記載されている方法等を用いることができる。   The titanium oxide used as a core can use what was produced by the liquid phase method or the gaseous-phase method. As a method for forming the shell around the core, for example, U.S. Pat. No. 3,410,708, JP-B-58-47061, U.S. Pat. No. 2,885,366, and U.S. Pat. No. 1, British Patent No. 1,134,249, US Pat. No. 3,383,231, British Patent No. 2,629,953, No. 1,365,999, etc. Can do.

高屈折率層もしくは前述の低屈折率層には、下記一般式(CL1)で表される化合物またはそのキレート化合物を含有することができ、硬度などの物性を改善させることができる。   The high refractive index layer or the low refractive index layer described above can contain a compound represented by the following general formula (CL1) or a chelate compound thereof, and can improve physical properties such as hardness.

一般式(CL1) AMBx−n
式中、Mは金属原子、Aは加水分解可能な官能基または加水分解可能な官能基を有する炭化水素基、Bは金属原子Mに共有結合またはイオン結合した原子団を表す。xは金属原子Mの原子価、nは2以上でx以下の整数を表す。
Formula (CL1) An MB x-n
In the formula, M represents a metal atom, A represents a hydrolyzable functional group or a hydrocarbon group having a hydrolyzable functional group, and B represents an atomic group covalently or ionically bonded to the metal atom M. x represents the valence of the metal atom M, and n represents an integer of 2 or more and x or less.

加水分解可能な官能基Aとしては、例えば、アルコキシル基、クロル原子等のハロゲン、エステル基、アミド基等が挙げられる。上記一般式(CL1)に属する金属化合物には、金属原子に直接結合したアルコキシル基を2個以上有するアルコキシド、または、そのキレート化合物が含まれる。好ましい金属化合物としては、チタンアルコキシド、ジルコニウムアルコキシドまたはそれらのキレート化合物を挙げることができる。チタンアルコキシドは反応速度が速くて屈折率が高く、取り扱いも容易であるが、光触媒作用があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。また、チタンアルコキシドは紫外線硬化性樹脂、金属アルコキシドの反応を促進する効果があるため、少量添加するだけでも塗膜の物理的特性を向上させることができる。   Examples of the hydrolyzable functional group A include halogens such as alkoxyl groups and chloro atoms, ester groups and amide groups. The metal compound belonging to the general formula (CL1) includes an alkoxide having two or more alkoxyl groups directly bonded to a metal atom, or a chelate compound thereof. Preferable metal compounds include titanium alkoxide, zirconium alkoxide, or chelate compounds thereof. Titanium alkoxide has a high reaction rate and a high refractive index and is easy to handle. However, since it has a photocatalytic action, its light resistance deteriorates when added in a large amount. Zirconium alkoxide has a high refractive index but tends to become cloudy, so care must be taken in dew point management during coating. Moreover, since titanium alkoxide has the effect of promoting the reaction of the ultraviolet curable resin and metal alkoxide, the physical properties of the coating film can be improved by adding a small amount.

チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テトラ−iso−プロポキシチタン、テトラ−n−プロポキシチタン、テトラ−n−ブトキシチタン、テトラ−sec−ブトキシチタン、テトラ−tert−ブトキシチタン等が挙げられる。   Examples of the titanium alkoxide include tetramethoxy titanium, tetraethoxy titanium, tetra-iso-propoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetra-sec-butoxy titanium, tetra-tert-butoxy titanium, and the like. Is mentioned.

ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−n−プロポキシジルコニウム、テトラ−n−ブトキシジルコニウム、テトラ−sec−ブトキシジルコニウム、テトラ−tert−ブトキシジルコニウム等が挙げられる。   Examples of the zirconium alkoxide include tetramethoxy zirconium, tetraethoxy zirconium, tetra-iso-propoxy zirconium, tetra-n-propoxy zirconium, tetra-n-butoxy zirconium, tetra-sec-butoxy zirconium, tetra-tert-butoxy zirconium and the like. Is mentioned.

遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化剤としては、ジエタノールアミン、トリエタノールアミン等のアルカノールアミン類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、アセチルアセトン、アセト酢酸エチル等であって分子量1万以下のものを挙げることができる。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜の補強効果にも優れるキレート化合物を形成できる。   Preferred chelating agents for forming a chelate compound by coordination with a free metal compound include alkanolamines such as diethanolamine and triethanolamine, glycols such as ethylene glycol, diethylene glycol and propylene glycol, acetylacetone and acetoacetic acid. Examples thereof include ethyl and the like having a molecular weight of 10,000 or less. By using these chelating agents, it is possible to form a chelate compound that is stable against water mixing and is excellent in the effect of reinforcing the coating film.

金属化合物の添加量は、高屈折率層に含まれる該金属化合物由来の金属酸化物の含有量が0.3〜5質量%であるように調整することが好ましい。0.3質量%未満では耐擦傷性が不足し、5質量%を超えると耐光性が劣化する傾向がある。   The addition amount of the metal compound is preferably adjusted so that the content of the metal oxide derived from the metal compound contained in the high refractive index layer is 0.3 to 5% by mass. If it is less than 0.3% by mass, the scratch resistance is insufficient, and if it exceeds 5% by mass, the light resistance tends to deteriorate.

高屈折率層には、ラジカル重合性化合物を、金属酸化物微粒子のバインダーとして、塗膜の製膜性や物理的特性の向上のために含有させることが好ましい。ラジカル重合性化合物としては、紫外線や電子線のような活性光線の照射により直接、または光重合開始剤の作用を受けて間接的に重合反応を生じる官能基を2個以上有するモノマーまたはオリゴマーを用いることができ、具体的にはポリオールアクリレート、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレートもしくはそれらの混合物が好ましく、例えば前述したハードコート層に記載の多官能アクリレート化合物が好ましい。   The high refractive index layer preferably contains a radical polymerizable compound as a binder for the metal oxide fine particles in order to improve the film forming property and physical properties of the coating film. As the radically polymerizable compound, a monomer or oligomer having two or more functional groups that cause a polymerization reaction directly by irradiation with actinic rays such as ultraviolet rays or electron beams or indirectly by the action of a photopolymerization initiator is used. Specifically, polyol acrylate, epoxy acrylate, urethane acrylate, polyester acrylate or a mixture thereof is preferable. For example, the polyfunctional acrylate compound described in the hard coat layer described above is preferable.

ラジカル重合性化合物の添加量は、高屈折率組成物では固形分中の15質量%以上50質量%未満であることが好ましい。   The addition amount of the radical polymerizable compound is preferably 15% by mass or more and less than 50% by mass in the solid content in the high refractive index composition.

ラジカル重合性化合物の硬化促進のために、光重合開始剤を含有することが好ましい。光重合開始剤の添加量は、質量比で光重合開始剤:ラジカル重合性化合物=3:7〜1:9含有することが好ましい。   In order to accelerate curing of the radically polymerizable compound, it is preferable to contain a photopolymerization initiator. The addition amount of the photopolymerization initiator is preferably contained in a mass ratio of photopolymerization initiator: radically polymerizable compound = 3: 7 to 1: 9.

光重合開始剤としては、具体的には、前述したハードコート層に記載の化合物を用いることが出来る。   As the photopolymerization initiator, specifically, the compounds described in the hard coat layer described above can be used.

高屈折率層をコーティングする際に用いられる有機溶媒としては、例えば、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ベンジルアルコール等)、多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(例えば、ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(例えば、2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(例えば、ジメチルスルホキシド等)、スルホン類(例えば、スルホラン等)、尿素、アセトニトリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価アルコールエーテル類が好ましい。   Examples of the organic solvent used for coating the high refractive index layer include alcohols (for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, pentanol, hexanol, cyclohexanol). , Benzyl alcohol, etc.), polyhydric alcohols (for example, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexanediol, pentanediol, glycerin, hexanetriol, thio Diglycol, etc.), polyhydric alcohol ethers (eg, ethylene glycol monomethyl ether, Lenglycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether, ethylene glycol monomethyl ether acetate, triethylene glycol monomethyl ether, triethylene glycol monoethyl Ether, ethylene glycol monophenyl ether, propylene glycol monophenyl ether, etc.), amines (for example, ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, morpholine, N-ethylmorpholine, ether) Range amine, diethylenediamine, triethylenetetramine, tetraethylenepentamine, polyethyleneimine, pentamethyldiethylenetriamine, tetramethylpropylenediamine, etc.), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.) ), Heterocyclic rings (for example, 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexyl pyrrolidone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone), sulfoxides (for example, dimethyl sulfoxide) , Sulfones (e.g., sulfolane), urea, acetonitrile, acetone and the like, and alcohols, polyhydric alcohols, and polyhydric alcohol ethers are particularly preferable.

高屈折率層は上記組成物をグラビアコータ、ディップコータ、リバースコータ、ワイヤーバーコータ、ダイコータ、またはスプレー塗布、インクジェット塗布等を用いてハードコート層表面にウェット膜厚0.1〜100μmで塗布し、塗布後、加熱乾燥し、必要に応じて硬化して形成される。硬化工程は、低屈折率層で記載した内容を用いることができる。また、ドライ膜厚が上記膜厚になるようにするのは塗布組成物の固形分濃度で調整する。   The high refractive index layer is obtained by applying the above composition to the hard coat layer surface with a wet film thickness of 0.1 to 100 μm using a gravure coater, dip coater, reverse coater, wire bar coater, die coater, spray coating, ink jet coating or the like. After coating, it is dried by heating, and cured as necessary. The content described in the low refractive index layer can be used in the curing step. The dry film thickness is adjusted to the above film thickness by adjusting the solid content concentration of the coating composition.

〈導電性層〉
導電性層は透明フィルム基材上に設けることができ、例えば、ハードコート層と反射防止層との間、または該反射防止層が設けられた側とは反対の面の透明フィルム上に塗設することができる。
<Conductive layer>
The conductive layer can be provided on the transparent film substrate. For example, the conductive layer is provided between the hard coat layer and the antireflection layer or on the transparent film on the side opposite to the side on which the antireflection layer is provided. can do.

導電性層は、第1保護フィルムを取り扱いの際に帯電するのを防ぐ機能を付与するものであり、具体的には、ハードコート層に前述したπ共役系導電性ポリマー、イオン性高分子化合物、金属酸化物等が好ましく用いられる。   The conductive layer imparts a function of preventing the first protective film from being charged during handling. Specifically, the π-conjugated conductive polymer and ionic polymer compound described above are applied to the hard coat layer. A metal oxide or the like is preferably used.

導電性層の表面比抵抗は1011Ω/□(25℃、55%RH)以下に調整されることが好ましく、更に好ましくは、1010Ω/□(25℃、55%RH)以下であり、特に好ましくは、10Ω/□(25℃、55%RH)以下である。 The surface specific resistance of the conductive layer is preferably adjusted to 10 11 Ω / □ (25 ° C., 55% RH) or less, more preferably 10 10 Ω / □ (25 ° C., 55% RH) or less. Particularly preferably, it is 10 9 Ω / □ (25 ° C., 55% RH) or less.

ここで、表面比抵抗値の測定の詳細は実施例に記載するが、試料を25℃、55%RHの条件にて24時間調湿し、川口電機株式会社製テラオームメーターモデルVE−30を用いて測定する。   Here, although details of the measurement of the surface specific resistance value are described in the Examples, the sample was conditioned for 24 hours under the conditions of 25 ° C. and 55% RH, and a terraohm meter model VE-30 manufactured by Kawaguchi Electric Co., Ltd. was used. Use to measure.

導電性層上には、更にオーバーコート層を最表面層として設けることもあるが、表面比抵抗値の測定は、導電性層が設けられている側の最表面層における表面比抵抗値を実質的に導電性層の表面比抵抗値として定義する。   An overcoat layer may be further provided on the conductive layer as the outermost surface layer, but the surface specific resistance value is measured by measuring the surface specific resistance value on the outermost surface layer on the side where the conductive layer is provided. It is defined as the surface specific resistance value of the conductive layer.

更に、イオン性高分子化合物としては、特公昭49−23828号、同49−23827号、同47−28937号にみられるようなアニオン性高分子化合物;特公昭55−734号、特開昭50−54672号、特公昭59−14735号、同57−18175号、同57−18176号、同57−56059号などにみられるような、主鎖中に解離基をもつアイオネン型ポリマー;特公昭53−13223号、同57−15376号、特公昭53−45231号、同55−145783号、同55−65950号、同55−67746号、同57−11342号、同57−19735号、特公昭58−56858号、特開昭61−27853、同62−9346にみられるような、側鎖中にカチオン性解離基をもつカチオン性ペンダント型ポリマー;等を挙げることができる。中でも、分子架橋を有する4級アンモニウムカチオンポリマーが特に好ましく、ダイオキシンの発生防止等環境安全性の観点から、塩素イオンを含まず、かつ、分子架橋を有する4級アンモニウムカチオンポリマーが特に好ましく用いられる。   Furthermore, examples of the ionic polymer compound include anionic polymer compounds such as those described in JP-B-49-23828, JP-A-49-23827, and JP-A-47-28937; JP-B-55-734, JP-A-50 Ionene type polymers having a dissociation group in the main chain as seen in JP-B-54672, JP-B-59-14735, JP-A-57-18175, JP-A-57-18176, JP-A-57-56059, etc .; No. -13223, No. 57-15376, No. 53-45231, No. 55-145578, No. 55-65950, No. 55-67746, No. 57-11342, No. 57-19735, No. 58 Cationic pendant having a cationic dissociation group in the side chain as seen in JP-A-56858, JP-A-61-27853, and 62-9346 Polymers; and the like. Among them, a quaternary ammonium cationic polymer having molecular crosslinking is particularly preferable, and a quaternary ammonium cationic polymer not containing chlorine ions and having molecular crosslinking is particularly preferably used from the viewpoint of environmental safety such as prevention of dioxin generation.

イオン性高分子化合物は、これを単独で用いてもよいし、或いは数種類のイオン性高分子化合物を組み合わせて使用してもよい。イオン性高分子化合物の樹脂フィルム中の含有量は、0.02g〜1.0g/mが好ましく、特に好ましくは、0.02g〜0.5g/mである。 The ionic polymer compound may be used alone, or several types of ionic polymer compounds may be used in combination. The content of the resin film of the ionic polymer compound is preferably 0.02g~1.0g / m 2, particularly preferably from 0.02g~0.5g / m 2.

更に、導電性層には、微粒子を添加してもよい。例えば、シリカ、コロイダルシリカ、アルミナ、アルミナゾル、カオリン、タルク、マイカ、炭酸カルシウム等を構成成分として含有する微粒子を挙げることができる。   Further, fine particles may be added to the conductive layer. Examples thereof include fine particles containing silica, colloidal silica, alumina, alumina sol, kaolin, talc, mica, calcium carbonate and the like as constituent components.

上記記載の微粒子の平均粒径は、0.01μm〜10μmが好ましく、より好ましくは0.01μm〜5μm、また添加量は、塗布剤中の固形分に対して質量比で0.05部〜10部が好ましく、特に好ましいのは0.1部〜5部である。   The average particle diameter of the fine particles described above is preferably 0.01 μm to 10 μm, more preferably 0.01 μm to 5 μm, and the addition amount is 0.05 part to 10 parts by mass with respect to the solid content in the coating agent. Parts are preferred, with 0.1 to 5 parts being particularly preferred.

また、導電性層が十分な帯電防止効果を示し、かつ、オーバーコート層との易接着性を保持するためには、セルロースエステル系樹脂またはアクリル系樹脂を含有することが好ましい。   Moreover, in order for a conductive layer to show sufficient antistatic effect and to maintain easy adhesion with an overcoat layer, it is preferable to contain a cellulose ester resin or an acrylic resin.

セルロースエステル系樹脂としては、例えばセルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、またはセルロースナイトレート等のセルロース誘導体が挙げられる。   Examples of the cellulose ester resin include cellulose derivatives such as cellulose diacetate, cellulose triacetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and cellulose nitrate.

また、アクリル系樹脂としては、例えば、アクリペットMD、VH、MF、V(三菱レイヨン(株)製)、ハイパールM−4003、M−4005、M−4006、M−4202、M−5000、M−5001、M−4501(根上工業株式会社製)、ダイヤナールBR−50、BR−52、BR−53、BR−60、BR−64、BR−73、BR−75、BR−77、BR−79、BR−80、BR−82、BR−83、BR−85、BR−87、BR−88、BR−90、BR−93、BR−95、BR−100、BR−101、BR−102、BR−105、BR−106、BR−107、BR−108、BR−112、BR−113、BR−115、BR−116、BR−117、BR−118等(三菱レイヨン(株)製)のアクリル及びメタクリル系モノマーを原料として製造した各種ホモポリマー並びにコポリマーなどが好ましく用いられる。   Examples of acrylic resins include Acrypet MD, VH, MF, V (manufactured by Mitsubishi Rayon Co., Ltd.), Hyperl M4003, M-4005, M-4006, M-4202, M-5000, M -5001, M-4501 (manufactured by Negami Kogyo Co., Ltd.), Dialnal BR-50, BR-52, BR-53, BR-60, BR-64, BR-73, BR-75, BR-77, BR- 79, BR-80, BR-82, BR-83, BR-85, BR-87, BR-88, BR-90, BR-93, BR-95, BR-100, BR-101, BR-102, BR-105, BR-106, BR-107, BR-108, BR-112, BR-113, BR-115, BR-116, BR-117, BR-118, etc. (manufactured by Mitsubishi Rayon Co., Ltd.) Various homopolymers and copolymers to produce Le and methacrylic monomer as a raw material is preferably used.

ここで使用する樹脂は、導電性層で使用している樹脂全体の60質量%以上、更に好ましくは80質量%以上であることが好ましく、必要に応じて活性光線硬化樹脂或いは熱硬化樹脂を添加することもできる。これらの樹脂はバインダーとして下記のような溶剤に溶解した状態で塗設される。   The resin used here is preferably 60% by mass or more, more preferably 80% by mass or more of the total resin used in the conductive layer, and an actinic ray curable resin or thermosetting resin is added as necessary. You can also These resins are coated as a binder in a state dissolved in the following solvent.

導電性層を塗設するための塗布組成物には、次の溶剤が好ましく用いられる。溶剤としては、炭化水素、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒(メチレンクロライド)を適宜混合して使用することができるが特にこれらに限定されるものではない。   For the coating composition for coating the conductive layer, the following solvents are preferably used. As the solvent, hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents (methylene chloride) can be appropriately mixed and used, but are not particularly limited thereto.

上記炭化水素類としては、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン等が挙げられ、アルコール類としては、メタノール、エタノール、n−プロピルアルコール、iso−プロピルアルコール、n−ブタノール、2−ブタノール、tert−ブタノール、ペンタノール、2−メチル−2−ブタノール、シクロヘキサノール等が挙げられ、ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等が挙げられ、エステル類としては、蟻酸メチル、蟻酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸アミル、乳酸エチル、乳酸メチル等が挙げられ、グリコールエーテル(C1〜C4)類としては、メチルセルソルブ、エチルセルソルブ、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ−n−プロピルエーテル、プロピレングリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル、またはプロピレングリコールモノ(C1〜C4)アルキルエーテルエステル類としては、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、その他の溶媒としてメチレンクロライド、N−メチルピロリドンなどが挙げられる。特にこれらに限定されるものではないが、これらを適宜混合した溶媒も好ましく用いられる。   Examples of the hydrocarbons include benzene, toluene, xylene, hexane, cyclohexane and the like, and examples of alcohols include methanol, ethanol, n-propyl alcohol, iso-propyl alcohol, n-butanol, 2-butanol, tert- Examples include butanol, pentanol, 2-methyl-2-butanol, and cyclohexanol. Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Examples of esters include methyl formate, ethyl formate, Examples thereof include methyl acetate, ethyl acetate, isopropyl acetate, amyl acetate, ethyl lactate, and methyl lactate. Examples of glycol ethers (C1 to C4) include methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ester. As terrestrial (PGME), propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol monoisopropyl ether, propylene glycol monobutyl ether, or propylene glycol mono (C1-C4) alkyl ether esters, propylene glycol monomethyl Examples of ether acetate, propylene glycol monoethyl ether acetate, and other solvents include methylene chloride and N-methylpyrrolidone. Although not particularly limited to these, a solvent in which these are appropriately mixed is also preferably used.

導電性層塗布組成物の塗布方法としては、グラビアコータ、ディップコータ、ワイヤーバーコータ、リバースコータ、押し出しコータ等を用いて、塗布液膜厚(ウェット膜厚ということもある)を1〜100μmとすることが好ましく、特に5〜30μmが好ましい。   As a coating method of the conductive layer coating composition, using a gravure coater, dip coater, wire bar coater, reverse coater, extrusion coater, etc., the coating solution film thickness (sometimes referred to as wet film thickness) is 1 to 100 μm. In particular, 5 to 30 μm is preferable.

〈バックコート層〉
ハードコート層を設けた側と反対側の面にバックコート層を設けることが好ましい。バックコート層は、ハードコート層やその他の層を設けることで生じるカールを矯正するために設けられる。即ち、バックコート層を設けた面を内側にして丸まろうとする性質を持たせることにより、カールの度合いをバランスさせることができる。なお、バックコート層はブロッキング防止層を兼ねて塗設されることが好ましいが、その場合、バックコート層塗布組成物には、ブロッキング防止機能を持たせるために微粒子が添加されることが好ましい。
<Back coat layer>
It is preferable to provide a backcoat layer on the surface opposite to the side on which the hardcoat layer is provided. The back coat layer is provided in order to correct curling caused by providing a hard coat layer or other layers. That is, the degree of curling can be balanced by imparting the property of being rounded with the surface on which the backcoat layer is provided facing inward. The back coat layer is preferably applied also as an anti-blocking layer. In this case, it is preferable that fine particles are added to the back coat layer coating composition in order to provide an anti-blocking function.

バックコート層に添加される微粒子としては無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、酸化錫、酸化インジウム、酸化亜鉛、ITO、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。   As fine particles added to the back coat layer, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, tin oxide, and oxidation. Mention may be made of indium, zinc oxide, ITO, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate.

これらの微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。ポリマーの例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。   These fine particles are commercially available under the trade names of, for example, Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, and TT600 (manufactured by Nippon Aerosil Co., Ltd.). . Zirconium oxide fine particles are commercially available, for example, under the trade names Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used. Examples of the polymer include silicone resin, fluororesin, and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.

これらの中でもアエロジル200V、アエロジルR972Vがヘイズを低く保ちながら、ブロッキング防止効果が大きいため特に好ましく用いられる。本発明のハードコートフィルムは、活性光線硬化樹脂層の裏面側の動摩擦係数が0.9以下、特に0.1〜0.9であることが好ましい。   Among these, Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large anti-blocking effect while keeping haze low. In the hard coat film of the present invention, the dynamic friction coefficient on the back side of the actinic ray curable resin layer is preferably 0.9 or less, particularly preferably 0.1 to 0.9.

バックコート層に含まれる微粒子は、バインダーに対して0.1〜50質量%含有されることが好ましく、0.1〜10質量%であることがより好ましい。バックコート層を設けた場合のヘイズの増加は1%以下であることが好ましく、0.5%以下であることがより好ましく、特に0.0〜0.1%であることが好ましい。   The fine particles contained in the backcoat layer are preferably contained in an amount of 0.1 to 50% by mass, more preferably 0.1 to 10% by mass with respect to the binder. The increase in haze when a backcoat layer is provided is preferably 1% or less, more preferably 0.5% or less, and particularly preferably 0.0 to 0.1%.

バックコート層の塗布に用いられる溶媒としては、例えば、ジオキサン、アセトン、メチルエチルケトン、メチルイソブチルケトン、N,N−ジメチルホルムアミド、酢酸メチル、酢酸エチル、トリクロロエチレン、メチレンクロライド、エチレンクロライド、テトラクロロエタン、トリクロロエタン、クロロホルム、水、メタノール、エタノール、n−プロピルアルコール、i−プロピルアルコール、n−ブタノール、シクロヘキサノン、シクロヘキサノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、または炭化水素類(トルエン、キシレン)等があげられ、適宜組み合わされて用いられる。   Examples of the solvent used for coating the backcoat layer include dioxane, acetone, methyl ethyl ketone, methyl isobutyl ketone, N, N-dimethylformamide, methyl acetate, ethyl acetate, trichloroethylene, methylene chloride, ethylene chloride, tetrachloroethane, trichloroethane, Chloroform, water, methanol, ethanol, n-propyl alcohol, i-propyl alcohol, n-butanol, cyclohexanone, cyclohexanol, propylene glycol monomethyl ether, propylene glycol monoethyl ether, or hydrocarbons (toluene, xylene) Are used in appropriate combinations.

これらの塗布組成物をグラビアコータ、ディップコータ、リバースコータ、ワイヤーバーコータ、ダイコータ、またはスプレー塗布、インクジェット塗布等を用いてハードコートフィルムの表面にウェット膜厚1〜100μmで塗布するのが好ましいが、特に5〜30μmであることが好ましい。   It is preferable to apply these coating compositions on the surface of the hard coat film by using a gravure coater, dip coater, reverse coater, wire bar coater, die coater, spray coating, ink jet coating or the like with a wet film thickness of 1 to 100 μm. In particular, the thickness is preferably 5 to 30 μm.

バックコート層のバインダーとして用いられる樹脂としては、例えば塩化ビニル−酢酸ビニル共重合体、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニルとビニルアルコールの共重合体、部分加水分解した塩化ビニル−酢酸ビニル共重合体、塩化ビニル−塩化ビニリデン共重合体、塩化ビニル−アクリロニトリル共重合体、エチレン−ビニルアルコール共重合体、塩素化ポリ塩化ビニル、エチレン−塩化ビニル共重合体、エチレン−酢酸ビニル共重合体等のビニル系重合体または共重合体、ニトロセルロース、セルロースアセテートプロピオネート(好ましくはアセチル基置換度1.8〜2.3、プロピオニル基置換度0.1〜1.0)、ジアセチルセルロース、セルロースアセテートブチレート樹脂等のセルロース誘導体、マレイン酸及び/またはアクリル酸の共重合体、アクリル酸エステル共重合体、アクリロニトリル−スチレン共重合体、塩素化ポリエチレン、アクリロニトリル−塩素化ポリエチレン−スチレン共重合体、メチルメタクリレート−ブタジエン−スチレン共重合体、アクリル樹脂、ポリビニルアルコール樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、ウレタン樹脂、ポリエステルポリウレタン樹脂、ポリエーテルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、アミノ樹脂、スチレン−ブタジエン樹脂、ブタジエン−アクリロニトリル樹脂等のゴム系樹脂、シリコーン系樹脂、フッ素系樹脂等を挙げることができるが、これらに限定されるものではない。アクリル樹脂としては、導電層に前述した化合物を用いることが出来る。   Examples of the resin used as the binder of the backcoat layer include vinyl chloride-vinyl acetate copolymer, vinyl chloride resin, vinyl acetate resin, vinyl acetate-vinyl alcohol copolymer, partially hydrolyzed vinyl chloride-vinyl acetate copolymer. Polymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, ethylene-vinyl alcohol copolymer, chlorinated polyvinyl chloride, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate copolymer, etc. Vinyl polymer or copolymer, nitrocellulose, cellulose acetate propionate (preferably acetyl group substitution degree 1.8-2.3, propionyl group substitution degree 0.1-1.0), diacetyl cellulose, cellulose Cellulose derivatives such as acetate butyrate resin, maleic acid and / or Or acrylic acid copolymer, acrylic ester copolymer, acrylonitrile-styrene copolymer, chlorinated polyethylene, acrylonitrile-chlorinated polyethylene-styrene copolymer, methyl methacrylate-butadiene-styrene copolymer, acrylic resin , Polyvinyl alcohol resin, polyvinyl acetal resin, polyvinyl butyral resin, urethane resin, polyester polyurethane resin, polyether polyurethane resin, polycarbonate polyurethane resin, polyester resin, polyether resin, polyamide resin, amino resin, styrene-butadiene resin, butadiene-acrylonitrile Examples thereof include, but are not limited to, rubber resins such as resins, silicone resins, fluorine resins, and the like. As the acrylic resin, the above-described compounds can be used for the conductive layer.

バインダーとして用いられる樹脂としてはセルロースジアセテート、セルロースアセテートプロヒオネートなどのアセチル化セルロースとアクリル樹脂のブレンド物を用いることが好ましく、アクリル樹脂からなる微粒子を用いて、微粒子とバインダーとの屈折率差を0〜0.02未満とすることで透明性の高いバックコート層とすることができる。   As the resin used as the binder, it is preferable to use a blend of acetylated cellulose and acrylic resin such as cellulose diacetate and cellulose acetate prothionate, and the refractive index difference between the fine particles and the binder using fine particles made of acrylic resin. By setting the value to less than 0 to 0.02, a highly transparent back coat layer can be obtained.

バックコート層を塗設する順番は、ハードコート層を塗設する前でも後でも構わないが、バックコート層がブロッキング防止層を兼ねる場合は先に塗設することが望ましい。または2回以上に分けてバックコート層を塗布することもできる。また、バックコート層は偏光子との接着性を改善するための易接着層を兼ねることも好ましい。   The order in which the backcoat layer is applied may be before or after the hardcoat layer is applied, but when the backcoat layer also serves as an anti-blocking layer, it is preferably applied first. Alternatively, the backcoat layer can be applied in two or more steps. Moreover, it is also preferable that the backcoat layer also serves as an easy-adhesion layer for improving the adhesion with the polarizer.

(反射防止層の反射率)
反射防止層の反射率は、分光光度計、分光測色計により測定を行うことができる。その際、サンプルの測定側の裏面を粗面化処理した後、黒色スプレー、黒色アクリル板の貼り付け等して光吸収処理を行ってから、可視光領域(400〜700nm)の反射光を測定する。
(Reflectivity of antireflection layer)
The reflectance of the antireflection layer can be measured with a spectrophotometer or a spectrocolorimeter. At that time, after the surface on the measurement side of the sample is roughened, the light absorption treatment is performed by attaching a black spray, a black acrylic plate, etc., and then the reflected light in the visible light region (400 to 700 nm) is measured. To do.

反射率は低いほど好ましいが、可視光領域の波長における平均値が2.0%以下であることが、LCD等の画像表示装置の最表面に用いた場合の外光反射防止機能が好適に得られる点から好ましい。最低反射率は0.8%以下であることが好ましい。   The lower the reflectivity, the better. However, the average value in the visible light region wavelength is 2.0% or less, and an external light antireflection function when used on the outermost surface of an image display device such as an LCD is suitably obtained. It is preferable from the point which is made. The minimum reflectance is preferably 0.8% or less.

