JP2010115112A - Method of preparing yeast, the yeast, and method of producing lactic acid - Google Patents

Method of preparing yeast, the yeast, and method of producing lactic acid Download PDF

Info

Publication number
JP2010115112A
JP2010115112A JP2007050851A JP2007050851A JP2010115112A JP 2010115112 A JP2010115112 A JP 2010115112A JP 2007050851 A JP2007050851 A JP 2007050851A JP 2007050851 A JP2007050851 A JP 2007050851A JP 2010115112 A JP2010115112 A JP 2010115112A
Authority
JP
Japan
Prior art keywords
lactic acid
yeast
strain
dna polymerase
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007050851A
Other languages
Japanese (ja)
Inventor
Michi Kubota
みち 窪田
Kazufumi Tabata
和文 田畑
Akemi Yamada
朱美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neo Morgan Laboratory Inc
Original Assignee
Neo Morgan Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neo Morgan Laboratory Inc filed Critical Neo Morgan Laboratory Inc
Priority to JP2007050851A priority Critical patent/JP2010115112A/en
Priority to PCT/JP2008/000353 priority patent/WO2008105175A1/en
Publication of JP2010115112A publication Critical patent/JP2010115112A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of preparing a yeast having an ability to synthesize lactic acid, and to provide a yeast by using the production method and also a method of producing lactic acid using the yeast. <P>SOLUTION: The method of preparing a yeast having an ability to synthesize lactic acid includes the step of culturing a yeast variant, which controls a proofreading function of DNA polymerase, at a lactic acid concentration of at least 1% (v/v) and then separating the survival cells, to obtain a yeast having lactic acid tolerance, and transferring a lactic acid synthase gene into this yeast to prepare a yeast having an ability to synthesize lactic acid. The yeast is prepared by such method and the method of producing lactic acid uses the yeast. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は,乳酸耐性や乳酸合成能に優れた酵母の製造方法,そのような酵母,及び,そのような酵母を用いた乳酸の製造方法に関する。   The present invention relates to a method for producing a yeast excellent in lactic acid resistance and lactic acid synthesis ability, such a yeast, and a method for producing lactic acid using such a yeast.

従来より,乳酸は,例えば,輸液などの医療品原料,食品添加物,化粧品原料として好ましく使用されていた。また,ポリ乳酸は,生物由来材料である乳酸から合成され,生分解性などの優れた性質を有するポリマーとして注目されており,フィルム,樹脂製品,医療材料,その他多くの分野での需要性が高まっている。このように,乳酸の用途は多岐にわたり,需要量も急増しているため,原料である乳酸を安価に製造することが求められている。   Conventionally, lactic acid has been preferably used as a raw material for medical products such as infusions, food additives, and cosmetic raw materials. Polylactic acid has been attracting attention as a polymer that is synthesized from lactic acid, a bio-derived material, and has excellent properties such as biodegradability, and is expected to be used in many fields such as films, resin products, medical materials, etc. It is growing. In this way, lactic acid is used for various purposes, and the demand is rapidly increasing. Therefore, it is required to produce lactic acid as a raw material at low cost.

乳酸は,主として,ラクトバチルス(Lactobacillus)属に代表される乳酸菌を用いて生産されている。これらの乳酸菌は,酸性条件下で生育しないため,乳酸を培養液中に多量に蓄積させるためには,炭酸カルシウム,アンモニア,水酸化ナトリウムなどの中和剤を添加した培養を行わなければならず,中和工程や乳酸の精製工程に多大なコストを要する。また,乳酸菌を用いて乳酸を生産する場合,乳酸のpKa(〜3.86)以下で発酵を行う必要があるので,培養液中からの乳酸を抽出・精製するために複雑な工程を経なければならない。   Lactic acid is mainly produced using lactic acid bacteria represented by the genus Lactobacillus. Since these lactic acid bacteria do not grow under acidic conditions, in order to accumulate a large amount of lactic acid in the culture solution, culture with a neutralizing agent such as calcium carbonate, ammonia or sodium hydroxide must be performed. , A large cost is required for the neutralization process and the lactic acid purification process. In addition, when lactic acid is produced using lactic acid bacteria, it is necessary to perform fermentation at a pKa (˜3.86) or less of lactic acid, so complicated steps must be taken to extract and purify lactic acid from the culture solution. I must.

一方,酸性条件下で生育可能な酵母株を用いた有機酸の製造方法が,複数提案されている(例えば,下記特許文献1〜3及び非特許文献1〜2参照)。これらの提案によれば,本来乳酸生成能を持たない酵母株に,乳酸生成酵素遺伝子を導入し,乳酸を生産させることにより,中和操作を軽減し,乳酸の製造を低コストに構築することを可能としている。さらに,酵母株による乳酸その他の有機酸の生産能力を,遺伝子組み換え等の技術を用いて向上させることにより,より安価な有機酸の製造方法を構築することができる。
また,培地中に酸が蓄積すると,培地pHの低下に伴って細胞内pHも低下するが,微生物は細胞膜に局在するプロトンエーティーピーエース(H−ATPase)を活性化させることにより,細胞外へプロトンを汲み出して,細胞内pHを一定に保とうとする。
On the other hand, a plurality of methods for producing organic acids using yeast strains that can grow under acidic conditions have been proposed (see, for example, Patent Documents 1 to 3 and Non-Patent Documents 1 and 2 below). According to these proposals, by introducing a lactic acid synthase gene into a yeast strain that does not originally have lactic acid production ability and producing lactic acid, the neutralization operation can be reduced and lactic acid production can be constructed at low cost. Is possible. Furthermore, by improving the production capacity of lactic acid and other organic acids by yeast strains using techniques such as genetic recombination, a cheaper method for producing organic acids can be constructed.
In addition, when acid accumulates in the medium, the intracellular pH also decreases as the medium pH decreases, but the microorganism activates proton ATPase (H + -ATPase) localized in the cell membrane to activate cells. It tries to keep the intracellular pH constant by pumping protons out.

しかしながら,酵母細胞においては,酸性条件下で活性化されるべきH−ATPaseが,培養液中に乳酸が存在する場合においてはその活性が阻害され,細胞内pHを好適に維持することができず,酵母細胞の生存率が低下することが報告されている(下記非特許文献3参照)。すなわち,乳酸の生産能力をより高く向上させるためには,酵母細胞の乳酸への耐性能力を向上させ,より高濃度の乳酸を生産できるようにすることが,工業上非常に重要な課題である。 However, in yeast cells, H + -ATPase, which should be activated under acidic conditions, is inhibited when lactic acid is present in the culture medium, and the intracellular pH can be suitably maintained. However, it has been reported that the survival rate of yeast cells decreases (see Non-Patent Document 3 below). In other words, in order to improve the production capacity of lactic acid to a higher level, it is a very important issue in the industry to improve the ability of yeast cells to resist lactic acid and produce a higher concentration of lactic acid. .

現在,乳酸耐性を付与する方法,又は乳酸産生能を維持する方法としては,以下のような方法が用いられている。
第一の方法としては,乳酸耐性の高い新規な乳酸耐性菌株を分離し,得られた乳酸耐性菌を宿主として乳酸を生産させる方法が挙げられる。しかしながら,得られた乳酸耐性菌を宿主として高濃度の乳酸を生産するための遺伝子組み換えを行うためには,取り扱いの容易なベクター系を開発する必要がある。
第二の方法としては,乳酸菌に対して変異誘発剤処理を行うことで突然変異を導入し,乳酸耐性変異体を作製する方法が挙げられるが,大幅な乳酸耐性を付与できるまでには至っていない。
第三の方法としては,異なる性質の乳酸菌を細胞融合することで乳酸耐性変異体を作製する方法(ゲノムシャフリング法)が挙げられる。具体的には,例えば,pH4.0にて野生株に比べ乳酸を3倍生産する乳酸耐性株を取得した例が報告されている(下記非特許文献4参照)。しかしながら,この方法では,乳酸に対する耐性度の更に高い株を産生するために,長時間を要するという問題がある。
Currently, the following methods are used as methods for imparting lactic acid tolerance or maintaining lactic acid production ability.
As a first method, a method of isolating a novel lactic acid resistant strain having high lactic acid resistance and producing lactic acid using the obtained lactic acid resistant bacterium as a host can be mentioned. However, in order to carry out genetic recombination to produce a high concentration of lactic acid using the obtained lactic acid resistant bacteria as a host, it is necessary to develop an easy-to-handle vector system.
The second method is to introduce a mutation by treating a lactic acid bacterium with a mutagenic agent to produce a lactic acid resistant mutant, but it has not yet been able to confer significant lactic acid resistance. .
As a third method, a method (genome shuffling method) for producing a lactic acid resistant mutant by fusing lactic acid bacteria having different properties into cells can be mentioned. Specifically, for example, an example in which a lactic acid resistant strain producing lactic acid three times as much as a wild strain at pH 4.0 has been reported (see Non-Patent Document 4 below). However, this method has a problem that it takes a long time to produce a strain having a higher resistance to lactic acid.

第四の方法としては,乳酸耐性菌から単離された乳酸耐性関連遺伝子を遺伝子組み換えで宿主菌に導入し,乳酸耐性を付与する方法が挙げられる。具体的には,例えば,ワイン酵母Oenococcus oeniから単離された多剤耐性遺伝子ファミリーに属するorfC,LysRファミリーに属する推定転写調節因子orfB,低分子ヒートショックタンパク質Lol18の三遺伝子を大腸菌に導入し,酸耐性を付与した例が報告されている(下記非特許文献5参照)。しかしながら,この方法では,乳酸耐性を付与したい宿主微生物に対して適用できるか否かが不明である。また,仮にこの方法を適用できたとしても,乳酸耐性度を更に増強したい場合には,上記乳酸耐性関連遺伝子の発現を増加させる以外に合理的な手段はない。   As a fourth method, there can be mentioned a method of imparting lactic acid resistance by introducing a lactic acid resistance-related gene isolated from a lactic acid resistant bacterium into a host bacterium by gene recombination. Specifically, for example, three genes, orfC belonging to the multidrug resistance gene family isolated from wine yeast Oenococcus oeni, putative transcription regulatory factor orfB belonging to LysR family, and low molecular weight heat shock protein Lol18 are introduced into Escherichia coli. An example of imparting acid resistance has been reported (see Non-Patent Document 5 below). However, it is unclear whether this method can be applied to host microorganisms that want to confer lactic acid resistance. Even if this method can be applied, there is no reasonable means other than increasing the expression of the lactic acid tolerance-related gene in order to further enhance the lactic acid tolerance level.

