JP2010125354A - Method of capturing carbon dioxide - Google Patents

Method of capturing carbon dioxide Download PDF

Info

Publication number
JP2010125354A
JP2010125354A JP2008299775A JP2008299775A JP2010125354A JP 2010125354 A JP2010125354 A JP 2010125354A JP 2008299775 A JP2008299775 A JP 2008299775A JP 2008299775 A JP2008299775 A JP 2008299775A JP 2010125354 A JP2010125354 A JP 2010125354A
Authority
JP
Japan
Prior art keywords
carbon dioxide
hydroxide
calcium
magnesium
sodium hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008299775A
Other languages
Japanese (ja)
Inventor
Jian-Feng Lin
林健峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008299775A priority Critical patent/JP2010125354A/en
Publication of JP2010125354A publication Critical patent/JP2010125354A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of capturing a large amount of carbon dioxide quickly and safely, thereby mitigating the increase of carbon dioxide concentration on the earth. <P>SOLUTION: The method of capturing the carbon dioxide includes steps of: (1) electrolyzing saturated aqueous salt solution to obtain sodium hydroxide; (2) adding sodium hydroxide into sea water to convert magnesium chloride and calcium chloride in the sea water into magnesium hydroxide and calcium hydroxide; and (3) introducing the carbon dioxide into water containing magnesium hydroxide and calcium hydroxide to convert into magnesium carbonate and calcium carbonate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は二酸化炭素を低減させることが可能な捕捉方法に関し、特に、排出された二酸化炭素(CO)を化学反応により捕捉する方法に関する。 The present invention relates to a capturing method capable of reducing carbon dioxide, and more particularly, to a method for capturing exhausted carbon dioxide (CO 2 ) by a chemical reaction.

大気環境には多種類の化学物質が存在するが、一般の状況および濃度では生態系に悪影響を与えない。しかし、産業の発展に伴い、各種産業機械および交通手段により排出される排出濃度が安全基準を超えた化学物質が増大しており、空気汚染が発生している。   There are many types of chemicals in the atmospheric environment, but the general situation and concentration will not adversely affect the ecosystem. However, with the development of industry, chemical substances whose emission concentrations discharged by various industrial machines and means of transportation exceed safety standards are increasing, and air pollution is occurring.

現在、空気を汚染させる物質には多くの種類があり、一般によく知られているものとしては、例えば、二酸化炭素(carbon dioxide:CO)、一酸化炭素(carbon monoxide:CO)、二酸化硫黄(sulfur dioxide:SO)、窒素酸化物(nitrogen oxides:NO)、浮遊粒子(suspended particulates)、オゾン(ozone:O)、揮発性有機化合物(Volatile Organic Compounds:VOCs)などがある。 Currently, there are many types of substances that pollute the air. Commonly known materials include, for example, carbon dioxide (CO 2 ), carbon monoxide (CO), sulfur dioxide (CO 2), and sulfur dioxide (CO 2 ). There are sulfur dioxide (SO 2 ), nitrogen oxides (NO X ), suspended particles (suspended particulates), ozone (zone 3 : O 3 ), and volatile organic compounds (volatile organic compounds: VOCs).

空気汚染は人類および環境に直接的または間接的に影響を及ぼす。このうち直接的影響とは、生態圏に生存する人類および動植物の健康に与える害のことであり、間接的影響とは、酸性雨および地球温暖化がもたらす種々の環境問題のことである。   Air pollution directly or indirectly affects humanity and the environment. Among these, direct effects are harmful to the health of human beings and animals and plants living in the ecosphere, and indirect effects are various environmental problems caused by acid rain and global warming.

大気中で主な温室ガスには、二酸化炭素(CO)、メタン(CH)および二酸化窒素(NO)の三種類があり、いわゆる温室ガスとは、地球の平均気温を上昇させる原因となる大気ガスのことである。地球温暖化は、現在、環境問題の中で最も重要視されている問題であり、特に二酸化炭素が地球温暖化に与える影響は大きい。地球温暖化の主な原因は大気中における温室ガスの増加である。そのため、大気中に存在する二酸化炭素濃度を低減させることが地球環境にとって最も重要な課題であり、世界各国は二酸化炭素の排出量を積極的に低減させる必要に迫られている。 There are three main greenhouse gases in the atmosphere: carbon dioxide (CO 2 ), methane (CH 4 ), and nitrogen dioxide (NO 2 ). So-called greenhouse gases are the causes that increase the average temperature of the earth. It is an atmospheric gas. Global warming is currently the most important environmental problem, and especially carbon dioxide has a great impact on global warming. The main cause of global warming is an increase in greenhouse gases in the atmosphere. Therefore, reducing the concentration of carbon dioxide present in the atmosphere is the most important issue for the global environment, and countries around the world are urged to actively reduce carbon dioxide emissions.

化石燃料を継続的に使用することができない状況では、化石燃料の使用効率を高めるとともに、二酸化炭素の捕捉、貯留および再利用に関する技術は、温室効果の悪化を有効に緩和させることができ、新たなエネルギ資源が登場する次の時代にスムーズに移行することができるためにも、人類が低コストのエネルギ源を継続的に利用し続けることができるようにすることが重要である。   In situations where fossil fuels cannot be used on an ongoing basis, fossil fuels can be used more efficiently, and carbon capture, storage and reuse technologies can effectively mitigate the worsening of the greenhouse effect. It is important to enable human beings to continue to use low-cost energy sources in order to make a smooth transition to the next era when new energy resources emerge.

「二酸化炭素貯留」とは、二酸化炭素を特定の自然または人口の容器の中に貯留させ、物理的、化学的、生化学的などのメカニズムを利用し、二酸化炭素を百年以上貯留させることができる。森林、海洋、地層、人工貯槽、化学反応チャンバなどは全て二酸化炭素を貯留させることが可能な容器として用いることができる。   “Carbon dioxide storage” means that carbon dioxide is stored in a specific natural or artificial container and can be stored for more than 100 years using any physical, chemical, or biochemical mechanism. . Forests, oceans, formations, artificial storage tanks, chemical reaction chambers and the like can all be used as containers capable of storing carbon dioxide.