また、可視光の波長領域において平坦な形状の反射スペクトルを有することが好ましい。また、反射防止処理を施した表示装置表面の反射色相は、反射防止膜の設計上可視光領域において短波長域や長波長域の反射率が高くなることから赤や青に色づくことが多いが、反射光の色味は用途によって要望が異なり、薄型テレビ等の最表面に使用する場合にはニュートラルな色調が好まれる。この場合、一般に好まれる反射色相範囲は、XYZ表色系(CIE1931表色系)上で0.17≦x≦0.27、0.07≦y≦0.17である。また、xy平面上の(x、y)=(0.31、0.31)の距離Δxyが、0.05以下となる範囲がより色味がないニュートラルに近いため好ましく、0.03以下が更に好ましい。色調は、各層の屈折率より、反射率、反射光の色味を考慮して膜厚を常法に従って計算できる。
<一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂>
透明フィルムを構成する本発明の特徴の一つである一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂について説明する。
Moreover, it is preferable to have a flat reflection spectrum in the wavelength region of visible light. In addition, the reflection hue on the surface of the display device that has been subjected to the antireflection treatment is often colored red or blue because the reflectance in the short wavelength region and the long wavelength region is high in the visible light region due to the design of the antireflection film. The color tone of the reflected light varies depending on the application, and when used on the outermost surface of a flat-screen television or the like, a neutral color tone is preferred. In this case, generally preferred reflection hue ranges are 0.17 ≦ x ≦ 0.27 and 0.07 ≦ y ≦ 0.17 on the XYZ color system (CIE1931 color system). Further, the range in which the distance Δxy of (x, y) = (0.31, 0.31) on the xy plane is 0.05 or less is preferable because it is closer to neutral with no color, and 0.03 or less is preferable. Further preferred. The color tone can be calculated from the refractive index of each layer in accordance with a conventional method in consideration of the reflectance and the color of reflected light.
<Cellulose ester resin having at least one repeating unit represented by formula (1) or (2)>
The cellulose ester resin having at least one repeating unit represented by formula (1) or (2), which is one of the features of the present invention constituting the transparent film, will be described.

該特定構造のセルロースエステル樹脂をフィルム基材に用いることで、フィルム変形が起こりにくく、平滑性が維持されるため、上記した高硬度ハードコート層と組み合わせる事で目的効果が発揮される。下記一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂について詳細に説明する。   By using the cellulose ester resin having the specific structure as a film base material, film deformation hardly occurs and smoothness is maintained. Therefore, the desired effect is exhibited by combining with the above-described high hardness hard coat layer. The cellulose ester resin having at least one repeating unit represented by the following general formula (1) or (2) will be described in detail.

Figure 2010139941
Figure 2010139941

[式中、A、Bは、炭素数1〜12の2価の炭化水素基または、水酸基で置換された炭素数1〜12の2価の炭化水素基を表す。但しAとBは同じであっても異なっていてもよい。]
一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂である。
[In formula, A and B represent a C1-C12 bivalent hydrocarbon group or a C1-C12 bivalent hydrocarbon group substituted by the hydroxyl group. However, A and B may be the same or different. ]
It is a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2).

以下にAの具体例を挙げる。
A−1 −CHCH
A−2 −CHCHCH
A−3 −CH=CH−
Specific examples of A are given below.
A-1-CH 2 CH 2-
A-2 -CH 2 CH 2 CH 2 -
A-3 -CH = CH-

Figure 2010139941
Figure 2010139941

A−6 −CHC(CH
以下Bの具体例を挙げる。
B−1 −CHCH
B−2 −CHCHCHCH
A-6 —CH 2 C (CH 3 ) 2
Specific examples of B are given below.
B-1 -CH 2 CH 2 -
B-2-CH 2 CH 2 CH 2 CH 2-

Figure 2010139941
Figure 2010139941

一般式(1)または(2)で表される繰り返し単位を有するセルロースエステル樹脂は、未置換の水酸基を有するセルロース、またはアセチル基、プロピオニル基、ブチリル基、フタリル基等のアシル基によってすでに一部の水酸基が置換されているセルロースエステルの存在下で、多塩基酸またはその無水物と多価アルコールとのエステル化反応、またはL−ラクチド、D−ラクチドの開環重合、L−乳酸、D−乳酸の自己縮合を行わせることによって得ることができる。   The cellulose ester resin having a repeating unit represented by the general formula (1) or (2) is already partly by cellulose having an unsubstituted hydroxyl group or an acyl group such as an acetyl group, a propionyl group, a butyryl group, or a phthalyl group. Esterification reaction of polybasic acid or its anhydride with polyhydric alcohol or ring-opening polymerization of L-lactide, D-lactide, L-lactic acid, D- It can be obtained by carrying out self-condensation of lactic acid.

エステル化反応に用いる多塩基酸無水物として、無水マレイン酸、無水フタル酸、無水フマル酸が挙げられるが特に限定されない。   Examples of the polybasic acid anhydride used in the esterification reaction include, but are not limited to, maleic anhydride, phthalic anhydride, and fumaric anhydride.

エステル化反応に用いることができる多価アルコールとして、グリセリン、エチレングリコール、プロピレングリコールなどが挙げられるが特に限定されない。   Examples of the polyhydric alcohol that can be used in the esterification reaction include glycerin, ethylene glycol, and propylene glycol, but are not particularly limited.

エステル化反応に用いる触媒としては、無触媒で反応をすることもできるが、公知のルイス酸触媒などを用いることができる。使用できる触媒としてはスズ、亜鉛、チタン、ビスマス、ジルコニウム、ゲルマニウム、アンチモン、ナトリウム、カリウム、アルミニウムなどの金属およびその誘導体が挙げられ、特に誘導体については金属有機化合物、炭酸塩、酸化物、ハロゲン化物が好ましい。具体的にはオクチルスズ、塩化スズ、塩化亜鉛、塩化チタン、アルコキシチタン、酸化ゲルマニウム、酸化ジルコニウム、三酸化アンチモン、アルキルアルミニウムなどを例示することができる。また、触媒としてパラトルエンスルホン酸に代表される酸触媒を用いることもできる。また、カルボン酸とアルコールとの脱水反応を促進するためにカルボジイミド、ジメチルアミノピリジンなど公知の化合物を添加してもよい。   As the catalyst used for the esterification reaction, the reaction can be carried out without a catalyst, but a known Lewis acid catalyst or the like can be used. Examples of catalysts that can be used include metals such as tin, zinc, titanium, bismuth, zirconium, germanium, antimony, sodium, potassium, and aluminum, and derivatives thereof. Particularly, the derivatives include metal organic compounds, carbonates, oxides, halides. Is preferred. Specific examples include octyl tin, tin chloride, zinc chloride, titanium chloride, alkoxy titanium, germanium oxide, zirconium oxide, antimony trioxide, and alkyl aluminum. Moreover, an acid catalyst typified by p-toluenesulfonic acid can also be used as the catalyst. Moreover, in order to accelerate | stimulate the dehydration reaction of carboxylic acid and alcohol, you may add well-known compounds, such as carbodiimide and dimethylaminopyridine.

係る反応は、セルロースエステルおよびその他の反応させる化合物を溶解させることが可能な有機溶媒中における反応によってもよいし、剪断力を付加しながら加熱攪拌が可能なバッチ式ニーダーを用いた反応によるものであってもよいし、一軸或いは二軸のエクストルーダーを用いた反応によるものであってもよい。   Such a reaction may be a reaction in an organic solvent capable of dissolving cellulose ester and other compounds to be reacted, or a reaction using a batch kneader capable of heating and stirring while adding a shearing force. It may be by reaction using a uniaxial or biaxial extruder.

一般式(1)または(2)で表される繰り返し単位は、セルロースに対して0.5〜190質量%の範囲で適宜含有させることができる。   The repeating unit represented by the general formula (1) or (2) can be appropriately contained in the range of 0.5 to 190% by mass with respect to cellulose.

該セルロースエステルの置換度は、適宜選択することができるが、2.2〜3であることが、熱可塑性、熱加工性の点から好ましい。   Although the substitution degree of this cellulose ester can be selected suitably, it is preferable that it is 2.2-3 from the point of thermoplasticity and heat workability.

一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂において、セルロースの水酸基部分の水素原子が脂肪族アシル基との脂肪酸エステルであるとき、脂肪族アシル基は炭素原子数が2〜20で具体的にはアセチル、プロピオニル、ブチリル、イソブチリル、バレリル、ピバロイル、ヘキサノイル、オクタノイル、ラウロイル、ステアロイル等が挙げられる。   In the cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2), when the hydrogen atom of the hydroxyl group of cellulose is a fatty acid ester with an aliphatic acyl group, the aliphatic acyl group is Specific examples thereof include 2 to 20 carbon atoms and include acetyl, propionyl, butyryl, isobutyryl, valeryl, pivaloyl, hexanoyl, octanoyl, lauroyl, stearoyl and the like.

一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂の重合度は、特に制限されず、例えば、粘度平均重合度で、70以上(例えば、80〜800)の範囲から選択でき、100〜500、好ましくは110〜400、さらに好ましくは120〜350程度であってもよい。   The polymerization degree of the cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2) is not particularly limited, and is, for example, a viscosity average polymerization degree of 70 or more (for example, 80 to 800). It may be selected from the range of 100 to 500, preferably 110 to 400, and more preferably about 120 to 350.

一般式(1)または(2)で表される繰り返し単位は、当該部分の数平均分子量として、例えば、80〜10000、好ましくは100〜5000、さらに好ましくは200〜2000程度、特に300〜1500、通常1000未満であってもよい。なお、当該セルロースエステルが有する繰り返し単位のみの数平均分子量は、エステル化反応する前のセルロースエステルと反応後のセルロースエステルをポリスチレン換算したGPCデータまたは、H−NMRにより比較して求めた。 The repeating unit represented by the general formula (1) or (2) is, for example, 80 to 10,000, preferably 100 to 5000, more preferably about 200 to 2000, particularly 300 to 1500, as the number average molecular weight of the portion. Usually, it may be less than 1000. In addition, the number average molecular weight of only the repeating unit which the said cellulose ester has was calculated | required by comparing with the GPC data which converted the cellulose ester before esterification reaction, and the cellulose ester after reaction into polystyrene, or < 1 > H-NMR.

一般式(1)または(2)で表される繰り返し単位を、セルロースもしくはセルロースエステルに導入する際に副反応として、一般式(1)または(2)で表される繰り返し単位を有するオリゴマー、ポリエステルが生成することあるが、これらの化合物は可塑剤として作用することから精製により必ずしも完全に除去する必要はない。含有量としてはセルロースエステルに対して30質量%以下であれば、セルロースエステルの性質を大きく変化させることは少ない。可塑性の点から、好ましくは0.5〜20質量%である。これらのオリゴマー、ポリエステルの数平均分子量は、300〜10000であり、可塑性の点から好ましくは500〜8000である。   An oligomer or polyester having a repeating unit represented by formula (1) or (2) as a side reaction when the repeating unit represented by formula (1) or (2) is introduced into cellulose or cellulose ester However, since these compounds act as plasticizers, they need not be completely removed by purification. If content is 30 mass% or less with respect to a cellulose ester, there will be little change in the property of a cellulose ester. From the viewpoint of plasticity, it is preferably 0.5 to 20% by mass. These oligomers and polyesters have a number average molecular weight of 300 to 10,000, and preferably 500 to 8,000 from the viewpoint of plasticity.

また、特開2008−197561に記載のグラフト共重合した変性グルカン誘導体(変性セルロース誘導体)も本発明の一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂として用いることが出来る。   Further, a graft copolymerized modified glucan derivative (modified cellulose derivative) described in JP-A-2008-197561 is also a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2) of the present invention. Can be used.

また、一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂を含有する透明フィルム(以下、簡単に一般式(1)または(2)で表される繰り返し単位を有するセルロースエステルフィルム、或いは単にセルロースエステルフィルムとも言う)は、下記の特性を有することが好ましい。   Further, a transparent film containing a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2) (hereinafter simply referred to as a repeating unit represented by the general formula (1) or (2)) It is preferable that the cellulose ester film having) or simply the cellulose ester film) has the following characteristics.

透過率:80%以上
0nm≦Ro≦330nm
−100nm≦Rt≦340nm
なお、Ro=(nx−ny)×d
Rt=((nx+ny)/2−nz)×d
(式中、nxはセルロースエステルフィルムの面内の遅相軸方向の屈折率を、nyは面内で遅相軸に直交する方向の屈折率を、nzは厚み方向の屈折率を、dはセルロースエステルフィルムの厚み(nm)をそれぞれ表す。屈折率の測定波長は590nmである。)
上記屈折率は、例えばKOBRA−21ADH(王子計測機器(株))を用いて、23℃、55%RHの環境下で、波長が590nmで求めることができる。また含有溶媒量は、0.01質量%以下であることが好ましい。
Transmittance: 80% or more
0nm ≦ Ro ≦ 330nm
−100 nm ≦ Rt ≦ 340 nm
Ro = (nx−ny) × d
Rt = ((nx + ny) / 2−nz) × d
(Where nx is the refractive index in the slow axis direction in the plane of the cellulose ester film, ny is the refractive index in the direction perpendicular to the slow axis in the plane, nz is the refractive index in the thickness direction, and d is the refractive index in the thickness direction) (Represents the thickness (nm) of the cellulose ester film. The refractive index is measured at 590 nm.)
The refractive index can be obtained at a wavelength of 590 nm under an environment of 23 ° C. and 55% RH using, for example, KOBRA-21ADH (Oji Scientific Instruments). The content of the solvent is preferably 0.01% by mass or less.

また、前記セルロースエステルフィルムの膜厚は100μm以下が、光学フィルムとして用いる場合の取り扱い性や、液晶表示パネルを薄膜化できる点で好ましい。   In addition, the film thickness of the cellulose ester film is preferably 100 μm or less from the viewpoint of handleability when used as an optical film and the ability to reduce the thickness of a liquid crystal display panel.

また、特に前記セルロースエステルフィルムの膜厚が、30μm以下の薄膜フィルムにおいて、本発明の効果が得られやすく、実用上から10μm以上が好ましい。   In particular, in the case of a thin film having a cellulose ester film thickness of 30 μm or less, the effects of the present invention can be easily obtained, and it is preferably 10 μm or more from the practical point of view.

また前記セルロースエステルフィルムは、長さ100m〜9000m、更に好ましくは、1000m〜7000mであり、幅は1.2m以上が好ましく、更に好ましくは1.4〜4mである。また前記セルロースエステルフィルムはロール状が好ましい。フィルムの長さ及び幅を前記範囲とし、ロール状で取り扱うことで、取り扱い性や生産性に優れ、本発明の目的効果も発揮されやすい。   The cellulose ester film has a length of 100 m to 9000 m, more preferably 1000 m to 7000 m, and a width of 1.2 m or more, and more preferably 1.4 to 4 m. The cellulose ester film is preferably roll-shaped. By making the length and width of the film within the above ranges and handling them in a roll shape, it is excellent in handleability and productivity, and the object effects of the present invention are easily exhibited.

一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂を含有するフィルムは、輝点異物が少ないものであることが好ましい。輝点異物は、輝点の直径0.01mm以上が200個/cm以下であることが好ましく、さらに100個/cm以下であることが好ましく、50個/cm以下であることが好ましく、30個/cm以下であることが好ましく、10個/cm以下であることが好ましいが、皆無であることが最も好ましい。 The film containing a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2) preferably has few bright spot foreign substances. The bright spot foreign matter preferably has a bright spot diameter of 0.01 mm or more and 200 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, and preferably 50 pieces / cm 2 or less. 30 / cm 2 or less, preferably 10 / cm 2 or less, and most preferably none.

また、0.005〜0.01mm以下の輝点についても200個/cm以下であることが好ましく、さらに100個/cm以下であることが好ましく、50個/cm以下であることが好ましく、30個/cm以下であることが好ましく、10個/cm以下であることが好ましいが、皆無であることが最も好ましい。 Moreover, it is preferable that it is 200 pieces / cm < 2 > or less also about a bright spot of 0.005-0.01 mm or less, Furthermore, it is preferable that it is 100 pieces / cm < 2 > or less, and it is 50 pieces / cm < 2 > or less. The number is preferably 30 pieces / cm 2 or less, more preferably 10 pieces / cm 2 or less, and most preferably none.

本発明では、より過酷な耐久性試験後に目的効果を発揮する点から、透明フィルムが熱可塑性アクリル樹脂を含有し、前記セルロースエステル樹脂100質量部に対して、10質量部以上で含有することが好ましい。更に好ましくは、含有前記セルロースエステル樹脂100質量部に対して、50質量部以上で含有することが好ましい。添加量の上限としては特に制限はないが、セルロース樹脂との相溶性の点から、前記セルロースエステル樹脂100質量部に対して、2000質量部以下で含有することが好ましい。また、透明フィルムの透明性を向上する点から、アクリル樹脂とセルロースエステル樹脂が相溶状態で含有される必要がある。   In the present invention, the transparent film contains a thermoplastic acrylic resin from the point of exhibiting the intended effect after a more severe durability test, and it is contained at 10 parts by mass or more with respect to 100 parts by mass of the cellulose ester resin. preferable. More preferably, it is contained at 50 parts by mass or more with respect to 100 parts by mass of the contained cellulose ester resin. Although there is no restriction | limiting in particular as an upper limit of addition amount, From a compatible point with a cellulose resin, it is preferable to contain at 2000 mass parts or less with respect to 100 mass parts of said cellulose-ester resins. Moreover, from the point which improves the transparency of a transparent film, it is necessary to contain an acrylic resin and a cellulose-ester resin in a compatible state.

熱可塑性アクリル樹脂は、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50〜99質量%、およびこれと共重合可能な他の単量体単位1〜50質量%からなるものが好ましい。共重合可能な他の単量体としては、アルキル数の炭素数が2〜18のアルキルメタクリレート、アルキル数の炭素数が1〜18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β−不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α−メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β−不飽和ニトリル、無水マレイン酸、マレイミド、N−置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは2種以上の単量体を併用して用いることができる。   The thermoplastic acrylic resin includes a methacrylic resin. Although it does not restrict | limit especially as resin, What consists of 50-99 mass% of methyl methacrylate units and 1-50 mass% of other monomer units copolymerizable with this is preferable. Other monomers that can be copolymerized include alkyl methacrylates having 2 to 18 carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, acrylic acid, methacrylic acid, and the like. Saturated acids, maleic acids, fumaric acids, unsaturated group-containing divalent carboxylic acids such as itaconic acid, aromatic vinyl compounds such as styrene and α-methylstyrene, α, β-unsaturated nitriles such as acrylonitrile and methacrylonitrile, Maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride and the like can be mentioned, and these can be used alone or in combination of two or more monomers.

これらの中でも、共重合体の耐熱分解性や流動性の観点から、メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、n−ブチルアクリレート、s−ブチルアクリレート、2−エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn−ブチルアクリレートが特に好ましく用いられる。   Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate, and the like are preferable from the viewpoint of thermal decomposition resistance and fluidity of the copolymer. n-Butyl acrylate is particularly preferably used.

熱可塑性アクリル樹脂は、本発明の目的効果が良好に発揮されることから、重量平均分子量(Mw)が80000〜500000であることが好ましく、更に好ましくは、110000〜500000の範囲内である。   The thermoplastic acrylic resin preferably exhibits a weight average molecular weight (Mw) of 80,000 to 500,000, and more preferably within a range of 110,000 to 500,000, since the objective effects of the present invention are exhibited well.

アクリル樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。測定条件は以下の通りである。   The weight average molecular weight of the acrylic resin can be measured by gel permeation chromatography. The measurement conditions are as follows.

溶媒: メチレンクロライド
カラム: Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所(株)製)
流量: 1.0ml/min
校正曲線: 標準ポリスチレンSTK standard ポリスチレン
(東ソー(株)製)Mw=2,800,000〜500迄の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Used by connecting three Showa Denko Co., Ltd.)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Sciences)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0ml / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) Mw = 2,800,000-500 calibration curves with 13 samples were used. The 13 samples are preferably used at approximately equal intervals.

アクリル樹脂の製造方法としては、特に制限は無く、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系およびアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁または乳化重合では30〜100℃、塊状または溶液重合では80〜160℃で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。   There is no restriction | limiting in particular as a manufacturing method of an acrylic resin, You may use any well-known methods, such as suspension polymerization, emulsion polymerization, block polymerization, or solution polymerization. Here, as a polymerization initiator, a normal peroxide type and an azo type can be used, and a redox type can also be used. Regarding the polymerization temperature, suspension or emulsion polymerization may be performed at 30 to 100 ° C, and bulk or solution polymerization may be performed at 80 to 160 ° C. In order to control the reduced viscosity of the obtained copolymer, polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.

また、市販品も使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80,BR83,BR85,BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。アクリル樹脂は2種以上を併用することもできる。   Commercial products can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dialal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. . Two or more acrylic resins can be used in combination.

〈アクリル粒子〉
前記透明フィルムは、フィルムの脆性に優れる点から、アクリル粒子を含有しても良い。
<Acrylic particles>
The transparent film may contain acrylic particles because the film is excellent in brittleness.

アクリル粒子とは、前記熱可塑性アクリル樹脂及び前記セルロースエステル樹脂を相溶状態で含有するフィルム基材中に粒子の状態(非相溶状態ともいう)で存在するアクリル成分を表す。   Acrylic particles represent an acrylic component present in a particle state (also referred to as an incompatible state) in a film substrate containing the thermoplastic acrylic resin and the cellulose ester resin in a compatible state.

上記アクリル粒子は、例えば、作製したフィルム基材を所定量採取し、溶媒に溶解させて攪拌し、充分に溶解・分散させたところで、アクリル粒子の平均粒子径未満の孔径を有するPTFE製のメンブレンフィルターを用いて濾過し、濾過捕集された不溶物の重さが、フィルム基材に添加したアクリル粒子の90質量%以上あることが好ましい。   The acrylic particles are obtained by, for example, collecting a predetermined amount of the prepared film base material, dissolving it in a solvent, stirring, and sufficiently dissolving and dispersing it. A PTFE membrane having a pore diameter less than the average particle diameter of the acrylic particles. It is preferable that the weight of the insoluble matter filtered and collected using a filter is 90% by mass or more of the acrylic particles added to the film substrate.

アクリル粒子は特に限定されるものではないが、2層以上の層構造を有するアクリル粒子であることが好ましく、特に下記多層構造アクリル系粒状複合体であることが好ましい。   The acrylic particles are not particularly limited, but are preferably acrylic particles having a layer structure of two or more layers, and particularly preferably the following multilayer structure acrylic granular composite.

多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層重合体、ゴム弾性を示す架橋軟質層重合体、および最外硬質層重合体が、層状に重ね合わされてなる構造を有する粒子状のアクリル系重合体を言う。   The multilayer structure acrylic granular composite is formed by laminating an innermost hard layer polymer, a cross-linked soft layer polymer exhibiting rubber elasticity, and an outermost hard layer polymer from the center to the outer periphery. This refers to a particulate acrylic polymer having a structure.

すなわち、多層構造アクリル系粒状複合体とは、中心部から外周部に向かって最内硬質層、架橋軟質層、および最外硬質層からなる多層構造アクリル系粒状複合体である。この3層コア/シェル構造の多層構造アクリル系粒状複合体が好ましく用いられる。   That is, the multilayer structure acrylic granular composite is a multilayer structure acrylic granular composite comprising an innermost hard layer, a crosslinked soft layer, and an outermost hard layer from the central portion toward the outer peripheral portion. This three-layer core / shell structure multilayer structure acrylic granular composite is preferably used.

アクリル粒子の粒子径については、特に限定されるものではないが、10nm以上、1000nm以下であることが好ましく、さらに、20nm以上、500nm以下であることがより好ましく、特に50nm以上、400nm以下であることが最も好ましい。   The particle diameter of the acrylic particles is not particularly limited, but is preferably 10 nm or more and 1000 nm or less, more preferably 20 nm or more and 500 nm or less, and particularly 50 nm or more and 400 nm or less. Most preferred.

アクリル粒子の市販品の例としては、例えば、三菱レイヨン社製“メタブレン”、鐘淵化学工業社製“カネエース”、呉羽化学工業社製“パラロイド”、ロームアンドハース社製“アクリロイド”、ガンツ化成工業社製“スタフィロイド”およびクラレ社製“パラペットSA”、メタブレンW−341(C2)(三菱レイヨン(株)製)、ケミスノーMR−2G(C3)、MS−300X(C4)(綜研化学(株)製)等を挙げることができる。   Examples of commercially available acrylic particles include “Metablene” manufactured by Mitsubishi Rayon Co., “Kaneace” manufactured by Kaneka Chemical Co., Ltd., “Paraloid” manufactured by Kureha Chemical Co., Ltd., “Acryloid” manufactured by Rohm and Haas, “STAPHYLOID” manufactured by Kogyo Co., Ltd., “Parapet SA” manufactured by Kuraray Co., Ltd., Metabrene W-341 (C2) (manufactured by Mitsubishi Rayon Co., Ltd.), Chemisnow MR-2G (C3), MS-300X (C4) (Soken Chemical ( And the like).

アクリル微粒子は、透明フィルムを構成する前記熱可塑性アクリル樹脂と前記セルロースエステル樹脂の総質量に対して、含有質量比でアクリル微粒子:熱可塑性アクリル樹脂とセルロースエステル樹脂総質量=0.5:100〜30:100の範囲で含有させることが好ましく、更に好ましくは、アクリル微粒子:アクリル樹脂とセルロースエステル樹脂の総質量=1.0:100〜15:100の範囲である。   The acrylic fine particles are acrylic fine particles: thermoplastic acrylic resin and cellulose ester resin total mass = 0.5: 100 to the total mass of the thermoplastic acrylic resin and the cellulose ester resin constituting the transparent film. It is preferable to make it contain in the range of 30: 100, More preferably, it is the range of the total mass of acrylic fine particles: acrylic resin and cellulose-ester resin = 1.0: 100-15: 100.

<添加剤>
一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂を含有するフィルムは、アクリル系重合体、及びピラノース構造またはフラノース構造の少なくとも1種を1個以上12個以下有しその構造のOH基のすべてもしくは一部をエステル化した糖エステル化合物、から選択される少なくとも一種を含有しても良い。
<Additives>
The film containing a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2) is an acrylic polymer and at least one of at least one of a pyranose structure and a furanose structure, 12 to 12 It may contain at least one selected from the following sugar ester compounds obtained by esterifying all or part of the OH groups of the structure.

〈糖エステル化合物〉
糖エステル化合物としては、グルコース、ガラクトース、マンノース、フルクトース、キシロース、アラビノース、ラクトース、スクロース、セロビオース、セロトリオース、マルトトリオース、ラフィノースなどが挙げられるが、特にフラノース構造とピラノース構造を両方有するものが好ましい。例としてはスクロースが挙げられる。
<Sugar ester compound>
Examples of the sugar ester compound include glucose, galactose, mannose, fructose, xylose, arabinose, lactose, sucrose, cellobiose, cellotriose, maltotriose, raffinose and the like, and those having both a furanose structure and a pyranose structure are particularly preferable. An example is sucrose.

糖エステル化合物は、糖化合物の有する水酸基の一部または全部がエステル化されているものまたはその混合物である。   The sugar ester compound is one in which part or all of the hydroxyl groups of the sugar compound are esterified or a mixture thereof.

糖エステル化合物は、下記一般式(A)で表されるピラノース構造またはフラノース構造の少なくとも1種を1個以上12個以下縮合した化合物である。ただし、R11〜R15、R21〜R25は、炭素数2〜22のアシル基または水素原子を、m、nはそれぞれ0〜12の整数、m+nは1〜12の整数を表す。   The sugar ester compound is a compound obtained by condensing 1 or more and 12 or less of at least one pyranose structure or furanose structure represented by the following general formula (A). However, R11-R15, R21-R25 represents a C2-C22 acyl group or a hydrogen atom, m and n represent the integer of 0-12, respectively, and m + n represents the integer of 1-12.

Figure 2010139941
Figure 2010139941

11〜R15、R21〜R25は、ベンゾイル基、水素原子であることが好ましい。ベンゾイル基はさらに置換基R26(pは0〜5)を有していてもよく、例えばアルキル基、アルケニル基、アルコキシル基、フェニル基が挙げられ、さらにこれらのアルキル基、アルケニル基、フェニル基は置換基を有していてもよい。オリゴ糖も同様な方法で製造することができる。 R 11 to R 15 and R 21 to R 25 are preferably a benzoyl group or a hydrogen atom. The benzoyl group may further have a substituent R26 (p is 0 to 5), and examples thereof include an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group. Further, these alkyl groups, alkenyl groups, and phenyl groups are It may have a substituent. Oligosaccharides can also be produced by a similar method.

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

市販品としては、例えばモノペットSB(第一工業製薬(株)製)等が挙げられる。
〈アクリル系重合体〉
アクリル系重合体を一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂を含有するフィルムに添加しても良い。なお、ここでアクリル系重合体にはメタクリル系重合体も含まれる。アクリル系重合体を含有させた場合、機能として延伸方向に対して負の複屈折性を示すことが好ましく、特に構造が限定されるものではないが、エチレン性不飽和モノマーを重合して得られた重量平均分子量が500以上30000以下である重合体であることが好ましい。重量平均分子量が500以上30000以下であるアクリル系重合体は、芳香環を側鎖に有するアクリル系重合体またはシクロヘキシル基を側鎖に有するアクリル系重合体であってもよい。
As a commercial item, monopet SB (Daiichi Kogyo Seiyaku Co., Ltd. product) etc. are mentioned, for example.
<Acrylic polymer>
An acrylic polymer may be added to a film containing a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2). Here, the acrylic polymer includes a methacrylic polymer. When an acrylic polymer is contained, it preferably exhibits negative birefringence in the stretching direction as a function, and the structure is not particularly limited, but is obtained by polymerizing an ethylenically unsaturated monomer. It is preferable that the polymer has a weight average molecular weight of 500 to 30,000. The acrylic polymer having a weight average molecular weight of 500 to 30,000 may be an acrylic polymer having an aromatic ring in the side chain or an acrylic polymer having a cyclohexyl group in the side chain.

該重合体の重量平均分子量が500以上30000以下のもので該重合体の組成を制御することにより、上記セルロースエステルと該重合体との相溶性を良好にすることができる。   By controlling the composition of the polymer so that the weight average molecular weight of the polymer is 500 or more and 30000 or less, the compatibility between the cellulose ester and the polymer can be improved.

芳香環を側鎖に有するアクリル系重合体またはシクロヘキシル基を側鎖に有するアクリル系重合体について、好ましくは重量平均分子量が500以上10000以下のものであれば、上記に加え、製膜後のセルロースエステルフィルムの透明性が優れ、透湿度も極めて低く、偏光板用保護フィルムとして優れた性能を示す。   As for the acrylic polymer having an aromatic ring in the side chain or the acrylic polymer having a cyclohexyl group in the side chain, if the weight average molecular weight is 500 or more and 10,000 or less, in addition to the above, cellulose after film formation The transparency of the ester film is excellent, the moisture permeability is extremely low, and it exhibits excellent performance as a protective film for polarizing plates.