第五の方法としては,ケモスタットを用いて酸に馴化させる方法が挙げられる。具体的には,例えば,目的の菌を低pH(pH5.0)で60分間,前処理した後,致死pH(pH3.0)処理し,耐性化遺伝子の発現を誘導し,乳酸耐性に馴化させる方法が報告されている(下記非特許文献6参照)。しかしながら,この方法では,変異が安定に保持されるか否かが不確定であり,その他にも,生物種によるばらつき,馴化可能な乳酸濃度など不確定な要素が混在するため,簡便な方法ではない。
従って,乳酸耐性に優れる酵母,及びこのような酵母を効率的に得られる製造方法,並びに,酵母を用いた生産性に優れる乳酸の製造方法は,未だ実現されておらず,その速やかな提供が望まれているのが現状である。
As a fifth method, there is a method of acclimatizing with acid using a chemostat. Specifically, for example, the target bacteria are pretreated at low pH (pH 5.0) for 60 minutes and then treated with lethal pH (pH 3.0) to induce expression of the resistance gene and acclimatize to lactate resistance. Has been reported (see Non-Patent Document 6 below). However, with this method, it is uncertain whether the mutation will be stably maintained, and other factors such as variability by species and acclimated lactic acid concentration are mixed. Absent.
Therefore, a yeast having excellent lactic acid tolerance, a production method for efficiently obtaining such yeast, and a method for producing lactic acid with excellent productivity using yeast have not yet been realized, and the prompt provision thereof is not possible. What is desired is the current situation.

特開2001−204468号公報JP 2001-204468 A 特表2001−516584号パンフレットSpecial table 2001-51658 pamphlet 特開2003−259878号公報JP 2003-259878 A Applied and Environmental Microbiology(アプライド アンド エンバイロンメンタル マイクロバイオロジー),71,1964(2005)Applied and Environmental Microbiology, 71, 1964 (2005) Applied and Environmental Microbiology(アプライド アンド エンバイロンメンタル マイクロバイオロジー),71,2789(2005)Applied and Environmental Microbiology, 71, 2789 (2005) The Journal of the American Society of Brewing Chemists(ザ ジャーナル オブ ザ アメリカン ソサイエティ オブ ブリューイング ケミスツ),59,187(2001)The Journal of the American Society of Brewing Chemists (The Journal of the American Society of Brewing Chemistry), 59, 187 (2001) Nature Biotechnology(ネイチャー バイオテクノロジー),20,707−712,2002Nature Biotechnology (Nature Biotechnology), 20, 707-712, 2002 Letters in Applied Microbiology(レターズ イン アプライド マイクロバイオロジー),33,126−130,2001Letters in Applied Microbiology, 33, 126-130, 2001 Journal of Molecular Biology and Biotechnology(ジャーナル オブ モレキュラー バイオロジー アンド バイオテクノロジー),4,525−532,2002Journal of Molecular Biology and Biotechnology (Journal of Molecular Biology and Biotechnology), 4,525-532, 2002

本発明は,乳酸耐性や乳酸合成能に優れた酵母の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the yeast excellent in lactic acid tolerance and lactic acid synthesis ability.

本発明は,乳酸耐性や乳酸合成能に優れた酵母を提供することを目的とする。   An object of the present invention is to provide a yeast excellent in lactic acid resistance and lactic acid synthesis ability.

本発明は,酵母を用いた効果的な乳酸の製造方法を提供することを目的とする。   An object of the present invention is to provide an effective method for producing lactic acid using yeast.

本発明は,基本的には,DNAポリメラーゼの校正機能を制御した酵母の変異株を,少なくとも1%(v/v)以上の乳酸濃度下で培養した後,生存細胞を単離することによって得られた酵母に,乳酸合成酵素遺伝子を導入することにより,乳酸合成することができる酵母を得ることができるという知見に基づくものである。   The present invention is basically obtained by culturing a yeast mutant strain in which the proofreading function of DNA polymerase is controlled under a lactic acid concentration of at least 1% (v / v) or more and then isolating viable cells. It is based on the knowledge that a yeast capable of synthesizing lactic acid can be obtained by introducing a lactic acid synthase gene into the obtained yeast.

また,本発明は,基本的には,乳酸合成酵素遺伝子が導入されるとともに,DNAポリメラーゼの校正機能を制御した酵母の変異株を,少なくとも1%(v/v)以上の乳酸濃度下で培養した後,生存細胞を単離することにより,効率的に乳酸合成することができる酵母を得ることができるという知見に基づくものである。   In addition, the present invention basically cultivates a yeast mutant strain into which a lactic acid synthase gene has been introduced and whose DNA polymerase proofreading function is controlled at a lactic acid concentration of at least 1% (v / v) or more. Then, it is based on the knowledge that a yeast capable of efficiently synthesizing lactic acid can be obtained by isolating viable cells.

そして,本発明は,そのような酵母を用いれば効果的に乳酸を製造できるという知見に基づくものである。   The present invention is based on the knowledge that lactic acid can be produced effectively by using such yeast.

本発明は,基本的には,DNAポリメラーゼの校正機能を制御した酵母の変異株を,少なくとも1%(v/v)以上の乳酸濃度下で培養した後,生存細胞を単離することによって得られた酵母に,乳酸合成酵素遺伝子を導入することにより,効率的に乳酸合成することができる酵母を得ることができるという知見に基づくものである。   The present invention is basically obtained by culturing a yeast mutant strain in which the proofreading function of DNA polymerase is controlled under a lactic acid concentration of at least 1% (v / v) or more and then isolating viable cells. This is based on the knowledge that a yeast capable of efficiently synthesizing lactic acid can be obtained by introducing a lactic acid synthase gene into the obtained yeast.

また,本発明は,基本的には, 乳酸合成酵素遺伝子が導入されるとともに,DNAポリメラーゼの校正機能を制御した酵母の変異株を,少なくとも1%(v/v)以上の乳酸濃度下で培養した後,生存細胞を単離することにより,効率的に乳酸合成することができる酵母を得ることができるという知見に基づくものである。   In addition, the present invention basically cultivates a yeast mutant strain into which a lactic acid synthase gene has been introduced and whose proofreading function of DNA polymerase is controlled at a lactic acid concentration of at least 1% (v / v) or more. Then, it is based on the knowledge that a yeast capable of efficiently synthesizing lactic acid can be obtained by isolating viable cells.

そして,本発明は,そのような酵母を用いれば効果的に乳酸を合成できるという知見に基づくものである。   The present invention is based on the knowledge that lactic acid can be effectively synthesized by using such a yeast.

本発明の第一の側面は,DNAポリメラーゼの校正機能を制御した酵母の変異株を,少なくとも1%(v/v)以上の乳酸濃度下で培養した後,生存細胞を単離することによって得られた酵母に,乳酸合成酵素遺伝子を導入する,乳酸合成能を有する酵母の製造方法に関する。   The first aspect of the present invention is obtained by culturing a yeast mutant strain in which the proofreading function of DNA polymerase is controlled under a lactic acid concentration of at least 1% (v / v) or more and then isolating viable cells. The present invention relates to a method for producing a yeast having the ability to synthesize lactic acid by introducing a lactic acid synthase gene into the obtained yeast.

本発明の第一の側面の好ましい態様は,前記酵母の変異株は,変異型DNAポリメラーゼδをコードする遺伝子が導入された株である上記に記載の酵母の製造方法に関する。   A preferred embodiment of the first aspect of the present invention relates to the yeast production method described above, wherein the yeast mutant is a strain into which a gene encoding mutant DNA polymerase δ has been introduced.

本発明の第一の側面の好ましい態様は,前記酵母の変異株は,Pol3のアミノ酸配列を改変した出芽酵母の変異株である,上記いずれかに記載の酵母の製造方法に関する。   A preferred embodiment of the first aspect of the present invention relates to the yeast production method according to any one of the above, wherein the yeast mutant is a budding yeast mutant in which the amino acid sequence of Pol3 is modified.

本発明の第一の側面の好ましい態様は,所定の乳酸濃度下で培養した後,生存細胞を単離する工程を繰り返し,前記所定の乳酸濃度が1%(v/v)以上7%(v/v)以下であり,前記培養及び単離工程を繰り返すにつれ,乳酸濃度を高くする,上記いずれかに記載の酵母の製造方法に関する。   In a preferred embodiment of the first aspect of the present invention, after culturing under a predetermined lactic acid concentration, the step of isolating viable cells is repeated, and the predetermined lactic acid concentration is 1% (v / v) or more and 7% (v / V) The method for producing yeast according to any one of the above, wherein the lactic acid concentration is increased as the culture and isolation steps are repeated.

本発明の第一の側面の好ましい態様は,乳酸合成酵素遺伝子が導入されるとともに,DNAポリメラーゼの校正機能を制御した酵母の変異株を,少なくとも1%(v/v)以上の乳酸濃度下で培養した後,生存細胞を単離する工程を含む,乳酸合成能を有する酵母の製造方法に関する。   In a preferred embodiment of the first aspect of the present invention, a yeast mutant strain into which a lactic acid synthase gene has been introduced and the proofreading function of DNA polymerase is controlled can be obtained under a lactic acid concentration of at least 1% (v / v) or more. The present invention relates to a method for producing a yeast having the ability to synthesize lactic acid, comprising a step of isolating viable cells after culturing.

本発明の第二の側面は,DNAポリメラーゼの校正機能を制御した酵母の変異株を用い,少なくとも1%(v/v)以上の乳酸濃度下で培養した後に生存細胞を単離する工程を,前記乳酸濃度を1%(v/v)以上7%(v/v)以下の範囲内で高くしつつ繰り返すことにより乳酸耐性を有する酵母を得た後に,乳酸合成酵素遺伝子を導入することにより得られる乳酸合成能を有する酵母に関する。   The second aspect of the present invention comprises a step of isolating viable cells after culturing under a lactic acid concentration of at least 1% (v / v) or more using a yeast mutant strain in which the calibration function of DNA polymerase is controlled. It is obtained by introducing a lactic acid synthase gene after obtaining yeast having lactic acid resistance by repeating while increasing the lactic acid concentration within the range of 1% (v / v) to 7% (v / v). It is related with the yeast which has the ability to synthesize lactic acid.

本発明の第二の側面の好ましい態様は,前記酵母の変異株は,変異型DNAポリメラーゼδをコードする遺伝子が導入された株である,上記に記載の酵母に関する。   A preferred embodiment of the second aspect of the present invention relates to the yeast as described above, wherein the mutant strain of yeast is a strain into which a gene encoding mutant DNA polymerase δ has been introduced.