今までに開示された「大規模」な二酸化炭素貯留方法としては、地層貯留、地表貯留および海洋貯留の3種類がある。従来、1トン当りの二酸化炭素は、その捕捉に約5〜115米ドルかかり、輸送に100キロ当り約0.4〜3.2米ドルかかり、貯留に約0.5〜100米ドルの費用がかかった。新しいタイプのガス化複合発電プラントが1トン当りの二酸化炭素を捕捉するには、約13〜37米ドルのコストがかかり、1トン当たりの二酸化炭素は、地層貯留に約0.5〜8米ドルのコストがかかり、海洋貯留には約5〜30米ドルのコストがかかり、地表貯留には約50〜100米ドルのコストがかかる(例えば、非特許文献1)。   There are three types of “large-scale” carbon dioxide storage methods disclosed so far: geological storage, surface storage, and ocean storage. Traditionally, carbon dioxide per ton cost about $ 5 to $ 115 for capture, $ 0.4 to $ 3.2 per 100 kilometers for transportation, and $ 0.5 to $ 100 for storage . A new type of combined gasification power plant costs about US $ 13-37 to capture carbon dioxide per tonne, and carbon dioxide per tonne is about US $ 0.5-8 for geological storage. Costs are required, ocean storage costs about 5-30 US dollars, and surface storage costs about 50-100 US dollars (eg, Non-Patent Document 1).

しかし、非特許文献1の技術には、適当な貯留「容器」の有無や貯留技術が未熟であるといった問題の他に、安定性や将来に亘る監視に関わる問題があった。
林鎮國、“二酸化炭素の保存”、科學發展[2007年5月、413期、28〜33頁]
However, in the technique of Non-Patent Document 1, there are problems related to stability and monitoring in the future, in addition to problems such as presence / absence of an appropriate storage “container” and storage technology being immature.
Lin Zhenkoku, “Preservation of Carbon Dioxide”, Science Exhibition [May 2007, 413, pp. 28-33]

本発明の目的は、大量、迅速かつ安全に二酸化炭素を捕捉し、地球の二酸化炭素濃度の上昇を緩和させることが可能な二酸化炭素の捕捉方法を提供することにある。   An object of the present invention is to provide a carbon dioxide capturing method capable of capturing carbon dioxide in a large amount, quickly and safely and mitigating an increase in the carbon dioxide concentration of the earth.

上記問題を解決するために、本発明に係る二酸化炭素の捕捉方法は、(1)飽和食塩水を電解し、水酸化ナトリウムを得て、2NaCl+2HO→2NaOH+Cl+Hの反応式で表されるステップと、(2)海水中に水酸化ナトリウムを加え、海水中の塩化マグネシウムおよび塩化カルシウムを水酸化マグネシウムおよび水酸化カルシウムに変換し、MgCl+2NaOH→Mg(OH)+2NaCl、CaCl+2NaOH→Ca(OH)+2NaClの反応式で表されるステップと、(3)水酸化マグネシウムおよび水酸化カルシウムを含む水中へ二酸化炭素を導入し、炭酸マグネシウムおよび炭酸カルシウムへ変換し、Mg(OH)+CO→MgCO+HO、Ca(OH)+CO→CaCO+HOの反応式で表されるステップと、を含むことを特徴とする。 In order to solve the above problem, the carbon dioxide capturing method according to the present invention is represented by the following reaction formula: (1) electrolysis of saturated saline to obtain sodium hydroxide, 2NaCl + 2H 2 O → 2NaOH + Cl 2 + H 2 And (2) adding sodium hydroxide to seawater to convert magnesium chloride and calcium chloride in seawater into magnesium hydroxide and calcium hydroxide, and MgCl 2 + 2NaOH → Mg (OH) 2 + 2NaCl, CaCl 2 + 2NaOH → Step represented by the reaction formula of Ca (OH) 2 + 2NaCl, (3) Carbon dioxide is introduced into water containing magnesium hydroxide and calcium hydroxide, and converted to magnesium carbonate and calcium carbonate, and Mg (OH) 2 + CO 2 → MgCO 3 + H 2 O, Ca (OH) 2 + CO 2 → Ca And a step represented by a reaction formula of CO 3 + H 2 O.

さらに、本発明に係る二酸化炭素の捕捉方法は、ステップ(1)の飽和食塩水は、塩濃度が高い苦汁であることを特徴とする。   Furthermore, the carbon dioxide capturing method according to the present invention is characterized in that the saturated saline solution in step (1) is bitter juice having a high salt concentration.

さらに、本発明に係る二酸化炭素の捕捉方法は、前記苦汁は、海水の淡水化を行った後に得られる廃棄物であることを特徴とする。   Furthermore, the method for capturing carbon dioxide according to the present invention is characterized in that the bitter juice is a waste obtained after desalination of seawater.

さらに、本発明に係る二酸化炭素の捕捉方法は、ステップ(1)の水酸化ナトリウムは、食塩水を電解して生成された塩素の副産物であることを特徴とする。   Furthermore, the carbon dioxide capturing method according to the present invention is characterized in that the sodium hydroxide in step (1) is a by-product of chlorine generated by electrolyzing saline.

本発明の二酸化炭素の捕捉方法は、大量、迅速かつ安全に二酸化炭素を捕捉し、地球の二酸化炭素濃度の上昇を緩和させることができる。   The carbon dioxide capturing method of the present invention can capture carbon dioxide in a large amount, quickly and safely, and can mitigate an increase in the carbon dioxide concentration of the earth.

以下、本発明の実施形態について図に基づいて説明する。なお、これによって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited thereby.

本発明の二酸化炭素の捕捉方法には、主に以下の(1)〜(3)のステップが含まれている。   The carbon dioxide capturing method of the present invention mainly includes the following steps (1) to (3).

(1)飽和食塩水を電解し、水酸化ナトリウムを得る。   (1) Electrolyze saturated saline to obtain sodium hydroxide.