該重合体は、重量平均分子量が500以上30000以下であるから、オリゴマーから低分子量重合体の間にあると考えられるものである。このような重合体を合成するには、通常の重合では分子量のコントロールが難しく、分子量を余り大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望ましい。   Since the polymer has a weight average molecular weight of 500 or more and 30000 or less, it is considered to be between the oligomer and the low molecular weight polymer. In order to synthesize such a polymer, it is difficult to control the molecular weight in normal polymerization, and it is desirable to use a method that can align the molecular weight as much as possible by a method that does not increase the molecular weight too much.

アクリル系重合体としては、分子内に芳香環と水酸基を有しないエチレン性不飽和モノマーXaと、分子内に芳香環を有せず、水酸基を有するエチレン性不飽和モノマーXbと、Xa、Xbを除く共重合可能なエチレン性不飽和モノマーとを共重合して得られた重量平均分子量2000以上30000以下の重合体X、または芳香環を有さないエチレン性不飽和モノマーYaと、Yaと共重合可能なエチレン性不飽和モノマーとを重合して得られた重量平均分子量500以上、3000以下の重合体Yであることが好ましい。   Examples of the acrylic polymer include an ethylenically unsaturated monomer Xa having no aromatic ring and a hydroxyl group in the molecule, an ethylenically unsaturated monomer Xb having no aromatic ring in the molecule and a hydroxyl group, and Xa and Xb. Polymer X having a weight average molecular weight of 2000 or more and 30000 or less obtained by copolymerization with a copolymerizable ethylenically unsaturated monomer, or ethylenically unsaturated monomer Ya having no aromatic ring and copolymerized with Ya The polymer Y is preferably a polymer Y having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing a possible ethylenically unsaturated monomer.

[重合体X、重合体Y]
一般式(1)または(2)で表される繰り返し単位をセルロースエステルフィルムのRoおよびRtを調整する方法としては、分子内に芳香環と水酸基を有しないエチレン性不飽和モノマーXaと、分子内に芳香環を有せず、水酸基を有するエチレン性不飽およびノマーXbとXa、Xbを除く共重合可能なエチレン性不飽和モノマーとを共重合して得られた重量平均分子量2000以上、30000以下の高分子量の重合体X、そして、より好ましくは、芳香環を有さないエチレン性不飽和モノマーYaと、Yaと共重合可能なエチレン性不飽和モノマーとを重合して得られた重量平均分子量500以上、3000以下の低分子量の重合体Yを含有することが好ましい。
[Polymer X, Polymer Y]
As a method for adjusting the Ro and Rt of the cellulose ester film with the repeating unit represented by the general formula (1) or (2), an ethylenically unsaturated monomer Xa having no aromatic ring and no hydroxyl group in the molecule, Weight average molecular weight 2000 or more and 30000 or less obtained by copolymerizing ethylenically unsaturated and nomeric Xb having a hydroxyl group and copolymerizable ethylenically unsaturated monomer excluding Xa and Xb High molecular weight polymer X, and more preferably, a weight average molecular weight obtained by polymerizing an ethylenically unsaturated monomer Ya having no aromatic ring and an ethylenically unsaturated monomer copolymerizable with Ya It is preferable to contain a polymer Y having a low molecular weight of 500 or more and 3000 or less.

重合体Xは、分子内に芳香環と水酸基を有しないエチレン性不飽和モノマーXaと分子内に芳香環を有せず、水酸基を有するエチレン性不飽和モノマーXbとXa、Xbを除く共重合可能なエチレン性不飽和モノマーとを共重合して得られた重量平均分子量2000以上、30000以下の重合体である。   Polymer X can be copolymerized with ethylenically unsaturated monomer Xa having no aromatic ring and hydroxyl group in the molecule and ethylenically unsaturated monomer Xb having no aromatic ring in the molecule and having a hydroxyl group, excluding Xa and Xb It is a polymer having a weight average molecular weight of 2000 or more and 30000 or less obtained by copolymerization with an ethylenically unsaturated monomer.

好ましくは、Xaは分子内に芳香環と水酸基を有しないアクリルまたはメタクリルモノマー、Xbは分子内に芳香環を有せず水酸基を有するアクリルまたはメタクリルモノマーである。   Preferably, Xa is an acrylic or methacrylic monomer having no aromatic ring and hydroxyl group in the molecule, and Xb is an acrylic or methacrylic monomer having no aromatic ring and having a hydroxyl group in the molecule.

重合体Xは、下記一般式(X)で表される。   The polymer X is represented by the following general formula (X).

一般式(X)
−[Xa]m−[Xb]n−[Xc]p−
上記一般式(X)において、Xaは分子内に芳香環と水酸基とを有しないエチレン性不飽和モノマーを表し、Xbは分子内に芳香環を有せず、水酸基を有するエチレン性不飽和モノマーを表し、XcはXa、Xbを除く共重合可能なエチレン性不飽和モノマーを表す。m、nおよびpは、各々モル組成比を表す。ただし、m≠0、m+n+p=100である。
Formula (X)
-[Xa] m- [Xb] n- [Xc] p-
In the general formula (X), Xa represents an ethylenically unsaturated monomer having no aromatic ring and hydroxyl group in the molecule, and Xb represents an ethylenically unsaturated monomer having no aromatic ring and having a hydroxyl group in the molecule. Xc represents a copolymerizable ethylenically unsaturated monomer excluding Xa and Xb. m, n, and p each represent a molar composition ratio. However, m ≠ 0 and m + n + p = 100.

さらに、重合体Xとして好ましくは、下記一般式(X−1)で表される重合体である。   Furthermore, the polymer X is preferably a polymer represented by the following general formula (X-1).

一般式(X−1)
−[CH−C(−R1)(−COR2)]m−[CH−C(−R3)(−COR4−OH)−]n−[Xc]p−
上記一般式(X−1)において、R1、R3は、それぞれ水素原子またはメチル基を表す。R2は炭素数1〜12のアルキル基またはシクロアルキル基を表す。R4は−CH−、−C−または−C−を表す。Xcは、[CH−C(−R1)(−COR2)]または[CH−C(−R3)(−COR4−OH)−]に重合可能なモノマー単位を表す。m、nおよびpは、モル組成比を表す。ただしm≠0、m+n+p=100である。
Formula (X-1)
- [CH 2 -C (-R1) (- CO 2 R2)] m- [CH 2 -C (-R3) (- CO 2 R4-OH) -] n- [Xc] p-
In the general formula (X-1), R1 and R3 each represent a hydrogen atom or a methyl group. R2 represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group. R4 is -CH 2 -, - C 2 H 4 - or -C 3 H 6 - represents a. Xc is, [CH 2 -C (-R1) (- CO 2 R2)] representing the a polymerizable monomer unit or [CH 2 -C (-R3) ( - - CO 2 R4-OH)]. m, n, and p represent a molar composition ratio. However, m ≠ 0 and m + n + p = 100.

重合体Xを構成するモノマー単位としてのモノマーを下記に挙げるが、これに限定されない。   Although the monomer as a monomer unit which comprises the polymer X is mentioned below, it is not limited to this.

Xにおいて、水酸基とは、水酸基のみならずエチレンオキシド連鎖を有する基をいう。分子内に芳香環と水酸基を有しないエチレン性不飽和モノマーXaは、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i−、n−)、アクリル酸ブチル(n−、i−、s−、t−)、アクリル酸ペンチル(n−、i−、s−)、アクリル酸ヘキシル(n−、i−)、アクリル酸ヘプチル(n−、i−)、アクリル酸オクチル(n−、i−)、アクリル酸ノニル(n−、i−)、アクリル酸ミリスチル(n−、i−)、アクリル酸(2−エチルヘキシル)、アクリル酸(ε−カプロラクトン)、等、または上記アクリル酸エステルをメタクリル酸エステルに変えたものを挙げることができる。中でも、アクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル(i−、n−)であることが好ましい。   In X, the hydroxyl group means not only a hydroxyl group but also a group having an ethylene oxide chain. Examples of the ethylenically unsaturated monomer Xa having no aromatic ring and hydroxyl group in the molecule include methyl acrylate, ethyl acrylate, propyl acrylate (i-, n-), and butyl acrylate (n-, i-, s). -, T-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), heptyl acrylate (n-, i-), octyl acrylate (n-, i -), Nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), acrylic acid (2-ethylhexyl), acrylic acid (ε-caprolactone), etc. The thing changed into acid ester can be mentioned. Among these, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, and propyl methacrylate (i-, n-) are preferable.

分子内に芳香環を有せず、水酸基を有するエチレン性不飽和モノマーXbは、水酸基を有するモノマー単位として、アクリル酸またはメタクリル酸エステルが好ましく、例えば、アクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)、アクリル酸(4−ヒドロキシブチル)、アクリル酸(2−ヒドロキシブチル)、またはこれらアクリル酸をメタクリル酸に置き換えたものを挙げることができ、好ましくは、アクリル酸(2−ヒドロキシエチル)およびメタクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)である。   The ethylenically unsaturated monomer Xb having no hydroxyl ring in the molecule and having a hydroxyl group is preferably acrylic acid or methacrylic acid ester as a monomer unit having a hydroxyl group, such as acrylic acid (2-hydroxyethyl), acrylic acid. (2-hydroxypropyl), acrylic acid (3-hydroxypropyl), acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), or those obtained by replacing these acrylic acids with methacrylic acid. Preferred are acrylic acid (2-hydroxyethyl) and methacrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), and acrylic acid (3-hydroxypropyl).

Xcとしては、Xa、Xb以外のモノマーで、かつ共重合可能なエチレン性不飽和モノマーであれば、特に制限はないが、芳香環を有していないものが好ましい。   Xc is not particularly limited as long as it is a monomer other than Xa and Xb and is a copolymerizable ethylenically unsaturated monomer, but preferably has no aromatic ring.

XaおよびXbのモル組成比m:nは99:1〜65:35の範囲が好ましく、さらに好ましくは95:5〜75:25の範囲である。Xcのpは0〜10である。Xcは複数のモノマー単位であってもよい。   The molar composition ratio m: n of Xa and Xb is preferably in the range of 99: 1 to 65:35, more preferably in the range of 95: 5 to 75:25. P of Xc is 0-10. Xc may be a plurality of monomer units.

Xおよびモル組成比が多いと、セルロースエステルとの相溶性が良化するがフィルム厚み方向のリターデーション値Rtが大きくなる。Xbのモル組成比が多いと上記相溶性が悪くなるが、Rtを低減させる効果が高い。   When there are many X and molar composition ratios, compatibility with a cellulose ester will improve, but the retardation value Rt of a film thickness direction will become large. When the molar composition ratio of Xb is large, the compatibility is deteriorated, but the effect of reducing Rt is high.

また、Xbのモル組成比が上記範囲を超えると製膜時にヘイズが出る傾向があり、これらの最適化を図りXa、Xbのモル組成比を決めることが好ましい。   Further, if the molar composition ratio of Xb exceeds the above range, haze tends to occur during film formation, and it is preferable to optimize these and determine the molar composition ratio of Xa and Xb.

高分子量の重合体Xの分子量は、重量平均分子量が5000以上、30000以下であることがより好ましく、さらに好ましくは8000以上25000以下である。   The molecular weight of the high molecular weight polymer X is more preferably 5000 or more and 30000 or less, and still more preferably 8000 or more and 25000 or less.

重量平均分子量を5000以上とすることにより、一般式(1)または(2)で表される繰り返し単位を有するセルロースエステルフィルムの高温高湿下における寸法変化が少ない等の利点が得られ好ましい。   By setting the weight average molecular weight to 5,000 or more, it is preferable because advantages such as little dimensional change under high temperature and high humidity of the cellulose ester film having the repeating unit represented by the general formula (1) or (2) are obtained.

重量平均分子量が30000以下とした場合は、上記セルロースエステルとの相溶性がより向上し、高温高湿下においてのブリードアウト、さらに製膜直後でのヘイズの発生が抑制される。   When the weight average molecular weight is 30000 or less, the compatibility with the cellulose ester is further improved, and bleeding out under high temperature and high humidity and further haze generation immediately after film formation are suppressed.

本発明に係る重合体Xの重量平均分子量は、公知の分子量調節方法で調整することができる。そのような分子量調節方法としては、例えば、四塩化炭素、ラウリルメルカプタン、チオグリコール酸オクチル等の連鎖移動剤を添加する方法等が挙げられる。   The weight average molecular weight of the polymer X according to the present invention can be adjusted by a known molecular weight adjusting method. Examples of such a molecular weight adjusting method include a method of adding a chain transfer agent such as carbon tetrachloride, lauryl mercaptan, octyl thioglycolate, and the like.

また、重合温度は、通常、室温から130℃、好ましくは50℃から100℃で行なわれるが、この温度または重合反応時間を調整することで可能である。   The polymerization temperature is usually from room temperature to 130 ° C., preferably from 50 ° C. to 100 ° C., but this temperature or the polymerization reaction time can be adjusted.

なお、重量平均分子量等は、前述の方法に準じて求めることができる。   In addition, a weight average molecular weight etc. can be calculated | required according to the above-mentioned method.

重合体Yは、芳香環を有さないエチレン性不飽和モノマーYaを重合して得られた重量平均分子量500以上3000以下の重合体である。重量平均分子量500以上であれば重合体の残存モノマーが減少し好ましい。   The polymer Y is a polymer having a weight average molecular weight of 500 or more and 3000 or less obtained by polymerizing an ethylenically unsaturated monomer Ya having no aromatic ring. A weight average molecular weight of 500 or more is preferred because the residual monomer in the polymer is reduced.

また、3000以下とすることは、リターデーション値Rt低下性能を維持するために好ましい。Yaは、好ましくは芳香環を有さないアクリルまたはメタクリルモノマーである。   Moreover, it is preferable to set it as 3000 or less in order to maintain retardation value Rt fall performance. Ya is preferably an acrylic or methacrylic monomer having no aromatic ring.

重合体Yは、下記一般式(Y)で表される。   The polymer Y is represented by the following general formula (Y).

一般式(Y)
−[Ya]k−[Yb]q−
上記一般式(Y)において、Yaは芳香環を有しないエチレン性不飽和モノマーを表し、YbはYaと共重合可能なエチレン性不飽和モノマーを表す。kおよびqは、各々モル組成比を表す。ただし、k≠0、k+q=100である。
General formula (Y)
-[Ya] k- [Yb] q-
In the general formula (Y), Ya represents an ethylenically unsaturated monomer having no aromatic ring, and Yb represents an ethylenically unsaturated monomer copolymerizable with Ya. k and q each represent a molar composition ratio. However, k ≠ 0 and k + q = 100.

重合体Yにおいて、さらに好ましくは下記一般式(Y−1)で表される重合体である。   The polymer Y is more preferably a polymer represented by the following general formula (Y-1).

一般式(Y−1)
−[CH−C(−R5)(−COR6)]k−[Yb]q−
上記一般式(Y−1)において、R5は、それぞれ水素原子またはメチル基を表す。R6は炭素数1〜12のアルキル基またはシクロアルキル基を表す。Ybは、[CH−C(−R5)(−COR6)]と共重合可能なモノマー単位を表す。kおよびqは、それぞれモル組成比を表す。ただしk≠0、k+q=100である。
General formula (Y-1)
- [CH 2 -C (-R5) (- CO 2 R6)] k- [Yb] q-
In the general formula (Y-1), R5 represents a hydrogen atom or a methyl group, respectively. R6 represents an alkyl group having 1 to 12 carbon atoms or a cycloalkyl group. Yb represents a monomer unit copolymerizable with [CH 2 —C (—R 5) (— CO 2 R 6)]. k and q each represent a molar composition ratio. However, k ≠ 0 and k + q = 100.

Ybは、Yaである[CH−C(−R5)(−COR6)]と共重合可能なエチレン性不飽和モノマーであれば特に制限はない。Ybは複数であってもよい。k+q=100、qは好ましくは0〜30である。 Yb is a Ya [CH 2 -C (-R5) (- CO 2 R6)] and is not particularly limited as long as it is copolymerizable ethylenically unsaturated monomers. Yb may be plural. k + q = 100, q is preferably 0-30.

芳香環を有さないエチレン性不飽和モノマーを重合して得られる重合体Yを構成するエチレン性不飽和モノマーYaは、アクリル酸エステルとして、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル(i−、n−)、アクリル酸ブチル(n−、i−、s−、t−)、アクリル酸ペンチル(n−、i−、s−)、アクリル酸ヘキシル(n−、i−)、アクリル酸ヘプチル(n−、i−)、アクリル酸オクチル(n−、i−)、アクリル酸ノニル(n−、i−)、アクリル酸ミリスチル(n−、i−)、アクリル酸シクロヘキシル、アクリル酸(2−エチルヘキシル)、アクリル酸(ε−カプロラクトン)、アクリル酸(2−ヒドロキシエチル)、アクリル酸(2−ヒドロキシプロピル)、アクリル酸(3−ヒドロキシプロピル)、アクリル酸(4−ヒドロキシブチル)、アクリル酸(2−ヒドロキシブチル)、メタクリル酸エステルとして、上記アクリル酸エステルをメタクリル酸エステルに変えたもの;不飽和酸として、例えば、アクリル酸、メタクリル酸、無水マレイン酸、クロトン酸、イタコン酸等を挙げることができる。   The ethylenically unsaturated monomer Ya constituting the polymer Y obtained by polymerizing the ethylenically unsaturated monomer having no aromatic ring is, for example, methyl acrylate, ethyl acrylate, propyl acrylate ( i-, n-), butyl acrylate (n-, i-, s-, t-), pentyl acrylate (n-, i-, s-), hexyl acrylate (n-, i-), acrylic Acid heptyl (n-, i-), octyl acrylate (n-, i-), nonyl acrylate (n-, i-), myristyl acrylate (n-, i-), cyclohexyl acrylate, acrylic acid ( 2-ethylhexyl), acrylic acid (ε-caprolactone), acrylic acid (2-hydroxyethyl), acrylic acid (2-hydroxypropyl), acrylic acid (3-hydroxypropiyl) ), Acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), methacrylic acid ester, the above acrylic acid ester changed to methacrylic acid ester; unsaturated acid, for example, acrylic acid, methacrylic acid And maleic anhydride, crotonic acid, itaconic acid and the like.

Ybは、Yaと共重合可能なエチレン性不飽和モノマーであれば特に制限はないが、ビニルエステルとして、例えば、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、吉草酸ビニル、ピバリン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、シクロヘキサンカルボン酸ビニル、オクチル酸ビニル、メタクリル酸ビニル、クロトン酸ビニル、ソルビン酸ビニル、桂皮酸ビニル等が好ましい。Ybは複数であってもよい。   Yb is not particularly limited as long as it is an ethylenically unsaturated monomer copolymerizable with Ya. Examples of vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl valerate, vinyl pivalate, and vinyl caproate. Vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, vinyl cyclohexanecarboxylate, vinyl octylate, vinyl methacrylate, vinyl crotonate, vinyl sorbate, vinyl cinnamate and the like are preferred. Yb may be plural.

重合体X、Yを合成するには、通常の重合では分子量のコントロールが難しく、分子量を余り大きくしない方法で、かつできるだけ分子量を揃えることのできる方法を用いることが望ましい。   In order to synthesize the polymers X and Y, it is difficult to control the molecular weight in normal polymerization, and it is desirable to use a method that can make the molecular weight as uniform as possible by a method that does not increase the molecular weight too much.

かかる重合方法としては、クメンペルオキシドやt−ブチルヒドロペルオキシドのような過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を使用する方法、重合開始剤の他にベンゾキノンやジニトロベンゼンのような重合停止剤を使用する方法、さらに特開2000−128911号または同2000−344823号公報にあるような一つのチオール基と2級の水酸基とを有する化合物、あるいは、該化合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げることができ、いずれも好ましく用いられる。   Such polymerization methods include a method using a peroxide polymerization initiator such as cumene peroxide and t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than normal polymerization, and a mercapto compound in addition to the polymerization initiator. And a method using a chain transfer agent such as carbon tetrachloride, a method using a polymerization terminator such as benzoquinone and dinitrobenzene in addition to the polymerization initiator, and further disclosed in JP 2000-128911 or 2000-344823 Examples thereof include a method of bulk polymerization using a compound having one thiol group and a secondary hydroxyl group, or a polymerization catalyst in which the compound and an organometallic compound are used in combination, and any of them is preferably used.

特に、重合体Yは、分子中にチオール基と2級の水酸基とを有する化合物を連鎖移動剤として使用する重合方法が好ましい。この場合、重合体Yの末端には、重合触媒および連鎖移動剤に起因する水酸基、チオエーテルを有することとなる。この末端残基により、Yとセルロースエステルとの相溶性を調整することができる。   In particular, the polymer Y is preferably a polymerization method using a compound having a thiol group and a secondary hydroxyl group in the molecule as a chain transfer agent. In this case, the terminal of the polymer Y has a hydroxyl group and a thioether resulting from the polymerization catalyst and the chain transfer agent. The compatibility between Y and cellulose ester can be adjusted by this terminal residue.

重合体XおよびYの水酸基価は、30〜150[mgKOH/g]であることが好ましい。   The hydroxyl values of the polymers X and Y are preferably 30 to 150 [mgKOH / g].

なお、水酸基価の測定は、JIS K 0070(1992)に準ずる。この水酸基価は、試料1およびアセチル化させおよびき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムのmg数と定義される。   The hydroxyl value is measured in accordance with JIS K 0070 (1992). This hydroxyl value is defined as the number of mg of potassium hydroxide required to neutralize acetic acid bound to the sample 1 and acetylated and bound to the hydroxyl group.

具体的には試料Xg(約1g)をフラスコに精秤し、これにアセチル化試薬(無水酢酸20mlにピリジンを加えて400mlにしたもの)20mlを正確に加える。フラスコの口に空気冷却管を装着し、95〜100℃のグリセリン浴にて加熱する。   Specifically, sample Xg (about 1 g) is precisely weighed in a flask, and 20 ml of an acetylating reagent (a solution obtained by adding pyridine to 20 ml of acetic anhydride to 400 ml) is accurately added thereto. An air cooling tube is attached to the mouth of the flask and heated in a glycerin bath at 95-100 ° C.

1時間30分後、冷却し、空気冷却管から精製水1mlを加え、無水酢酸を酢酸に分解する。   After 1 hour and 30 minutes, the mixture is cooled, 1 ml of purified water is added from an air condenser, and acetic anhydride is decomposed into acetic acid.

次に電位差滴定装置を用いて0.5mol/L水酸化カリウムエタノール溶液で滴定を行い、得られた滴定曲線の変曲点を終点とする。   Next, titration is performed with a 0.5 mol / L potassium hydroxide ethanol solution using a potentiometric titrator, and the inflection point of the obtained titration curve is set as the end point.

さらに空試験として、試料を入れないで滴定し、滴定曲線の変曲点を求める。水酸基価は、次の式によって算出する。   Further, as a blank test, titration is performed without a sample, and an inflection point of the titration curve is obtained. The hydroxyl value is calculated by the following formula.

水酸基価={(B−C)×f×28.05/X}+D
式中、Bは空試験に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、Cは滴定に用いた0.5mol/Lの水酸化カリウムエタノール溶液の量(ml)、fは0.5mol/L水酸化カリウムエタノール溶液のファクター、Dは酸価、また、28.05は水酸化カリウムの1mol量56.11の1/2を表す。
Hydroxyl value = {(BC) × f × 28.05 / X} + D
In the formula, B is the amount (ml) of 0.5 mol / L potassium hydroxide ethanol solution used for the blank test, C is the amount (ml) of 0.5 mol / L potassium hydroxide ethanol solution used for titration, f is a factor of a 0.5 mol / L potassium hydroxide ethanol solution, D is an acid value, and 28.05 is 1/2 of 1 mol amount 56.11 of potassium hydroxide.

上述の重合体X、重合体Yはいずれも一般式(1)または(2)で表される繰り返し単位を少なくともと一つ有するセルロースエステル樹脂を含有するフィルムとの相溶性に優れ、蒸発や揮発もなく生産性に優れ、偏光板用保護フィルムとしての保留性がよく、透湿度が小さく、寸法安定性に優れている。   Both the above-mentioned polymer X and polymer Y are excellent in compatibility with a film containing a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2), and can be evaporated or volatilized. It has excellent productivity, good retention as a protective film for polarizing plates, low moisture permeability, and excellent dimensional stability.

重合体Xと重合体Yのセルロースエステルフィルム中での含有量は、下記式(i)、式(ii)を満足する範囲であることが好ましい。重合体Xの含有量をXg(質量%=(重合体Xの質量/セルロースエステルの質量)×100)、重合体Yの含有量をYg(質量%)とすると、
式(i) 5≦Xg+Yg≦35(質量%)
式(ii) 0.05≦Yg/(Xg+Yg)≦0.4
式(i)の(Xg+Yg)の好ましい範囲は、10〜35質量%である。重合体Xと重合体Yは、セルロースエステル全質量に対し、総量として5質量%以上であれば、リターデーション値Rtの調整に十分な作用をする。重合体Xと重合体Yは、後述する溶融を構成する素材として直接添加し混練する。
The content of the polymer X and the polymer Y in the cellulose ester film is preferably in a range satisfying the following formulas (i) and (ii). When the content of the polymer X is Xg (mass% = (mass of polymer X / mass of cellulose ester) × 100) and the content of the polymer Y is Yg (mass%),
Formula (i) 5 ≦ Xg + Yg ≦ 35 (mass%)
Formula (ii) 0.05 ≦ Yg / (Xg + Yg) ≦ 0.4
A preferable range of (Xg + Yg) in the formula (i) is 10 to 35% by mass. If the polymer X and the polymer Y are 5 mass% or more as a total amount with respect to the total mass of the cellulose ester, the polymer X and the polymer Y have a sufficient effect for adjusting the retardation value Rt. The polymer X and the polymer Y are directly added and kneaded as a material constituting the melting described later.

一般式(1)または(2)で表される繰り返し単位を少なくともと一つ有するセルロースエステル樹脂を含有するフィルムは、フィルムに加工性を付与する可塑剤、フィルムの劣化を防止する酸化防止剤、紫外線吸収機能を付与する紫外線吸収剤、フィルムに滑り性を付与する微粒子(マット剤)、フィルムのリターデーションを調整するリターデーション調整剤等の添加剤を含有させても良い。   A film containing a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2) is a plasticizer that imparts processability to the film, an antioxidant that prevents deterioration of the film, You may contain additives, such as the ultraviolet absorber which provides an ultraviolet-absorbing function, the microparticles | fine-particles (mat | matte agent) which provide slipperiness to a film, and the retardation adjusting agent which adjusts the retardation of a film.

<その他の添加剤>
その他の添加剤としては、可塑剤を適宜選択することが必要とされる。
<Other additives>
As other additives, it is necessary to appropriately select a plasticizer.

〈可塑剤〉
一般式(1)または(2)で表される繰り返し単位を少なくともと一つ有するセルロースエステル樹脂を含有するフィルムは製造において、フィルム形成材料中に少なくとも1種の可塑剤を含有することが好ましい。
<Plasticizer>
In production of a film containing a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2), it is preferable to contain at least one plasticizer in the film-forming material.

可塑剤は単独あるいは2種以上混合して用いることができるが、少なくとも1種は有機酸と3価以上のアルコールが縮合した構造を有する分子量350〜1500の多価アルコールエステル系可塑剤であることが好ましい。   The plasticizer can be used alone or in combination of two or more, but at least one is a polyhydric alcohol ester plasticizer having a molecular weight of 350 to 1500 having a structure in which an organic acid and a trivalent or higher alcohol are condensed. Is preferred.

使用することができるその他の可塑剤としては特に限定されないが、好ましくは、多価アルコールエステル系可塑剤、芳香族末端ポリエステル系可塑剤、グリコレート系可塑剤、フタル酸エステル系可塑剤、脂肪酸エステル系可塑剤、ポリマー可塑剤、糖エステル化合物等から選択される。   Other plasticizers that can be used are not particularly limited, but are preferably polyhydric alcohol ester plasticizers, aromatic-terminated polyester plasticizers, glycolate plasticizers, phthalate ester plasticizers, fatty acid esters. It is selected from system plasticizers, polymer plasticizers, sugar ester compounds and the like.

可塑剤の使用量は、セルロース誘導体に対して1質量%未満ではフィルムの透湿度を低減させる効果が少ないため好ましくなく、20質量%を越えると高温耐久時のフィルムの物性が劣化するため、1〜20質量%が好ましい。以下、好ましい可塑剤について述べる。
(多価アルコールエステル系可塑剤)
多価アルコールエステル系可塑剤は、有機酸と多価アルコールとのエステルでありその有機酸は、下記一般式(3)で表される。
If the amount of the plasticizer used is less than 1% by mass with respect to the cellulose derivative, the effect of reducing the moisture permeability of the film is small, which is not preferred. -20 mass% is preferable. Hereinafter, preferred plasticizers will be described.
(Polyhydric ester plasticizer)
The polyhydric alcohol ester plasticizer is an ester of an organic acid and a polyhydric alcohol, and the organic acid is represented by the following general formula (3).

Figure 2010139941
Figure 2010139941

式中、R〜Rは水素原子またはシクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、カルボニルオキシ基、オキシカルボニル基、オキシカルボニルオキシ基を表し、これらはさらに置換基を有していてよい。Lは連結基を表し、置換または無置換のアルキレン基、酸素原子、または直接結合を表す。 In the formula, R 1 to R 5 represent a hydrogen atom or a cycloalkyl group, an aralkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aralkyloxy group, an acyl group, a carbonyloxy group, an oxycarbonyl group, or an oxycarbonyloxy group. These may be further substituted. L represents a linking group and represents a substituted or unsubstituted alkylene group, an oxygen atom, or a direct bond.

〜Rで表されるシクロアルキル基としては、炭素数3〜8のシクロアルキル基が好ましく、具体的にはシクロプロピル、シクロペンチル、シクロヘキシル等の基である。これらの基は置換されていてもよく、好ましい置換基としては、ハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシル基、アルキル基、アルコキシ基、シクロアルコキシ基、アラルキル基(このフェニル基にはアルキル基またはハロゲン原子等によってさらに置換されていてもよい)、ビニル基、アリル基等のアルケニル基、フェニル基(このフェニル基にはアルキル基またはハロゲン原子等によってさらに置換されていてもよい)、フェノキシ基(このフェニル基にはアルキル基またはハロゲン原子等によってさらに置換されていてもよい)、アセチル基、プロピオニル基等の炭素数2〜8のアシル基、またアセチルオキシ基、プロピオニルオキシ基等の炭素数2〜8の無置換のカルボニルオキシ基等が挙げられる。 The cycloalkyl group represented by R 1 to R 5, preferably a cycloalkyl group having 3 to 8 carbon atoms, specifically cyclopropyl, cyclopentyl, groups such as cyclohexyl. These groups may be substituted, and preferred substituents include halogen atoms such as chlorine atom, bromine atom, fluorine atom, hydroxyl group, alkyl group, alkoxy group, cycloalkoxy group, aralkyl group (this phenyl group). The group may be further substituted with an alkyl group or a halogen atom), an alkenyl group such as a vinyl group or an allyl group, or a phenyl group (this phenyl group may be further substituted with an alkyl group or a halogen atom). Phenoxy group (this phenyl group may be further substituted by an alkyl group or a halogen atom), an acyl group having 2 to 8 carbon atoms such as an acetyl group or a propionyl group, an acetyloxy group, or a propionyloxy group. And an unsubstituted carbonyloxy group having 2 to 8 carbon atoms such as a group.