本発明の第二の側面の好ましい態様は,乳酸合成酵素遺伝子が導入されるとともに,DNAポリメラーゼの校正機能を制御した酵母の変異株を用い,少なくとも1%(v/v)以上の乳酸濃度下で培養した後に生存細胞を単離する工程を,前記乳酸濃度を1%(v/v)以上7%(v/v)以下の範囲内で高くしつつ繰り返すことにより得られる乳酸合成能を有する酵母に関する。   A preferred embodiment of the second aspect of the present invention uses a yeast mutant strain into which a lactic acid synthase gene is introduced and the proofreading function of DNA polymerase is controlled, and at a lactic acid concentration of at least 1% (v / v) or more. It has the ability to synthesize lactic acid obtained by repeating the step of isolating viable cells after culturing in, while increasing the lactic acid concentration within the range of 1% (v / v) to 7% (v / v). Related to yeast.

本発明の第二の側面の好ましい態様は,前記酵母の変異株は,変異型DNAポリメラーゼδをコードする遺伝子が導入された株である,上記に記載の酵母に関する。   A preferred embodiment of the second aspect of the present invention relates to the yeast as described above, wherein the mutant strain of yeast is a strain into which a gene encoding mutant DNA polymerase δ has been introduced.

本発明の第二の側面の好ましい態様は,前記酵母が,サッカロマイセス(Saccharomyces)属に属する酵母である上記いずれかに記載の酵母に関する。   A preferred embodiment of the second aspect of the present invention relates to the yeast according to any one of the above, wherein the yeast belongs to the genus Saccharomyces.

本発明の第二の側面の好ましい態様は,前記酵母が,出芽酵母(Saccharomyces cerevisiae)である上記いずれかに記載の酵母に関する。   A preferred embodiment of the second aspect of the present invention relates to the yeast according to any one of the above, wherein the yeast is Saccharomyces cerevisiae.

本発明の第二の側面の好ましい態様は,独立行政法人製品評価技術基盤機構特許微生物寄託センターに受託番号「NITE AP−319」,「NITE AP−320」,又は「NITE AP−320」として寄託されている酵母に乳酸合成酵素遺伝子を導入することにより得られる乳酸合成能を有する酵母に関する。   A preferred embodiment of the second aspect of the present invention is deposited with the Patent Microorganism Depositary of the National Institute of Technology and Evaluation as a deposit number “NITE AP-319”, “NITE AP-320”, or “NITE AP-320”. The present invention relates to a yeast having the ability to synthesize lactic acid obtained by introducing a lactic acid synthase gene into yeast.

本発明の第三の側面は,上記いずれかに記載の酵母の製造方法により得られた酵母,又は上記いずれかに記載の酵母を糖質存在下で培養し,乳酸を生成させ,培養物から前記乳酸を採取する乳酸の製造方法に関する。   According to a third aspect of the present invention, a yeast obtained by any one of the yeast production methods described above or the yeast described above is cultured in the presence of a carbohydrate to produce lactic acid, The present invention relates to a method for producing lactic acid by collecting lactic acid.

本発明によれば,DNAポリメラーゼの校正機能を制御した酵母の変異株を,高い乳酸濃度下で培養することにより,乳酸耐性に優れた酵母を得ることができ,乳酸合成能を有する遺伝子を導入するか,又は乳酸合成能を有する変異株を用いることにより,乳酸合成することができる酵母の製造方法を提供することができる。   According to the present invention, by culturing a yeast mutant strain in which the DNA polymerase proofreading function is controlled under a high lactic acid concentration, a yeast having excellent lactic acid resistance can be obtained, and a gene having lactic acid synthesis ability is introduced. By using a mutant strain capable of synthesizing lactic acid, a method for producing yeast capable of synthesizing lactic acid can be provided.

本発明によれば,DNAポリメラーゼの校正機能を制御した酵母の変異株を,高い乳酸濃度下で培養することにより,乳酸耐性を有する酵母を得ることができ,乳酸耐性を有する酵母に乳酸合成能を有する遺伝子を導入するか,又は乳酸合成能を有する変異株を用いて乳酸耐性を有する酵母を得ることにより,乳酸合成することができる酵母を得ることができる。   According to the present invention, a yeast having a lactic acid resistance can be obtained by culturing a mutant strain of yeast with a controlled DNA polymerase proofreading function at a high lactic acid concentration. A yeast capable of synthesizing lactic acid can be obtained by introducing a gene having lactic acid or obtaining a yeast having lactic acid resistance using a mutant having lactic acid synthesis ability.

本発明によれば,上記のとおり高い乳酸耐性を有するとともに,乳酸合成能を有する酵母を得ることができるので,そのような酵母を用いた効果的な乳酸の製造方法を提供することができる。   According to the present invention, a yeast having high lactic acid tolerance and lactic acid synthesizing ability as described above can be obtained, so that an effective method for producing lactic acid using such yeast can be provided.

−乳酸合成能を有する酵母の製造方法−
本発明の第一の側面に係る酵母の製造方法は,基本的には,DNAポリメラーゼの校正機能を制御した酵母の変異株を,少なくとも1%(v/v)以上の乳酸濃度下で培養した後,生存細胞を単離することによって得られた酵母に,乳酸合成酵素遺伝子を導入する,乳酸合成能を有する酵母の製造方法に関する。すなわち,本発明の第一の側面は,基本的には,DNAポリメラーゼの校正機能を制御した酵母の変異株を,少なくとも1%(v/v)以上の乳酸濃度下で培養した後,生存細胞を単離することによって乳酸耐性を有する酵母を得て,その乳酸耐性を有する酵母に対して,乳酸合成酵素遺伝子を導入することにより乳酸合成能を有する酵母を得るというものである。
-Method for producing yeast having lactic acid synthesis ability-
In the yeast production method according to the first aspect of the present invention, basically, a yeast mutant strain in which the DNA polymerase proofreading function is controlled is cultured under a lactic acid concentration of at least 1% (v / v) or more. Then, it is related with the manufacturing method of the yeast which has a lactic acid synthesis ability which introduce | transduces a lactic acid synthase gene into the yeast obtained by isolating a living cell. That is, according to the first aspect of the present invention, basically, a yeast mutant strain in which the proofreading function of DNA polymerase is controlled is cultured under a lactic acid concentration of at least 1% (v / v) or more, and then a living cell. Is obtained by obtaining a yeast having lactic acid resistance by introducing a lactic acid synthase gene into the yeast having lactic acid resistance.

「DNAポリメラーゼの校正機能を制御した酵母の変異株」として,DNAポリメラーゼのエラープローン頻度が調整された酵母の変異株があげられる。「DNAポリメラーゼの校正機能を制御した酵母の変異株」として,変異型DNAポリメラーゼδをコードする遺伝子が導入された株があげられ,より具体的には,変異型DNAポリメラーゼδ発現プラスミドを用いて形質転換された株や,Pol3のアミノ酸配列を改変した出芽酵母の変異株などがあげられる。さらに具体的には,配列番号4で示されるPOL3遺伝子における962番目の塩基がAからCに置換され,968番目の塩基がAからCに置換されたDNAを形質転換することにより得られる出芽酵母の変異株があげられる。このようなDNAポリメラーゼの校正機能を制御した酵母の変異株を,高い乳酸濃度のもとで培養することで,後述する実施例により実証されたとおり,高い乳酸耐性を有する酵母を得ることができる。   Examples of “yeast mutants with controlled DNA polymerase calibration function” include yeast mutants in which the DNA polymerase error-prone frequency is adjusted. Examples of "yeast mutant strains that control the proofreading function of DNA polymerase" include strains into which a gene encoding mutant DNA polymerase δ has been introduced. More specifically, a mutant DNA polymerase δ expression plasmid is used. Examples include transformed strains and mutants of budding yeast in which the amino acid sequence of Pol3 has been modified. More specifically, a budding yeast obtained by transforming a DNA in which the 962nd base in the POL3 gene represented by SEQ ID NO: 4 is substituted from A to C and the 968th base is substituted from A to C Mutants. By culturing such a mutant strain of yeast with a controlled function of DNA polymerase under a high lactic acid concentration, a yeast having high lactic acid resistance can be obtained as demonstrated by the examples described later. .

「乳酸耐性」を有するとは,少なくとも乳酸に対する耐性を有すること,すなわち,所定の乳酸濃度の環境下において,死滅しないことを意味する。具体的な乳酸耐性の評価方法は,後述するとおりである。なお,「所定の乳酸濃度の環境下」における乳酸として,公知の乳酸を適宜用いることができるが,L−乳酸を用いることが好ましい。   Having “lactic acid resistance” means having at least resistance to lactic acid, that is, not dying in an environment of a predetermined lactic acid concentration. A specific method for evaluating lactic acid resistance is as described later. It should be noted that known lactic acid can be used as appropriate as the lactic acid in the “environment of a predetermined lactic acid concentration”, but L-lactic acid is preferably used.

本明細書における「1%(v/v)以上の乳酸濃度」として,1%以上15%以下があげられ,1%以上10%以下でもよく,1%以上7%以下でもよい。なお,乳酸濃度が1%の環境下で株を培養する前に,1%以下の濃度において酵母株を培養し,乳酸環境に慣れさせてもよい。なお,本明細書における乳酸濃度は,特に断らない限り,培地の体積に対するL−乳酸溶液(和光純薬工業社製,乳酸含量85.0−92.0%)の原液当量(体積の比(v/v))を意味する。本発明の好ましい態様は,所定の乳酸濃度下で培養する工程と,生存細胞を単離する工程とを繰り返すものである。このように,所定の乳酸濃度下で培養し,生存細胞を単離する工程を繰り返すことで,乳酸濃度に適応した酵母株を効果的に培養することができる。   In this specification, “1% (v / v) or more lactic acid concentration” is 1% or more and 15% or less, and may be 1% or more and 10% or less, or 1% or more and 7% or less. In addition, before culturing the strain in an environment where the lactic acid concentration is 1%, the yeast strain may be cultured at a concentration of 1% or less to be accustomed to the lactic acid environment. In addition, unless otherwise indicated, the lactic acid concentration in this specification is equivalent to the stock solution equivalent of the L-lactic acid solution (manufactured by Wako Pure Chemical Industries, Ltd., lactic acid content 85.0-92.0%) with respect to the volume of the medium (volume ratio ( v / v)). In a preferred embodiment of the present invention, the step of culturing under a predetermined lactic acid concentration and the step of isolating viable cells are repeated. Thus, by culturing under a predetermined lactic acid concentration and repeating the step of isolating viable cells, a yeast strain adapted to the lactic acid concentration can be effectively cultured.