(2)海水中に水酸化ナトリウムを加え、海水中の塩化マグネシウムおよび塩化カルシウムを水酸化マグネシウムおよび水酸化カルシウムに変換する。   (2) Sodium hydroxide is added to seawater to convert magnesium chloride and calcium chloride in seawater into magnesium hydroxide and calcium hydroxide.

(3)水酸化マグネシウムおよび水酸化カルシウムを含む水中に二酸化炭素を導入し、炭酸マグネシウムおよび炭酸カルシウムに変換させる。   (3) Carbon dioxide is introduced into water containing magnesium hydroxide and calcium hydroxide and converted into magnesium carbonate and calcium carbonate.

水酸化ナトリウムの製造において、この水酸化ナトリウムは、工業的に塩素が生成される副産物であり、一般の方法では、塩素が塩素ガスに変わって放出されるまで飽和食塩水を電解させるとき、溶液中には溶質の水酸化ナトリウムだけが留まり、下記反応式(1)により表される。   In the production of sodium hydroxide, this sodium hydroxide is a byproduct of the industrial production of chlorine, and in a general method, when a saturated saline solution is electrolyzed until chlorine is released instead of chlorine gas, Only solute sodium hydroxide remains in the reaction, which is represented by the following reaction formula (1).

反応式(1) 2NaCl+2HO→2NaOH+Cl+H
飽和食塩水を電解することにより、本発明の二酸化炭素の捕捉方法で必要な反応物質である水酸化ナトリウムを得る。また、飽和食塩水は、海水を淡水化した後の廃棄物から得ることができる。
Reaction Formula (1) 2NaCl + 2H 2 O → 2NaOH + Cl 2 + H 2
By electrolyzing a saturated saline solution, sodium hydroxide which is a reactant necessary for the carbon dioxide capturing method of the present invention is obtained. Moreover, saturated salt solution can be obtained from the waste after desalinating seawater.

以前、海水の淡水化は、乾燥した中東地域に集中され、現在、世界的な工商業の急速な発展と人口増大により、世界的に大量の水が必要とされており、水資源開発が日々困難となっている今日、世界各国は早急に水源を見つけ出すことが求められている。そして、先進国では、海水の淡水化技術を利用する方法を一般に採用している。   Previously, desalination of seawater was concentrated in the dry Middle East region, and nowadays large volumes of water are needed worldwide due to the rapid development and population growth of the global industry and commerce, making it difficult to develop water resources every day Today, countries around the world are required to find water sources as soon as possible. In developed countries, a method of utilizing seawater desalination technology is generally adopted.

地球上で最も大きな面積を占める海洋は、地球で最大の水庫であり、最も安定した水源である。海洋は、一年中雨が降ったり風が吹いても、そこに存在する水量がほとんど変動しない上、最近向上している海水の淡水化技術により、海水は人類にとって品質が高い水源となっている。   The ocean, which occupies the largest area on Earth, is the largest water reservoir on Earth and the most stable water source. In the ocean, even if it rains or winds all year round, the amount of water present in the ocean does not fluctuate. Yes.

海水の淡水化技術の原理とは、塩水を塩分の含有量が低い淡水と、塩分の含有量が高い苦汁とに分けることにより淡水化された水を得る水処理技術のことである。しかし、淡水化技術の一部は依然として試験段階にあり、2004年7月現在、最もよく使用されている淡水化技術としては、逆浸透法(世界の淡水化能力の47.2%を占める。)と多段フラッシュ法(世界の淡水化能力の36.5%を占める。)との2種類がある。   The principle of seawater desalination technology is a water treatment technology that obtains desalted water by dividing salt water into fresh water having a low salt content and bitter juice having a high salt content. However, some of the desalination technologies are still in the testing stage, and as of July 2004, the most commonly used desalination technology is the reverse osmosis method (47.2% of the global desalination capacity). ) And multi-stage flash method (accounting for 36.5% of the world's desalination capacity).

本発明の二酸化炭素の捕捉方法は、海水の淡水化技術により得られる廃棄物である「苦汁」を利用して水酸化ナトリウムを製造するため、廃棄物を有効に利用するとともに地球資源を有効に活用することもできる。   The carbon dioxide capturing method of the present invention produces sodium hydroxide using “bitter”, which is a waste obtained by seawater desalination technology, and thus effectively uses the waste and effectively uses the earth resources. It can also be used.

水酸化ナトリウムを製造すると同時に発生する塩素は、ポリ塩化ビニル−(CHCHCl)n−の生産に広く利用することができる。このポリ塩化ビニルは、ビニル、塩素および触媒により製造されるため、防火耐熱機能を備えている。そのため、ポリ塩化ビニルは、例えば、電線ケーブル、光ファイバケーブル、靴、手提げ袋、袋、飾り物、看板、建築用装飾用品、家具、掛け飾り、ローラー、玩具、シャッターカーテン、シャッター、補助医療用品、手袋、サランラップ、衣服など、様々な分野の様々な製品に利用することができる。 Chlorine generated at the same time to produce sodium hydroxide, polyvinyl chloride - (CH 2 CHCl) can be widely used for n- production. Since this polyvinyl chloride is produced with vinyl, chlorine and a catalyst, it has a fireproof and heat resistant function. Therefore, polyvinyl chloride is, for example, electric cables, optical fiber cables, shoes, handbags, bags, ornaments, signs, architectural ornaments, furniture, decorations, rollers, toys, shutter curtains, shutters, auxiliary medical supplies, gloves It can be used for various products in various fields such as saran wrap and clothes.

海水に水酸化ナトリウムを加え、海水中の塩化マグネシウムおよび塩化カルシウムを水酸化マグネシウムおよび水酸化カルシウムへ変換する反応は、下記反応式(2)および(3)により表される。   The reaction of adding sodium hydroxide to seawater to convert magnesium chloride and calcium chloride in seawater into magnesium hydroxide and calcium hydroxide is represented by the following reaction formulas (2) and (3).

反応式(2) MgCl+2NaOH→Mg(OH)+2NaCl
反応式(3) CaCl+2NaOH→Ca(OH)+2NaCl
地球の海水を構成する元素は、下記の表(1)により表される。
Reaction formula (2) MgCl 2 + 2NaOH → Mg (OH) 2 + 2NaCl
Reaction formula (3) CaCl 2 + 2NaOH → Ca (OH) 2 + 2NaCl
Elements constituting the sea water of the earth are represented by the following table (1).