〜Rで表されるアラルキル基としては、ベンジル基、フェネチル基、γ−フェニルプロピル基等の基を表し、また、これらの基は置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。 The aralkyl group represented by R 1 to R 5 represents a group such as a benzyl group, a phenethyl group, and a γ-phenylpropyl group, and these groups may be substituted. Preferred substituents include The group which may be substituted with the said cycloalkyl group can be mentioned similarly.

〜Rで表されるアルコキシ基としては、炭素数1〜8のアルコキシ基が挙げられ、具体的には、メトキシ、エトキシ、n−プロポキシ、n−ブトキシ、n−オクチルオキシ、イソプロポキシ、イソブトキシ、2−エチルヘキシルオキシ、もしくはt−ブトキシ等の各アルコキシ基である。 Examples of the alkoxy group represented by R 1 to R 5 include an alkoxy group having 1 to 8 carbon atoms, specifically, methoxy, ethoxy, n-propoxy, n-butoxy, n-octyloxy, isopropoxy. , Alkoxy groups such as isobutoxy, 2-ethylhexyloxy, or t-butoxy.

また、これらの基は置換されていてもよく、好ましい置換基としては、ハロゲン原子、例えば、塩素原子、臭素原子、フッ素原子等、ヒドロキシル基、アルコキシ基、シクロアルコキシ基、アラルキル基(このフェニル基にはアルキル基またはハロゲン原子等を置換していてもよい)、アルケニル基、フェニル基(このフェニル基にはアルキル基またはハロゲン原子等によってさらに置換されていてもよい)、アリールオキシ基(例えばフェノキシ基(このフェニル基にはアルキル基またはハロゲン原子等によってさらに置換されていてもよい))、アセチル基、プロピオニル基等のアシル基が、またアセチルオキシ基、プロピオニルオキシ基等の炭素数2〜8の無置換のアシルオキシ基、またベンゾイルオキシ基等のアリールカルボニルオキシ基が挙げられる。   These groups may be substituted, and preferred substituents include halogen atoms such as chlorine atom, bromine atom, fluorine atom, hydroxyl group, alkoxy group, cycloalkoxy group, aralkyl group (this phenyl group). May be substituted with an alkyl group or a halogen atom), an alkenyl group, a phenyl group (this phenyl group may be further substituted with an alkyl group or a halogen atom), an aryloxy group (for example, phenoxy) An acyl group such as an acetyl group or a propionyl group, or an aryl group such as an acetyloxy group or a propionyloxy group (the phenyl group may be further substituted with an alkyl group or a halogen atom). Arylcarbonyl groups such as unsubstituted acyloxy groups and benzoyloxy groups Shi group.

〜Rで表されるシクロアルコキシ基としては、無置換のシクロアルコキシ基としては炭素数1〜8のシクロアルコキシ基が挙げられ、具体的には、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ等の基が挙げられる。 Examples of the cycloalkoxy group represented by R 1 to R 5 include an unsubstituted cycloalkoxy group having 1 to 8 carbon atoms, specifically cyclopropyloxy, cyclopentyloxy, cyclohexyloxy. And the like.

また、これらの基は置換されていてもよく、好ましい置できとしては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。   In addition, these groups may be substituted, and preferable examples thereof include the same groups that may be substituted with the cycloalkyl group.

〜Rで表されるアリールオキシ基としては、フェノキシ基が挙げられるが、このフェニル基にはアルキル基またはハロゲン原子等前記シクロアルキル基に置換してもよい基として挙げられた置換基で置換されていてもよい。 Examples of the aryloxy group represented by R 1 to R 5 include a phenoxy group, and the phenyl group includes a substituent that may be substituted with the cycloalkyl group such as an alkyl group or a halogen atom. May be substituted.

〜Rで表されるアラルキルオキシ基としては、ベンジルオキシ基、フェネチルオキシ基等が挙げられ、これらの置換基はさらに置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。 Examples of the aralkyloxy group represented by R 1 to R 5 include a benzyloxy group and a phenethyloxy group, and these substituents may be further substituted. Preferred substituents include the above cycloalkyl The group which may be substituted with a group can be mentioned similarly.

〜Rで表されるアシル基としては、アセチル基、プロピオニル基等の炭素数2〜8の無置換のアシル基が挙げられ(アシル基の炭化水素基としては、アルキル、アルケニル、アルキニル基を含む。)、これらの置換基はさらに置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。 Examples of the acyl group represented by R 1 to R 5 include an unsubstituted acyl group having 2 to 8 carbon atoms such as an acetyl group and a propionyl group (the hydrocarbon group of the acyl group includes alkyl, alkenyl, alkynyl). These substituents may be further substituted, and preferred substituents include the same groups that may be substituted with the cycloalkyl group.

〜Rで表されるカルボニルオキシ基としては、アセチルオキシ基、プロピオニルオキシ基等の炭素数2〜8の無置換のアシルオキシ基(アシル基の炭化水素基としては、アルキル、アルケニル、アルキニル基を含む。)、またベンゾイルオキシ基等のアリールカルボニルオキシ基が挙げられるが、これらの基はさらに前記シクロアルキル基に置換してもよい基と同様の基により置換されていてもよい。 As the carbonyloxy group represented by R 1 to R 5 , an unsubstituted acyloxy group having 2 to 8 carbon atoms such as acetyloxy group and propionyloxy group (the hydrocarbon group of the acyl group is alkyl, alkenyl, alkynyl). And arylcarbonyloxy groups such as a benzoyloxy group, and these groups may be further substituted with the same groups as those which may be substituted with the cycloalkyl group.

〜Rで表されるオキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、プロピルオキシカルボニル基等のアルコキシカルボニル基、またフェノキシカルボニル基等のアリールオキシカルボニル基を表す。 The oxycarbonyl group represented by R 1 to R 5 represents an alkoxycarbonyl group such as a methoxycarbonyl group, an ethoxycarbonyl group or a propyloxycarbonyl group, or an aryloxycarbonyl group such as a phenoxycarbonyl group.

これらの置換基はさらに置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。   These substituents may be further substituted, and preferred examples of the substituent include the same groups that may be substituted with the cycloalkyl group.

〜Rで表されるオキシカルボニルオキシ基としては、メトキシカルボニルオキシ基等の炭素数1〜8のアルコキシカルボニルオキシ基を表し、これらの置換基はさらに置換されていてもよく、好ましい置換基としては、前記のシクロアルキル基に置換してもよい基を同様に挙げることができる。 The oxycarbonyloxy group represented by R 1 to R 5 represents an alkoxycarbonyloxy group having 1 to 8 carbon atoms such as a methoxycarbonyloxy group, and these substituents may be further substituted and are preferably substituted. Examples of the group include the same groups that may be substituted on the cycloalkyl group.

〜Rのうちのいずれか同士で互いに連結し、環構造を形成していてもよい。 Any one of R 1 to R 5 may be connected to each other to form a ring structure.

また、Lで表される連結基としては、置換または無置換のアルキレン基、酸素原子、または直接結合を表すが、アルキレン基としては、メチレン基、エチレン基、プロピレン基等の基であり、これらの基は、さらに前記のR〜Rで表される基に置換してもよい基としてあげられた基で置換されていてもよい。 The linking group represented by L represents a substituted or unsubstituted alkylene group, an oxygen atom, or a direct bond, and the alkylene group is a group such as a methylene group, an ethylene group, or a propylene group. These groups may be further substituted with the groups mentioned as groups that may be substituted with the groups represented by R 1 to R 5 .

なかでも、Lで表される連結基として特に好ましいのは直接結合であり芳香族カルボン酸である。   Among these, a direct bond and an aromatic carboxylic acid are particularly preferable as the linking group represented by L.

また、可塑剤となるエステル化合物を構成する、前記一般式(3)で表される有機酸としては、少なくともR1またはR2に前記アルコキシ基、アシル基、オキシカルボニル基、カルボニルオキシ基、オキシカルボニルオキシ基を有するものが好ましい。また複数の置換基を有する化合物も好ましい。   Further, the organic acid represented by the general formula (3) constituting the ester compound serving as a plasticizer includes at least R1 or R2 as the alkoxy group, acyl group, oxycarbonyl group, carbonyloxy group, oxycarbonyloxy group. Those having a group are preferred. A compound having a plurality of substituents is also preferred.

なお3価以上のアルコールの水酸基を置換する有機酸は単一種であっても複数種であってもよい。   In addition, the organic acid which substitutes the hydroxyl group of trihydric or more alcohol may be single type, or may be multiple types.

前記一般式(3)で表される有機酸と反応して多価アルコールエステル化合物を形成する3価以上のアルコール化合物としては、好ましくは3〜20価の脂肪族多価アルコールであり、3価以上のアルコールは下記一般式(4)で表されるものが好ましい。   The trihydric or higher alcohol compound that reacts with the organic acid represented by the general formula (3) to form a polyhydric alcohol ester compound is preferably a 3-20 valent aliphatic polyhydric alcohol. As for the above alcohol, what is represented by following General formula (4) is preferable.

一般式(4) R′−(OH)m
式中、R′はm価の有機基、mは3以上の正の整数、OH基はアルコール性水酸基を表す。特に好ましいのは、mとしては3または4の多価アルコールである。
Formula (4) R '-(OH) m
In the formula, R ′ represents an m-valent organic group, m represents a positive integer of 3 or more, and the OH group represents an alcoholic hydroxyl group. Particularly preferred is a polyhydric alcohol having 3 or 4 as m.

好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができるが、これらに限定されるものではない。   Examples of preferred polyhydric alcohols include, but are not limited to, the following.

アドニトール、アラビトール、1,2,4−ブタントリオール、1,2,3−ヘキサントリオール、1,2,6−ヘキサントリオール、グリセリン、ジグリセリン、エリスリトール、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、ガラクチトール、イノシトール、マンニトール、3−メチルペンタン−1,3,5−トリオール、ピナコール、ソルビトール、トリメチロールプロパン、トリメチロールエタン、キシリトール等を挙げることができる。   Adonitol, arabitol, 1,2,4-butanetriol, 1,2,3-hexanetriol, 1,2,6-hexanetriol, glycerin, diglycerin, erythritol, pentaerythritol, dipentaerythritol, tripentaerythritol, ga Examples include lactitol, inositol, mannitol, 3-methylpentane-1,3,5-triol, pinacol, sorbitol, trimethylolpropane, trimethylolethane, and xylitol.

特に、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールが好ましい。   In particular, glycerin, trimethylolethane, trimethylolpropane, and pentaerythritol are preferable.

一般式(3)で表される有機酸と一般式(4)で表される3価以上の多価アルコールのエステルは、公知の方法により合成できる。実施例に代表的合成例を示したが、前記一般式(3)で表される有機酸と、一般式(4)で表される多価アルコールを例えば、酸の存在下縮合させエステル化する方法、また、有機酸をあらかじめ酸クロライドあるいは酸無水物としておき、多価アルコールと反応させる方法、有機酸のフェニルエステルと多価アルコールを反応させる方法等があり、目的とするエステル化合物により、適宜、収率のよい方法を選択することが好ましい。   The ester of the organic acid represented by the general formula (3) and the trihydric or higher polyhydric alcohol represented by the general formula (4) can be synthesized by a known method. In the examples, typical synthesis examples are shown. For example, the organic acid represented by the general formula (3) and the polyhydric alcohol represented by the general formula (4) are condensed and esterified in the presence of an acid, for example. There are a method, a method in which an organic acid is preliminarily converted into an acid chloride or an acid anhydride and a reaction with a polyhydric alcohol, a method in which a phenyl ester of an organic acid is reacted with a polyhydric alcohol, and the like. It is preferable to select a method with good yield.

一般式(3)で表される有機酸と一般式(4)で表される3価以上の多価アルコールのエステルからなる可塑剤としては、下記一般式(5)で表される化合物が好ましい。   As a plasticizer comprising an organic acid represented by the general formula (3) and an ester of a trihydric or higher polyhydric alcohol represented by the general formula (4), a compound represented by the following general formula (5) is preferable. .

Figure 2010139941
Figure 2010139941

式中、R〜R20は水素原子またはシクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、カルボニルオキシ基、オキシカルボニル基、オキシカルボニルオキシ基を表し、これらはさらに置換基を有していてよい。R21は水素原子またはアルキル基を表す。 In the formula, R 6 to R 20 represent a hydrogen atom or a cycloalkyl group, an aralkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aralkyloxy group, an acyl group, a carbonyloxy group, an oxycarbonyl group, or an oxycarbonyloxy group. These may be further substituted. R21 represents a hydrogen atom or an alkyl group.

〜R20のシクロアルキル基、アラルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アシル基、カルボニルオキシ基、オキシカルボニル基、オキシカルボニルオキシ基については、前記一般式(3)のR〜Rと同様の基が挙げられる。 Cycloalkyl groups R 6 to R 20, aralkyl group, alkoxy group, cycloalkoxy group, aryloxy group, aralkyloxy group, acyl group, carbonyloxy group, an oxycarbonyl group, for oxy carbonyloxy group, the general formula ( The same group as R < 1 > -R < 5 > of 3) is mentioned.

以下に、多価アルコールエステルの具体的化合物を例示する。   Below, the specific compound of a polyhydric alcohol ester is illustrated.

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

〈芳香族末端ポリエステル系可塑剤〉
下記一般式(6)で表せる芳香族末端ポリエステル系可塑剤を使用することができる。
<Aromatic terminal polyester plasticizer>
An aromatic terminal polyester plasticizer represented by the following general formula (6) can be used.

一般式(6) B−(G−A)n−G−B
(式中、Bはアリールカルボン酸残基、Gは炭素数2〜12のアルキレングリコール残基または炭素数6〜12のアリールグリコール残基または炭素数が4〜12のオキシアルキレングリコール残基、Aは炭素数4〜12のアルキレンジカルボン酸残基または炭素数6〜12のアリールジカルボン酸残基を表し、またnは1以上の整数を表す。)
一般式(6)中、Bで示されるアリールカルボン酸残基とGで示されるアルキレングリコール残基またはオキシアルキレングリコール残基またはアリールグリコール残基、Aで示されるアルキレンジカルボン酸残基またはアリールジカルボン酸残基とから構成されるものであり、通常のポリエステル系化合物と同様の反応により得られる。
General formula (6) B- (GA) n-GB
(In the formula, B is an arylcarboxylic acid residue, G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an oxyalkylene glycol residue having 4 to 12 carbon atoms, A Represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms, and n represents an integer of 1 or more.)
In general formula (6), an arylcarboxylic acid residue represented by B and an alkylene glycol residue or oxyalkylene glycol residue or arylglycol residue represented by G, an alkylenedicarboxylic acid residue or aryldicarboxylic acid represented by A And is obtained by the same reaction as a normal polyester compound.

芳香族末端ポリエステル系可塑剤のアリールカルボン酸成分としては、例えば、安息香酸、パラターシャリブチル安息香酸、オルソトルイル酸、メタトルイル酸、パラトルイル酸、ジメチル安息香酸、エチル安息香酸、ノルマルプロピル安息香酸、アミノ安息香酸、アセトキシ安息香酸等があり、これらはそれぞれ1種または2種以上の混合物として使用することができる。   Examples of the arylcarboxylic acid component of the aromatic-terminated polyester plasticizer include benzoic acid, para-tert-butylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, normal propylbenzoic acid, amino There exist benzoic acid, acetoxybenzoic acid, etc., These can be used as a 1 type, or 2 or more types of mixture, respectively.

芳香族末端ポリエステル系可塑剤の炭素数2〜12のアルキレングリコール成分としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,2−プロパンジオール、2−メチル1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、2,2−ジメチル−1,3−プロパンジオール(ネオペンチルグリコール)、2,2−ジエチル−1,3−プロパンジオール(3,3−ジメチロールペンタン)、2−n−ブチル−2−エチル−1,3プロパンジオール(3,3−ジメチロールヘプタン)、3−メチル−1,5−ペンタンジオール1,6−ヘキサンジオール、2,2,4−トリメチル1,3−ペンタンジオール、2−エチル1,3−ヘキサンジオール、2−メチル1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,12−オクタデカンジオール等があり、これらのグリコールは、1種または2種以上の混合物として使用される。   Examples of the alkylene glycol component having 2 to 12 carbon atoms of the aromatic terminal polyester plasticizer include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, and 1,3-butanediol. 1,2-propanediol, 2-methyl 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3-propanediol (neopentyl glycol), 2,2-diethyl-1,3-propanediol (3,3-dimethylolpentane), 2-n-butyl-2-ethyl-1,3-propanediol (3,3-dimethylolheptane), 3-methyl -1,5-pentanediol 1,6-hexanediol, 2,2,4-trimethyl 1,3-pentanediol, 2- There are til 1,3-hexanediol, 2-methyl 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,12-octadecanediol, and the like. Used as a mixture of two or more.

特に炭素数2〜12のアルキレングリコールがセルロースエステルとの相溶性に優れているため、特に好ましい。   In particular, an alkylene glycol having 2 to 12 carbon atoms is particularly preferable because of excellent compatibility with a cellulose ester.

また、上記芳香族末端ポリエステル系可塑剤の炭素数4〜12のオキシアルキレングリコール成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリコールは、1種または2種以上の混合物として使用できる。   Examples of the oxyalkylene glycol component having 4 to 12 carbon atoms of the aromatic terminal polyester plasticizer include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. Can be used as one or a mixture of two or more.

芳香族末端ポリエステル系可塑剤の炭素数4〜12のアルキレンジカルボン酸成分としては、例えば、コハク酸、マレイン酸、フマール酸、グルタール酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ1種または2種以上の混合物として使用される。   Examples of the alkylene dicarboxylic acid component having 4 to 12 carbon atoms of the aromatic terminal polyester plasticizer include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. These are each used as one or a mixture of two or more.

炭素数6〜12のアリーレンジカルボン酸成分としては、フタル酸、テレフタル酸、イソフタル酸、1,5ナフタレンジカルボン酸、1,4ナフタレンジカルボン酸等がある。   Examples of the arylene dicarboxylic acid component having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, isophthalic acid, 1,5 naphthalene dicarboxylic acid, and 1,4 naphthalene dicarboxylic acid.

芳香族末端ポリエステル系可塑剤は、nが1以上100以下であることが好ましく、数平均分子量が、好ましくは300〜1500、より好ましくは400〜1000の範囲が好適である。   In the aromatic terminal polyester plasticizer, n is preferably 1 or more and 100 or less, and the number average molecular weight is preferably 300 to 1500, more preferably 400 to 1000.

また、その酸価は、0.5mgKOH/g以下、水酸基価は25mgKOH/g以下、より好ましくは酸価0.3mgKOH/g以下、水酸基価は15mgKOH/g以下のものである。   The acid value is 0.5 mgKOH / g or less, the hydroxyl value is 25 mgKOH / g or less, more preferably the acid value is 0.3 mgKOH / g or less, and the hydroxyl value is 15 mgKOH / g or less.

一般式(6)に示す芳香族末端ポリエステル系可塑剤は、セルロースエステルに対して、0.5〜30質量%含有させることが好ましい。   The aromatic terminal polyester plasticizer represented by the general formula (6) is preferably contained in an amount of 0.5 to 30% by mass with respect to the cellulose ester.

芳香族末端ポリエステル系可塑剤の具体的化合物を示すが、これに限定されない。   Although the specific compound of an aromatic terminal polyester plasticizer is shown, it is not limited to this.

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

Figure 2010139941
Figure 2010139941

(ポリマー可塑剤)
前述のセルロースエステルフィルムは前記のアクリル系重合体以外のポリマー可塑剤を使用することも好ましい。
(Polymer plasticizer)
The cellulose ester film preferably uses a polymer plasticizer other than the acrylic polymer.

具体的には、脂肪族炭化水素系ポリマー、脂環式炭化水素系ポリマー、ポリビニルイソブチルエーテル、ポリN−ビニルピロリドン等のビニル系ポリマー、メタクリル酸メチルとN−ビニルピロリドンの共重合体(例えば、共重合比1:99〜99:1の間の任意の比率)、ポリスチレン、ポリ4−ヒドロキシスチレン等のスチレン系ポリマー、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアミド、ポリウレタン、ポリウレア等が挙げられる。   Specifically, aliphatic hydrocarbon polymers, alicyclic hydrocarbon polymers, polyvinyl isobutyl ether, vinyl polymers such as poly N-vinyl pyrrolidone, copolymers of methyl methacrylate and N-vinyl pyrrolidone (for example, Copolymerization ratio (any ratio between 1:99 and 99: 1), polystyrene, styrene-based polymers such as poly-4-hydroxystyrene, polybutylene succinate, polyesters such as polyethylene terephthalate, polyethylene naphthalate, polyethylene oxide, polypropylene Examples include polyethers such as oxides, polyamides, polyurethanes, and polyureas.

数平均分子量は1,000〜500,000程度が好ましく、特に好ましくは、5000〜200000である。1,000以下では揮発性が大きくなり、500,000を超えると可塑化能力が低下する傾向があり、セルロースエステル位相差フィルムの機械的性質に悪影響を及ぼす可能性がある。   The number average molecular weight is preferably about 1,000 to 500,000, particularly preferably 5,000 to 200,000. If it is 1,000 or less, the volatility becomes large, and if it exceeds 500,000, the plasticizing ability tends to decrease, which may adversely affect the mechanical properties of the cellulose ester retardation film.

これらポリマー可塑剤は1種のモノマーの繰り返し単位からなる単独重合体でも、複数のモノマーの繰り返し構造体を有する共重合体でもよい。また、上記ポリマーを2種以上併用して用いてもよい。   These polymer plasticizers may be a homopolymer composed of one monomer repeating unit or a copolymer having a repeating structure of a plurality of monomers. Two or more of the above polymers may be used in combination.

また表面の可塑剤量の測定法は特に限定されないが、例えば、ナイフなどを用いて、フィルムの表面から20nmほど削って定量分析する方法やフィルムの厚さ方向の可塑剤量をIRや原子吸光などでスキャンする方法などを用いて定量したものである。   Further, the method for measuring the amount of plasticizer on the surface is not particularly limited. For example, a knife or the like is used to quantitatively analyze the surface of the film by cutting it about 20 nm or the amount of plasticizer in the thickness direction of the film is measured by IR or atomic absorption It is quantified using a method such as scanning with the above.

〈酸化防止剤〉
酸化防止剤としては、通常知られているものを使用することができる。特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系化合物のものを好ましく用いることができる。
<Antioxidant>
As the antioxidant, those which are generally known can be used. In particular, lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used.

例えば、チバ・ジャパン株式会社から、“IrgafosXP40”、“IrgafosXP60”という商品名で市販されているものを含むものが好ましい。   For example, the thing containing what is marketed by the brand name "IrgafosXP40" and "IrgafosXP60" from Ciba Japan KK is preferable.

上記フェノール系化合物としては、2,6−ジアルキルフェノールの構造を有するものが好ましく、例えば、チバ・ジャパン株式会社、“Irganox1076”、“Irganox1010”、(株)ADEKA“アデカスタブAO−50”という商品名で市販されているものが好ましい。   The phenolic compound preferably has a 2,6-dialkylphenol structure. For example, Ciba Japan Co., Ltd., “Irganox 1076”, “Irganox 1010”, ADEKA “ADEKA STAB AO-50” And those commercially available.

上記リン系化合物は、例えば、住友化学株式会社から、“SumilizerGP”、株式会社ADEKAから“ADK STAB PEP−24G”、“ADK STAB PEP−36”および“ADK STAB 3010”、チバ・ジャパン株式会社から“IRGAFOS P−EPQ”、堺化学工業株式会社から“GSY−P101”という商品名および販されているものが好ましい。   Examples of the phosphorous compounds are Sumitomo Chemical Co., Ltd., “Sumilizer GP”, ADEKA Co., Ltd., “ADK STAB PEP-24G”, “ADK STAB PEP-36” and “ADK STAB 3010”, Ciba Japan Co., Ltd. "IRGAFOS P-EPQ", a product name and "GSY-P101" sold by Sakai Chemical Industry Co., Ltd. are preferable.

上記ヒンダードアミン系化合物は、例えば、チバ・ジャパン株式会社から、“Tinuvin144(AO2)”および“Tinuvin770”、株式会社ADEKAから“ADK STAB LA−52”というおよび名で市販されているものが好ましい。   The hindered amine compound is preferably commercially available from Ciba Japan Co., Ltd. as “Tinuvin 144 (AO2)” and “Tinvin 770”, and from ADEKA Co., Ltd. as “ADK STAB LA-52”.

上記イオウ系化合物は、例えば、住友化学株式会社から、“Sumilizer TPL−R“および“Sumilizer TP−D”という商品名で市販されているものが好ましい。   As the sulfur compound, for example, those commercially available from Sumitomo Chemical Co., Ltd. under the trade names of “Sumilizer TPL-R” and “Sumilizer TP-D” are preferable.

上記二重結合系化合物は、住友化学株式会社から、“Sumilizer GM”および“Sumilizer GS”という商品名で市販されているものが好ましい。   The above-mentioned double bond type compounds are preferably those commercially available from Sumitomo Chemical Co., Ltd. under the trade names “Sumilizer GM” and “Sumilizer GS”.

さらに、酸および剤として米国特許第4,137,201号明細書に記載されているような、エポキシ基を有する化合物を含有させることも可能である。   Furthermore, it is possible to include a compound having an epoxy group as described in US Pat. No. 4,137,201 as an acid and an agent.

これらの酸化防止剤等は、再生使用される際の工程に合わせて適宜添加する量が決められるが、一般には、フィルムの主原料である樹脂に対して、0.05〜20質量%、好ましくは0.1〜1質量%の範囲で添加される。   The amount of these antioxidants and the like to be appropriately added is determined in accordance with the process at the time of recycling, but generally 0.05 to 20% by mass, preferably with respect to the resin as the main raw material of the film Is added in the range of 0.1 to 1% by mass.

これらの酸化防止剤は、一種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。例えば、ラクトン系、リン系、フェノール系および二重結合系化合物の併用は好ましい。   These antioxidants can obtain a synergistic effect by using several different types of compounds in combination rather than using only one kind. For example, the combined use of lactone, phosphorus, phenol and double bond compounds is preferred.

〈リターデーション調整剤〉
一般式(1)または(2)で表される繰り返し単位を有するセルロースエステル樹脂を含有する透明フィルムにおいてリターデーションを調整するための化合物を含有させてもよい。
<Retardation adjuster>
You may make the compound for adjusting retardation in the transparent film containing the cellulose-ester resin which has a repeating unit represented by General formula (1) or (2) contain.

リターデーションを調整するために添加する化合物は、欧州特許第911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物を使用することもできる。   As the compound to be added for adjusting the retardation, an aromatic compound having two or more aromatic rings as described in EP 911,656A2 can also be used.

また2種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に不飽和ヘテロ環である。なかでも1,3,5−トリアジン環を有する化合物が特に好ましい。   Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. An aromatic heterocyclic ring is particularly preferred, and the aromatic heterocyclic ring is generally an unsaturated heterocyclic ring. Of these, compounds having a 1,3,5-triazine ring are particularly preferred.

〈着色剤〉
着色剤を使用することが好ましい。着色剤と言うのは染料や顔料を意味するが、液晶画面の色調を青色調にする効果またはイエローインデックスの調整、ヘイズの低減を有するものを指す。着色剤としては各種の染料、顔料が使用可能だが、アントラキノン染料、アゾ染料、フタロシアニン顔料などが有効である。
<Colorant>
It is preferred to use a colorant. The colorant means a dye or a pigment, and refers to a colorant having an effect of making the color tone of a liquid crystal screen blue or adjusting a yellow index and reducing haze. Various dyes and pigments can be used as the colorant, but anthraquinone dyes, azo dyes, phthalocyanine pigments and the like are effective.

〈紫外線吸収剤〉
紫外線吸収剤は特に限定されないが、例えばオキシベンゾフェノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベンゾフェノン系化合物、シアノアクリレート系化合物、トリアジン系化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。高分子型の紫外線吸収剤としてもよい。
<Ultraviolet absorber>
The ultraviolet absorber is not particularly limited, and examples thereof include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, nickel complex compounds, inorganic powders, and the like. . It is good also as a polymer type ultraviolet absorber.

〈マット剤〉
フィルムの滑り性を付与するためにマット剤を添加することが好ましい。マット剤としては、得られるフィルムの透明性を損なうことがなく、溶融時の耐熱性があれば無機化合物または有機化合物どちらでもよく、例えば、タルク、マイカ、ゼオライト、ケイソウ土、焼成珪成土、カオリン、セリサイト、ベントナイト、スメクタイト、クレー、シリカ、石英粉末、ガラスビーズ、ガラス粉、ガラスフレーク、ミルドファイバー、ワラストナイト、窒化ホウ素、炭化ホウ素、ホウ化チタン、炭酸マグネシウム、重質炭酸カルシウム、軽質炭酸カルシウム、珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム、アルミノ珪酸マグネシウム、アルミナ、シリカ、酸化亜鉛、二酸化チタン、酸化鉄、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、硫酸カルシウム、硫酸バリウム、炭化ケイ素、炭化アルミニウム、炭化チタン、窒化アルミニウム、窒化ケイ素、窒化チタン、ホワイトカーボンなどが挙げられる。これらのマット剤は、単独でも二種以上併用しても使用できる。粒径や形状(例えば針状と球状など)の異なる粒子を併用することで高度に透明性と滑り性を両立させることもできる。
<Matting agent>
It is preferable to add a matting agent in order to impart the slipperiness of the film. As the matting agent, any inorganic compound or organic compound may be used as long as it has heat resistance at the time of melting without impairing the transparency of the resulting film. For example, talc, mica, zeolite, diatomaceous earth, calcined siliceous earth, Kaolin, sericite, bentonite, smectite, clay, silica, quartz powder, glass beads, glass powder, glass flake, milled fiber, wollastonite, boron nitride, boron carbide, titanium boride, magnesium carbonate, heavy calcium carbonate, Light calcium carbonate, calcium silicate, aluminum silicate, magnesium silicate, magnesium aluminosilicate, alumina, silica, zinc oxide, titanium dioxide, iron oxide, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, calcium sulfate , Barium sulphate, silicon carbide, aluminum carbide, titanium carbide, aluminum nitride, silicon nitride, titanium nitride, and white carbon. These matting agents can be used alone or in combination of two or more. By using particles having different particle sizes and shapes (for example, acicular and spherical), both transparency and slipperiness can be made highly compatible.