本発明においては,所定の乳酸濃度の環境の下で酵母を培養する。乳酸濃度以外の培養条件は公知の培養条件を適宜採用できる。1回の培養時間として,1時間から1週間があげられ,6時間以上2日以下でもよく1日でもよい。培養の際の培地も公知のものを適宜用いることができる。本発明においては,培養した細胞を適宜単離する。生存細胞を単離するためには,公知の単離方法を適宜用いればよい。   In the present invention, yeast is cultured in an environment with a predetermined lactic acid concentration. Known culture conditions can be appropriately employed as the culture conditions other than the lactic acid concentration. One culturing time is 1 hour to 1 week, and may be 6 hours or more and 2 days or less, or 1 day. A well-known thing can also be used suitably for the culture medium in the case of culture | cultivation. In the present invention, cultured cells are appropriately isolated. In order to isolate viable cells, a known isolation method may be used as appropriate.

本発明の好ましい態様は,所定の乳酸濃度下で培養し,生存細胞を単離する工程を繰り返し,前記培養及び単離工程を繰り返すにつれ,乳酸濃度を高める工程を含む酵母の製造方法である。すなわち,この本発明の好ましい態様は,目的とする乳酸耐性濃度の環境にいきなりするのではなく,徐々に乳酸濃度を高めて培養することで,高い乳酸濃度環境に慣れさせ,最終的には目的とする乳酸耐性を有する酵母を得るというものである。具体的には,培養ごとに,0.1%以上2%以下ずつ,乳酸濃度をあげて培養するものがあげられ,0.5%以上1.5%以下ずつ乳酸濃度をあげて培養するものであってもよい。培養を繰り返すにあたり,適宜,前回の培養における乳酸濃度と同じ環境で酵母株を培養する工程や,前回の培養における乳酸濃度より低い環境において酵母株を培養する工程が含まれていてもよい。目的とする乳酸耐性濃度を有する乳酸濃度下で酵母変異株を培養し,生存細胞を単離することにより,目的とする乳酸耐性を有する酵母を得てもよい。   A preferred embodiment of the present invention is a method for producing yeast comprising a step of culturing under a predetermined lactic acid concentration and repeating a step of isolating viable cells, and a step of increasing the lactic acid concentration as the culturing and isolation steps are repeated. That is, this preferred embodiment of the present invention does not suddenly lead to an environment with a target lactic acid tolerance concentration, but gradually increases the lactic acid concentration to culture it so that it becomes accustomed to a high lactic acid concentration environment, and finally the object. Yeast having lactic acid resistance is obtained. Specifically, each culture is cultured at a lactic acid concentration of 0.1% or more and 2% or less, and cultivated at a lactic acid concentration of 0.5% or more and 1.5% or less. It may be. When repeating the culture, a step of culturing the yeast strain in the same environment as the lactic acid concentration in the previous culture or a step of culturing the yeast strain in an environment lower than the lactic acid concentration in the previous culture may be included as appropriate. You may obtain the yeast which has the target lactic acid tolerance by culture | cultivating a yeast mutant under the lactic acid concentration which has the target lactic acid tolerance density | concentration, and isolating a living cell.

具体的には,所定の乳酸濃度下で培養した後,生存細胞を単離する工程を繰り返し,前記所定の乳酸濃度が1%以上7%以下であり,前記培養及び単離工程を繰り返すにつれ,乳酸濃度が高くなる,上記いずれかに記載の酵母の製造方法があげられる。   Specifically, after culturing under a predetermined lactic acid concentration, the step of isolating viable cells is repeated, and the predetermined lactic acid concentration is 1% or more and 7% or less, and as the culturing and isolation steps are repeated, The yeast production method according to any one of the above, wherein the lactic acid concentration is increased.

本発明の好ましい態様は,前記のようにして得られた乳酸耐性を有する酵母に,乳酸合成酵素遺伝子を導入する工程を含む,乳酸合成能を有する酵母の製造方法である。遺伝子を導入する方法は,公知の方法を適宜採用すればよい。なお,DNAポリメラーゼの校正機能を制御することにより乳酸耐性を有する突然変異を惹起する性質を有する変異株を用いて所定の乳酸濃度で培養することで乳酸耐性を付与した後に,そのまま乳酸合成酵素遺伝子を導入すると,不要な突然変異が引き続き生じる結果として,導入された乳酸合成遺伝子やその他の遺伝子に,有害変異が生じる可能性がある。そこで,DNAポリメラーゼの校正機能を制御することにより乳酸耐性を有する突然変異を惹起する性質を付与した酵母の変異株について,所定の乳酸濃度で培養することで乳酸耐性を付与した後に,いったんDNAポリメラーゼの校正機能を元に戻す工程を経た後に,酸合成酵素遺伝子を導入するものが好ましい。DNAポリメラーゼの校正機能を元に戻す工程として,染色体上に存在する変異型DNAポリメラーゼδをコードする遺伝子などの,校正機能を有するDNAポリメラーゼをコードする遺伝子を,相同組み換えにより取り除くものがあげられる。また,プラスミド上に存在する変異型DNAポリメラーゼδなどの,校正機能を有するDNAポリメラーゼを,プラスミドを細胞から取り除くことによっても,目的形質の獲得後に,引き続き不要な突然変異が生じるのを止めることができる。   A preferred embodiment of the present invention is a method for producing a yeast having the ability to synthesize lactic acid, comprising the step of introducing a lactic acid synthase gene into the lactic acid resistant yeast obtained as described above. As a method for introducing a gene, a known method may be adopted as appropriate. It should be noted that the lactic acid synthase gene is directly applied after conferring lactic acid resistance by culturing at a predetermined lactic acid concentration using a mutant having the property of inducing a mutation having lactic acid resistance by controlling the calibration function of DNA polymerase. The introduction of can lead to unwanted mutations in the introduced lactic acid synthesis gene and other genes as a result of subsequent unwanted mutations. Therefore, for yeast mutant strains that have been imparted with a property of inducing mutations having lactic acid resistance by controlling the proofreading function of the DNA polymerase, after cultivating at a predetermined lactic acid concentration to give lactic acid resistance, once the DNA polymerase It is preferable to introduce an acid synthase gene after the step of returning the proofreading function. As a step of returning the proofreading function of the DNA polymerase, there is a process in which a gene encoding a DNA polymerase having a proofreading function, such as a gene encoding a mutant DNA polymerase δ existing on a chromosome, is removed by homologous recombination. In addition, removing a plasmid from a cell with a DNA polymerase having a proofreading function, such as a mutant DNA polymerase δ existing on the plasmid, may also prevent subsequent unnecessary mutations from occurring after the target trait has been acquired. it can.

本発明に用いる酵母としては,一般的に酵母とよばれるものであれば特に限定されず,出芽酵母,分裂酵母などを適宜用いることができる。代表的な酵母として,サッカロマイセス科(Saccharomycetaceae),又はシゾサッカロマイセス科(Schizosaccharomycetaceae)に属するものが挙げられ,これらの中でも,更に,サッカロマイセス属(Saccharomyces)に属するものが好適に挙げられる。より具体的な酵母として,真核生物のモデル生物として汎用されており,出芽酵母の一種であるサッカロミセス・セレビシエ(Saccharomyces cerevisiae)が好適に挙げられる。これらの中では,実施例で実証された出芽酵母が好ましいが,本発明は特に出芽酵母に限定されず,酵母全般に広く適用できる。   The yeast used in the present invention is not particularly limited as long as it is generally called yeast, and budding yeast, fission yeast, and the like can be appropriately used. Representative yeasts include those belonging to the family Saccharomycesaceae or Schizosaccharomycesaceae, and among these, those belonging to the genus Saccharomyces are preferred. As a more specific yeast, Saccharomyces cerevisiae (Saccharomyces cerevisiae) which is widely used as a eukaryotic model organism and is a kind of budding yeast is preferable. Among these, the budding yeast demonstrated in the examples is preferable, but the present invention is not particularly limited to the budding yeast and can be widely applied to all yeasts.

本発明に用いる酵母としては,乳酸合成能を有する酵母が好ましい。すなわち,本発明の好ましい態様は,乳酸合成酵素遺伝子が導入されるとともに,DNAポリメラーゼの校正機能を制御した酵母の変異株を用い,乳酸濃度下で培養する工程と,生存細胞を単離する工程とを適宜繰り返し行うものである。このような変異株を用いることで,乳酸耐性を有する酵母を作出した後に,乳酸合成酵素遺伝子を導入する必要がなくなる。乳酸合成能を有する酵母としては,特に制限はなく,目的に応じて適宜選択することができるが,乳酸合成酵素遺伝子を有する酵母が好ましく,具体的には,例えば,乳酸合成酵素遺伝子を導入することにより,乳酸合成能を獲得した酵母が特に好ましい。このような乳酸合成酵素としては,例えば,乳酸脱水素酵素が挙げられる。前記乳酸合成能を有する酵母としては,サッカロマイセス属(Saccharomyces)に属する酵母などが好適に用いられ,これらの中でも,サッカロマイセス セレビシエ(Saccharomyces cerevisiae)などがより好適に用いられる。   As the yeast used in the present invention, yeast having lactic acid synthesis ability is preferable. That is, a preferred embodiment of the present invention includes a step of culturing under a lactic acid concentration using a mutant strain of yeast into which a lactic acid synthase gene is introduced and a DNA polymerase proofreading function is controlled, and a step of isolating viable cells. Are repeated as appropriate. By using such a mutant strain, it is not necessary to introduce a lactate synthase gene after producing a yeast having lactate tolerance. The yeast having the ability to synthesize lactic acid is not particularly limited and may be appropriately selected depending on the intended purpose. However, a yeast having a lactic acid synthase gene is preferable. Specifically, for example, a lactic acid synthase gene is introduced. Therefore, yeast that has acquired the ability to synthesize lactic acid is particularly preferred. Examples of such lactic acid synthase include lactate dehydrogenase. As the yeast having the ability to synthesize lactic acid, yeast belonging to the genus Saccharomyces is preferably used, and among these, Saccharomyces cerevisiae is more preferably used.