Figure 2010125354
海水に含まれるカルシウムおよびマグネシウムの元素を利用し、これら2つの元素が海水にあるときの塩化マグネシウムと塩化カルシウムとの化合物を利用し、水酸化ナトリウムと反応させると、次のステップの反応物である水酸化マグネシウムおよび水酸化カルシウムを得ることができる。そのため、本発明の二酸化炭素の捕捉方法は、原料を取得する際にかかるコストを有効に低減させるとともに、地球の資源を有効に利用することができる。
Figure 2010125354
Utilizing calcium and magnesium elements in seawater, and using these two elements in seawater with the compound of magnesium chloride and calcium chloride and reacting with sodium hydroxide, the reaction product in the next step Certain magnesium and calcium hydroxides can be obtained. Therefore, the method for capturing carbon dioxide according to the present invention can effectively reduce the cost for obtaining the raw material and can effectively use the resources of the earth.

上述の反応により水酸化マグネシウムおよび水酸化カルシウムを取得した後、産業で排出された二酸化炭素を導入すると、二酸化炭素が水中に存在する水酸化マグネシウムおよび水酸化カルシウムと反応し、炭酸マグネシウムおよび炭酸カルシウムに変換される。これは、下記反応式(4)および(5)により表される。   After obtaining magnesium hydroxide and calcium hydroxide by the above reaction, when carbon dioxide discharged in the industry is introduced, the carbon dioxide reacts with magnesium hydroxide and calcium hydroxide present in the water, magnesium carbonate and calcium carbonate Is converted to This is represented by the following reaction formulas (4) and (5).

反応式(4) Mg(OH)+CO→MgCO+H
反応式(5) Ca(OH)+CO→CaCO+H
上述の反応により二酸化炭素を捕捉して炭酸マグネシウムおよび炭酸カルシウムに変換すると、現在の産業で発生する廃棄物(海水淡水化で得られる苦汁)または副産物(塩素を製造する際に得られる水酸化ナトリウム)により二酸化炭素を捕捉することができるため、従来の物理的方法または生物学的方法よりも全体の化学反応速度が速いだけでなく、全体のコストを有効に低減させることもできる。
Reaction formula (4) Mg (OH) 2 + CO 2 → MgCO 3 + H 2 O
Reaction formula (5) Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O
When carbon dioxide is captured by the above reaction and converted to magnesium carbonate and calcium carbonate, waste (bitter juice obtained by seawater desalination) or by-products (sodium hydroxide obtained when producing chlorine) generated in the current industry ) Can capture carbon dioxide, so that not only the overall chemical reaction rate is faster than conventional physical or biological methods, but also the overall cost can be effectively reduced.

本発明の二酸化炭素の捕捉方法では、最終物として炭酸カルシウムおよび炭酸マグネシウムがある。炭酸カルシウムは、防火建築材料およびペンキに使用され、製鋼、ポリマー、製紙などの生産工程に広く利用することができる。また、炭酸マグネシウムは、床、防火、消火製品、化粧品、歯磨き粉などに利用することができる他、充填材料として用いたり、プラスチック製品内に発煙抑制作用を持たせたり、ネオプレンゴム(neoprene rubber)に加えて乾燥剤にしたり、整腸剤や食品の保色剤として用いたりすることもできる。   In the carbon dioxide capturing method of the present invention, the final products include calcium carbonate and magnesium carbonate. Calcium carbonate is used in fireproof building materials and paints, and can be widely used in production processes such as steelmaking, polymers, and papermaking. Magnesium carbonate can be used for floors, fire prevention, fire extinguishing products, cosmetics, toothpaste, etc., and can also be used as a filling material, or has a smoke-suppressing action in plastic products, and can be used as a neoprene rubber. In addition, it can be used as a desiccant, or used as an intestinal adjuster or food color retainer.

以下本発明による実施例は、本発明を限定するものではなく、合理的に変更させることもできる。また、当該分野の技術を熟知するものが理解できるように、本発明の主旨と領域を脱しない範囲内で各種の変更や修正を加えることができる。   The embodiments according to the present invention do not limit the present invention and can be modified rationally. In addition, various changes and modifications can be made without departing from the spirit and scope of the present invention so that those familiar with the technology in the field can be understood.

(実施例)
(1)水酸化ナトリウム(NaOH)の製造
図1に示すように、飽和食塩水または苦汁(brine)を連続的に導入し、電解反応の状態を維持すると、水酸化ナトリウム溶液を連続的に得ることができる。電解槽10の中には、安定した電流40Aが通電され、電位が1.5Vよりも大きく制御されている。電解槽10の中央部分には、イオン交換膜16が配置され、入口12の箇所から苦汁が導入され、苦汁が電解槽10を通るときの電解槽の正極17の反応は、2Cl→Cl+2eであり、電解により正極から塩素が発生する。電解槽の負極18に起きる反応は、2HO+2e→2OH+Hであり、電解により負極から水素が発生し、溶液中のナトリウムイオン(Na)と水酸化イオン(OH)とを結合させて水酸化ナトリウム溶液(NaOH(aq))を形成し、出口14から流出させるとともに、連続して24時間操作すると、1時間毎に58グラムの水酸化ナトリウムを得ることができる。
(Example)
(1) Manufacture of sodium hydroxide (NaOH) As shown in FIG. 1, when sodium chloride solution or brine is continuously introduced and the state of electrolytic reaction is maintained, a sodium hydroxide solution is continuously obtained. be able to. The electrolytic cell 10 is supplied with a stable current 40A, and the potential is controlled to be larger than 1.5V. An ion exchange membrane 16 is arranged in the central portion of the electrolytic cell 10, bitter juice is introduced from the location of the inlet 12, and the reaction of the positive electrode 17 of the electrolytic cell when the bitter juice passes through the electrolytic cell 10 is 2Cl → Cl 2. + 2e , and chlorine is generated from the positive electrode by electrolysis. The reaction that occurs in the negative electrode 18 of the electrolytic cell is 2H 2 O + 2e → 2OH + H 2 , and hydrogen is generated from the negative electrode by electrolysis, and sodium ions (Na + ) and hydroxide ions (OH ) in the solution are removed. Combine to form a sodium hydroxide solution (NaOH (aq) ), drain from outlet 14 and operate continuously for 24 hours to obtain 58 grams of sodium hydroxide every hour.