これらの中でも、セルロースエステルと屈折率が近いので透明性(ヘイズ)に優れる二酸化珪素が特に好ましく用いられる。二酸化珪素の具体例としては、アエロジル200V、アエロジルR972V、アエロジルR972、R974、R812、200、300、R202、OX50、TT600(以上日本アエロジル(株)製)、シーホスターKEP−10、シーホスターKEP−30、シーホスターKEP−50(以上、株式会社日本触媒製)、サイロホービック100(富士シリシア製)、ニップシールE220A(日本シリカ工業製)、アドマファインSO(アドマテックス製)等の商品名を有する市販品などが好ましく使用できる。   Among these, silicon dioxide is particularly preferably used since it has a refractive index close to that of cellulose ester and is excellent in transparency (haze). Specific examples of silicon dioxide include Aerosil 200V, Aerosil R972V, Aerosil R972, R974, R812, 200, 300, R202, OX50, TT600 (above Nippon Aerosil Co., Ltd.), Sea Hoster KEP-10, Sea Hoster KEP-30, Commercial products having trade names such as Seahoster KEP-50 (above, made by Nippon Shokubai Co., Ltd.), Silo Hovic 100 (made by Fuji Silysia), Nip Seal E220A (made by Nippon Silica Kogyo), Admafine SO (made by Admatechs), etc. Can be preferably used.

粒子の形状としては、不定形、針状、扁平、球状等特に制限なく使用できるが、特に球状の粒子を用いると得られるフィルムの透明性が良好にできるので好ましい。粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が悪くなるので、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。   The shape of the particles can be used without particular limitation, such as indefinite shape, needle shape, flat shape, spherical shape, etc. However, the use of spherical particles is particularly preferable because the transparency of the resulting film can be improved. When the particle size is close to the wavelength of visible light, light is scattered and the transparency is deteriorated. Therefore, the particle size is preferably smaller than the wavelength of visible light, and more preferably ½ or less of the wavelength of visible light. .

粒子の大きさが小さすぎると滑り性が改善されない場合があるので、80nmから180nmの範囲であることが特に好ましい。   If the size of the particles is too small, the slipperiness may not be improved, so the range of 80 nm to 180 nm is particularly preferable.

なお、粒子の大きさとは、粒子が1次粒子の凝集体の場合は凝集体の大きさを意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。   The particle size means the size of the aggregate when the particle is an aggregate of primary particles. Moreover, when a particle is not spherical, it means the diameter of a circle corresponding to the projected area.

〈粘度低下剤〉
溶融粘度を低減する目的として、水素結合性溶媒を添加することができる。水素結合性溶媒とは、J.N.イスラエルアチビリ著、「分子間力と表面力」(近藤保、大島広行訳、マグロウヒル出版、1991年)に記載されるように、電気的に陰性な原子(酸素、窒素、フッ素、塩素)と電気的に陰性な原子と共有結合した水素原子間に生ずる、水素原子媒介「結合」を生ずることができるような有機溶媒、すなわち、結合モーメントが大きく、かつ水素を含む結合、例えば、O−H(酸素水素結合)、N−H(窒素水素結合)、F−H(フッ素水素結合)を含むことで近接した分子同士が配列できるような有機溶媒をいう。
<Viscosity reducing agent>
For the purpose of reducing the melt viscosity, a hydrogen bonding solvent can be added. The hydrogen bonding solvent is J.I. N. As described in Israel Ativili, “Intermolecular Forces and Surface Forces” (Takeshi Kondo, Hiroyuki Oshima, Maglow Hill Publishing, 1991) and electrically negative atoms (oxygen, nitrogen, fluorine, chlorine) An organic solvent capable of producing a hydrogen atom-mediated “bond” between a hydrogen atom covalently bonded to an electronegative atom, ie, a bond having a large bond moment and containing hydrogen, such as O—H (Oxygen hydrogen bond), N—H (nitrogen hydrogen bond), and organic solvent that can arrange adjacent molecules by including F—H (fluorine hydrogen bond).

これらは、セルロース樹脂の分子間水素結合よりもセルロースとの間で強い水素結合を形成する能力を有するもので、本発明で行う溶融流延法においては、用いるセルロース樹脂単独のガラス転移温度よりも、水素結合性溶媒の添加によりセルロース樹脂組成物の溶融温度を低下することができる。   These have the ability to form stronger hydrogen bonds with cellulose than intermolecular hydrogen bonds of cellulose resin. In the melt casting method performed in the present invention, the glass transition temperature of the cellulose resin used alone is higher than that. The melting temperature of the cellulose resin composition can be lowered by adding a hydrogen bonding solvent.

または同じ溶融温度においてセルロース樹脂よりも水素結合性溶媒を含むセルロース樹脂組成物の溶融粘度を低下することができる。   Alternatively, the melt viscosity of the cellulose resin composition containing a hydrogen bonding solvent can be lowered than that of the cellulose resin at the same melting temperature.

水素結合性溶媒としては、例えば、アルコール類:例えば、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、2−エチルヘキサノール、ヘプタノール、オクタノール、ノナノール、ドデカノール、エチレングリコール、プロピレングリコール、ヘキシレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ヘキシルセロソルブ、グリセリン等、ケトン類:アセトン、メチルエチルケトン等、カルボン酸類:例えば蟻酸、酢酸、プロピオン酸、酪酸等、エーテル類:例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等、ピロリドン類:例えば、N−メチルピロリドン等、アミン類:例えば、トリメチルアミン、ピリジン等、等を例示することができる。   Examples of the hydrogen bonding solvent include alcohols: for example, methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, t-butanol, 2-ethylhexanol, heptanol, octanol, nonanol, dodecanol, ethylene glycol, Propylene glycol, hexylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, hexyl cellosolve, glycerin, etc., ketones: acetone, methyl ethyl ketone, etc., carboxylic acids: eg formic acid, acetic acid, propionic acid, Butyric acid, etc., ethers: eg, diethyl ether, tetrahydrofuran, dioxane, etc., Pyrrolidones: eg, N-methyl Pyrrolidone, etc., amines: for example, can be exemplified trimethylamine, pyridine, etc., and the like.

これら水素結合性溶媒は、単独で、または2種以上混合して用いることができる。これらのうちでも、アルコール、ケトン、エーテル類が好ましく、特にメタノール、エタノール、プロパノール、イソプロパノール、オクタノール、ドデカノール、エチレングリコール、グリセリン、アセトン、テトラヒドロフランが好ましい。さらに、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、グリセリン、アセトン、テトラヒドロフランのような水溶性溶媒が特に好ましい。ここで水溶性とは、水100gに対する溶解度が10g以上のものをいう。これらの溶媒は、溶融製膜時に揮発し、最終的には含有溶媒量として0.01質量%以下とされる。   These hydrogen bonding solvents can be used alone or in admixture of two or more. Among these, alcohol, ketone, and ether are preferable, and methanol, ethanol, propanol, isopropanol, octanol, dodecanol, ethylene glycol, glycerin, acetone, and tetrahydrofuran are particularly preferable. Furthermore, water-soluble solvents such as methanol, ethanol, propanol, isopropanol, ethylene glycol, glycerin, acetone, and tetrahydrofuran are particularly preferable. Here, water-soluble means that the solubility in 100 g of water is 10 g or more. These solvents are volatilized at the time of melt film formation, and finally the content of the solvent is 0.01% by mass or less.

以下、前述したセルロースエステルフィルムの製膜方法について説明する。   Hereinafter, the film forming method of the cellulose ester film described above will be described.

<溶融流延製膜法>
溶融流延製膜とは、セルロースエステルおよび可塑剤などの添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性のセルロースエステルを含む溶融物を流延することを溶融製膜として定義する。加熱溶融する成形法は、さらに詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度および表面精度などに優れるセルロースエステルフィルムを得るためには、溶融押し出し法が優れている。
<Melt casting method>
Melt casting is a process in which a composition containing an additive such as a cellulose ester and a plasticizer is heated and melted to a temperature showing fluidity, and then a melt containing the flowable cellulose ester is cast. Defined as melt film formation. More specifically, the heat melting molding method can be classified into a melt extrusion molding method, a press molding method, an inflation method, an injection molding method, a blow molding method, a stretch molding method, and the like. Among these, in order to obtain a cellulose ester film excellent in mechanical strength and surface accuracy, the melt extrusion method is excellent.

以下、溶融流延製膜方法について説明する。   Hereinafter, the melt casting film forming method will be described.

(セルロースエステルと添加剤の溶融ペレット製造工程)
溶融押出に用いる複数の原材料は、通常あらかじめ混錬してペレット化しておくことが好ましい。ペレット化は、公知の方法でよく、例えば、乾燥セルロースエステルや可塑剤、その他添加剤をフィーダーで押出機に供給し一軸や二軸の押出機を用いて混錬し、ダイからストランド状に押し出し、水冷または空冷し、カッティングすることでできる。原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70〜140℃で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。
(Process for producing molten pellets of cellulose ester and additives)
It is preferable that a plurality of raw materials used for melt extrusion are usually kneaded and pelletized in advance. Pelletization may be performed by a known method. For example, dry cellulose ester, plasticizer, and other additives are fed to an extruder using a feeder, kneaded using a single or twin screw extruder, and extruded from a die into a strand. Can be done by water cooling or air cooling and cutting. It is important to dry the raw material before extruding to prevent decomposition of the raw material. In particular, since the cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer to keep the moisture content at 200 ppm or less, and further 100 ppm or less.

添加剤は、押出機に供給する前に混合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤さらに均一に混合するため、事前に混合しておくことが好ましい。   The additives may be mixed before being supplied to the extruder, or may be supplied by individual feeders. A small amount of additives such as antioxidants are preferably mixed in advance in order to mix more uniformly.

酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、セルロースエステルに含浸させて混合してもよく、あるいは噴霧して混合してもよい。   Mixing of the antioxidants may be performed by mixing solids, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with cellulose ester and mixed, or sprayed and mixed. Also good.

真空ナウターミキサーなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したN2ガスなどの雰囲気下にすることが好ましい。   A vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Moreover, when touching with air, such as an exit from a feeder part or die | dye, it is preferable to set it as atmosphere, such as dehumidified air and dehumidified N2 gas.

また、押出機への供給ホッパー等は保温しておくことが吸湿防止できるので好ましい。   In addition, it is preferable to keep the supply hopper and the like to the extruder warm because moisture absorption can be prevented.

マット剤やUV吸収剤などは、得られたペレットにまぶしたり、フィルム製膜時に押出機中で添加したりしてもよい。   Matting agents, UV absorbers, and the like may be applied to the obtained pellets or added in an extruder during film formation.

押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、二軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。   The extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shearing force is suppressed and the resin does not deteriorate (decrease in molecular weight, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.

ニーダーディスクは、混錬性を向上できるが、せん断発熱に注意が必要である。ニーダーディスクを用いなくても混合性は十分である。ベント孔からの吸引は必要に応じて行えばよい。低温であれば揮発成分はほとんど発生しないのでベント孔なしでもよい。   Kneader discs can improve kneadability, but care must be taken against shearing heat generation. Mixability is sufficient without using a kneader disk. The suction from the vent hole may be performed as necessary. Since there is almost no volatile component at low temperatures, there may be no vent hole.

(セルロースエステルと添加剤の溶融物をダイから押し出す工程)
除湿熱風や真空または減圧下で乾燥したポリマーを一軸や二軸タイプの押出し機を用いて、押し出す際の溶融温度を200〜300℃程度とし、リーフディスクタイプのフィルターなどで濾過し異物を除去したあと、Tダイからフィルム状に流延し、冷却ロール上で固化させる。
(Process of extruding a melt of cellulose ester and additive from the die)
The polymer dried after dehumidifying hot air, vacuum or reduced pressure was removed using a uniaxial or biaxial extruder, the melting temperature during extrusion was about 200 to 300 ° C, and filtered through a leaf disk type filter to remove foreign matter. Then, it is cast into a film from a T die and solidified on a cooling roll.

供給ホッパーから押出し機へ導入する際は真空下または減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。   When introducing from the supply hopper to the extruder, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere.

押し出し流量は、ギヤポンプを導入するなどして安定に行うことが好ましい。また、異物の除去に用いるフィルターは、ステンレス繊維焼結フィルターが好ましく用いられる。   The extrusion flow rate is preferably performed stably by introducing a gear pump or the like. Further, a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.

ステンレス繊維焼結フィルターは、ステンレス繊維体を複雑に絡み合った状態を作り出した上で圧縮し接触箇所を焼結し一体化したもので、その繊維の太さと圧縮量により密度を変え、濾過精度を調整できる。   The stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.

濾過精度を粗、密と連続的に複数回繰り返した多層体としたものが好ましい。また、濾過精度を順次上げていく構成としたり、濾過精度の粗、密を繰り返す方法をとることで、フィルターの濾過寿命が延び、異物やゲルなどの補足精度も向上できるので好ましい。   It is preferable to use a multilayer body in which the filtration accuracy is repeated coarsely and densely multiple times. Further, it is preferable to adopt a configuration in which the filtration accuracy is sequentially increased or a method in which coarse and dense filtration accuracy is repeated, so that the filtration life of the filter can be extended and the accuracy of capturing foreign matters and gels can be improved.

ダイに傷や異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥をダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力ないものを用いることが好ましい。   If flaws or foreign matter adhere to the die, streaky defects may occur. Such defects are also referred to as die lines, but in order to reduce surface defects such as die lines, it is preferable that the piping from the extruder to the die has a structure in which the resin retention portion is minimized. It is preferable to use a die that has as few scratches as possible inside the lip.

押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。   The inner surface that contacts the molten resin such as an extruder or a die is preferably subjected to surface treatment that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material having a low surface energy. Specifically, a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.

可塑剤などの添加剤は、あらかじめ樹脂と混合しておいてもよいし、押出機の途中で練り込んでもよい。均一に添加するために、スタチックミキサーなどの混合装置を用いることが好ましい。   Additives such as plasticizers may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.

(ダイから押し出された溶融物を冷却ロールと弾性タッチロールとの間に押圧しながら流延する工程)
冷却ロールと弾性タッチロールでフィルムをニップする際のタッチロール側のフィルム温度はフィルムのTg以上Tg+110℃以下にすることが好ましい。このような目的で使用する弾性体表面を有するロールは、公知のロールが使用できる。冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。
(Process of casting while pressing the melt extruded from the die between the cooling roll and the elastic touch roll)
The film temperature on the touch roll side when the film is nipped between the cooling roll and the elastic touch roll is preferably Tg or more and Tg + 110 ° C. or less of the film. A well-known roll can be used for the roll which has the elastic body surface used for such a purpose. When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.

(延伸工程)
上記のようにして得られたフィルムは冷却ロールに接する工程を通過後、MDさらに、TDに延伸速度が400%/min〜1500%/minで延伸すること、前記フィルムを少なくとも製膜方向か幅手方向のどちらか一方に50%〜200%延伸することが好ましい。この延伸工程により、本発明のMD、TDの弾性率が決定付けられる。延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。延伸温度は、通常フィルムを構成する樹脂のTg〜Tg+60℃の温度範囲で行なわれることが好ましい。
(Stretching process)
The film obtained as described above passes through the step of contacting the cooling roll, and then is further stretched in MD and TD at a stretching speed of 400% / min to 1500% / min, and the film is at least in the film forming direction or width. It is preferable to stretch 50% to 200% in either of the hand directions. This stretching step determines the elastic modulus of MD and TD of the present invention. As a method of stretching, a known roll stretching machine or tenter can be preferably used. It is preferable that the stretching temperature is usually performed in a temperature range of Tg to Tg + 60 ° C. of the resin constituting the film.

フィルム構成材料のガラス転移温度Tgはフィルムを構成する材料種および構成する材料の比率を異ならしめることにより制御できる。位相差フィルムを作製する場合、Tgは110℃以上、好ましくは125℃以上とすることが好ましい。フィルムのTgが高過ぎると、フィルム構成材料をフィルム化するとき温度が高くなるために加熱するエネルギー消費が高くなり、またフィルム化するときの材料自身の分解、それによる着色が生じることがあり、従って、Tgは250℃以下が好ましい。   The glass transition temperature Tg of the film constituting material can be controlled by varying the material type constituting the film and the ratio of the constituting material. When producing a retardation film, Tg is 110 ° C. or higher, preferably 125 ° C. or higher. If the Tg of the film is too high, the temperature is increased when the film constituent material is made into a film, so that the energy consumption for heating is increased, and the material itself may be decomposed when it is made into a film, resulting in coloring. Therefore, Tg is preferably 250 ° C. or lower.

また延伸工程には公知の熱固定条件、冷却、緩和処理を行ってもよく、目的とする位相差フィルムに要求される特性を有するように適宜調整すればよい。   The stretching step may be carried out by known heat setting conditions, cooling, and relaxation treatment, and may be appropriately adjusted so as to have the characteristics required for the target retardation film.

延伸は、幅手方向で制御された均一な温度分布下で行うことが好ましい。好ましくは±2℃以内、さらに好ましくは±1℃以内、特に好ましくは±0.5℃以内である。   The stretching is preferably performed under a uniform temperature distribution controlled in the width direction. The temperature is preferably within ± 2 ° C, more preferably within ± 1 ° C, and particularly preferably within ± 0.5 ° C.

巻き取る前に、製品となる幅に端部をスリットして裁ち落とし、巻き中の貼り付きやすり傷防止のために、ナール加工(エンボッシング加工)を両端に施してもよい。ナール加工の方法は凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。   Prior to winding, the ends may be slit and cut to the width of the product, and knurling (embossing) may be applied to both ends to prevent sticking or scratching during winding. The knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing.

なお、フィルム両端部のクリップの把持部分は通常、フィルムが変形しており製品として使用できないので切除されて、再利用される。   In addition, since the film has deform | transformed and cannot use as a product normally, the holding | grip part of the clip of both ends of a film is cut out and reused.

延伸倍率としては、少なくとも一方に1%〜250%、より好ましくは2%〜200%、さらに好ましくは3%〜150%である。縦、横均等に延伸してもよいが、一方の延伸倍率を他方より大きくし不均等に延伸するほうがより好ましい。   The stretch ratio is 1% to 250%, more preferably 2% to 200%, and still more preferably 3% to 150% on at least one side. Although it may be stretched evenly in the vertical and horizontal directions, it is more preferable to stretch one of the stretch ratios more than the other and stretch the same.

縦(MD)、横(TD)いずれを大きくしてもよいが、小さい方の延伸倍率は0%〜30%が好ましく、より好ましくは0%〜25%であり、さらに好ましくは0%〜20%である。大きいほうの延伸倍率は1%〜250%であり、より好ましくは10%〜200%、さらに好ましくは30%〜150%である。   Either length (MD) or width (TD) may be increased, but the smaller draw ratio is preferably 0% to 30%, more preferably 0% to 25%, and still more preferably 0% to 20%. %. The larger draw ratio is 1% to 250%, more preferably 10% to 200%, and still more preferably 30% to 150%.

延伸倍率(%)=100×{(延伸後の長さ)−(延伸前の長さ)}/(延伸前の長さ)
これらの縦延伸と横延伸は、それぞれ単独で行ってもよく(一軸延伸)、組み合わせて行ってもよい(二軸延伸)。二軸延伸の場合、縦、横逐次で実施してもよく(逐次延伸)、同時に実施してもよい(同時延伸)。
Stretch ratio (%) = 100 × {(Length after stretching) − (Length before stretching)} / (Length before stretching)
These longitudinal stretching and lateral stretching may be performed independently (uniaxial stretching) or may be performed in combination (biaxial stretching). In the case of biaxial stretching, it may be carried out in the longitudinal and transverse sequential manners (sequential stretching) or simultaneously (simultaneous stretching).

このような延伸に引き続き、縦または横方向に0%〜10%緩和することが好ましい。さらに、延伸に引き続き、150℃〜250℃で1秒〜3分熱固定することも好ましい。   Following such stretching, it is preferable to relax 0% to 10% in the longitudinal or transverse direction. Furthermore, it is also preferable to heat-fix at 150-250 degreeC for 1 second-3 minutes following extending | stretching.

ここで、Roとは面内リターデーションを示し、面内の製膜方向MDの屈折率と幅手方向TDの屈折率との差に厚みを乗じたもの、Rtとは厚み方向リターデーションを示し、面内の屈折率(製膜方向MDと幅方向TDの平均)と厚み方向の屈折率との差に厚みを乗じたものである。   Here, Ro indicates in-plane retardation, the difference between the refractive index in the in-plane film forming direction MD and the refractive index in the width direction TD is multiplied by the thickness, and Rt indicates the thickness direction retardation. The difference between the in-plane refractive index (average of the film forming direction MD and the width direction TD) and the refractive index in the thickness direction is multiplied by the thickness.

延伸は、例えばフィルムの製膜方向および幅手方向に対して、逐次または同時に行うことができる。このとき少なくとも1方向に対しての延伸倍率が小さ過ぎると十分な位相差が得られず、大き過ぎると延伸が困難となりフィルム破断が発生してしまう場合がある。   Stretching can be performed sequentially or simultaneously with respect to, for example, the film forming direction and the width direction of the film. At this time, if the stretching ratio in at least one direction is too small, a sufficient phase difference cannot be obtained, and if it is too large, stretching becomes difficult and film breakage may occur.

互いに直交する二軸方向に延伸することは、フィルムの屈折率nx、ny、nzを所定の範囲に入れるために有効な方法である。   Stretching in biaxial directions perpendicular to each other is an effective method for bringing the refractive indexes nx, ny, and nz of the film within a predetermined range.

ここで、nxとはフィルムMD方向の屈折率、nyとはTD方向の屈折率、nzとは厚み方向の屈折率である。   Here, nx is the refractive index in the film MD direction, ny is the refractive index in the TD direction, and nz is the refractive index in the thickness direction.

例えばフィルム製膜方向に延伸した場合、幅手方向の収縮が大き過ぎると、nzの値が大きくなり過ぎてしまう。この場合、フィルムの幅収縮を抑制、あるいは幅手方向にも延伸することで改善できる。幅手方向に延伸する場合、幅手方向で屈折率に分布が生じることがある。   For example, when stretching in the film forming direction, if the shrinkage in the width direction is too large, the value of nz becomes too large. In this case, the width shrinkage of the film can be suppressed or improved by stretching in the width direction. When stretching in the width direction, the refractive index may be distributed in the width direction.

この分布は、テンター法を用いた場合に現れることがあり、フィルムを幅手方向に延伸したことで、フィルム中央部に収縮力が発生し、端部は固定されていることにより生じる現象で、いわゆるボーイング現象と呼ばれるものと考えられる。   This distribution may appear when the tenter method is used, and by stretching the film in the width direction, a shrinkage force is generated in the center of the film, and the phenomenon is caused by the end being fixed, It is thought to be a so-called Boeing phenomenon.

この場合でも、フィルム製膜方向に延伸することで、ボーイング現象を抑制でき、幅手方向の位相差の分布を少なくできる。互いに直交する二軸方向に延伸することにより、得られるフィルムの膜厚変動が減少できる。膜厚変動が大き過ぎると位相差のムラとなり、液晶ディスプレイに用いたとき着色等のむらが問題となることがある。   Even in this case, by stretching in the film forming direction, the bowing phenomenon can be suppressed and the distribution of retardation in the width direction can be reduced. By stretching in biaxial directions perpendicular to each other, film thickness fluctuations of the obtained film can be reduced. If the film thickness variation is too large, the phase difference becomes uneven, and unevenness such as coloring may be a problem when used in a liquid crystal display.

前述のセルロースエステルフィルムの膜厚変動は、±3%、さらに±1%の範囲とすることが好ましい。   The film thickness variation of the aforementioned cellulose ester film is preferably in the range of ± 3%, more preferably ± 1%.

延伸後、フィルムの端部をスリッターにより製品となる幅にスリットして裁ち落としたあと、エンボスリングおよびバックロールよりなるナール加工装置によりナール加工(エンボッシング加工)をフィルム両端部に施し、巻取り機によって巻き取ることにより、セルロースエステルフィルム(元巻き)の貼り付きや、すり傷の発生を防止する。   After stretching, after slitting the end of the film to a product width with a slitter, the film is subjected to knurling (embossing) on both ends of the film by a knurling device consisting of an embossing ring and a back roll, and a winder By taking up with, it prevents the cellulose ester film (original winding) from sticking and the generation of scratches.

(溶液流延製膜)
溶液流延による製膜製造では、樹脂及び添加剤を溶剤に溶解させてドープを調製する工程、ドープをベルト状もしくはドラム状の金属支持体上に流延する工程、流延したドープをウェブとして乾燥する工程、金属支持体から剥離する工程、延伸または幅保持する工程、更に乾燥する工程、仕上がったフィルムを巻き取る工程により行われる。ドープ中の樹脂濃度は、濃度が高い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、樹脂の濃度が高過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10〜35質量%が好ましく、更に好ましくは、15〜25質量%である。
(Solution casting film formation)
In film production by solution casting, a step of preparing a dope by dissolving a resin and an additive in a solvent, a step of casting the dope on a belt-shaped or drum-shaped metal support, and using the cast dope as a web It is performed by a step of drying, a step of peeling from the metal support, a step of stretching or maintaining the width, a step of further drying, and a step of winding up the finished film. The resin concentration in the dope is preferably higher because the drying load after casting on the metal support can be reduced, but if the resin concentration is too high, the load during filtration increases and the filtration accuracy deteriorates. . As a density | concentration which makes these compatible, 10-35 mass% is preferable, More preferably, it is 15-25 mass%.

流延(キャスト)工程における金属支持体は、表面を鏡面仕上げしたものが好ましく、金属支持体としては、ステンレススティールベルトもしくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。キャストの幅は1〜4mとすることができる。流延工程の金属支持体の表面温度は−50℃〜溶剤が沸騰して発泡しない温度以下に設定される。温度が高い方がウェブの乾燥速度が速くできるので好ましいが、余り高過ぎるとウェブが発泡したり、平面性が劣化する場合がある。好ましい支持体温度としては0〜100℃で適宜決定され、5〜30℃が更に好ましい。または、冷却することによってウェブをゲル化させて残留溶媒を多く含んだ状態でドラムから剥離することも好ましい方法である。金属支持体の温度を制御する方法は特に制限されないが、温風または冷風を吹きかける方法や、温水を金属支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、金属支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は溶媒の蒸発潜熱によるウェブの温度低下を考慮して、溶媒の沸点以上の温風を使用しつつ、発泡も防ぎながら目的の温度よりも高い温度の風を使う場合がある。特に、流延から剥離するまでの間で支持体の温度及び乾燥風の温度を変更し、効率的に乾燥を行うことが好ましい。   The metal support in the casting (casting) step preferably has a mirror-finished surface. As the metal support, a stainless steel belt or a drum whose surface is plated with a casting is preferably used. The cast width can be 1 to 4 m. The surface temperature of the metal support in the casting step is set to −50 ° C. to a temperature at which the solvent boils and does not foam. A higher temperature is preferable because the web can be dried faster, but if it is too high, the web may foam or the flatness may deteriorate. The preferable support temperature is appropriately determined at 0 to 100 ° C, and more preferably 5 to 30 ° C. Alternatively, it is also a preferable method that the web is gelled by cooling and peeled from the drum in a state containing a large amount of residual solvent. The method for controlling the temperature of the metal support is not particularly limited, and there are a method of blowing hot air or cold air, and a method of contacting hot water with the back side of the metal support. It is preferable to use warm water because heat transfer is performed efficiently, so that the time until the temperature of the metal support becomes constant is short. When using warm air, considering the temperature drop of the web due to the latent heat of vaporization of the solvent, while using warm air above the boiling point of the solvent, there may be cases where wind at a temperature higher than the target temperature is used while preventing foaming. . In particular, it is preferable to perform drying efficiently by changing the temperature of the support and the temperature of the drying air during the period from casting to peeling.

セルロースエステルフィルムが良好な平面性を示すためには、金属支持体からウェブを剥離する際の残留溶媒量は10〜150質量%が好ましく、更に好ましくは20〜40質量%または60〜130質量%であり、特に好ましくは、20〜30質量%または70〜120質量%である。   In order for the cellulose ester film to exhibit good flatness, the residual solvent amount when peeling the web from the metal support is preferably 10 to 150% by mass, more preferably 20 to 40% by mass or 60 to 130% by mass. Especially preferably, it is 20-30 mass% or 70-120 mass%.

残留溶媒量は下記式で定義される。   The amount of residual solvent is defined by the following formula.

残留溶媒量(質量%)={(M−N)/N}×100
尚、Mはウェブまたはフィルムを製造中または製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
Residual solvent amount (% by mass) = {(MN) / N} × 100
M is the mass of a sample collected during or after the production of the web or film, and N is the mass after heating M at 115 ° C. for 1 hour.

また、フィルムの乾燥工程においては、ウェブを金属支持体より剥離し、更に乾燥し、残留溶媒量を1質量%以下にすることが好ましく、更に好ましくは0.1質量%以下であり、特に好ましくは0〜0.01質量%以下である。   In the film drying step, the web is peeled off from the metal support, and further dried, and the residual solvent amount is preferably 1% by mass or less, more preferably 0.1% by mass or less, and particularly preferably. Is 0-0.01 mass% or less.

フィルム乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールをウェブを交互に通し乾燥させる方式)やテンター方式でウェブを搬送させながら乾燥する方式が採られる。   In the film drying process, generally, a roll drying method (a method in which a plurality of rolls arranged on the upper and lower sides are alternately passed through and dried) or a method of drying while transporting the web by a tenter method is adopted.

フィルム乾燥工程では、雰囲気置換率を12回/時間以上、好ましくは12〜45回/時間の雰囲気下で搬送しながら処理することが好ましい。   In the film drying step, it is preferable to carry out the treatment while transporting in an atmosphere with an atmosphere substitution rate of 12 times / hour or more, preferably 12 to 45 times / hour.

雰囲気置換率は、熱処理室の雰囲気容量をV(m)、Fresh−air送風量をFA(m/hr)とした場合、下式によって求められる単位時間あたり熱処理室の雰囲気をFresh−airで置換する回数である。Fresh−airは熱処理室に送風される風のうち、循環再利用している風ではなく、揮発した溶媒もしくは可塑剤などを含まない、もしくはそれらが除去された新鮮な風のことを意味している。 The atmosphere substitution rate is defined as follows. When the atmosphere capacity of the heat treatment chamber is V (m 3 ) and the fresh air flow rate is FA (m 3 / hr), the atmosphere of the heat treatment chamber per unit time determined by the following formula is Fresh-air. Is the number of replacements by. “Fresh-air” means that the wind blown into the heat treatment chamber is not a wind that is recycled and reused, and it means a fresh wind that does not contain volatilized solvent or plasticizer or has been removed. Yes.