遺伝子を導入することにより乳酸合成能を持たせる場合,導入する乳酸合成酵素をコードする遺伝子は,酵母において生産され得る乳酸合成酵素をコードするDNAであれば特に制限はなく,目的に応じて適宜選択することができるが,酵素活性が強化された乳酸合成酵素をコードするDNAが好ましい。前記酵素活性が強化された乳酸合成酵素をコードするDNAとしては,例えば,部位特異的変異導入法を用いた変異手法によって得られる酵素活性が強い乳酸合成酵素をコードするDNAや,強力なプロモーターの支配下に乳酸合成酵素をコードするDNAを連結したDNAなどが挙げられる。   In the case of imparting lactic acid synthesizing ability by introducing a gene, the gene encoding the lactic acid synthase to be introduced is not particularly limited as long as it is DNA encoding lactic acid synthase that can be produced in yeast. Although it can be selected, DNA encoding lactic acid synthase with enhanced enzyme activity is preferred. Examples of DNA encoding lactic acid synthase with enhanced enzyme activity include DNA encoding lactic acid synthase with strong enzyme activity obtained by a mutation technique using site-directed mutagenesis, and a strong promoter. Examples include DNA linked with DNA encoding lactic acid synthase under control.

前記乳酸合成酵素遺伝子を有する酵母は,乳酸合成酵素(乳酸脱水素酵素,Lactate dehydrogenase)をコードする遺伝子を遺伝子組み換え等の手法を用いて導入することにより製造することができる。一方,酵母が既に目的とする乳酸合成酵素をコードする遺伝子を有している場合は,必ずしも該遺伝子を導入する必要はない。前記乳酸合成酵素としては,具体的には,例えば,ボス・トウラス(Bos taurus)由来のL−乳酸合成酵素遺伝子(L−ldh−b)にコードされるタンパク質からなる酵素が挙げられる。図13は,前記遺伝子組み換えのため,本発明で用いられるプラスミドpLDH−bの構築図である。   The yeast having the lactic acid synthase gene can be produced by introducing a gene encoding lactic acid synthase (lactate dehydrogenase) using a technique such as genetic recombination. On the other hand, when the yeast already has a gene encoding the target lactic acid synthase, it is not always necessary to introduce the gene. Specific examples of the lactic acid synthase include an enzyme consisting of a protein encoded by an L-lactic acid synthase gene (L-ldh-b) derived from Bos taurus. FIG. 13 is a construction diagram of plasmid pLDH-b used in the present invention for the gene recombination.

本発明によれば,例えば,前述のようにDNAポリメラーゼの校正機能を制御して突然変異を導入することで,野生株には見られない,又は野生株では乏しかった優れた乳酸耐性を発揮させることができる。そして,乳酸耐性を有するのみならず,酵母に乳酸合成能を有する遺伝子を導入することで,酵母を用いて乳酸を合成させることができる。   According to the present invention, for example, by introducing a mutation by controlling the proofreading function of DNA polymerase as described above, it exhibits excellent lactic acid resistance not found in wild strains or poor in wild strains. be able to. In addition, lactic acid can be synthesized using yeast by introducing a gene having not only lactic acid resistance but also lactic acid synthesis ability into yeast.

酵母の有用な変異体を作製するためには,変異誘発を行うことが最も一般的である。変異とは,通常,遺伝子をコードする塩基配列の変化をいい,DNA配列の変化が含まれる。変異は,それが発生した個体に与える影響により大きく次の三種類に分類される。
(1)中立変異(neutral mutation):ほとんどの変異が,この中立変異に該当し,中立変異は生物の成育および代謝にほとんど影響がない。
(2)有害変異(deleterious mutation):この変異は,中立変異より頻度は少なく,生物の成長または代謝を阻害する。有害変異には生育に必須な遺伝子を破壊するような致死変異(lethal mutation)も含まれる。
(3)有益変異(benefitial mutation):この変異は,生物の育種に有益な変異を意味するが,その発生頻度は中立変異と比較して極めて低い。また,有益変異の育種効果は,単一の変異だけで現れることは稀であり,複数の有益変異の蓄積が必要である。したがって,有益変異が導入された生物個体を得るためには,より大きな変異集団と,選抜に伴う長い時間が必要となる。
Mutagenesis is most commonly used to produce useful mutants of yeast. The mutation usually means a change in the base sequence encoding the gene, and includes a change in the DNA sequence. Mutations are broadly classified into the following three types according to the effects on the individuals in which they occur.
(1) Neutral mutation: Most mutations fall under this neutral mutation, and the neutral mutation has little effect on the growth and metabolism of the organism.
(2) Deleterious mutation: This mutation is less frequent than a neutral mutation and inhibits the growth or metabolism of an organism. The harmful mutation includes a lethal mutation that destroys a gene essential for growth.
(3) Beneficial mutation: This mutation means a mutation that is beneficial to the breeding of an organism, but its frequency of occurrence is extremely low compared to a neutral mutation. The breeding effect of beneficial mutations rarely appears with a single mutation, and accumulation of multiple beneficial mutations is necessary. Therefore, in order to obtain an individual organism into which a beneficial mutation has been introduced, a larger mutant population and a longer time for selection are required.

変異を生じさせるため,例えば,3’→5’エキソヌクレアーゼ活性が破壊されるような変異を,DNAポリメラーゼをコードする遺伝子(DNAポリメラーゼ遺伝子)に導入することにより,校正機能が野生型より低下した,DNAポリメラーゼをコードするヌクレオチドおよびポリペプチドを産生することができる。
校正機能とは,細胞が受けたDNA損傷または誤りを検知し,補修する生体機能をいう。具体的な補修として,脱プリン,脱ピリミジンがある場合はそのまま塩基が挿入されること,あるいはA−Pエンドヌクレアーゼ(apurinic−apyrimidinic endonuclease)で一本鎖切断が入れられた後,5’→3’エンドヌクレアーゼで除去されることがあげられる。なお,除去部分はDNAポリメラーゼにより合成補充され,切断部分はDNAリガーゼにより連結される。このような反応を除去修復という。
そのような校正機能を有するDNAポリメラーゼとしては,例えば真核生物におけるDNAポリメラーゼδ(デルタ),DNAポリメラーゼε(イプシロン)などがあげられる。これらの中でも,DNAポリメラーゼδがより好適に挙げられ,その校正機能の調節は,校正機能に関連するアミノ酸配列を改変することによって達成できる。
In order to generate a mutation, for example, by introducing a mutation that destroys the 3 ′ → 5 ′ exonuclease activity into a gene encoding DNA polymerase (DNA polymerase gene), the proofreading function is lower than the wild type. , Nucleotides and polypeptides encoding DNA polymerases can be produced.
The calibration function refers to a biological function that detects and repairs DNA damage or errors received by cells. As a specific repair, if there is depurination or depyrimidine, a base is inserted as it is, or a single-strand break is inserted with an AP endonuclease (apuric-apirimidinic endonuclease), and then 5 ′ → 3 'It can be removed by endonuclease. The removed portion is synthetically supplemented with DNA polymerase, and the cleaved portion is ligated with DNA ligase. Such a reaction is called removal repair.
Examples of the DNA polymerase having such a proofreading function include DNA polymerase δ (delta) and DNA polymerase ε (epsilon) in eukaryotes. Among these, DNA polymerase δ is more preferable, and the adjustment of the proofreading function can be achieved by modifying the amino acid sequence related to the proofreading function.

本発明により得られる乳酸耐性を有する酵母は,少なくとも1%以上の乳酸濃度に対する乳酸耐性を有し,好ましくは,少なくとも3%,より好ましくは少なくとも4%以上,更に好ましくは,少なくとも5%以上,より更に好ましくは,少なくとも7%以上,特に好ましくは,少なくとも10%以上の乳酸濃度に対する耐性を有する酵母である。なお,乳酸の生産などに好適な乳酸耐性を付与し,かつ乳酸耐性を有する酵母の作製の工程数やコストなどとの均衡を図る観点から,4%〜7%の乳酸濃度に対する耐性を有する酵母が,最も好ましい。   The lactic acid resistant yeast obtained by the present invention has a lactic acid resistance to a lactic acid concentration of at least 1%, preferably at least 3%, more preferably at least 4%, more preferably at least 5%, Even more preferably, the yeast is resistant to lactic acid concentrations of at least 7% or more, particularly preferably at least 10% or more. Yeast having tolerance to lactic acid concentration of 4% to 7% from the viewpoint of imparting lactic acid tolerance suitable for production of lactic acid and balancing with the number of steps and cost of production of yeast having lactic acid tolerance Is most preferred.

本発明において,乳酸耐性を,例えば以下のようにして決定する。すなわち,乳酸耐性度を評価したい酵母株を,乳酸を含まない培地で一晩培養する。次に,各種濃度の乳酸を含む培地を調製し,各培地に,前記一晩培養した該培養液を,1%添加し,一晩培養する。一晩培養後,例えば,吸光度法,寒天プレート法,トリパンブルー染色による生存率測定などにより菌濃度を測定する。中性付近の培地を用いた場合と同等の増殖性が認められた乳酸濃度の数値を,その濃度の乳酸耐性を持つと評価する。   In the present invention, lactic acid resistance is determined, for example, as follows. That is, a yeast strain whose lactic acid tolerance is to be evaluated is cultured overnight in a medium not containing lactic acid. Next, media containing various concentrations of lactic acid are prepared, and 1% of the overnight culture is added to each media and cultured overnight. After overnight culture, the bacterial concentration is measured by, for example, absorbance measurement, agar plate method, viability measurement by trypan blue staining, and the like. Evaluate that the lactate concentration is the same as that in the case of using a medium in the vicinity of neutral, and that it has tolerance to lactic acid at that concentration.

本明細書において「エラープローン頻度」とは,エラープローンの性質のレベルをいう。エラープローン頻度は,たとえば,遺伝子配列における変異の絶対数(変異の数そのもの)または相対数(全長における変異の数の比率)で表現できる。あるいは,ある生物または酵素について言及するとき,エラープローン頻度は,ある生物の生殖または分裂1回あたりの遺伝子配列における変異の絶対数または相対数で表現してもよい。特に言及しない場合,エラープローン頻度は,遺伝子配列における複製過程1回あたりの誤差の数で表される。エラープローン頻度は,逆の尺度として本明細書において「精度」ということがある。エラープローン頻度が均一であるとは,複数の遺伝子の複製を担う因子(ポリメラーゼなど)に言及するとき,互いのエラープローン頻度が実質的に等しいことをいう。他方,エラープローン頻度が不均一であるとは,有意な差異が複数の遺伝子の複製を担う因子(ポリメラーゼなど)に存在する場合をいう。   As used herein, “error-prone frequency” refers to the level of error-prone nature. The error prone frequency can be expressed by, for example, the absolute number of mutations in the gene sequence (the number of mutations themselves) or the relative number (ratio of the number of mutations in the full length). Alternatively, when referring to an organism or enzyme, the error-prone frequency may be expressed as the absolute or relative number of mutations in the gene sequence per reproduction or division of an organism. Unless otherwise stated, error-prone frequency is expressed as the number of errors per replication process in a gene sequence. Error-prone frequency is sometimes referred to herein as “accuracy” as an inverse measure. The error-prone frequency is uniform when referring to factors responsible for the replication of multiple genes (such as polymerases), the error-prone frequencies are substantially equal to each other. On the other hand, when the error-prone frequency is non-uniform, it means that a significant difference exists in a factor (polymerase or the like) responsible for the replication of multiple genes.