(2)水酸化マグネシウムおよび水酸化カルシウムの製造、ならびに二酸化炭素の捕捉
図2を参照する。図2に示すように、反応槽20中には、海水を導入するために用いる海水入口22と、前のステップで得られた水酸化溶液を導入するために用いる水酸化ナトリウム入口24と、二酸化炭素を導入するために用いる二酸化炭素入口26と、を備える。そして、反応槽20中でそれら反応物である海水、水酸化ナトリウムおよび二酸化炭素を反応させる。この反応により形成される炭酸マグネシウム/炭酸カルシウム沈殿物29は、反応槽20の底部に沈殿され、反応後の海水は、反応廃液流出口28から流出される。これは、下記反応式(2)〜(5)により表される。
(2) Production of magnesium hydroxide and calcium hydroxide and carbon dioxide capture See FIG. As shown in FIG. 2, in the reaction tank 20, a seawater inlet 22 used for introducing seawater, a sodium hydroxide inlet 24 used for introducing the hydroxide solution obtained in the previous step, and dioxide dioxide And a carbon dioxide inlet 26 used to introduce carbon. Then, seawater, sodium hydroxide and carbon dioxide which are the reactants are reacted in the reaction tank 20. The magnesium carbonate / calcium carbonate precipitate 29 formed by this reaction is precipitated at the bottom of the reaction tank 20, and the seawater after the reaction flows out from the reaction waste liquid outlet 28. This is represented by the following reaction formulas (2) to (5).

反応式(2) MgCl+2NaOH→Mg(OH)+2NaCl
反応式(4) Mg(OH)+CO→MgCO+H
反応式(3) CaCl+2NaOH→Ca(OH)+2NaCl
反応式(5) Ca(OH)+CO→CaCO+H
Reaction formula (2) MgCl 2 + 2NaOH → Mg (OH) 2 + 2NaCl
Reaction formula (4) Mg (OH) 2 + CO 2 → MgCO 3 + H 2 O
Reaction formula (3) CaCl 2 + 2NaOH → Ca (OH) 2 + 2NaCl
Reaction formula (5) Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O

塩化マグネシウムと水酸化ナトリウムとを反応させて水酸化マグネシウムを生成してから、水酸化マグネシウムを導入した二酸化炭素と反応させて炭酸マグネシウムを生成し、反応槽20の底部に沈殿させる。塩化カルシウムと水酸化ナトリウムとを反応させて水酸化カルシウムを生成した後、水酸化カルシウムを導入した二酸化炭素と反応させて炭酸カルシウムを生成し、反応槽20の底部に沈殿させる。   Magnesium chloride and sodium hydroxide are reacted to produce magnesium hydroxide, and then reacted with carbon dioxide introduced with magnesium hydroxide to produce magnesium carbonate, which is precipitated at the bottom of the reaction vessel 20. After reacting calcium chloride and sodium hydroxide to produce calcium hydroxide, it is reacted with carbon dioxide introduced with calcium hydroxide to produce calcium carbonate, which is precipitated at the bottom of the reaction vessel 20.

上述の設備では、1キログラムの海水に90グラムの水酸化ナトリウムを加えた後、十分な量の曝気の二酸化炭素を加え、平均445.9グラムの炭酸マグネシウムおよび92.3グラムの炭酸カルシウムを得る。つまり、換算すると平均1キログラムの海水に90グラムの水酸化ナトリウムを加えると277グラムの二酸化炭素を捕捉することができる。   In the above equipment, 90 grams of sodium hydroxide is added to 1 kilogram of sea water followed by a sufficient amount of aerated carbon dioxide to yield an average of 445.9 grams of magnesium carbonate and 92.3 grams of calcium carbonate. . That is, in terms of conversion, when 90 grams of sodium hydroxide is added to an average of 1 kilogram of seawater, 277 grams of carbon dioxide can be captured.

(3)二酸化炭素の捕捉技術に必要なコストの評価
上述の換算によると、1キログラムの海水に90グラムの水酸化ナトリウムを加えると、277グラムの二酸化炭素を捕捉することができる。下記表2は、1トンの二酸化炭素を捕捉するために必要なコストを表す。
(3) Evaluation of cost required for carbon dioxide capture technology According to the above conversion, when 90 grams of sodium hydroxide is added to 1 kilogram of seawater, 277 grams of carbon dioxide can be captured. Table 2 below represents the cost required to capture 1 ton of carbon dioxide.

Figure 2010125354
上記の表2から分かるように、1トンの二酸化炭素を捕捉するために必要な費用は約62.638米ドルであり、現在の地層貯留技術で1トンの二酸化炭素の捕捉に必要な費用は約50〜100米ドルであるが、本発明の二酸化炭素の捕捉方法には、下記(A)〜(F)の長所がある。
Figure 2010125354
As can be seen from Table 2 above, the cost required to capture 1 ton of carbon dioxide is approximately 62.638 USD, and the cost required to capture 1 ton of carbon dioxide with current geological storage technology is approximately Although it is 50 to 100 US dollars, the carbon dioxide capturing method of the present invention has the following advantages (A) to (F).

(A)化学反応速度が物理的貯留よりも速い。   (A) Chemical reaction rate is faster than physical storage.

(B)化学反応は、物理的反応よりも安定しているため、より安全に貯留させることができる。   (B) Since chemical reactions are more stable than physical reactions, they can be stored more safely.

(C)貯留が環境に与える影響が小さい。   (C) The impact of storage on the environment is small.

(D)物理的貯留の将来に亘る監視コストが必要ない。   (D) No future monitoring costs of physical storage are required.