雰囲気置換率=FA/V(回/時間)
12回/時間以上の雰囲気置換率では、フィルムから揮発した可塑剤による雰囲気中の可塑剤濃度を十分に低減することができ、フィルムへの再付着が低減でき好ましい。
Atmosphere replacement rate = FA / V (times / hour)
An atmosphere substitution rate of 12 times / hour or more is preferable because the plasticizer concentration in the atmosphere due to the plasticizer volatilized from the film can be sufficiently reduced, and reattachment to the film can be reduced.

(ハードコートフィルムの形態)
近年、画像表示装置の薄膜化が進んでおり、画像表示装置に用いられる保護フィルムや偏光膜といった部材についても薄膜が望まれている。従来、保護フィルムを薄膜化していくとフィルム弾性が低下し、変形しやすく、ロール状で保管しておくとフィルム同士がくっつき、ブロッキングを起こしやすい。
(Form of hard coat film)
In recent years, thinning of image display devices has progressed, and thin films are also desired for members such as protective films and polarizing films used in image display devices. Conventionally, when the protective film is thinned, the film elasticity is lowered and is easily deformed. When the protective film is stored in a roll shape, the films adhere to each other and are likely to be blocked.

本発明のハードコートフィルムは、透明フィルムである上記セルロースエステルフィルムの膜厚を30μm以下といった薄膜とし、かつロール状で保管しておく際に、本発明の効果を発揮しやすい。また、生産の効率化から、ハードコートフィルムは長尺が好ましく、具体的には1000m以上、好ましくは3000m以上、更に好ましくは5000m以上である。また、長尺フィルムでの保管の際にもハードコートフィルム(透明フィルム)は薄膜の方が好ましい。   The hard coat film of the present invention is easy to exert the effects of the present invention when the cellulose ester film, which is a transparent film, has a thin film thickness of 30 μm or less and is stored in a roll shape. In view of production efficiency, the hard coat film is preferably long, specifically 1000 m or more, preferably 3000 m or more, and more preferably 5000 m or more. In addition, the hard coat film (transparent film) is preferably a thin film when stored as a long film.

<偏光板>
本発明のハードコートフィルムを用いた偏光板について述べる。
<Polarizing plate>
A polarizing plate using the hard coat film of the present invention will be described.

偏光板は一般的な方法で作製することができる。本発明のハードコートフィルムの裏面側をアルカリ鹸化処理し、処理したハードコートフィルムを、ヨウ素溶液中に浸漬延伸して作製した偏光膜の少なくとも一方の面に、完全鹸化型ポリビニルアルコール水溶液を用いて貼り合わせることが好ましい。もう一方の面に該ハードコートフィルムを用いても、別の保護フィルムを用いてもよい。本発明のハードコートフィルムに対して、もう一方の面に用いられる保護フィルムは、面内リターデーションRoが590nmで、20〜100nm、Rtが100〜400nmの位相差を有する光学補償フィルム(位相差フィルム)を用いることが好ましい。これらは例えば、特開2002−71957号、特願2002−155395号記載の方法で作製することができる。または、更にディスコチック液晶やネマチック液晶等の液晶化合物を配向させて形成した光学異方層を有している光学補償フィルムを兼ねる保護フィルムを用いることが好ましい。例えば、特開2003−98348号記載の方法で光学異方性層を形成することができる。或いは、特開2003−12859号記載のリターデーションRoが590nmで0〜5nm、Rtが−20〜+20nmの無配向フィルムも好ましく用いられる。本発明のハードコートフィルムを偏光板に組み合わせて使用することによって、平面性に優れる偏光板を得ることができる。裏面側に用いられる保護フィルムとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリシクロオレフィンフィルム、セロファン、セルロースアセテートフィルム、セルロースアセテートブチレートフィルム、セルロースアセテートフタレートフィルム、セルロースアセテートプロピオネートフィルム、セルローストリアセテート、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体からなるフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、シクロオレフィンポリマーフィルム(例えば、ARTON(JSR社製)、ゼオネックス、ゼオノア(日本ゼオン社製))、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルスルフォンフィルム、ポリスルホン系フィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、アクリルフィルム或いはポリアクリレート系フィルム等を挙げることができる。セルロースアセテートプロピオネートフィルム、セルローストリアセテートフィルム(TACフィルム)等のセルロースエステルフィルムは市販のフィルム、例えば、コニカミノルタオプト(株)製のコニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UCR3、KC8UCR4、KC8UCR5、KC8UY、KC4UY、KC12UR、KC16UR、KC4UE、KC8UE、KC4FR−1、KC4FR−2等が好ましく用いられる。他にシクロオレフィンポリマーフィルム、ポリカーボネートフィルム、ポリエステルフィルムまたはポリアクリルフィルムも透明性、機械的性質、光学的異方性がない点等で好ましく使用できる。   The polarizing plate can be produced by a general method. The back surface side of the hard coat film of the present invention is subjected to alkali saponification treatment, and a completely hardened polyvinyl alcohol aqueous solution is used on at least one surface of a polarizing film prepared by immersing and stretching the treated hard coat film in an iodine solution. It is preferable to bond them together. The hard coat film may be used on the other surface, or another protective film may be used. The protective film used on the other surface of the hard coat film of the present invention is an optical compensation film (retardation) having an in-plane retardation Ro of 590 nm, a retardation of 20 to 100 nm, and an Rt of 100 to 400 nm. It is preferable to use a film. These can be prepared, for example, by the methods described in JP-A No. 2002-71957 and Japanese Patent Application No. 2002-155395. Alternatively, it is preferable to use a protective film that also serves as an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal or a nematic liquid crystal. For example, the optically anisotropic layer can be formed by the method described in JP-A-2003-98348. Alternatively, a non-oriented film having a retardation Ro of 590 nm of 0 to 5 nm and an Rt of -20 to +20 nm described in JP-A No. 2003-12859 is also preferably used. By using the hard coat film of the present invention in combination with a polarizing plate, a polarizing plate having excellent flatness can be obtained. As the protective film used on the back side, polyester film such as polyethylene terephthalate and polyethylene naphthalate, polyethylene film, polypropylene film, polycycloolefin film, cellophane, cellulose acetate film, cellulose acetate butyrate film, cellulose acetate phthalate film, cellulose Acetate propionate film, cellulose triacetate, cellulose ester such as cellulose nitrate or derivatives thereof, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film, cyclohexane Olefin polymer film ( For example, ARTON (manufactured by JSR), ZEONEX, ZEONOR (manufactured by ZEON CORPORATION), polymethylpentene film, polyetherketone film, polyethersulfone film, polysulfone film, polyetherketoneimide film, polyamide film, acrylic film Or a polyacrylate film etc. can be mentioned. Cellulose ester films such as cellulose acetate propionate film and cellulose triacetate film (TAC film) are commercially available films, such as Konica Minolta Op KONICA MINOLTATAC KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY KC4UY, KC12UR, KC16UR, KC4UE, KC8UE, KC4FR-1, KC4FR-2, etc. are preferably used. In addition, a cycloolefin polymer film, a polycarbonate film, a polyester film, or a polyacrylic film can also be preferably used in terms of transparency, mechanical properties, and lack of optical anisotropy.

偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがあるがこれのみに限定されるものではない。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。偏光膜の膜厚は5〜30μm、好ましくは8〜15μmの偏光膜が好ましく用いられる。該偏光膜の面上に、本発明のハードコートフィルムの片面を貼り合わせて偏光板を形成する。好ましくは完全鹸化ポリビニルアルコール等を主成分とする水系の接着剤によって貼り合わせる。また偏光板は、生産の効率化から、1500m、2500m、5000mとより長尺のほど、好ましい。   The polarizing film, which is the main component of the polarizing plate, is an element that transmits only light having a polarization plane in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol film. There are ones in which iodine is dyed on a system film and ones in which a dichroic dye is dyed, but it is not limited to this. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. A polarizing film having a thickness of 5 to 30 μm, preferably 8 to 15 μm, is preferably used. On the surface of the polarizing film, one side of the hard coat film of the present invention is bonded to form a polarizing plate. It is preferably bonded with an aqueous adhesive mainly composed of completely saponified polyvinyl alcohol or the like. Further, the longer the polarizing plate, 1500 m, 2500 m, and 5000 m, are more preferable in terms of production efficiency.

<表示装置>
本発明のハードコートフィルムを用いて作製した偏光板を表示装置に組み込むことによって、種々の視認性、平面性及び表面硬度に優れた本発明の表示装置を作製することができる。
<Display device>
By incorporating the polarizing plate produced using the hard coat film of the present invention into a display device, the display device of the present invention excellent in various visibility, flatness and surface hardness can be produced.

本発明のハードコートフィルムは前記偏光板に組み込まれ、反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型、フリンジ電場スイッチング(FFS:Fringe−Field Switching)、OCB型等の各種駆動方式の液晶表示装置で好ましく用いられる。   The hard coat film of the present invention is incorporated in the polarizing plate, and is a reflective type, transmissive type, transflective type LCD or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type, It is preferably used in liquid crystal display devices of various drive systems such as fringe field switching (FFS) and OCB type.

また、プラズマディスプレイ、フィールドエミッションディスプレイ、有機ELディスプレイ、無機ELディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。   Moreover, it is preferably used for various display devices such as a plasma display, a field emission display, an organic EL display, an inorganic EL display, and electronic paper.

本発明の液晶表示装置は、大型の液晶テレビに用いられる。画面サイズとしては、17型以上に用いることができ、好ましくは26型以上100型程度まで用いることができる。   The liquid crystal display device of the present invention is used for a large liquid crystal television. As a screen size, it can be used for 17 or more types, preferably 26 to 100 types.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1
以下、本発明の実施例を説明するが、本発明はこれらに限定されるものではない。
Example 1
Examples of the present invention will be described below, but the present invention is not limited thereto.

<ハードコートフィルム1の作製>
〈セルロースエステルフィルムAの作製(一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂からなる透明フィルムの作製)〉
(セルロースエステルXの合成)
反応器に酢酸セルロース(ダイセル化学工業(株)製、L−20、置換度2.41)80部を加え、110℃、4時間、4Torr(1Torrは、133.322Paである)で減圧乾燥した。その後、乾燥窒素によりパージを行い、還流冷却管を取り付け、事前に乾燥、蒸留したε−カプロラクトン20部、シクロヘキサノン67部を加えて160℃に加熱、撹拌して酢酸セルロースを均一に溶解させた。この反応液にモノブチルスズトリオクチレート0.25部を添加し、160℃で2時間撹拌しながら加熱した。その後、反応液を室温まで冷却し反応を終結させ反応物を得た。さらに、クロロホルム90部に対して反応物10部を溶解後、大過剰のメタノール900部中にゆっくりと滴下し、沈殿した沈殿物を濾別することによって、ε−カプロラクトンの単独重合体を除去した。さらに、60℃にて5時間以上加熱乾燥し、ε−カプロラクトンが酢酸セルロースに反応したセルロースエステルXを得た。そして、H−NMRにより得られたセルロースエステルの一次構造を分析した。その結果、グルコース単位1モルあたりに反応したε−カプロラクトンの平均モル数は0.43、平均置換度は0.08、平均重合度は5.1であった。
<Preparation of hard coat film 1>
<Production of Cellulose Ester Film A (Production of Transparent Film Consisting of Cellulose Ester Resin Having At least One Repeating Unit Represented by General Formula (1) or (2))>
(Synthesis of cellulose ester X)
To the reactor, 80 parts of cellulose acetate (Daicel Chemical Industries, Ltd., L-20, substitution degree 2.41) was added and dried under reduced pressure at 110 ° C. for 4 hours, 4 Torr (1 Torr is 133.322 Pa). . Thereafter, purging was performed with dry nitrogen, a reflux condenser was attached, 20 parts of ε-caprolactone and 67 parts of cyclohexanone that had been dried and distilled in advance were added, and the mixture was heated to 160 ° C. and stirred to dissolve cellulose acetate uniformly. To this reaction solution, 0.25 part of monobutyltin trioctylate was added and heated at 160 ° C. with stirring for 2 hours. Thereafter, the reaction solution was cooled to room temperature to terminate the reaction and obtain a reaction product. Furthermore, 10 parts of the reaction product was dissolved in 90 parts of chloroform, and then slowly dropped into 900 parts of a large excess of methanol, and the precipitated precipitate was filtered to remove the homopolymer of ε-caprolactone. . Furthermore, it heat-dried at 60 degreeC for 5 hours or more, and obtained the cellulose ester X which (epsilon) -caprolactone reacted with the cellulose acetate. And the primary structure of the cellulose ester obtained by < 1 > H-NMR was analyzed. As a result, the average number of moles of ε-caprolactone reacted per mole of glucose unit was 0.43, the average degree of substitution was 0.08, and the average degree of polymerization was 5.1.

(ドープ液Aの調製)
下記材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行って、セルロースエステルを完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープ液Aを得た。
(Preparation of dope solution A)
The following materials were sequentially put into a sealed container, the temperature in the container was raised from 20 ° C. to 80 ° C., and the mixture was stirred for 3 hours while maintaining the temperature at 80 ° C. to completely dissolve the cellulose ester. The silicon oxide fine particles were added dispersed in a solution of a solvent to be added in advance and a small amount of cellulose ester. This dope was filtered using a filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope solution A.

(ドープ液A)
セルロースエステルX 100質量部
モノペットSB(糖エステル化合物) 9質量部
酸化ケイ素微粒子 0.1質量部
(アエロジルR972V、日本アエロジル株式会社製)
メチレンクロライド 400質量部
エタノール 40質量部
ブタノール 5質量部
上記の材料を混合してドープ液Aを調製し、得られたドープ液Aを、温度35℃に保温した流延ダイより、ステンレス鋼製エンドレスベルトよりなる温度35℃の支持体上に流延して、ウェブを形成した。ついで、ウェブを支持体上で乾燥させ、ウェブの残留溶媒量が100質量%になった段階で、剥離ロールによりウェブを支持体から剥離した。
(Dope solution A)
Cellulose ester X 100 parts by mass Monopet SB (sugar ester compound) 9 parts by mass Silicon oxide fine particles 0.1 parts by mass (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.)
Methylene chloride 400 parts by weight Ethanol 40 parts by weight Butanol 5 parts by weight The above materials are mixed to prepare a dope solution A. From the casting die in which the obtained dope solution A is kept at 35 ° C., stainless steel endless The web was formed by casting on a support composed of a belt and having a temperature of 35 ° C. Next, the web was dried on the support, and the web was peeled from the support with a peeling roll when the residual solvent amount of the web reached 100% by mass.

ついで、ウェブを上下に複数配置したロールによる搬送乾燥工程で100℃の乾燥風にて乾燥させながら搬送し、続いて図3で示すテンターでウェブ両端部を把持した後、130℃で幅方向(TD)に延伸前の1.2倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で140℃の乾燥風にて乾燥させた。室温まで冷却して、両端部に幅1cm、平均高さ15μmのナーリング加工を施して巻き取り、幅1.5m、膜厚30μm、長さ6900m、長尺のセルロースエステルフィルムAを作製した。ステンレスバンド支持体の回転速度とテンターの運転速度から算出される剥離直後のウェブ搬送方向(MD)の延伸倍率は、1.1倍であった。   Next, the web is transported while being dried with a drying air of 100 ° C. in a transport drying process using a plurality of rolls arranged on the upper and lower sides. Subsequently, both ends of the web are gripped by the tenter shown in FIG. (TD) was stretched to 1.2 times that before stretching. After stretching with a tenter, the web was dried with a drying air of 140 ° C. in a conveying and drying process using a plurality of rolls arranged vertically. After cooling to room temperature, both ends were subjected to a knurling process having a width of 1 cm and an average height of 15 μm and wound up to prepare a cellulose ester film A having a width of 1.5 m, a film thickness of 30 μm, a length of 6900 m, and a length. The draw ratio of the web conveyance direction (MD) immediately after peeling calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times.

次いで、上記作製したセルロースエステルフィルムA上に、下記ハードコート層塗布組成物1を孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層塗布液を調製し、図1の装置を用いてダイコータにより塗布し、70℃で乾燥後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら、紫外線ランプを用い照射部の照度が300mW/cm、照射量を0.3J/cmとして塗布層を硬化させ、更に図1の加熱処理ゾーン7において、130℃で5分間、搬送張力300N/mで加熱処理し、ドライ膜厚18μmのハードコート層を形成し、ハードコートフィルム1を作製し、巻き取った。 Next, a hard coat layer coating solution is prepared by filtering the following hard coat layer coating composition 1 on the produced cellulose ester film A through a polypropylene filter having a pore size of 0.4 μm, and using the apparatus shown in FIG. After irradiating at 70 ° C. and purging with nitrogen so that the atmosphere has an oxygen concentration of 1.0% by volume or less, the illuminance of the irradiated part is 300 mW / cm 2 and the irradiation amount is 0.3 J using an ultraviolet lamp. / Cm 2 , and the coating layer is cured, and in the heat treatment zone 7 of FIG. 1, heat treatment is performed at 130 ° C. for 5 minutes at a conveyance tension of 300 N / m to form a hard coat layer having a dry film thickness of 18 μm. Film 1 was prepared and wound up.

(ハードコート層組成物1)
〈フッ素−シロキサングラフトポリマーIの調製〉
以下、フッ素−シロキサングラフトポリマーIの調整に用いた素材の市販品名を示す。
(Hard coat layer composition 1)
<Preparation of fluorine-siloxane graft polymer I>
Hereinafter, commercial product names of materials used for preparing the fluorine-siloxane graft polymer I are shown.

ラジカル重合性フッ素樹脂(A):セフラルコートCF−803(水酸基価60,数平均分子量15,000;セントラル硝子株式会社製)
片末端ラジカル重合性ポリシロキサン(B):サイラプレーンFM−0721(数平均分子量5,000;チッソ株式会社製)
ラジカル重合開始剤:パーブチルO(t−ブチルパーオキシ−2−エチルヘキサノエート;日本油脂株式会社製)
硬化剤:スミジュールN3200(ヘキサメチレンジイソシアネートのビウレット型プレポリマー;
住友バイエルウレタン株式会社製)
(ラジカル重合性フッ素樹脂(A)の合成)
機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、セフラルコートCF−803(1554質量部)、キシレン(233質量部)、及び2−イソシアナトエチルメタクリレート(6.3質量部)を入れ、乾燥窒素雰囲気下で80℃に加熱した。80℃で2時間反応し、サンプリング物の赤外吸収スペクトルによりイソシアネートの吸収が消失したことを確認した後、反応混合物を取り出し、ウレタン結合を介して50質量%のラジカル重合性フッ素樹脂(A)を得た。
Radical polymerizable fluororesin (A): Cefalcoat CF-803 (hydroxyl value 60, number average molecular weight 15,000; manufactured by Central Glass Co., Ltd.)
One-end radical polymerizable polysiloxane (B): Silaplane FM-0721 (number average molecular weight 5,000; manufactured by Chisso Corporation)
Radical polymerization initiator: Perbutyl O (t-butylperoxy-2-ethylhexanoate; manufactured by NOF Corporation)
Curing agent: Sumijour N3200 (biuret type prepolymer of hexamethylene diisocyanate;
(Sumitomo Bayer Urethane Co., Ltd.)
(Synthesis of radical polymerizable fluororesin (A))
In a glass reactor equipped with a mechanical stirrer, thermometer, condenser and dry nitrogen gas inlet, cefal coat CF-803 (1554 parts by mass), xylene (233 parts by mass), and 2-isocyanatoethyl methacrylate (6 3 parts by mass) and heated to 80 ° C. in a dry nitrogen atmosphere. After reacting at 80 ° C. for 2 hours and confirming that the absorption of isocyanate disappeared by the infrared absorption spectrum of the sample, the reaction mixture was taken out and 50% by mass of radically polymerizable fluororesin (A) via a urethane bond. Got.

(フッ素−シロキサングラフトポリマーIの調製)
機械式撹拌装置、温度計、コンデンサー及び乾燥窒素ガス導入口を備えたガラス製反応器に、上記合成したラジカル重合性フッ素樹脂(A)(26.1質量部)、キシレン(19.5質量部)、酢酸n−ブチル(16.3質量部)、メチルメタクリレート(2.4質量部)、n−ブチルメタクリレート(1.8質量部)、ラウリルメタクリレート(1.8質量部)、2−ヒドロキシエチルメタクリレート(1.8質量部)、FM−0721(5.2質量部)、及びパーブチルO(0.1質量部)を入れ、窒素雰囲気中で90℃まで加熱した後、90℃で2時間保持した。パーブチルO(0.1部)を追加し、更に90℃で5時間保持することによって、重量平均分子量が171,000である35質量%フッ素−シロキサングラフトポリマーIの溶液を得た。
(Preparation of fluorine-siloxane graft polymer I)
In a glass reactor equipped with a mechanical stirrer, a thermometer, a condenser and a dry nitrogen gas inlet, the synthesized radical polymerizable fluororesin (A) (26.1 parts by mass), xylene (19.5 parts by mass) ), N-butyl acetate (16.3 parts by mass), methyl methacrylate (2.4 parts by mass), n-butyl methacrylate (1.8 parts by mass), lauryl methacrylate (1.8 parts by mass), 2-hydroxyethyl Add methacrylate (1.8 parts by mass), FM-0721 (5.2 parts by mass), and perbutyl O (0.1 parts by mass), heat to 90 ° C. in a nitrogen atmosphere, and hold at 90 ° C. for 2 hours. did. Perbutyl O (0.1 part) was added, and the solution was further maintained at 90 ° C. for 5 hours to obtain a 35 mass% fluorine-siloxane graft polymer I solution having a weight average molecular weight of 171,000.

重量平均分子量はGPCにより求めた。また、フッ素−シロキサングラフトポリマーIの質量%はHPLC(液体クロマトグラフィー)により求めた。   The weight average molecular weight was determined by GPC. Moreover, the mass% of the fluorine-siloxane graft polymer I was calculated | required by HPLC (liquid chromatography).

下記材料を攪拌、混合しハードコート層塗布組成物1とした。   The following materials were stirred and mixed to obtain hard coat layer coating composition 1.

ペンタエリスリトールトリアクリレート 20.0質量部
ペンタエリスリトールテトラアクリレート 50.0質量部
ジペンタエリスリトールヘキサアクリレート 30.0質量部
ジペンタエリスリトールペンタアクリレート 30.0質量部
イルガキュア184 5.0質量部
(チバ・ジャパン社製)
上記調製したフッ素−シロキサングラフトポリマーI(35質量%) 5.0質量部
シーホスターKEP−50(粉体のシリカ粒子、平均粒径0.47〜0.61μm、日本触媒株式会社製) 24.3質量部
プロピレングリコールモノメチルエーテル 20質量部
酢酸メチル 40質量部
メチルエチルケトン 60質量部
(マルテンス硬さの測定)
ハードコートフィルム1のハードコート層表面のマルテンス硬さ(HMs)を、微小硬度計を用いて測定した。すなわち、ビッカース圧子及び稜線同士の角度が、115度の三角錐圧子を用いた微小硬度計(商品名、DUH−211,島津製作所社製)を用いて、先ずはハードコートフィルム表面のハードコート層を、膜厚の略1/10の厚みまで圧子を押し込み、圧子を押し込んだときの負荷試験力−押し込み深さ曲線を作成した。次に、作成した負荷試験力−押し込み深さ曲線から最大負荷試験力(Fmax)の50%値から90%値までの押し込み深さが負荷試験力の平方根に比例する傾き(m)より、下記式で定義されるハードコート層表面のマルテンス硬さ(Hms)の値を算出した。
Pentaerythritol triacrylate 20.0 parts by mass Pentaerythritol tetraacrylate 50.0 parts by mass Dipentaerythritol hexaacrylate 30.0 parts by mass Dipentaerythritol pentaacrylate 30.0 parts by mass Irgacure 184 5.0 parts by mass (Ciba Japan Co., Ltd.) Made)
Fluoro-siloxane graft polymer I prepared above (35% by mass) 5.0 parts by mass Sea Hoster KEP-50 (powdered silica particles, average particle size 0.47 to 0.61 μm, manufactured by Nippon Shokubai Co., Ltd.) 24.3 Parts by mass propylene glycol monomethyl ether 20 parts by mass methyl acetate 40 parts by mass methyl ethyl ketone 60 parts by mass (measurement of Martens hardness)
The Martens hardness (HMs) of the hard coat layer surface of the hard coat film 1 was measured using a micro hardness meter. That is, using a microhardness meter (trade name, DUH-212, manufactured by Shimadzu Corporation) using a Vickers indenter and a triangular pyramid indenter having an angle of 115 degrees, first, a hard coat layer on the surface of the hard coat film The indenter was pushed to a thickness of about 1/10 of the film thickness, and a load test force-indentation depth curve when the indenter was pushed in was created. Next, from the created load test force-indentation depth curve, the indentation depth from the 50% value to the 90% value of the maximum load test force (Fmax) is as follows from the slope (m) proportional to the square root of the load test force. The Martens hardness (Hms) value of the hard coat layer surface defined by the formula was calculated.

1HMs=1/(26.4m
結果、ハードコートフィルム1のハードコート層表面のマルテンス硬さ(HMs)は、408N/mmであった。
1HMs = 1 / (26.4m 2 )
As a result, the Martens hardness (HMs) of the hard coat layer surface of the hard coat film 1 was 408 N / mm 2 .

<ハードコートフィルム2〜4の作製>
ハードコートフィルム1と同様にして、表1に記載の条件で、図1の加熱処理ゾーン7における加熱処理条件、張力を変化させ、ハードコートフィルムフィルム2〜4を作製した。また、ハードコート層表面のマルテンス硬さ(HMs)も測定し、表1に記載した。
<Preparation of hard coat films 2-4>
Similarly to the hard coat film 1, under the conditions shown in Table 1, the heat treatment conditions and tension in the heat treatment zone 7 of FIG. 1 were changed to produce hard coat film films 2 to 4. Further, the Martens hardness (HMs) on the surface of the hard coat layer was also measured and listed in Table 1.

<ハードコートフィルム5〜10の作製>
ハードコートフィルム1の作製において、膜厚を表1に記載のように変化させ、ハードコートフィルムフィルム5〜10を作製した。また、ハードコート層表面のマルテンス硬さ(HMs)も測定し、表1に記載した。
<Preparation of hard coat films 5-10>
In preparation of the hard coat film 1, the film thickness was changed as shown in Table 1 to prepare hard coat film films 5 to 10. Further, the Martens hardness (HMs) on the surface of the hard coat layer was also measured and listed in Table 1.

<ハードコートフィルム11の作製>
ハードコートフィルム1の作製において、透明フィルムを下記のセルロースエステルフィルムBに変更した以外は、同様にしてハードコートフィルム11を作製した。
<Preparation of hard coat film 11>
In the production of the hard coat film 1, a hard coat film 11 was produced in the same manner except that the transparent film was changed to the following cellulose ester film B.

<セルロースエステルフィルムBの作製>
(セルロースエステルYの合成)
反応器に酢酸セルロース(ダイセル化学工業(株)製、L−20、置換度2.41)80部を加え、110℃、4時間、4Torr(1Torrは、133.322Paである)で減圧乾燥した。その後、乾燥窒素によりパージを行い、還流冷却管を取り付け、事前に乾燥、蒸留したL−ラクチド((株)武蔵野化学研究所製)80部、シクロヘキサノン67部を加えて160℃に加熱、撹拌して酢酸セルロースを均一に溶解させた。この反応液にモノブチルスズトリオクチレート0.25部を添加し、160℃で2時間撹拌しながら加熱した。その後、反応液を室温まで冷却し反応を終結させ反応物を得た。さらに、クロロホルム90部に対して反応物10部を溶解後、大過剰のメタノール900部中にゆっくりと滴下し、沈殿した沈殿物を濾別することによって、L−ラクチドの単独重合体を除去した。さらに、60℃にて5時間以上加熱乾燥し、ε−カプロラクトンが酢酸セルロースに反応したセルロースエステルY得た。そして、H−NMRにより得られたセルロースエステルの一次構造を分析した。その結果、そして、H−NMRにより得られたグラフト体の一次構造を分析した。その結果、グルコース単位1モルあたりに反応したL−ラクチドの平均モル数は1.80、平均置換度は0.33、平均重合度は7.1であった。
<Preparation of cellulose ester film B>
(Synthesis of cellulose ester Y)
To the reactor, 80 parts of cellulose acetate (Daicel Chemical Industries, Ltd., L-20, substitution degree 2.41) was added and dried under reduced pressure at 110 ° C. for 4 hours, 4 Torr (1 Torr is 133.322 Pa). . Then, purging with dry nitrogen, attaching a reflux condenser, adding 80 parts of L-lactide (manufactured by Musashino Chemical Laboratories) and 67 parts of cyclohexanone that were dried and distilled in advance, and heating and stirring to 160 ° C. The cellulose acetate was uniformly dissolved. To this reaction solution, 0.25 part of monobutyltin trioctylate was added and heated at 160 ° C. with stirring for 2 hours. Thereafter, the reaction solution was cooled to room temperature to terminate the reaction and obtain a reaction product. Furthermore, 10 parts of the reaction product was dissolved in 90 parts of chloroform, and then slowly dropped into 900 parts of a large excess of methanol, and the precipitated precipitate was filtered off to remove the L-lactide homopolymer. . Furthermore, it heat-dried at 60 degreeC for 5 hours or more, and obtained the cellulose ester Y which (epsilon) -caprolactone reacted with the cellulose acetate. And the primary structure of the cellulose ester obtained by < 1 > H-NMR was analyzed. As a result, the primary structure of the graft obtained by 1 H-NMR was analyzed. As a result, the average number of moles of L-lactide reacted per mole of glucose unit was 1.80, the average degree of substitution was 0.33, and the average degree of polymerization was 7.1.

(ドープ液Bの調製)
下記の材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行って、セルロースエステルを完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルロースエステルの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープ液Bを得た。
(Preparation of dope solution B)
The following materials were sequentially put into a sealed container, the temperature in the container was raised from 20 ° C. to 80 ° C., and the mixture was stirred for 3 hours while maintaining the temperature at 80 ° C. to completely dissolve the cellulose ester. . The silicon oxide fine particles were added dispersed in a solution of a solvent to be added in advance and a small amount of cellulose ester. This dope was filtered using a filter paper (Azumi filter paper No. 244, manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope solution B.