本明細書において「エラープローン頻度の調節」とは,エラープローン頻度を変化させることをいう。そのようなエラープローン頻度の調節には,エラープローン頻度の上昇および低減が含まれるが,好ましくはエラープローン頻度を上昇するものである。エラープローン頻度を調節するための手法として,たとえば,校正機能を有するDNAポリメラーゼの改変,複製中に重合反応または伸長反応を阻害または抑制するような因子の挿入,これらの反応を促進するような因子の阻害,抑制,単数または複数の塩基の欠損,DNA修復酵素の欠損,異常塩基の除去修復因子機能を有する酵素の改変,ミスマッチ塩基対修復因子の改変,複製自体の精度の低減などがあげられるがそれらに限定されない。エラープローン頻度の調節は,DNAの二本鎖の両方に対して行われてもよいし,片方のみに対して行われてもよい。好ましくは,DNAの二本鎖のうち片方のみに対して行われるものは,有害な変異誘発が低減されるため好ましい。   In this specification, “adjustment of error-prone frequency” means changing the error-prone frequency. Such adjustment of error-prone frequency includes increasing and decreasing error-prone frequency, but preferably increasing error-prone frequency. Methods for adjusting the error-prone frequency include, for example, modification of a DNA polymerase having a proofreading function, insertion of a factor that inhibits or suppresses a polymerization reaction or extension reaction during replication, and a factor that promotes these reactions Inhibition, suppression, deletion of single or multiple bases, deletion of DNA repair enzymes, removal of abnormal bases modification of enzymes with repair factor function, modification of mismatched base pair repair factors, reduction of the accuracy of replication itself, etc. Is not limited to them. The error-prone frequency may be adjusted for both DNA double strands or only one of them. Preferably, only one of the DNA duplexes is performed because harmful mutagenesis is reduced.

本明細書において「エラープローン」とは,遺伝子(DNAなど)の複製における誤り易い(すなわち,複製誤りの)性質をいう。エラープローンは,主に,校正機能を有する酵素(たとえば,DNAポリメラーゼなど)の校正機能の精度によって影響を受ける。本明細書において「複製誤り」とは,遺伝子(DNAなど)の複製の過程で生じるヌクレオチド取り込みの誤りをいう。複製誤りは,通常,生体では,その頻度は108〜1012回に1回程度で極めて低い。複製誤りの頻度が低い理由としては,ヌクレオチドの取り込みが鋳型DNAの取り込まれるヌクレオチドとが相補的な塩基対を形成することによって複製が起こること,DNAポリメラーゼなどの酵素の校正機能すなわち3’→5’エキソヌクレアーゼが,鋳型に相補性を示さないヌクレオチドが誤って取り込まれたときそれを察知し直ちに切り出す機能が存在することなどがあげられる。したがって,本発明において複製におけるエラープローン頻度の調節は,特異的塩基対形成の障害,校正機能の障害などによって行うことができる。 In this specification, “error prone” refers to a property that is likely to be erroneous in replication of a gene (DNA, etc.) (that is, replication error). Error prone is mainly affected by the accuracy of the calibration function of an enzyme having a calibration function (for example, a DNA polymerase). As used herein, “replication error” refers to an error in nucleotide incorporation that occurs during the process of gene (DNA, etc.) replication. The frequency of replication errors is usually very low in living organisms, about once every 10 8 to 10 12 times. The reason for the low frequency of replication errors is that nucleotide incorporation causes replication by forming a complementary base pair with the nucleotide into which the template DNA is incorporated, and the proofreading function of an enzyme such as DNA polymerase, ie 3 ′ → 5 'Exonuclease has a function to detect when a nucleotide that does not complement the template is mistakenly incorporated, and to cut it out immediately. Therefore, in the present invention, the error prone frequency in replication can be adjusted by the failure of specific base pairing or the failure of the calibration function.

本明細書において「エラーフリー」とは,遺伝子(DNAなど)の複製において誤りがほとんどない,好ましくは実質的に全くない性質をいう。エラーフリーは,主に,校正機能を有する酵素の校正機能の精度によって影響を受ける。本明細書においてエラープローンとエラーフリーとは,絶対的に(すなわち,エラープローン頻度のレベルなどで決定する)分類することができ,あるいは相対的(2種以上の遺伝子の複製を担う因子(たとえば,DNAポリメラーゼなど)におけるエラープローン頻度について多いほうをエラープローンとし,少ないほうをエラーフリーとする)に分類することができる。   In the present specification, “error-free” refers to a property in which there is almost no error in replication of a gene (DNA or the like), preferably substantially no error. Error free is mainly affected by the accuracy of the calibration function of an enzyme having a calibration function. As used herein, error-prone and error-free can be classified absolutely (ie, determined by the level of error-prone frequency, etc.) or relative (factors responsible for the replication of two or more genes (eg, , DNA polymerase, etc.) can be classified into error prone with a higher error prone frequency and error free with a lower error prone frequency.

なお,本明細書において“DNAポリメラーゼ”または“Pol”とは,4種類のデオキシリボヌクレオシド5’−三リン酸からピロリン酸を遊離してDNAを重合する働きを有する酵素をいう。DNAポリメラーゼ反応には,鋳型となるDNA,プライマー分子,Mg2+などが必要とされる。プライマーの3’−OH末端に鋳型に相補的なヌクレオチドを順次付加し分子鎖を伸長する。 In this specification, “DNA polymerase” or “Pol” refers to an enzyme having a function of polymerizing DNA by releasing pyrophosphate from four types of deoxyribonucleoside 5′-triphosphates. The DNA polymerase reaction requires a template DNA, primer molecules, Mg 2+ and the like. A nucleotide complementary to the template is sequentially added to the 3′-OH end of the primer to extend the molecular chain.

本発明において,DNAポリメラーゼの校正機能を制御するためには,公知の方法に従って,DNAポリメラーゼ遺伝子に何らかの変異を導入すればよい。遺伝子変異の導入方法は,たとえば,酵母のDNAポリメラーゼ遺伝子の塩基配列は公知であるから,それらの塩基配列を,例えば1個〜100個,好ましくは1個〜10個,より好ましくは1個〜3個他の塩基で置換し,形質転換すればよい。例えば,DNA複製時にラギング鎖の複製に関与するとされるポリメラーゼ3(Pol3)の校正機能を消失させた変異タンパク質を目的の酵母細胞内で発現させることで,DNAポリメラーゼの校正機能を制御できる。すなわち,校正機能を消失させた変異型Pol3を目的の酵母細胞内で発現させるための方法として,人為的に変異型pol3遺伝子を得て,対象となる酵母に形質転換することにより,変異遺伝子を発現させ,機能させるものがあげられる。すなわち,校正機能を消失させた変異型Pol3の作成方法として,予めクローニングした野生型のPOL3遺伝子を鋳型にして,その校正機能活性部位のアミノ酸配列を一部人工的に置換し,校正機能を制御すればよい。また,pol3変異株と同様の形質を持ち,既に天然の変異体として同定されている株より,当該遺伝子をクローニングして用いる方法を用いてもよい。DNAポリメラーゼ遺伝子には,DNAポリメラーゼの構造遺伝子のみならず,DNAポリメラーゼのプロモーターなどの転写および/または翻訳の調節配列の両方を包含してもよい。   In the present invention, in order to control the proofreading function of DNA polymerase, any mutation may be introduced into the DNA polymerase gene according to a known method. For example, since the nucleotide sequence of a yeast DNA polymerase gene is known, the method for introducing a gene mutation is, for example, 1 to 100, preferably 1 to 10, more preferably 1 to Substitution with three other bases is sufficient. For example, the proofreading function of DNA polymerase can be controlled by expressing a mutant protein in which the proofreading function of polymerase 3 (Pol3), which is considered to be involved in lagging strand replication during DNA replication, is lost in the target yeast cell. That is, as a method for expressing mutant Pol3 in which the proofreading function has been lost in the target yeast cell, the mutant pol3 gene is artificially obtained and transformed into the target yeast. Those that can be expressed and function are included. That is, as a method for creating a mutant Pol3 that has lost its proofreading function, a part of the amino acid sequence of the proofreading function active site is artificially replaced using the previously cloned wild-type POL3 gene as a template to control the proofreading function. do it. Alternatively, a method may be used in which the gene is cloned from a strain having the same trait as the pol3 mutant and already identified as a natural mutant. The DNA polymerase gene may include not only a DNA polymerase structural gene but also both transcriptional and / or translational regulatory sequences such as a DNA polymerase promoter.

本明細書において校正機能が「野生型のものよりも低い」とは,ある校正機能を有する酵素などについて言及するとき,その酵素の野生型よりも校正機能が低いこと(すなわち,その酵素での校正処理の後に残留する変異の数が野生型による校正処理の後に残留する変異の数よりも多いこと)をいう。そのような野生型との比較は,相対的または絶対的な表示によって行うことができる。そのような比較はまた,エラープローン頻度などによって行うことができる。   In this specification, when the proofreading function is “lower than that of the wild type”, when referring to an enzyme or the like having a certain proofreading function, the proofreading function of the enzyme is lower than that of the wild type (that is, The number of mutations remaining after the calibration process is larger than the number of mutations remaining after the wild type calibration process). Such comparison with the wild type can be done by relative or absolute labeling. Such a comparison can also be made, such as by error-prone frequency.

本明細書において「変異」とは,遺伝子について言及するとき,その遺伝子の配列の変化を生じることまたはその変化によって生じた遺伝子の(核酸またはアミノ酸)配列の状態をいう。本明細書では,たとえば,変異は,校正機能について生じる遺伝子配列の変化について用いられる。本明細書では,特に言及しない場合は,変異は,改変と同義で用いられる。   As used herein, “mutation” refers to a state of a gene (nucleic acid or amino acid) sequence that causes a change in the sequence of the gene or a gene caused by the change. As used herein, for example, mutation is used for gene sequence changes that occur with respect to the proofreading function. In this specification, unless otherwise stated, mutation is used synonymously with modification.