(E)材料を大量に利用することによりコストをさらに低減させることができる。   (E) Costs can be further reduced by using a large amount of material.

(F)最終製品の付加価値が高い。   (F) The added value of the final product is high.

当該分野の技術を熟知するものが理解できるように、本発明の好適な実施形態を前述の通り開示したが、これらは決して本発明を限定するものではない。本発明の主旨と領域を脱しない範囲内で各種の変更や修正を加えることができる。従って、本発明の特許請求の範囲は、このような変更や修正を含めて広く解釈されるべきである。   While the preferred embodiments of the present invention have been disclosed above, as may be appreciated by those skilled in the art, they are not intended to limit the invention in any way. Various changes and modifications can be made without departing from the spirit and scope of the present invention. Accordingly, the scope of the claims of the present invention should be construed broadly including such changes and modifications.

本発明の一実施形態による飽和食塩水(苦汁)の電解を示す模式図である。It is a schematic diagram which shows electrolysis of the saturated salt solution (bitter juice) by one Embodiment of this invention. 本発明の一実施形態による水酸化マグネシウムおよび水酸化カルシウムを製造し、二酸化炭素を捕捉するときの反応状態を示す模式図である。It is a schematic diagram which shows the reaction state when manufacturing magnesium hydroxide and calcium hydroxide by one Embodiment of this invention, and capturing a carbon dioxide.

符号の説明Explanation of symbols

10 電解槽
12 入口
14 出口
16 イオン交換膜
17 正極
18 負極
20 反応槽
22 海水入口
24 水酸化ナトリウム入口
26 二酸化炭素入口
28 反応廃液流出口
29 炭酸マグネシウム/炭酸カルシウム沈殿物
DESCRIPTION OF SYMBOLS 10 Electrolysis tank 12 Inlet 14 Outlet 16 Ion exchange membrane 17 Positive electrode 18 Negative electrode 20 Reaction tank 22 Seawater inlet 24 Sodium hydroxide inlet 26 Carbon dioxide inlet 28 Reaction waste liquid outlet 29 Magnesium carbonate / calcium carbonate precipitate

Claims (4)

(1)飽和食塩水を電解し、水酸化ナトリウムを得て、
2NaCl+2HO→2NaOH+Cl+H
の反応式で表されるステップと、
(2)海水中に水酸化ナトリウムを加え、海水中の塩化マグネシウムおよび塩化カルシウムを水酸化マグネシウムおよび水酸化カルシウムに変換し、
MgCl+2NaOH→Mg(OH)+2NaCl
CaCl+2NaOH→Ca(OH)+2NaCl
の反応式で表されるステップと、
(3)水酸化マグネシウムおよび水酸化カルシウムを含む水中へ二酸化炭素を導入し、炭酸マグネシウムおよび炭酸カルシウムへ変換し、
Mg(OH)+CO→MgCO+H
Ca(OH)+CO→CaCO+H
の反応式で表されるステップと、を含むことを特徴とする二酸化炭素の捕捉方法。
(1) Electrolyze saturated saline to obtain sodium hydroxide,
2NaCl + 2H 2 O → 2NaOH + Cl 2 + H 2
A step represented by the reaction formula of
(2) Add sodium hydroxide into seawater to convert magnesium chloride and calcium chloride in seawater into magnesium hydroxide and calcium hydroxide,
MgCl 2 + 2NaOH → Mg (OH) 2 + 2NaCl
CaCl 2 + 2NaOH → Ca (OH) 2 + 2NaCl
A step represented by the reaction formula of
(3) Introduce carbon dioxide into water containing magnesium hydroxide and calcium hydroxide to convert to magnesium carbonate and calcium carbonate,
Mg (OH) 2 + CO 2 → MgCO 3 + H 2 O
Ca (OH) 2 + CO 2 → CaCO 3 + H 2 O
And a step represented by the reaction formula:
ステップ(1)の飽和食塩水は、塩濃度が高い苦汁であることを特徴とする請求項1に記載の二酸化炭素の捕捉方法。   The method for capturing carbon dioxide according to claim 1, wherein the saturated saline in step (1) is bitter juice having a high salt concentration. 前記苦汁は、海水の淡水化を行った後に得られる廃棄物であることを特徴とする請求項2に記載の二酸化炭素の捕捉方法。   The carbon dioxide capturing method according to claim 2, wherein the bitter juice is a waste obtained after desalination of seawater. ステップ(1)の水酸化ナトリウムは、食塩水を電解して生成された塩素の副産物であることを特徴とする請求項1に記載の二酸化炭素の捕捉方法。   The method for capturing carbon dioxide according to claim 1, wherein the sodium hydroxide in step (1) is a by-product of chlorine generated by electrolyzing saline.
JP2008299775A 2008-11-25 2008-11-25 Method of capturing carbon dioxide Pending JP2010125354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299775A JP2010125354A (en) 2008-11-25 2008-11-25 Method of capturing carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299775A JP2010125354A (en) 2008-11-25 2008-11-25 Method of capturing carbon dioxide

Publications (1)

Publication Number Publication Date
JP2010125354A true JP2010125354A (en) 2010-06-10

Family

ID=42326106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299775A Pending JP2010125354A (en) 2008-11-25 2008-11-25 Method of capturing carbon dioxide

Country Status (1)