(ドープ液B)
セルロースエステルY 100質量部
モノペットSB(糖エステル化合物) 9質量部
酸化ケイ素微粒子 0.1質量部
(アエロジルR972V、日本アエロジル株式会社製)
メチレンクロライド 400質量部
エタノール 40質量部
ブタノール 5質量部
上記の材料を混合してドープ液Bを調製し、得られたドープ液Bを、温度35℃に保温した流延ダイより、ステンレス鋼製エンドレスベルトよりなる温度35℃の支持体上に流延して、ウェブを形成した。ついで、ウェブを支持体上で乾燥させ、ウェブの残留溶媒量が100質量%になった段階で、剥離ロールによりウェブを支持体から剥離した。
(Dope solution B)
Cellulose ester Y 100 parts by mass Monopet SB (sugar ester compound) 9 parts by mass Silicon oxide fine particles 0.1 parts by mass (Aerosil R972V, manufactured by Nippon Aerosil Co., Ltd.)
Methylene chloride 400 parts by weight Ethanol 40 parts by weight Butanol 5 parts by weight The above materials are mixed to prepare a dope solution B, and the obtained dope solution B is made of stainless steel endless from a casting die kept at a temperature of 35 ° C. The web was formed by casting on a support composed of a belt and having a temperature of 35 ° C. Next, the web was dried on the support, and the web was peeled from the support with a peeling roll when the residual solvent amount of the web reached 100% by mass.

ついで、ウェブを上下に複数配置したロールによる搬送乾燥工程で100℃の乾燥風にて乾燥させながら搬送し、続いてテンターでウェブ両端部を把持した後、130℃で幅方向(TD)に延伸前の1.2倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で140℃の乾燥風にて乾燥させた。室温まで冷却して、両端部に幅1cm、平均高さ15μmのナーリング加工を施して巻き取り、幅1.5m、膜厚30μm、長さ6900m、長尺のセルロースエステルフィルムBを作製した。ステンレスバンド支持体の回転速度とテンターの運転速度から算出される剥離直後のウェブ搬送方向(MD)の延伸倍率は、1.1倍であった。   Next, the web is transported while being dried with a drying air of 100 ° C. in a transport drying process using a plurality of rolls arranged on the upper and lower sides. Subsequently, both ends of the web are gripped by a tenter and then stretched in the width direction (TD) at 130 ° C. It extended | stretched so that it might become 1.2 times before. After stretching with a tenter, the web was dried with a drying air of 140 ° C. in a conveying and drying process using a plurality of rolls arranged vertically. After cooling to room temperature, both ends were subjected to a knurling process having a width of 1 cm and an average height of 15 μm, and wound to prepare a cellulose ester film B having a width of 1.5 m, a film thickness of 30 μm, a length of 6900 m, and a length. The draw ratio of the web conveyance direction (MD) immediately after peeling calculated from the rotational speed of the stainless steel band support and the operating speed of the tenter was 1.1 times.

<ハードコートフィルム12の作製>
ハードコートフィルム1の作製において、透明フィルムを下記のセルローストリアセテートフィルム1に変更した以外は、同様にしてハードコートフィルム12を作製した。
<Preparation of hard coat film 12>
In the production of the hard coat film 1, a hard coat film 12 was produced in the same manner except that the transparent film was changed to the cellulose triacetate film 1 described below.

(セルローストリアセテートフィルム1の作製)
(ドープ液Cの調製)
下記の材料を、順次密閉容器中に投入し、容器内温度を20℃から80℃まで昇温した後、温度を80℃に保ったままで3時間攪拌を行って、セルローストリアセテートを完全に溶解した。酸化ケイ素微粒子は予め添加する溶媒と少量のセルローストリアセテートの溶液中に分散して添加した。このドープを濾紙(安積濾紙株式会社製、安積濾紙No.244)を使用して濾過し、ドープ液Cを得た。
(Preparation of cellulose triacetate film 1)
(Preparation of dope solution C)
The following materials were sequentially put into a sealed container, the temperature in the container was raised from 20 ° C. to 80 ° C., and then stirred for 3 hours while maintaining the temperature at 80 ° C. to completely dissolve the cellulose triacetate. . The silicon oxide fine particles were dispersed and added in a solution of a solvent to be added in advance and a small amount of cellulose triacetate. This dope was filtered using a filter paper (Azumi filter paper No. 244 manufactured by Azumi Filter Paper Co., Ltd.) to obtain a dope solution C.

(ドープ液C)
セルローストリアセテート(アセチル基置換度2.9) 100質量部
トリフェニルホスフェート(可塑剤) 7質量部
ビフェニルジフェニルホスフェート(可塑剤) 4質量部
酸化ケイ素微粒子 0.1質量部
(アエロジルR972V、日本アエロジル株式会社製)
メチレンクロライド 400質量部
エタノール 40質量部
ブタノール 5質量部
上記の材料を混合してドープ液Cを調製し、得られたドープ液Cを、温度35℃に保温した流延ダイを通過させ、ステンレス鋼製エンドレスベルトよりなる温度35℃の支持体上に流延して、ウェブを形成した。ついで、ウェブを支持体上で乾燥させ、ウェブの残留溶媒量が100質量%になった段階で、剥離ロールによりウェブを支持体から剥離した。
(Dope solution C)
Cellulose triacetate (acetyl group substitution degree 2.9) 100 parts by weight Triphenyl phosphate (plasticizer) 7 parts by weight Biphenyl diphenyl phosphate (plasticizer) 4 parts by weight Fine particles of silicon oxide 0.1 part by weight (Aerosil R972V, Nippon Aerosil Co., Ltd.) Made)
Methylene chloride 400 parts by weight Ethanol 40 parts by weight Butanol 5 parts by weight The above materials are mixed to prepare a dope liquid C, and the obtained dope liquid C is passed through a casting die kept at a temperature of 35 ° C. A web was formed by casting on a support made of an endless belt made at a temperature of 35 ° C. Next, the web was dried on the support, and the web was peeled from the support with a peeling roll when the residual solvent amount of the web reached 100% by mass.

ついで、ウェブを上下に複数配置したロールによる搬送の乾燥工程で100℃の乾燥風にて乾燥させながら搬送し、続いてテンターでウェブ両端部を把持した後、130℃で幅方向(TD)に延伸前の1.2倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で140℃の乾燥風にて乾燥させた。次いで室温まで冷却して両端部に幅1cm、平均高さ15μmのナーリング加工を施して巻き取り、幅1.5m、膜厚30μm、長さ6900mのセルローストリアセテートフィルム1を作製した。   Next, the web is transported while being dried with a drying air of 100 ° C. in a drying process of transport by a plurality of rolls arranged on the top and bottom, and subsequently grips both ends of the web with a tenter, and then in the width direction (TD) at 130 ° C. It extended | stretched so that it might be 1.2 times before extending | stretching. After stretching with a tenter, the web was dried with a drying air of 140 ° C. in a conveying and drying process using a plurality of rolls arranged vertically. Next, the mixture was cooled to room temperature, and both ends were subjected to a knurling process having a width of 1 cm and an average height of 15 μm and wound up to prepare a cellulose triacetate film 1 having a width of 1.5 m, a film thickness of 30 μm, and a length of 6900 m.

<ハードコートフィルム13の作製>
ハードコートフィルム1の作製において、セルロースエステルフィルムAを特開2006−291192号公報実施例3を参考にして作製したシクロオレフィンポリマー1(COP1:厚み30μm)とし、大気圧プラズマ処理による表面処理を行った後、ハードコート層を形成した以外は同様にしてハードコートフィルム13を作製した。
<Preparation of hard coat film 13>
In the production of the hard coat film 1, the cellulose ester film A is a cycloolefin polymer 1 (COP1: thickness 30 μm) produced with reference to Example 3 of JP-A-2006-291192, and surface treatment is performed by atmospheric pressure plasma treatment. Thereafter, a hard coat film 13 was produced in the same manner except that a hard coat layer was formed.

<シクロオレフィンポリマーフィルム1(COP1)の作製>
(シクロオレフィンポリマー1の合成)
窒素置換した反応容器に、8−メチル−8−カルボキシメチルテトラシクロ[4.4.0.12,5.17,10]−3−ドデセン225部と、ビシクロ[2.2.1]ヘプト−2−エン25部と、分子量調節剤として1−ヘキセン18部と、溶媒としてトルエン750部とを仕込み、この溶液を60℃に加熱した。次いで、反応容器内の溶液に、重合触媒としてトリエチルアルミニウム1.5モル/lを含有するトルエン溶液0.62部と、t−ブタノールおよびメタノールで変性した六塩化タングステン(t−ブタノール:メタノール:タングステン=0.35モル:0.3モル:1モル)を含有する濃度0.05モル/lのトルエン溶液3.7部とを添加し、この系を80℃で3時間加熱攪拌することにより開環共重合反応させて開環共重合体溶液を得た。この重合反応における重合転化率は97%であり、得られた開環共重合体溶液を構成する開環共重合体の30℃のクロロホルム中における固有粘度(ηinh)を測定したところ、0.65dl/gであった得られた開環共重合体溶液4000部をオートクレーブに仕込み、この開環共重合体溶液に、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム:RuHCl(CO)[P(Cを0.48部添加し、水素ガス圧100kg/cm、反応温度165℃の条件下で3時間加熱攪拌することにより水素添加反応を行った。得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(以下、「シクロオレフィンポリマー1」)を得た。得られたシクロオレフィンポリマー1について、水素添加率を、400MHzH−NMRスペクトルにより測定したところ、99.9%であった。また、GPC法(溶媒:テトラヒドロフラン)によりポリスチレン換算の数平均分子量(Mn)および質量平均分子量(Mw)を測定したところ、数平均分子量(Mn)は39,000、質量平均分子量(Mw)は126,000、分子量分布(Mw/Mn)は3.23であった。
<Preparation of cycloolefin polymer film 1 (COP1)>
(Synthesis of cycloolefin polymer 1)
In a reaction vessel purged with nitrogen, 225 parts of 8-methyl-8-carboxymethyltetracyclo [4.4.0.12, 5.17,10] -3-dodecene and bicyclo [2.2.1] hept- 25 parts of 2-ene, 18 parts of 1-hexene as a molecular weight regulator and 750 parts of toluene as a solvent were charged, and this solution was heated to 60 ° C. Next, 0.62 parts of a toluene solution containing 1.5 mol / l of triethylaluminum as a polymerization catalyst and tungsten hexachloride modified with t-butanol and methanol (t-butanol: methanol: tungsten) were added to the solution in the reaction vessel. = 0.35 mol: 0.3 mol: 1 mol) containing 3.7 parts of a 0.05 mol / l toluene solution, and the system was opened by heating and stirring at 80 ° C. for 3 hours. A ring-opening copolymer solution was obtained by a ring copolymerization reaction. The polymerization conversion rate in this polymerization reaction was 97%, and the intrinsic viscosity (η inh ) in 30 ° C. chloroform of the ring-opening copolymer constituting the obtained ring-opening copolymer solution was measured. The autoclave was charged with 4000 parts of the resulting ring-opening copolymer solution that was 65 dl / g, and carbonylchlorohydridotris (triphenylphosphine) ruthenium: RuHCl (CO) [P (C 6 H 5) 3] 3 was added 0.48 parts of a hydrogen gas pressure of 100 kg / cm 2, was subjected to hydrogenation reaction by heating for 3 hours stirring under the conditions of reaction temperature of 165 ° C.. After cooling the obtained reaction solution (hydrogenated polymer solution), the hydrogen gas was released. This reaction solution was poured into a large amount of methanol to separate and recover a coagulated product, which was dried to obtain a hydrogenated polymer (hereinafter “cycloolefin polymer 1”). With respect to the obtained cycloolefin polymer 1, the hydrogenation rate was measured by means of 400 MHz 1 H-NMR spectrum and found to be 99.9%. Further, when the number average molecular weight (Mn) and the mass average molecular weight (Mw) in terms of polystyrene were measured by the GPC method (solvent: tetrahydrofuran), the number average molecular weight (Mn) was 39,000, and the mass average molecular weight (Mw) was 126. The molecular weight distribution (Mw / Mn) was 3.23.

(ドープ液Dの調製)
シクロオレフィンポリマー1をトルエンに濃度が30%となるように溶解した。得られた溶液の室温における溶液粘度は30,000mPa・sであった。この溶液に、酸化防止剤としてペンタエリスリチルテトラキス[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を、シクロオレフィンポリマー1、100質量部に対して0.1質量部と、酸化ケイ素微粒子をシクロオレフィンポリマー1、100質量部に対して0.1質量部添加し、ドープ液Dを調製した。
(Preparation of dope solution D)
Cycloolefin polymer 1 was dissolved in toluene to a concentration of 30%. The solution viscosity at room temperature of the obtained solution was 30,000 mPa · s. To this solution, pentaerythrityltetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] as an antioxidant was added in an amount of 0.1 mass per 100 mass parts of the cycloolefin polymer. And 0.1 part by mass of silicon oxide fine particles and 100 parts by mass of cycloolefin polymer 1 were added to prepare a dope solution D.

得られたドープ液Dを、日本ポール製の孔径5μmの金属繊維焼結フィルターを用い、差圧が0.4MPa以内に収まるように溶液の流速をコントロールしながら濾過した後、温度35℃に保温した流延ダイを通過させ、ステンレス鋼製エンドレスベルトよりなる温度35℃の支持体上に流延して、ウェブを形成した。ついで、ウェブを支持体上で乾燥させ、ウェブの残留溶媒量が80質量%になった段階で、剥離ロールによりウェブを支持体から剥離した。   The obtained dope solution D was filtered using a metal fiber sintered filter made by Nippon Pole with a pore diameter of 5 μm while controlling the flow rate of the solution so that the differential pressure was within 0.4 MPa, and then kept at a temperature of 35 ° C. The cast die was passed through and cast on a support made of stainless steel endless belt at a temperature of 35 ° C. to form a web. Next, the web was dried on the support, and the web was peeled from the support with a peeling roll when the residual solvent amount of the web reached 80% by mass.

ついで、ウェブを上下に複数配置したロールによる搬送の乾燥工程で110℃の乾燥風にて乾燥させながら搬送し、続いてテンターでウェブ両端部を把持した後、150℃で幅方向(TD)に延伸前の1.2倍となるように延伸した。テンターでの延伸の後、ウェブを上下に複数配置したロールによる搬送乾燥工程で165℃の乾燥風にて乾燥させた。次いで室温まで冷却して両端部に幅1cm、平均高さ15μmのナーリング加工を施して巻き取り、幅1.5m、膜厚30μm、長さ6900mのシクロオレフィンポリマーフィルム1を作製した。
《ハードコートフィルムの評価》
作製したハードコートフィルム1〜13を用いて以下の評価を実施した。
Next, the web is transported while being dried with a drying air of 110 ° C. in a drying process of transport by a plurality of rolls arranged on the top and bottom, and subsequently grips both ends of the web with a tenter, and then in the width direction (TD) at 150 ° C. It extended | stretched so that it might be 1.2 times before extending | stretching. After stretching with a tenter, the web was dried with a drying air of 165 ° C. in a transport drying process using a plurality of rolls arranged vertically. Next, it was cooled to room temperature, and both ends were subjected to a knurling process having a width of 1 cm and an average height of 15 μm and wound up to prepare a cycloolefin polymer film 1 having a width of 1.5 m, a film thickness of 30 μm, and a length of 6900 m.
<< Evaluation of hard coat film >>
The following evaluation was implemented using the produced hard coat films 1-13.

(表面硬度:鉛筆硬度)
ハードコートフィルム1〜13の表面硬度について、鉛筆硬度試験で評価を行った。JIS−S6006が規定する試験用鉛筆を用いて、JIS−K5400が規定する鉛筆硬度評価法に従い、500gのおもりを用いて各硬度の鉛筆で、ハードコート層表面を5回繰り返し引っ掻き、傷が1本までの硬度を測定した。数字か高いほど、高硬度を示す。本発明では3H以上が高硬度である。
(Surface hardness: pencil hardness)
The surface hardness of the hard coat films 1 to 13 was evaluated by a pencil hardness test. Using the test pencil specified by JIS-S6006, according to the pencil hardness evaluation method specified by JIS-K5400, the surface of the hard coat layer was scratched 5 times with a pencil of each hardness using a weight of 500 g, and scratches were 1 The hardness up to the book was measured. The higher the number, the higher the hardness. In the present invention, 3H or more has high hardness.

(ブロッキング耐性評価)
上記作製したハードコートフィルム1〜13のロール状フィルム(ハードコート層と、ハードコートを形成していない層とが重なっている状態)を、55℃相対湿度80%の恒温槽で11日保存した。次ぎに保存後のブロッキング性を表面からの目視観察にて以下の基準で評価した。結果を表1に示す。
(Blocking resistance evaluation)
The roll film of the hard coat films 1-13 produced above (a state where the hard coat layer and the layer not forming the hard coat overlap) was stored for 11 days in a constant temperature bath at 55 ° C. and a relative humidity of 80%. . Next, the blocking property after storage was evaluated based on the following criteria by visual observation from the surface. The results are shown in Table 1.

◎:くっつき面積0%、ブロッキングは認められない。   A: Sticking area 0%, no blocking observed.

○:くっつき面積が2%未満、僅かにブロッキングが発生している。   ○: The sticking area is less than 2%, and slightly blocking occurs.

△:くっつき面積が2%以上〜10%未満、ブロッキングが発生しているものの、
実用上問題ないレベル。
Δ: Although the sticking area is 2% or more and less than 10%, blocking is occurring,
There is no problem in practical use.

×:くっつき面積が10%以上〜40%未満、ブロッキングが発生。   X: The sticking area is 10% to less than 40%, and blocking occurs.

××:くっつき面積が40%以上、実用上極めて問題となる。   XX: The sticking area is 40% or more, which is extremely problematic for practical use.

(平面性)
床から3mの高さの天井部に、昼色光直管蛍光灯(FLR40S・D/M−X パナソニック株式会社製)40W×2本を1セットとして、1.5m間隔で10セット配置した。次いで、ハードコートフィルム1〜13を、それぞれ1m切り出して、床から80cmの黒い机上に、蛍光灯がハードコートフィルムに垂直にあたるようにハードコート層を表面側にして置き、以下の基準で評価した。
(Flatness)
Ten sets of daylight direct fluorescent lamps (FLR40S • D / MX manufactured by Panasonic Corporation) 40W × 2 were set on a ceiling portion 3 m high from the floor, with 1.5 m intervals. Next, each 1 m of the hard coat films 1 to 13 was cut out, placed on a black desk 80 cm from the floor with the hard coat layer on the surface side so that the fluorescent lamp was perpendicular to the hard coat film, and evaluated according to the following criteria. .

○:蛍光灯が真っ直ぐに見える
△:蛍光灯が若干曲がったように見えるところがあるが、実用上問題ないレベル。
○: Fluorescent lamp looks straight △: Fluorescent lamp appears to be slightly bent, but it is at a level that does not cause any practical problems.

×:蛍光灯が曲がって見える。   X: The fluorescent lamp looks bent.

(総合評価)
硬度、ブロッキング耐性及び平面性の評価から、総合評価として以下の基準で表1に示した。
(Comprehensive evaluation)
From the evaluation of hardness, blocking resistance and flatness, Table 1 shows the overall evaluation as a general evaluation.

◎:硬度4H以上でブロッキング及び平面性が○以上
○:硬度3H以上でブロッキング及び平面性が○以上
△:硬度3H以上で、ブロッキング及び平面性が△、
もしくはブロッキング或いは平面性のどちらかが△で、もう一方は○以上
×:硬度3H以上でブロッキング或いは平面性のどちらかが、×以下
××:硬度3H未満
総合評価△以上が、実用上問題ないレベル。
A: Hardness of 4H or more, blocking and flatness of ◯ or more ○: Hardness of 3H or more, blocking and flatness of ◯ or more Δ: Hardness of 3H or more, blocking and flatness of △,
Alternatively, either blocking or flatness is Δ, and the other is ◯ or more. X: Hardness is 3H or more, and either blocking or flatness is X or less. XX: Hardness is less than 3H. level.

得られた結果を表1に示した。   The obtained results are shown in Table 1.

Figure 2010139941
Figure 2010139941

表1の結果からわかるようにハードコート層の膜厚を8μm以上、40μm以下とし、透明フィルムに一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステルフィルムを用いる事で、高硬度、平面性及びブロッキング耐性の全てにおいて優れる。特にハードコート層の膜厚が14μm以上、26μm以下において、優れた本発明の効果を発揮する。   As can be seen from the results in Table 1, a cellulose ester film having a hard coat layer thickness of 8 μm or more and 40 μm or less and having at least one repeating unit represented by the general formula (1) or (2) in the transparent film is used. Therefore, it is excellent in all of high hardness, flatness and blocking resistance. In particular, when the film thickness of the hard coat layer is 14 μm or more and 26 μm or less, the excellent effect of the present invention is exhibited.

ハードコート層の膜厚が8μmよりも薄いとブロッキング性は優れるが、高硬度が得られない。   When the thickness of the hard coat layer is thinner than 8 μm, the blocking property is excellent, but high hardness cannot be obtained.

ハードコート層の膜厚が40μmよりも厚いと高硬度は得られるが、ブロッキング性と平面性は良好な性能が得られない。   When the film thickness of the hard coat layer is thicker than 40 μm, high hardness is obtained, but good performance in blocking property and flatness cannot be obtained.

実施例2
<ハードコートフィルム14及び15の作製>
ハードコートフィルム2の作製において、図1の加熱処理ゾーン7を通したが、加熱処理せず(室温:25℃)、搬送張力を成り行き(200N/m)に条件変更した以外は同様にして、ハードコートフィルム14を作製した。また、ハードコートフィルム2の作製において、搬送張力を550N/mに条件変更した以外は同様にして、ハードコートフィルム15を作製した。
Example 2
<Preparation of hard coat films 14 and 15>
In the production of the hard coat film 2, the heat treatment zone 7 of FIG. 1 was passed through, but the heat treatment was not performed (room temperature: 25 ° C.), except that the condition of the conveyance tension was changed to the actual condition (200 N / m), A hard coat film 14 was produced. Further, in the production of the hard coat film 2, the hard coat film 15 was produced in the same manner except that the condition of the transport tension was changed to 550 N / m.

ハードコートフィルム14及び15のハードコート層表面のマルテンス硬さ(HMs)も測定し、表2に記載した。   The Martens hardness (HMs) of the hard coat layer surfaces of the hard coat films 14 and 15 was also measured and listed in Table 2.

次いで、上記作製したハードコートフィルム14、15及び実施例1で作製したハードコートフィルム2について、ブロッキング耐性評価の保存期間を16日間に変更した以外は、実施例1と同様にして評価した。得られた結果を表2に示した。   Next, the hard coat films 14 and 15 produced above and the hard coat film 2 produced in Example 1 were evaluated in the same manner as in Example 1 except that the storage period of the blocking resistance evaluation was changed to 16 days. The obtained results are shown in Table 2.

Figure 2010139941
Figure 2010139941

表2の結果から判るように、光照射後、加熱処理と搬送張力を300N/m以上とすることで、よりブロッキング耐性に優れたハードコートフィルムが得られることが判る。また、搬送張力を500N/m以下とする事で、優れた平面性も得られる。   As can be seen from the results in Table 2, it can be seen that a hard coat film with more excellent blocking resistance can be obtained by setting the heat treatment and the transport tension to 300 N / m or more after the light irradiation. Moreover, the outstanding planarity is also acquired by making conveyance tension into 500 N / m or less.

実施例3
<ハードコートフィルム16の作製>
ハードコートフィルム1の作製において、ハードコート層塗布組成物1を下記のハードコート層塗布組成物2に変更した以外は同様にしてハードコートフィルム16を作製した。次いで、上記作製したハードコートフィルム16、及び実施例1で作製したハードコートフィルム1について、ブロッキング耐性評価の耐久試験条件を70℃相対湿度90%に変更した以外は、実施例1と同様にして評価した。得られた結果を表3に示した。また、ハードコートフィルム16のマルテンス硬さも表3に示した。
(ハードコート層組成物2)
〈反応性シリカ粒子(Xa)の作製〉
(重合性不飽和基を有する有機化合物(X)の作製)
メルカプトプロピルトリメトキシシラン23部、ジブチルスズジラウレート0.5部からなる溶液にイソホロンジイソシアネート60部を攪拌しながら50℃で1時間かけて滴下後、70℃で3時間攪拌した。これに新中村化学製NKエステルA−TMM−3LM−N(ペンタエリスリトールトリアクリレート60質量%とペンタエリスリトールテトラアクリレート40質量%とからなる溶液202部を30℃で1時間かけて滴下後、60℃で3時間加熱攪拌することで特定有機化合物(S1)を得た。生成物の赤外吸収スペクトルは原料中のメルカプト基に特徴的な2550cm−1の吸収ピーク及びイソシアネート基に特徴的な2260cm−1の吸収ピークが消失し、新たに、[−O−C(=O)−NH−]基及び[−S−C(=O)−NH−]基中のカルボニルに特徴的な1660cm−1のピーク及びアクリロイル基に特徴的な1720cm−1のピ−クが観察され、重合性不飽和基としてのアクリロイル基と[−S−C(=O)−NH−]基、[−O−C(=O)−NH−]基を共に有する特定有機化合物が生成していることを示した。上記製造した組成物9.36部(重合性不飽和基を有する有機化合物(X)を7.28部含む)、シリカ粒子分散液(シリカ濃度31%、日産化学製MEKゾル)98.07部、イオン交換水0.13部、及びp−ヒドロキシフェニルモノメチルエーテル0.01部の混合液を、60℃、4時間攪拌後、オルト蟻酸メチルエステル1.45部を添加し、さらに1時間同一温度で加熱攪拌することで反応性シリカ粒子(Xa)の分散液を得た。この分散液をアルミ皿に2g秤量後、175℃のホットプレート上で1時間乾燥、秤量して固形分含量を求めたところ、35.7%であった。またこのシリカ粒子の平均粒子径は40nmであった。ここで、平均粒子径は透過型電子顕微鏡により測定した。
Example 3
<Preparation of hard coat film 16>
In the production of the hard coat film 1, a hard coat film 16 was produced in the same manner except that the hard coat layer coating composition 1 was changed to the following hard coat layer coating composition 2. Next, the hard coat film 16 produced above and the hard coat film 1 produced in Example 1 were the same as in Example 1 except that the durability test condition for blocking resistance evaluation was changed to 70 ° C. and 90% relative humidity. evaluated. The obtained results are shown in Table 3. The Martens hardness of the hard coat film 16 is also shown in Table 3.
(Hard coat layer composition 2)
<Preparation of reactive silica particles (Xa)>
(Preparation of organic compound (X) having a polymerizable unsaturated group)
To a solution consisting of 23 parts of mercaptopropyltrimethoxysilane and 0.5 parts of dibutyltin dilaurate, 60 parts of isophorone diisocyanate was added dropwise at 50 ° C. over 1 hour while stirring and then stirred at 70 ° C. for 3 hours. NK ester A-TMM-3LM-N manufactured by Shin-Nakamura Chemical Co., Ltd. (202 parts of a solution composed of 60% by mass of pentaerythritol triacrylate and 40% by mass of pentaerythritol tetraacrylate) was added dropwise at 30 ° C. over 1 hour, and then 60 ° C. The specific organic compound (S1) was obtained by heating and stirring at 3 ° C. The infrared absorption spectrum of the product had an absorption peak of 2550 cm −1 characteristic of the mercapto group in the raw material and 2260 cm characteristic of the isocyanate group. 1 disappears, and a new 1660 cm −1 characteristic of the carbonyl in the [—O—C (═O) —NH—] and [—S—C (═O) —NH—] groups. Peak and 1720 cm −1 peak characteristic of acryloyl group were observed, and acryloyl group as a polymerizable unsaturated group and [—S—C (═O) —NH It was shown that a specific organic compound having both a [-] group and a [-O-C (= O) -NH-] group was formed, 9.36 parts of the composition prepared above (with polymerizable unsaturated groups). Containing 7.28 parts of organic compound (X)), silica particle dispersion (silica concentration 31%, MEK sol manufactured by Nissan Chemical Industries) 98.07 parts, ion-exchanged water 0.13 parts, and p-hydroxyphenyl monomethyl ether After 0.01 part of the mixed liquid is stirred at 60 ° C. for 4 hours, 1.45 parts of orthoformate methyl ester is added, and the mixture is further heated and stirred at the same temperature for 1 hour to obtain a dispersion of reactive silica particles (Xa). 2 g of this dispersion was weighed in an aluminum dish, dried on a hot plate at 175 ° C. for 1 hour, and weighed to determine the solid content, which was 35.7%. The average particle size was 40 nm. In this, the average particle diameter was measured by a transmission electron microscope.

(ハードコート層塗布組成物2)
下記材料を攪拌、混合しハードコート層塗布組成物2とした。
(Hardcoat layer coating composition 2)
The following materials were stirred and mixed to obtain hard coat layer coating composition 2.

ペンタエリスリトールトリアクリレート 20.0質量部
ペンタエリスリトールテトラアクリレート 50.0質量部
ジペンタエリスリトールヘキサアクリレート 30.0質量部
ジペンタエリスリトールペンタアクリレート 30.0質量部
イルガキュア184 5.0質量部
(チバ・ジャパン社製)
上記調製したフッ素−シロキサングラフトポリマーI(35質量%) 5.0質量部
反応性シリカ粒子分散液(反応性シリカ粒子(Xa)35.7%) 68質量部
プロピレングリコールモノメチルエーテル 20質量部
酢酸メチル 40質量部
Pentaerythritol triacrylate 20.0 parts by mass Pentaerythritol tetraacrylate 50.0 parts by mass Dipentaerythritol hexaacrylate 30.0 parts by mass Dipentaerythritol pentaacrylate 30.0 parts by mass Irgacure 184 5.0 parts by mass (Ciba Japan Co., Ltd.) Made)
Fluoro-siloxane graft polymer I prepared above (35% by mass) 5.0 parts by mass Reactive silica particle dispersion (reactive silica particles (Xa) 35.7%) 68 parts by mass Propylene glycol monomethyl ether 20 parts by mass Methyl acetate 40 parts by weight

Figure 2010139941
Figure 2010139941

表3の結果から判るようにハードコート層に重合性不飽和基を有する有機化合物によって表面処理された反応性シリカ粒子(Xa)を含有させることで、より過酷な耐久試験後のブロッキング耐性に優れ、かつ高硬度性能が得られる。   As can be seen from the results in Table 3, by including reactive silica particles (Xa) surface-treated with an organic compound having a polymerizable unsaturated group in the hard coat layer, it is excellent in blocking resistance after a more severe durability test. In addition, high hardness performance can be obtained.