本発明の第二の側面に係る乳酸合成能を有する酵母は,上記酵母の製造方法により製造された,少なくとも1%以上の乳酸濃度に対する乳酸耐性を有するとともに,乳酸合成能を有する酵母である。乳酸合成能を有する酵母については,上記酵母の製造方法で述べた通りの方法により得ることができる。 本発明の乳酸耐性を有する酵母は,後述の本発明の乳酸の製造方法に,好適に用いることができ,特に乳酸合成能を有する酵母を用いることで高濃度の乳酸を効率的に生産することができる。   The yeast having the ability to synthesize lactic acid according to the second aspect of the present invention is a yeast having the ability to synthesize lactic acid and having the ability to synthesize lactic acid with respect to a lactic acid concentration of at least 1%, which is produced by the above yeast production method. Yeast having the ability to synthesize lactic acid can be obtained by the method described in the above yeast production method. The yeast having lactic acid resistance of the present invention can be suitably used in the method for producing lactic acid of the present invention, which will be described later, and in particular, efficiently producing a high concentration of lactic acid by using a yeast having the ability to synthesize lactic acid. Can do.

−乳酸の製造方法− 本発明の第三の側面は,上記の酵母の製造方法により得られた酵母を糖質存在下で培養し,乳酸を生成させ,培養物から前記乳酸を採取する,乳酸の製造方法に関する。 前記乳酸を生成させるために,乳酸合成能を有する酵母を用いることが好ましい。この乳酸合成能を有する酵母としては,乳酸合成酵素遺伝子を有する酵母が好ましく,乳酸合成酵素遺伝子を導入された酵母がより好ましい。これら乳酸合成能を有する酵母や乳酸合成酵素遺伝子の導入方法などの詳細は,上記の酵母の製造方法で述べた通りである。 —Method for Producing Lactic Acid— The third aspect of the present invention is a method for cultivating yeast obtained by the above-described method for producing yeast in the presence of carbohydrates, producing lactic acid, and collecting the lactic acid from the culture. It relates to the manufacturing method. In order to produce the lactic acid, it is preferable to use a yeast having the ability to synthesize lactic acid. As the yeast having the ability to synthesize lactic acid, yeast having a lactic acid synthase gene is preferable, and yeast into which a lactic acid synthase gene has been introduced is more preferable. The details of the yeast having the ability to synthesize lactic acid and the method for introducing a lactic acid synthase gene are as described in the above-mentioned yeast production method.

本発明の乳酸の製造方法で用いる酵母の培養は,以下に記載した通常の方法に従って行うことができる。
本発明の乳酸の製造方法で用いる酵母を培養する培地としては,該酵母が資化し得る炭素源,窒素源,及び無機塩類等を含有し,該酵母の培養を効率的に行うことができる培地であれば,特に制限はなく,目的に応じて適宜選択することができ,天然培地及び合成培地のいずれを用いても良い。
前記炭素源としては,該酵母株が資化し得るものであれば,特に制限はなく,目的に応じて適宜選択することができるが,グルコース,フルクトース,シュークロース,これらを含有する糖蜜,デンプン,及びデンプン加水分解物などの炭水化物を用いることができる。
前記窒素源としては,特に制限はなく,目的に応じて適宜選択することができるが,アンモニア,塩化アンモニウム,硫酸アンモニウム,酢酸アンモニウム等の無機酸又は有機酸のアンモニウム塩,ペプトン,肉エキス,酵母エキス,コーンスティーブリカー,カゼイン加水分解物,大豆粕,大豆粕加水分解物,及び各種醗酵菌体消化物,などを用いることができる。
前記無機塩としては,特に制限はなく,目的に応じて適宜選択することができるが,リン酸マグネシウム,硫酸マグネシウム,塩化ナトリウム,リン酸第一カリウム,リン酸第二カリウム,硫酸第一鉄,硫酸マンガン,硫酸銅および炭酸カルシウム,などを用いることができる。
Culture of yeast used in the method for producing lactic acid according to the present invention can be carried out according to the usual method described below.
A medium for culturing yeast used in the method for producing lactic acid of the present invention contains a carbon source, a nitrogen source, inorganic salts, and the like that can be assimilated by the yeast, and can efficiently culture the yeast. If it is, there is no restriction | limiting in particular, According to the objective, it can select suitably, Either a natural culture medium and a synthetic culture medium may be used.
The carbon source is not particularly limited as long as the yeast strain can be assimilated, and can be appropriately selected according to the purpose. However, glucose, fructose, sucrose, molasses containing these, starch, And carbohydrates such as starch hydrolysates can be used.
The nitrogen source is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ammonia, ammonium salts of inorganic acids or organic acids such as ammonium chloride, ammonium sulfate, and ammonium acetate, peptone, meat extract, and yeast extract. , Corn steep liquor, casein hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermentation cell digests, and the like.
The inorganic salt is not particularly limited and may be appropriately selected depending on the intended purpose. However, magnesium phosphate, magnesium sulfate, sodium chloride, monopotassium phosphate, dipotassium phosphate, ferrous sulfate, Manganese sulfate, copper sulfate, calcium carbonate, and the like can be used.

前記炭素源は,培養開始時に一括して添加してもよいし,培養中分割して,又は連続的に添加することもでき,50g/L〜150g/Lの濃度で用いるのが好ましい。
本発明における前記培養は,振とう培養もしくは撹拌培養などで行うのが好ましく,好気的条件下,微好気条件下又は嫌気的条件下で行うことができる。培養温度としては,25〜35℃が好ましく,培養時間としては,通常24時間〜5日間が好ましい。また,必要に応じてpHの調整を行ってもよく,その調製は,アルカリ溶液,アンモニアおよび炭酸カルシウムなどを用いて行うこともできる。
The carbon source may be added all at once at the start of the culture, may be divided during the culture, or may be added continuously, and is preferably used at a concentration of 50 g / L to 150 g / L.
The culture in the present invention is preferably performed by shaking culture, stirring culture, or the like, and can be performed under aerobic conditions, microaerobic conditions, or anaerobic conditions. The culture temperature is preferably 25 to 35 ° C., and the culture time is usually preferably 24 hours to 5 days. Moreover, pH may be adjusted as necessary, and the preparation can also be performed using an alkaline solution, ammonia, calcium carbonate, or the like.

前記培養液中の乳酸濃度は,高速液体クロマトグラフィー(HPLC)を用いる方法で定量することができ,例えば,培養液を遠心分離して培養液上清を調製し,該培養液上清を分析サンプルとして有機酸分析用陰イオン交換カラムを用い,電気伝導度を測定することにより,培養液中の,例えば,乳酸や酢酸等の有機酸濃度を定量することができる。   The concentration of lactic acid in the culture broth can be quantified by a method using high performance liquid chromatography (HPLC). For example, the culture broth is centrifuged to prepare a culture supernatant, and the culture supernatant is analyzed. By using an anion exchange column for organic acid analysis as a sample and measuring the electrical conductivity, the concentration of organic acid such as lactic acid or acetic acid in the culture solution can be quantified.

前記培養液中で生成された乳酸の採取方法としては,培養終了後,培養物から菌体などの沈殿物を除去し,イオン交換処理法,濃縮法および塩析法などを併用することにより,培養物から目的とする乳酸を単離し,精製することができる。例えば,特開2001−204464号公報,特開平9−135698号公報などに開示されているような電気透析法や,蒸留法により精製することが可能であるが,これらに限定されるものではない。また,必要に応じて,当該粗抽出画分及びその精製物に対してエステル化等を行うことにより,各種の乳酸誘導体を得ることができる。
乳酸耐性を有する酵母を用いた,本発明の乳酸の製造方法で得られた乳酸は,ポリマー原料などの工業用途,食品添加物,化粧品材料,医薬品原料などに好適に用いられる。
The method for collecting lactic acid produced in the culture solution is to remove precipitates such as bacterial cells from the culture after completion of the culture, and combine the ion exchange treatment method, concentration method, salting-out method, etc. The target lactic acid can be isolated and purified from the culture. For example, it can be purified by an electrodialysis method or a distillation method as disclosed in JP 2001-204464 A, JP 9-135698 A, and the like, but is not limited thereto. . Moreover, various lactic acid derivatives can be obtained by performing esterification etc. with respect to the said crude extraction fraction and its refined | purified material as needed.
Lactic acid obtained by the lactic acid production method of the present invention using lactic acid resistant yeast is suitably used for industrial applications such as polymer raw materials, food additives, cosmetic materials, pharmaceutical raw materials and the like.

寄託株の説明 後述する実施例で用いられるBYD5(変異型pol3遺伝子発現株)は,平成17年8月19日から独立行政法人製品評価技術基盤機構特許微生物寄託センター(〒292−0818 千葉県木更津市かずさ鎌足2−5−8)に,受領番号NITE P−131として寄託されている。 後述する実施例で用いられるAMY52−3D(野生型pol3遺伝子発現株)は,平成17年8月19日から独立行政法人製品評価技術基盤機構特許微生物寄託センターに,受領番号NITE P−129として寄託されている。
後述する実施例で得られたBYD5−LA7(乳酸耐性株)は,平成17年7月29日から独立行政法人製品評価技術基盤機構特許微生物寄託センターに,受領番号NITE P−122として寄託されている。
Description of Deposited strain BYD5 (mutant pol3 gene expression strain) used in the examples described later is a patent microorganism deposit center of the National Institute of Technology and Evaluation, Japan from August 19, 2005 (Kisarazu, Chiba Prefecture 292-0818) It is deposited with the receipt number NITE P-131 in Kazusa City Kamashita 2-5-8). AMY52-3D (wild-type pol3 gene expression strain) used in the examples described later has been deposited as a receipt number NITE P-129 from August 19, 2005 to the National Institute of Technology and Evaluation of the National Institute of Technology and Evaluation. Has been.
BYD5-LA7 (lactic acid resistant strain) obtained in the examples described later has been deposited as an accession number NITE P-122 at the National Institute of Technology and Evaluation for Microorganisms on July 29, 2005. Yes.