Country Link
JP (1) JP2010125354A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103173782A (en) * 2013-04-12 2013-06-26 四川大学 Method for preparing basic magnesium carbonate and coproducing hydrochloric acid by mineralizing CO2 (carbon dioxide) via magnesium chloride
JP2013540567A (en) * 2010-07-08 2013-11-07 スカイオニック コーポレイション Carbon dioxide sequestration with pyrolysis process based on two salts
KR101405488B1 (en) 2012-01-06 2014-06-13 주식회사 포스코 Method for extracting dissolved substance of brine and system using the same
CN106757119A (en) * 2016-12-09 2017-05-31 大连理工大学 One kind is for realizing CO2The electro-chemical systems that capture is sealed up for safekeeping with mineralising
KR101778846B1 (en) 2015-07-23 2017-09-14 가톨릭대학교 산학협력단 Method for carbon dioxide fixation using wollastonite
KR101860331B1 (en) 2017-09-29 2018-05-24 한국지질자원연구원 Method for treating seawater desalination concentrates
JP2018530425A (en) * 2015-08-18 2018-10-18 ユナイテッド アラブ エミレーツ ユニバーシティUnited Arab Emirates University Method for carbon dioxide recovery and desalting
WO2019031118A1 (en) * 2017-08-08 2019-02-14 株式会社Ihi Method and apparatus for fixing carbon dioxide, and fuel gas desulfurization facility
KR20190069000A (en) * 2017-12-11 2019-06-19 한국에너지기술연구원 Method for carbon dioxide fixation using inorganic waste
US10583394B2 (en) 2015-02-23 2020-03-10 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
US10589224B2 (en) 2014-11-13 2020-03-17 Koninklijke Philips N.V. Gas capture apparatus and method
JP6739680B1 (en) * 2020-01-22 2020-08-12 健司 反町 Carbon dioxide fixing method, immobilized carbon dioxide production method, and carbon dioxide fixing device
JP6783436B1 (en) * 2019-08-29 2020-11-11 健司 反町 Carbon dioxide fixation method, immobilization carbon dioxide production method, and immobilization carbon dioxide production equipment
JP6788169B1 (en) * 2019-11-20 2020-11-25 健司 反町 Carbon dioxide fixation method, immobilization carbon dioxide production method, and immobilization carbon dioxide production equipment
JP6830564B1 (en) * 2019-11-20 2021-02-17 健司 反町 Carbon dioxide fixation method, carbon dioxide production method, and carbon dioxide fixation device
JP2021030229A (en) * 2020-09-30 2021-03-01 健司 反町 Carbon dioxide fixing method, method for producing fixed carbon dioxide, and device for producing fixed carbon dioxide
JP6864143B1 (en) * 2020-01-22 2021-04-28 健司 反町 Carbon dioxide fixation method, carbon dioxide production method, and carbon dioxide fixation device
JPWO2021149281A1 (en) * 2020-01-22 2021-07-29
JP2021133318A (en) * 2020-02-27 2021-09-13 株式会社ジョンクェルコンサルティング Method for treating carbon dioxide, and water dispersion used therein
CN113401929A (en) * 2021-06-23 2021-09-17 湖北富邦科技股份有限公司 Method for preparing nano calcium carbonate magnesium material by using nanofiltration seawater to trap carbon dioxide
JP2022039025A (en) * 2020-08-27 2022-03-10 株式会社ジョンクェルコンサルティング Processing method of carbon dioxide and water dispersion using the same
CN117070944A (en) * 2023-08-25 2023-11-17 中国矿业大学 Mineralization repair method for magnesium alloy oxide film defect
JP7463323B2 (en) 2021-08-11 2024-04-08 株式会社東芝 System and method for fixing carbon dioxide by seawater electrolysis

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397880A (en) * 1989-08-17 1991-04-23 Solvay & Cie Method for preparation of aqeous sodium hydroxide solution of high cencentration
JP2003183867A (en) * 2001-12-19 2003-07-03 Asahi Glass Co Ltd Electrolysis method for alkali chloride solution
JP2008029975A (en) * 2006-07-31 2008-02-14 Petroleum Energy Center System for dissolving carbon dioxide and method for dissolving carbon dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397880A (en) * 1989-08-17 1991-04-23 Solvay & Cie Method for preparation of aqeous sodium hydroxide solution of high cencentration
JP2003183867A (en) * 2001-12-19 2003-07-03 Asahi Glass Co Ltd Electrolysis method for alkali chloride solution
JP2008029975A (en) * 2006-07-31 2008-02-14 Petroleum Energy Center System for dissolving carbon dioxide and method for dissolving carbon dioxide