実施例4
<ハードコートフィルム17〜22の作製>
ハードコートフィルム1の作製において、セルロースエステルフィルムAを一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂(表4では、セルロースエステルXと記載)と熱可塑性アクリル樹脂とを表4に記載した割合で混合して、ドープ液を作製した。次に、これらドープ液を用いてセルロースエステル樹脂・熱可塑性アクリル樹脂フィルムを作製し、これらフィルムを基材に用いた以外は同様にして、ハードコートフィルム17〜22を作製した。次いで、上記作製したハードコートフィルム17〜22、及び実施例1で作製したハードコートフィルム1について、ブロッキング耐性評価の耐久試験条件を70℃相対湿度90%とし、保存期間も20日に変更した以外は、実施例1と同様にして評価した。得られた結果を表4に示した。また、ハードコートフィルム17〜22のマルテンス硬さも表4に示した。なお、熱可塑性アクリル樹脂は、ダイヤナールBR85(重量平均分子量(Mw):280000、三菱レイヨン(株)社製)を用いた。
Example 4
<Preparation of hard coat films 17-22>
In the production of the hard coat film 1, the cellulose ester film A is a cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2) (described as cellulose ester X in Table 4) and thermoplasticity. A dope solution was prepared by mixing acrylic resin at a ratio shown in Table 4. Next, a cellulose ester resin / thermoplastic acrylic resin film was produced using these dope solutions, and hard coat films 17 to 22 were produced in the same manner except that these films were used as substrates. Next, for the hard coat films 17 to 22 produced above and the hard coat film 1 produced in Example 1, the durability test conditions for blocking resistance evaluation were 70 ° C. relative humidity 90%, and the storage period was changed to 20 days. Were evaluated in the same manner as in Example 1. The results obtained are shown in Table 4. Table 4 also shows the Martens hardness of the hard coat films 17 to 22. As the thermoplastic acrylic resin, Dianal BR85 (weight average molecular weight (Mw): 280000, manufactured by Mitsubishi Rayon Co., Ltd.) was used.

Figure 2010139941
Figure 2010139941

表4の結果から判るように、透明フィルムが、一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂と、該セルロースエステル樹脂100質量部に対して、熱可塑性アクリル樹脂を10質量部以上での割合で含有させることで、より過酷な耐久試験後のブロッキング耐性に優れることが判る。更に、該セルロースエステル樹脂100質量部に対して、熱可塑性アクリル樹脂を50質量部以上の割合で含有させることで、優れたブロッキング耐性に加えて、高硬度性能も得られる。   As can be seen from the results in Table 4, the transparent film is heated with respect to 100 parts by mass of the cellulose ester resin having at least one repeating unit represented by the general formula (1) or (2) and the cellulose ester resin. It turns out that it is excellent in blocking resistance after a more severe durability test by containing a plastic acrylic resin in the ratio in 10 mass parts or more. Furthermore, high hardness performance is obtained in addition to excellent blocking resistance by containing a thermoplastic acrylic resin in a proportion of 50 parts by mass or more with respect to 100 parts by mass of the cellulose ester resin.

参考例1
<反射防止フィルム1及び2の作製>
実施例1で作製し、耐久試験(55℃・80%の恒温槽で11日保存)を実施したハードコートフィルム1及び13を再び繰り出して、ハードコート層上に、大気圧プラズマ処理を行った後、下記低屈折率層塗布液1を塗布し乾燥させた後、120℃で5分間熱硬化させ、更に紫外線を照射して硬化させ、厚さ85nmの低屈折率層を設けロール状に巻き取った。次いで、45℃で5日間加熱エージング処理して反射防止フィルム1及び2を作製した。
Reference example 1
<Preparation of antireflection films 1 and 2>
The hard coat films 1 and 13 prepared in Example 1 and subjected to the durability test (stored in a constant temperature bath at 55 ° C. and 80% for 11 days) were again drawn out, and atmospheric pressure plasma treatment was performed on the hard coat layer. Then, after applying and drying the following low refractive index layer coating solution 1, it was thermally cured at 120 ° C. for 5 minutes, further cured by irradiation with ultraviolet rays, and a low refractive index layer having a thickness of 85 nm was provided and wound into a roll. I took it. Subsequently, the film was subjected to heat aging treatment at 45 ° C. for 5 days to produce antireflection films 1 and 2.

低屈折率層の屈折率は1.38であった。低屈折率層の表面の中心線平均粗さ(Ra)は100nm以下で、平滑であった。   The refractive index of the low refractive index layer was 1.38. The center line average roughness (Ra) of the surface of the low refractive index layer was 100 nm or less and was smooth.

(低屈折率層塗布液1)
〈テトラエトキシシラン加水分解物Aの調製〉
テトラエトキシシラン58gとエタノール114gを混合し、これに酢酸水溶液(1%)を60g添加した後に、25℃で1時間攪拌することでテトラエトキシシラン加水分解物Aを調製した。
(Low refractive index layer coating solution 1)
<Preparation of tetraethoxysilane hydrolyzate A>
Tetraethoxysilane hydrolyzate A was prepared by mixing 58 g of tetraethoxysilane and 114 g of ethanol and adding 60 g of an acetic acid aqueous solution (1%) thereto, followed by stirring at 25 ° C. for 1 hour.

テトラエトキシシラン加水分解物A 59.5質量部
下記シリカ系微粒子P−1 35質量部
γ−メタクリロキシプロピルトリメトキシシラン(信越化学社製、KBM503)
5質量部
FZ−2222(日本ユニカー製、10%プロピレングリコールモノメチルエーテル溶液) 0.5質量部
イソプロピルアルコール 500質量部
プロピレングリコールモノメチルエーテル(PGME) 300質量部
メチルエチルケトン(MEK) 100質量部
〈シリカ系微粒子P−1の調製〉
平均粒径5nm、SiO濃度20質量%のシリカゾル100gと純水1900gの混合物を80℃に加温した。この反応母液のpHは10.5であり、同母液にSiOとして0.98質量%のケイ酸ナトリウム水溶液9000gとAlとして1.02質量%のアルミン酸ナトリウム水溶液9000gとを同時に添加した。その間、反応液の温度を80℃に保持した。反応液のpHは添加直後、12.5に上昇し、その後、ほとんど変化しなかった。添加終了後、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度20質量%のSiO・Al核粒子分散液を調製した。(工程(a))
この核粒子分散液500gに純水1700gを加えて98℃に加温し、この温度を保持しながら、ケイ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケイ酸液(SiO濃度3.5質量%)3000gを添加して第1シリカ被覆層を形成した核粒子の分散液を得た。(工程(b))
次いで、限外濾過膜で洗浄して固形分濃度13質量%になった第1シリカ被覆層を形成した核粒子分散液500gに純水1125gを加え、更に濃塩酸(35.5%)を滴下してpH1.0とし、脱アルミニウム処理を行った。次いで、pH3の塩酸水溶液10Lと純水5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、第1シリカ被覆層を形成した核粒子の構成成分の一部を除去したSiO・Al多孔質粒子の分散液を調製した(工程(c))。上記多孔質粒子分散液1500gと、純水500g、エタノール1,750g及び28%アンモニア水626gとの混合液を35℃に加温した後、エチルシリケート(SiO28質量%)104gを添加し、第1シリカ被覆層を形成した。
Tetraethoxysilane hydrolyzate A 59.5 parts by mass The following silica-based fine particles P-1 35 parts by mass γ-methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM503)
5 parts by mass FZ-2222 (Nihon Unicar, 10% propylene glycol monomethyl ether solution) 0.5 parts by mass Isopropyl alcohol 500 parts by mass Propylene glycol monomethyl ether (PGME) 300 parts by mass Methyl ethyl ketone (MEK) 100 parts by mass <Silica-based fine particles Preparation of P-1>
A mixture of 100 g of silica sol having an average particle diameter of 5 nm and a SiO 2 concentration of 20% by mass and 1900 g of pure water was heated to 80 ° C. The pH of this reaction mother liquor was 10.5, and 9000 g of 0.98 mass% sodium silicate aqueous solution as SiO 2 and 9000 g of 1.02 mass% sodium aluminate aqueous solution as Al 2 O 3 were simultaneously added to the mother liquor. did. Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition and hardly changed thereafter. After completion of the addition, the reaction solution was cooled to room temperature and washed with an ultrafiltration membrane to prepare a SiO 2 .Al 2 O 3 core particle dispersion having a solid content concentration of 20% by mass. (Process (a))
1700 g of pure water is added to 500 g of this core particle dispersion and heated to 98 ° C., and while maintaining this temperature, a silicate solution (SiO 2) obtained by dealkalizing a sodium silicate aqueous solution with a cation exchange resin. A dispersion of core particles in which 3000 g (concentration of 3.5% by mass) was added to form a first silica coating layer was obtained. (Process (b))
Next, 1125 g of pure water is added to 500 g of the core particle dispersion liquid that has been washed with an ultrafiltration membrane to form a first silica coating layer having a solid content concentration of 13% by mass, and concentrated hydrochloric acid (35.5%) is further added dropwise. The pH was adjusted to 1.0 and dealumination was performed. Next, the aluminum salt dissolved in the ultrafiltration membrane is separated while adding 10 L of hydrochloric acid aqueous solution of pH 3 and 5 L of pure water, and SiO 2 · Al in which some of the constituent components of the core particles forming the first silica coating layer are removed. A dispersion of 2 O 3 porous particles was prepared (step (c)). A mixture of 1500 g of the above porous particle dispersion, 500 g of pure water, 1,750 g of ethanol, and 626 g of 28% ammonia water is heated to 35 ° C., and then 104 g of ethyl silicate (SiO 2 28 mass%) is added, A first silica coating layer was formed.

多孔質粒子の表面をエチルシリケートの加水分解重縮合物で被覆して第2シリカ被覆層を形成した。次いで、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度20質量%のシリカ系微粒子(P−1)の分散液を調製した。   The surface of the porous particles was coated with a hydrolyzed polycondensate of ethyl silicate to form a second silica coating layer. Next, a dispersion of silica-based fine particles (P-1) having a solid content concentration of 20% by mass in which the solvent was replaced with ethanol using an ultrafiltration membrane was prepared.

この中空シリカ系微粒子の第1シリカ被覆層の厚さは3nm、平均粒径は47nm、MOx/SiO(モル比)は0.0017、屈折率は1.28であった。ここで、平均粒径は動的光散乱法により測定した。 The thickness of the first silica coating layer of the hollow silica-based fine particles was 3 nm, the average particle size was 47 nm, MOx / SiO 2 (molar ratio) was 0.0017, and the refractive index was 1.28. Here, the average particle diameter was measured by a dynamic light scattering method.

(反射色むら)
上記作製した反射防止フィルム目視により反射色むらを下記基準で評価した。結果を表5に示した。
(Reflective color unevenness)
The reflection color unevenness was evaluated by the following criteria by visual observation of the produced antireflection film. The results are shown in Table 5.

◎:反射光の色調変化が認められない
○:ごく一部に反射光の色調変化が認められる(面積の10%未満)
△:部分的に反射光の色調変化が認められる(面積の10%以上30%未満)
×:全体的に反射光の色調変化が認められる
◎: Change in color tone of reflected light is not recognized ○: Change in color tone of reflected light is recognized in a small part (less than 10% of area)
Δ: Partial change in color of reflected light is recognized (10% or more and less than 30% of area)
X: Change in color tone of reflected light is recognized as a whole

Figure 2010139941
Figure 2010139941

表5結果から判るように、本発明のハードコートフィルムを用いて作製した反射防止フィルムは、反射色むらに優れた性能を示すことが分かった。   As can be seen from the results in Table 5, it was found that the antireflection film produced using the hard coat film of the present invention showed excellent performance in uneven reflection color.

実施例5
下記の方法に従って、実施例1で作製し、耐久試験(55℃・80%の恒温槽で11日保存)を実施したハードコートフィルム1〜13と位相差フィルムであるコニカミノルタタックKC4FR−1(コニカミノルタオプト(株)製)、各々1枚を偏光板保護フィルムとして用いて偏光板101〜113を作製した。
(a)偏光膜の作製
厚さ120μmの長尺のポリビニルアルコールフィルムを、一軸延伸(温度110℃、延伸倍率5倍)した。これをヨウ素0.075g、ヨウ化カリウム5g、水100gの比率からなる水溶液に60秒間浸漬し、次いでヨウ化カリウム6g、ホウ酸7.5g、水100gの比率からなる68℃の水溶液に浸漬した。これを水洗、乾燥し長尺の偏光膜を得た。
Example 5
According to the following method, the hard coat films 1 to 13 prepared in Example 1 and subjected to the durability test (stored in a constant temperature bath at 55 ° C. and 80% for 11 days) and Konica Minolta Tack KC4FR-1 (retardation film) Polarizers 101 to 113 were produced using one each as a polarizing plate protective film, manufactured by Konica Minolta Opto Corporation.
(A) Production of Polarizing Film A long polyvinyl alcohol film having a thickness of 120 μm was uniaxially stretched (temperature: 110 ° C., stretch ratio: 5 times). This was immersed in an aqueous solution composed of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water for 60 seconds, and then immersed in an aqueous solution at 68 ° C. composed of 6 g of potassium iodide, 7.5 g of boric acid, and 100 g of water. . This was washed with water and dried to obtain a long polarizing film.

(b)偏光板の作製
次いで、下記工程1〜5に従って、偏光膜と偏光板用保護フィルムとを貼り合わせて偏光板を作製した。
(B) Production of Polarizing Plate Next, according to the following steps 1 to 5, the polarizing film and the polarizing plate protective film were bonded together to produce a polarizing plate.

工程1:ハードコートフィルム、及びKC4FR−1を2mol/Lの水酸化ナトリウム溶液に60℃で90秒間浸漬し、次いで水洗、乾燥させた。   Step 1: The hard coat film and KC4FR-1 were immersed in a 2 mol / L sodium hydroxide solution at 60 ° C. for 90 seconds, then washed with water and dried.

工程2:前述の偏光膜を固形分2質量%のポリビニルアルコール接着剤槽中に1〜2秒間浸漬した。   Process 2: The above-mentioned polarizing film was immersed for 1 to 2 seconds in the polyvinyl alcohol adhesive tank of 2 mass% of solid content.

工程3:工程2で偏光膜に付着した過剰の接着剤を軽く取り除き、それを工程1でアルカリ処理したKC4FR−1とハードコートフィルムで挟み込んで、積層配置した。   Step 3: Excess adhesive adhered to the polarizing film in Step 2 was lightly removed, and it was sandwiched between KC4FR-1 and the hard coat film that had been subjected to alkali treatment in Step 1, and laminated.

工程4:2つの回転するローラにて20〜30N/cmの圧力で約2m/minの速度で貼り合わせた。このとき気泡が入らないように注意して実施した。 Process 4: It bonded together by the speed of about 2 m / min with the pressure of 20-30 N / cm < 2 > with the two rotating rollers. At this time, care was taken to prevent bubbles from entering.

工程5:80℃の乾燥機中にて工程4で作製した試料を2分間乾燥処理し、偏光板を作製した。   Step 5: The sample prepared in Step 4 in a dryer at 80 ° C. was dried for 2 minutes to prepare a polarizing plate.

市販の液晶表示パネル(NEC製 カラー液晶ディスプレイ MultiSync LCD1525J:型名 LA−1529HM)の最表面の偏光板を注意深く剥離し、ここに偏光方向を合わせた上記偏光板101〜113を、ハードコートフィルムが表面側になるように張り付け液晶表示装置501〜513を作製した。作製した液晶表示装置について、平滑性及び視認性を比較した結果、比較例のハードコートフィルムを使用したものと比べて、本発明のハードコートフィルムを使用した液晶表示装置は平滑性及び視認性ともに良好であった。   Carefully peel off the polarizing plate on the outermost surface of a commercially available liquid crystal display panel (NEC color liquid crystal display MultiSync LCD1525J: model name LA-1529HM). The liquid crystal display devices 501 to 513 were attached so as to be on the surface side. As a result of comparing the smoothness and visibility of the produced liquid crystal display device, the liquid crystal display device using the hard coat film of the present invention has both smoothness and visibility as compared with those using the hard coat film of the comparative example. It was good.

実施例6
実施例1のハードコートフィルム1の作製において、基材フィルムであるセルロースエステルフィルムAの膜厚を10μm、及び8μmに変更した以外は、同様にしてハードコートフィルム23及び24を作製した。次に、ハードコートフィルム1、23及び24について、実施例1と同様にして評価した。得られた結果を表6に示す。
Example 6
In the production of the hard coat film 1 of Example 1, hard coat films 23 and 24 were produced in the same manner except that the film thickness of the cellulose ester film A as the base film was changed to 10 μm and 8 μm. Next, the hard coat films 1, 23 and 24 were evaluated in the same manner as in Example 1. The results obtained are shown in Table 6.

Figure 2010139941
Figure 2010139941

表6の結果から判るように、基材フィルムの膜厚を10μm以上とすることで、本発明の効果が良好に発揮されることがわかる。   As can be seen from the results in Table 6, it can be seen that the effect of the present invention is satisfactorily exhibited when the thickness of the base film is 10 μm or more.

本発明に係る活性光線照射後に連続して加熱処理する工程を示した概略図である。It is the schematic which showed the process of heat-processing continuously after active light irradiation which concerns on this invention. 本発明に係る巻き取り後のハードコートフィルムロールを加熱処理室Aで加熱処理する概略図である。It is the schematic which heat-processes the hard coat film roll after winding which concerns on this invention in the heat processing chamber A. FIG. 実施例で用いたテンター装置の模式図である。It is a schematic diagram of the tenter apparatus used in the examples.

符号の説明Explanation of symbols

Y 長尺フィルム
1 繰り出しロール
2 搬送ローラー
3 押出しコータ
4 対向ロール
5 乾燥ゾーン
6 活性光線照射ランプユニット
6a 空冷活性光線ランプ
6b 空冷用Air通風口
6c N2用供給チャンバー
7 加熱ゾーン
8 巻き取り室
9 巻き取りロール
10 温風吹き出し口
12 移動可能な台車
15 巻き取りコア
A 加熱処理室
Y Long film 1 Feeding roll 2 Conveying roller 3 Extrusion coater 4 Opposing roll 5 Drying zone 6 Actinic ray irradiation lamp unit 6a Air-cooling actinic ray lamp 6b Air cooling air vent 6c N2 supply chamber 7 Heating zone 8 Winding chamber 9 Winding Take-up roll 10 Hot air outlet 12 Moveable cart 15 Winding core A Heat treatment chamber

Claims (10)

透明フィルム基材上にハードコート層を有するハードコートフィルムにおいて、該ハードコート層の膜厚が、8μm以上、40μm以下であって、かつ該透明フィルム基材が下記一般式(1)または(2)で表される繰り返し単位を少なくとも一つ有するセルロースエステル樹脂を含有することを特徴とするハードコートフィルム。
Figure 2010139941
[式中、A、Bは、炭素数1〜12の2価の炭化水素基または、水酸基で置換された炭素数1〜12の2価の炭化水素基を表す。但しAとBは同じであっても異なっていてもよい。]
In a hard coat film having a hard coat layer on a transparent film substrate, the thickness of the hard coat layer is 8 μm or more and 40 μm or less, and the transparent film substrate is represented by the following general formula (1) or (2 A hard coat film comprising a cellulose ester resin having at least one repeating unit represented by
Figure 2010139941
[In formula, A and B represent a C1-C12 bivalent hydrocarbon group or a C1-C12 bivalent hydrocarbon group substituted by the hydroxyl group. However, A and B may be the same or different. ]
前記透明フィルム基材が熱可塑性アクリル樹脂を含有し、該熱可塑性アクリル樹脂を前記セルロースエステル樹脂100質量部に対して10質量部以上含有することを特徴とする請求項1に記載のハードコートフィルム。 The hard coat film according to claim 1, wherein the transparent film substrate contains a thermoplastic acrylic resin, and the thermoplastic acrylic resin is contained in an amount of 10 parts by mass or more based on 100 parts by mass of the cellulose ester resin. . 前記透明フィルム基材が熱可塑性アクリル樹脂を含有し、該熱可塑性アクリル樹脂を前記セルロースエステル樹脂100質量部に対して50質量部以上含有することを特徴とする請求項1に記載のハードコートフィルム。 The hard coat film according to claim 1, wherein the transparent film substrate contains a thermoplastic acrylic resin, and the thermoplastic acrylic resin is contained in an amount of 50 parts by mass or more based on 100 parts by mass of the cellulose ester resin. . 前記ハードコート層が、重合性不飽和基を有する有機化合物によって表面処理された反応性シリカ粒子(Xa)を含有することを特徴とする請求項1〜3のいずれか1項に記載のハードコートフィルム。 The hard coat according to any one of claims 1 to 3, wherein the hard coat layer contains reactive silica particles (Xa) surface-treated with an organic compound having a polymerizable unsaturated group. the film. 前記ハードコート層のマルテンス硬さ(HMs)が、400N/mm以上、800N/mm以下で有ることを特徴とする請求項1〜4のいずれか1項に記載のハードコートフィルム。 The Martens hardness of the hard coat layer (HMS) is, 400 N / mm 2 or more, the hard coating film according to claim 1, characterized in that there at 800 N / mm 2 or less. 前記透明フィルム基材の膜厚が10μm以上、30μm以下であることを特徴とする請求項1〜5のいずれか1項に記載のハードコートフィルム。 The film thickness of the said transparent film base material is 10 micrometers or more and 30 micrometers or less, The hard coat film of any one of Claims 1-5 characterized by the above-mentioned. 請求項1〜6のいずれか1項に記載のハードコートフィルムのハードコート層の形成において、光照射後、更に加熱処理する工程からなることを特徴とするハードコートフィルムの製造方法。 In the formation of the hard coat layer of the hard coat film of any one of Claims 1-6, it comprises the process of heat-processing after light irradiation, The manufacturing method of the hard coat film characterized by the above-mentioned. 前記加熱処理をする工程において搬送方向または巾手方向にハードコートフィルムを300N〜500N/mで張力することを特徴とする請求項7に記載のハードコートフィルムの製造方法。 The method for producing a hard coat film according to claim 7, wherein in the heat treatment step, the hard coat film is tensioned at 300 N to 500 N / m in the conveyance direction or the width direction. 請求項1〜6のいずかれ1項に記載のハードコートフィルムを一方の面に用いたことを特徴とする偏光板。 A polarizing plate characterized by using the hard coat film according to any one of claims 1 to 6 on one surface. 請求項9に記載の偏光板を用いたことを特徴とする表示装置。 A display device comprising the polarizing plate according to claim 9.
JP2008318177A 2008-12-15 2008-12-15 Hard coat film, method of manufacturing hard coat film, sheet polarizer and display device Pending JP2010139941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008318177A JP2010139941A (en) 2008-12-15 2008-12-15 Hard coat film, method of manufacturing hard coat film, sheet polarizer and display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008318177A JP2010139941A (en) 2008-12-15 2008-12-15 Hard coat film, method of manufacturing hard coat film, sheet polarizer and display device

Publications (1)

Publication Number Publication Date
JP2010139941A true JP2010139941A (en) 2010-06-24

Family

ID=42350115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008318177A Pending JP2010139941A (en) 2008-12-15 2008-12-15 Hard coat film, method of manufacturing hard coat film, sheet polarizer and display device

Country Status (1)

Country Link
JP (1) JP2010139941A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260592A (en) * 1985-09-10 1987-03-17 ジャガー株式会社 Sewing machine
JP2011175828A (en) * 2010-02-24 2011-09-08 Konica Minolta Holdings Inc Transparent conductive film
JP2012022190A (en) * 2010-07-15 2012-02-02 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display device
JP2012027190A (en) * 2010-07-22 2012-02-09 Fujifilm Corp Method for manufacturing light-reflecting film and light-reflecting film
WO2013118641A1 (en) * 2012-02-06 2013-08-15 コニカミノルタ株式会社 Hard coating film, polarizing plate, glass scattering prevention film for image display device, touch panel, and liquid crystal display device
JP2013161404A (en) * 2012-02-08 2013-08-19 Konica Minolta Inc Conductive film and touch panel
JP2014145050A (en) * 2013-01-30 2014-08-14 Tosoh Corp Infrared ray shielding material and infrared ray shielding laminate containing the same
JP2014153502A (en) * 2013-02-07 2014-08-25 Toppan Printing Co Ltd Hard coat film and manufacturing method thereof
JP2014203069A (en) * 2013-04-10 2014-10-27 株式会社ダイセル Retardation film, production method of the same, and polarizing plate
JP2016191945A (en) * 2010-08-02 2016-11-10 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device
WO2017002347A1 (en) * 2015-06-30 2017-01-05 株式会社トッパンTomoegawaオプティカルフィルム Hard coating film, polarizing plate using same, display member and display device
JP2017114027A (en) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 Resin film roll, method for producing resin film roll, polarizing plate and image display device
KR20170105438A (en) * 2016-03-09 2017-09-19 주식회사 엘지화학 Anti-reflective film
JP6334035B1 (en) * 2017-06-19 2018-05-30 グンゼ株式会社 Cover film
KR101918682B1 (en) * 2015-08-18 2018-11-14 주식회사 엘지화학 Low refractive layer and anti-reflective film comprising the same
KR20190035642A (en) * 2019-03-25 2019-04-03 동우 화인켐 주식회사 Hard coating film and display window using the same
US11360243B2 (en) 2015-07-17 2022-06-14 Dai Nippon Printing Co., Ltd. Layered body for optical member and image display device

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260592A (en) * 1985-09-10 1987-03-17 ジャガー株式会社 Sewing machine
JP2011175828A (en) * 2010-02-24 2011-09-08 Konica Minolta Holdings Inc Transparent conductive film
JP2012022190A (en) * 2010-07-15 2012-02-02 Dainippon Printing Co Ltd Optical laminate, polarizing plate, and image display device
JP2012027190A (en) * 2010-07-22 2012-02-09 Fujifilm Corp Method for manufacturing light-reflecting film and light-reflecting film
JP2016191945A (en) * 2010-08-02 2016-11-10 大日本印刷株式会社 Optical laminate, polarizing plate, and image display device
WO2013118641A1 (en) * 2012-02-06 2013-08-15 コニカミノルタ株式会社 Hard coating film, polarizing plate, glass scattering prevention film for image display device, touch panel, and liquid crystal display device
JPWO2013118641A1 (en) * 2012-02-06 2015-05-11 コニカミノルタ株式会社 Hard coat film, polarizing plate, glass scattering prevention film for image display device, touch panel and liquid crystal display device
JP2013161404A (en) * 2012-02-08 2013-08-19 Konica Minolta Inc Conductive film and touch panel
JP2014145050A (en) * 2013-01-30 2014-08-14 Tosoh Corp Infrared ray shielding material and infrared ray shielding laminate containing the same
JP2014153502A (en) * 2013-02-07 2014-08-25 Toppan Printing Co Ltd Hard coat film and manufacturing method thereof
JP2014203069A (en) * 2013-04-10 2014-10-27 株式会社ダイセル Retardation film, production method of the same, and polarizing plate
JP2017015883A (en) * 2015-06-30 2017-01-19 株式会社トッパンTomoegawaオプティカルフィルム Hard coat film, polarizing plate using the same, display member and display device
WO2017002347A1 (en) * 2015-06-30 2017-01-05 株式会社トッパンTomoegawaオプティカルフィルム Hard coating film, polarizing plate using same, display member and display device
CN107710027B (en) * 2015-06-30 2019-11-15 株式会社凸版巴川光学薄膜 Hard coat film, polarizer, display unit and display device using the hard coat film
CN107710027A (en) * 2015-06-30 2018-02-16 株式会社凸版巴川光学薄膜 Hard coat film, Polarizer, display unit and display device using the hard coat film
US11360243B2 (en) 2015-07-17 2022-06-14 Dai Nippon Printing Co., Ltd. Layered body for optical member and image display device
KR101918682B1 (en) * 2015-08-18 2018-11-14 주식회사 엘지화학 Low refractive layer and anti-reflective film comprising the same
US11614567B2 (en) 2015-08-18 2023-03-28 Lg Chem, Ltd. Low refractive layer and anti-reflective film comprising the same
JP2017114027A (en) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 Resin film roll, method for producing resin film roll, polarizing plate and image display device
KR101889956B1 (en) * 2016-03-09 2018-08-20 주식회사 엘지화학 Anti-reflective film
KR20170105438A (en) * 2016-03-09 2017-09-19 주식회사 엘지화학 Anti-reflective film
US11312874B2 (en) 2016-03-09 2022-04-26 Lg Chem, Ltd. Antireflection film
JP6334035B1 (en) * 2017-06-19 2018-05-30 グンゼ株式会社 Cover film
JP2019001134A (en) * 2017-06-19 2019-01-10 グンゼ株式会社 Cover film
KR20190035642A (en) * 2019-03-25 2019-04-03 동우 화인켐 주식회사 Hard coating film and display window using the same
KR102031802B1 (en) * 2019-03-25 2019-10-15 동우 화인켐 주식회사 Hard coating film and display window using the same

Similar Documents

Publication Publication Date Title
JP2010139941A (en) Hard coat film, method of manufacturing hard coat film, sheet polarizer and display device
JP4924344B2 (en) Antiglare film, production apparatus thereof, antiglare antireflection film, polarizing plate, and display device
JP5321456B2 (en) Clear hard coat film, antireflection film using the same, polarizing plate, and display device
KR101182002B1 (en) Antireflection Film, Production Method of the Same, Polarizing Plate and Display
JP5170083B2 (en) Method for producing antiglare antireflection film, antiglare antireflection film, polarizing plate and display device
JP5935802B2 (en) Method for producing antiglare film
JP2009036818A (en) Antiglare film, antiglare antireflection film, polarizing plate and image display device
JP2009042351A (en) Optical film, polarizing plate, and display device
JP2011022456A (en) Hard coat film
JP4857801B2 (en) Antireflection film, method for producing antireflection film, polarizing plate and display device
JP5109783B2 (en) Polarizing plate and liquid crystal display device
JPWO2012124323A1 (en) Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate, and image display device
JP4935393B2 (en) Antireflection film, and polarizing plate and display device using the same
JP5217906B2 (en) Polarizing plate, liquid crystal display device, and IPS (in-plane switching) mode liquid crystal display device
JP2009216750A (en) Hard coat film
JP5158075B2 (en) Antireflection film, polarizing plate using the same, and display device
JPWO2008105117A1 (en) Antiglare film, antiglare antireflection film, polarizing plate using these, and display device
JP2010001431A (en) Hard-coated film, method for producing the same, and antireflective film, polarizing plate and display device each using the same
JP5182521B2 (en) Composition for antireflection layer, antireflection film, polarizing plate, and image display device
JP5168278B2 (en) Antiglare film, antiglare antireflection film using the same, polarizing plate, and display device
JP2010217699A (en) Composition for antireflective layer, antireflective film, polarizing plate and image display apparatus
JP2010139824A (en) Sheet polarizer, liquid crystal display device and ips (in-plane switching) type liquid crystal display device
JP2010039418A (en) Antireflective film, method for producing the same, polarizing plate and image display apparatus
JP2010085894A (en) Composition for anti-reflection layer, anti-reflection film, polarizing plate and image display device
JP5309677B2 (en) Method for producing hard coat film