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9359221B2 (en) 2010-07-08 2016-06-07 Skyonic Corporation Carbon dioxide sequestration involving two-salt-based thermolytic processes
JP2013540567A (en) * 2010-07-08 2013-11-07 スカイオニック コーポレイション Carbon dioxide sequestration with pyrolysis process based on two salts
KR101405488B1 (en) 2012-01-06 2014-06-13 주식회사 포스코 Method for extracting dissolved substance of brine and system using the same
CN103173782A (en) * 2013-04-12 2013-06-26 四川大学 Method for preparing basic magnesium carbonate and coproducing hydrochloric acid by mineralizing CO2 (carbon dioxide) via magnesium chloride
US10589224B2 (en) 2014-11-13 2020-03-17 Koninklijke Philips N.V. Gas capture apparatus and method
US11498029B2 (en) 2015-02-23 2022-11-15 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
US11772046B2 (en) 2015-02-23 2023-10-03 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
US10583394B2 (en) 2015-02-23 2020-03-10 Carbonfree Chemicals Holdings, Llc Carbon dioxide sequestration with magnesium hydroxide and regeneration of magnesium hydroxide
KR101778846B1 (en) 2015-07-23 2017-09-14 가톨릭대학교 산학협력단 Method for carbon dioxide fixation using wollastonite
JP2018530425A (en) * 2015-08-18 2018-10-18 ユナイテッド アラブ エミレーツ ユニバーシティUnited Arab Emirates University Method for carbon dioxide recovery and desalting
CN106757119A (en) * 2016-12-09 2017-05-31 大连理工大学 One kind is for realizing CO2The electro-chemical systems that capture is sealed up for safekeeping with mineralising
CN106757119B (en) * 2016-12-09 2019-02-26 大连理工大学 One kind is for realizing CO2The electro-chemical systems that capture is sealed up for safekeeping with mineralising
WO2019031118A1 (en) * 2017-08-08 2019-02-14 株式会社Ihi Method and apparatus for fixing carbon dioxide, and fuel gas desulfurization facility
JP2019030840A (en) * 2017-08-08 2019-02-28 株式会社Ihi Method and apparatus for carbon dioxide fixation, and exhaust gas desulfurization equipment
KR101860331B1 (en) 2017-09-29 2018-05-24 한국지질자원연구원 Method for treating seawater desalination concentrates
KR102004690B1 (en) * 2017-12-11 2019-07-29 한국에너지기술연구원 Method for carbon dioxide fixation using inorganic waste
KR20190069000A (en) * 2017-12-11 2019-06-19 한국에너지기술연구원 Method for carbon dioxide fixation using inorganic waste
JP6783436B1 (en) * 2019-08-29 2020-11-11 健司 反町 Carbon dioxide fixation method, immobilization carbon dioxide production method, and immobilization carbon dioxide production equipment
US11305228B2 (en) 2019-08-29 2022-04-19 Kenji SORIMACHI Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and fixed carbon dioxide production apparatus
WO2021038808A1 (en) * 2019-08-29 2021-03-04 健司 反町 Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and device for producing fixed carbon dioxide
EP3805158A4 (en) * 2019-08-29 2021-05-05 Sorimachi, Kenji Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and device for producing fixed carbon dioxide
JP6788169B1 (en) * 2019-11-20 2020-11-25 健司 反町 Carbon dioxide fixation method, immobilization carbon dioxide production method, and immobilization carbon dioxide production equipment
JP6830564B1 (en) * 2019-11-20 2021-02-17 健司 反町 Carbon dioxide fixation method, carbon dioxide production method, and carbon dioxide fixation device
EP3851414A4 (en) * 2019-11-20 2021-07-21 Sorimachi, Kenji Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and device for producing fixed carbon dioxide
WO2021100135A1 (en) * 2019-11-20 2021-05-27 健司 反町 Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and device for producing fixed carbon dioxide
WO2021100239A1 (en) * 2019-11-20 2021-05-27 健司 反町 Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and device for fixing carbon dioxide
JP2021116221A (en) * 2020-01-22 2021-08-10 健司 反町 Device for fixing carbon dioxide
WO2021149289A1 (en) * 2020-01-22 2021-07-29 健司 反町 Metal raw material manufacturing device and metal raw material manufacturing method
JPWO2021149281A1 (en) * 2020-01-22 2021-07-29
JPWO2021149289A1 (en) * 2020-01-22 2021-07-29
JP6864143B1 (en) * 2020-01-22 2021-04-28 健司 反町 Carbon dioxide fixation method, carbon dioxide production method, and carbon dioxide fixation device
JP2021116222A (en) * 2020-01-22 2021-08-10 健司 反町 Method for fixing carbon dioxide, method for producing fixed carbon dioxide, and apparatus for fixing carbon dioxide
JP6739680B1 (en) * 2020-01-22 2020-08-12 健司 反町 Carbon dioxide fixing method, immobilized carbon dioxide production method, and carbon dioxide fixing device
JP7008305B2 (en) 2020-01-22 2022-01-25 健司 反町 How to fix carbon dioxide and how to make fixed carbon dioxide
JP6817485B1 (en) * 2020-01-22 2021-01-20 健司 反町 Carbon dioxide fixing device
JP2021133318A (en) * 2020-02-27 2021-09-13 株式会社ジョンクェルコンサルティング Method for treating carbon dioxide, and water dispersion used therein
JP7054431B2 (en) 2020-08-27 2022-04-14 株式会社ジョンクェルコンサルティング How to treat carbon dioxide and the aqueous dispersion used in it
JP2022039025A (en) * 2020-08-27 2022-03-10 株式会社ジョンクェルコンサルティング Processing method of carbon dioxide and water dispersion using the same
JP2021030229A (en) * 2020-09-30 2021-03-01 健司 反町 Carbon dioxide fixing method, method for producing fixed carbon dioxide, and device for producing fixed carbon dioxide
CN113401929A (en) * 2021-06-23 2021-09-17 湖北富邦科技股份有限公司 Method for preparing nano calcium carbonate magnesium material by using nanofiltration seawater to trap carbon dioxide
JP7463323B2 (en) 2021-08-11 2024-04-08 株式会社東芝 System and method for fixing carbon dioxide by seawater electrolysis
CN117070944A (en) * 2023-08-25 2023-11-17 中国矿业大学 Mineralization repair method for magnesium alloy oxide film defect

Similar Documents

Publication Publication Date Title
JP2010125354A (en) Method of capturing carbon dioxide
US20100150803A1 (en) Method for capturing carbon dioxide
ES2826975T3 (en) A process to make lithium carbonate from lithium chloride
KR101026566B1 (en) A method of capturing carbon dioxide
Youn et al. Carbon dioxide sequestration process for the cement industry
CA2581157A1 (en) Removing carbon dioxide from waste streams through co-generation of carbonate and/or bicarbonate minerals
JP2008514406A5 (en)
JP2011518257A (en) Method for producing high purity lithium hydroxide and hydrochloric acid
CN101773766A (en) Method for trapping carbon dioxide
EP3895785A1 (en) Unit for desalination and greenhouse gas sequestration
Cho et al. Novel process design of desalination wastewater recovery for CO2 and SOX utilization
KR101296213B1 (en) Electrolysis apparatus with removal device for hydrogen
KR101778411B1 (en) Facility and method for the simultaneous production of sodium bicarbonate and chlorine dioxide
JP2006522213A (en) Electrochemical oxidation process of bromide to bromine
EP2663531A1 (en) Conditioning cell
WO2015194963A1 (en) Process for producing soda ash
Eisaman et al. Chapter 3: Assessing the technical aspects of OAE approaches
US10883184B2 (en) Method and apparatus for treatment of effluents from production plants of epoxy compounds
JP2005021870A (en) Method for reducing carbon dioxide in the air, method for recovering and removing carbonic acid in sea water and its disposal method
WO2023282735A1 (en) Method of processing gas loaded with carbon dioxide
KR102433006B1 (en) Method for manufacturing of sodium hypochlorite and apparaus for manufacturing of sodium hypochlorite
WO2023181794A1 (en) Carbon dioxide fixation method and carbon dioxide fixation system
TW201016301A (en) Carbon dioxide capturing method
KR20230099318A (en) Method for manufacturing of sodium hypochlorite and apparaus for manufacturing of sodium hypochlorite
O’Brien Salt, Chlor-Alkali, and Related Heavy Chemicals

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419