後述する実施例で得られたTBSCR8(乳酸耐性株)は,平成19年2月22日から独立行政法人製品評価技術基盤機構特許微生物寄託センターに受託番号「NITE AP−319」として寄託されている。
後述する実施例で得られたHRSC207(乳酸耐性株)は,平成19年2月22日から独立行政法人製品評価技術基盤機構特許微生物寄託センターに受託番号「NITE AP−320」として寄託されている。
後述する実施例で得られたHRSC208(乳酸耐性株)は,平成19年2月22日から独立行政法人製品評価技術基盤機構特許微生物寄託センターに受託番号「NITE AP−321」として寄託されている。
TBSCR8 (lactic acid resistant strain) obtained in the examples described later has been deposited as an accession number “NITE AP-319” with the Patent Microorganism Deposit Center, National Institute of Technology and Evaluation, February 22, 2007. .
HRSC 207 (lactic acid resistant strain) obtained in the examples described later has been deposited as an accession number “NITE AP-320” with the Patent Microorganism Deposit Center, National Institute of Technology and Evaluation, February 22, 2007. .
HRSC 208 (lactic acid resistant strain) obtained in the examples described later has been deposited as an accession number “NITE AP-321” with the Patent Microorganism Deposit Center, National Institute of Technology and Evaluation, February 22, 2007. .

次に実施例を挙げて本発明を詳細に説明するが,本発明はこれらに限定されるものではない。すなわち,本発明は,本明細書において開示された事項及び下記実施例において実証された事項から,当業者にとって自明な範囲で適宜修正を加えたものをも含む。なお,下記実施例において用いられる試薬類は,明細書注に特に記載したものを除き,Sigma(St.Louis,USA),和光純薬工業(大阪,日本)などで市販されているものを用いた。   EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these. That is, the present invention includes those appropriately modified within the scope obvious to those skilled in the art from the matters disclosed in the present specification and the matters proved in the following examples. The reagents used in the following examples are those commercially available from Sigma (St. Louis, USA), Wako Pure Chemical Industries (Osaka, Japan), etc., except those specifically described in the specification notes. It was.

参考例1 乳酸添加による培地pHの変化と細胞増殖への影響の検討
−酵母株− 酵母株として,変異型pol3遺伝子発現株(BYD5,以下,pol3変異株と称する)と,野生型pol3遺伝子発現株(AMY52−3D,以下,野生株と称する)を用いた。前記BYD5の遺伝子型は,(pol3−01/pol3−01,MATa/MATα,lys1−1/lys1−1)であり,前記AMY52−3Dの遺伝子型は,(MATα,ura3−52,leu2−1,lys1−1,ade2−1,his1−7,hom3−10,trp1−289,canR)である。
Reference Example 1 Examination of changes in medium pH and cell growth caused by addition of lactic acid-Yeast strain-As a yeast strain, mutant pol3 gene expression strain (BYD5, hereinafter referred to as pol3 mutant strain) and wild-type pol3 gene expression A strain (AMY52-3D, hereinafter referred to as a wild strain) was used. The BYD5 genotype is (pol3-01 / pol3-01, MATa / MATα, lys1-1 / lys1-1), and the AMY52-3D genotype is (MATα, ura3-52, leu2-1). Lys1-1, ade2-1, his1-7, hom3-10, trp1-289, canR).

−培地及び試薬− 液体培地として,YPD medium(BD Biosciences Clontech社製)を用い,寒天培地として,YPD agar medium(BD Biosciences Clontech社製)を用いた。これらは,いずれもBD Biosciences Clontechから購入した。前記液体培地及び寒天培地を,オートクレーブにより,120℃で15分間,滅菌した。 乳酸として,L−乳酸(和光純薬工業社製)を用いた。   -Medium and Reagents-YPD medium (manufactured by BD Biosciences Clontech) was used as the liquid medium, and YPD agar medium (manufactured by BD Biosciences Clontech) was used as the agar medium. These were all purchased from BD Biosciences Clontech. The liquid medium and agar medium were sterilized at 120 ° C. for 15 minutes by an autoclave. L-lactic acid (Wako Pure Chemical Industries, Ltd.) was used as lactic acid.

−実験方法− (1)乳酸添加による培地pHの測定実験 前記液体培地に乳酸を添加し,乳酸濃度が1%刻みで,1%〜20%となるよう調製し,乳酸を添加していない液体培地と,それぞれの乳酸濃度の液体培地のpHを測定した。 -Experimental Method- (1) Experiment on measurement of medium pH by addition of lactic acid Liquid prepared by adding lactic acid to the liquid medium so that the lactic acid concentration is 1% to 20% in increments of 1% and without adding lactic acid The pH of the medium and the liquid medium of each lactic acid concentration was measured.

(2)乳酸の細胞増殖への影響実験 (A)前記寒天培地に展開したpol3変異株及び野生株のコロニーを,白金耳で掻き取り,液体培地を4mL入れた試験管(直径18mm)に各々植菌した。各試験管を,30℃,180rpmで一晩(16時間以上)振とう培養した。 (B)各々の培養液の一部を採取し,血球計算盤を用いて細胞密度を測定し,両株の細胞密度が等しくなるように,各培養液を液体培地で希釈した。 (C)培養開始時の細胞密度が,2.0×10 cells/mLとなるように,各培養液をマイクロチューブに採取し,5,000xgで3分間遠心して,細胞を回収した。 (D)前記と同様に調製した乳酸濃度1%,3%,5%,6%,7%,8%,9%,10%,11%,13%,15%,17%,19%,20%の液体培地各4mLに,前記(C)で回収した細胞を再懸濁し,30℃,180rpmで18時間振とう培養した。なお,この培養においても直径18mmの試験管を使用した。 (E)培養後,血球計算盤を用いて各培養液の細胞密度を測定し,乳酸添加により細胞増殖に与える影響を比較した。 (2) Experiments on the effect of lactic acid on cell growth (A) The pol3 mutant and wild type colonies developed on the agar medium were scraped with a platinum loop and placed in a test tube (diameter 18 mm) containing 4 mL of liquid medium. Inoculated. Each test tube was cultured with shaking at 30 ° C. and 180 rpm overnight (16 hours or more). (B) A part of each culture solution was collected, the cell density was measured using a hemocytometer, and each culture solution was diluted with a liquid medium so that the cell densities of both strains were equal. (C) Each culture solution was collected in a microtube so that the cell density at the start of culture was 2.0 × 10 6 cells / mL, and the cells were collected by centrifugation at 5,000 × g for 3 minutes. (D) 1%, 3%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 13%, 15%, 17%, 19% lactic acid concentration prepared as described above The cells collected in (C) were resuspended in 4 mL each of 20% liquid medium, and cultured with shaking at 30 ° C. and 180 rpm for 18 hours. In this culture, a test tube having a diameter of 18 mm was used. (E) After culture, the cell density of each culture solution was measured using a hemocytometer, and the effects of lactic acid addition on cell proliferation were compared.

−実験結果− (1)乳酸添加による培地pHの検討 乳酸を液体培地に添加した際のpHの変化を,下記表1及び図2に示す。また,その際の培地の変化を,図1に示す。 下記表1の結果より,乳酸を添加することにより,YPD液体培地のpHが著しく低下することが明らかとなった。 また,図1に示されるように,乳酸を添加することにより,培地成分の一部が析出し,培地が濁ることも明らかとなった。 -Experimental results- (1) Examination of medium pH by addition of lactic acid Changes in pH when lactic acid is added to the liquid medium are shown in Table 1 and FIG. Moreover, the change of the culture medium in that case is shown in FIG. From the results shown in Table 1 below, it was clarified that the pH of the YPD liquid medium was remarkably lowered by adding lactic acid. Further, as shown in FIG. 1, it was also clarified that by adding lactic acid, some of the medium components were precipitated and the medium became cloudy.

Figure 2010115112
Figure 2010115112

(2)乳酸添加による細胞増殖に与える影響の検討 前記野生株及びpol3変異株を,前記で調製した乳酸を各乳酸濃度で含有した培地で18時間培養した際の細胞密度を測定した結果を,下記表2及び図2に示す。 下記表2の結果より,野生株及びpol3変異株の細胞密度は,乳酸添加によって低下したことがわかった。特に,乳酸濃度が5%を超えると,ほとんどが増殖できないことが明らかとなった。 また,乳酸添加による培地のpH及び両株の細胞増殖に相関が認められることから,培地のpH低下により両株の細胞増殖が阻害されていることが示された。 (2) Examination of influence on cell proliferation by addition of lactic acid The results of measuring the cell density when the wild strain and pol3 mutant strain were cultured for 18 hours in a medium containing the lactic acid prepared above at each lactic acid concentration, It shows in following Table 2 and FIG. From the results in Table 2 below, it was found that the cell density of the wild strain and the pol3 mutant was decreased by the addition of lactic acid. In particular, when the lactic acid concentration exceeded 5%, it became clear that most could not grow. In addition, since a correlation was observed between the pH of the medium and the cell growth of both strains due to the addition of lactic acid, it was shown that the cell growth of both strains was inhibited by a decrease in the pH of the medium.

Figure 2010115112
Figure 2010115112

参考例2 乳酸耐性を有する酵母の製造方法を用いた酵母の製造 参考例2では,本発明の乳酸耐性を有する酵母の製造方法を用いて,pol3変異株に乳酸耐性を付与した。その手順等を以下に示す。 Reference Example 2 Production of Yeast Using Method for Producing Yeast with Lactic Acid Resistance In Reference Example 2, lactic acid tolerance was imparted to the pol3 mutant using the method for producing a yeast with lactic acid resistance of the present invention. The procedure is shown below.

−酵母株− 参考例1と同様のpol3変異株(BYD5)を使用した。−培地など− 参考例1と同様の液体培地及び乳酸を用いた。 -Yeast strain-The same pol3 mutant (BYD5) as in Reference Example 1 was used. -Medium, etc.-The same liquid medium and lactic acid as in Reference Example 1 were used.

−実験方法− (1)pol3変異株のコロニーを掻き取り,液体培地4mLを入れた試験管(直径18mm)に植菌し,30℃,180rpmで一晩培養した。
(2)培養液を15mL容の遠沈管に採取し,1,000xgで5分間遠心して,全ての細胞を回収した。
(3)液体培地100mLを入れた300mL容三角フラスコに,上記で回収した全ての細胞を再懸濁し,30℃,180rpmで一晩培養した。
(4)上記で培養した培養液を50mL容遠沈管(コーニング社製)にとり,1,000xgで5分間遠心して,全ての細胞を回収した。
(5)乳酸濃度3%となるよう調製した液体培地(以下,3%乳酸培地などと称する)150mLを入れた300mL容三角フラスコに,上記で回収した全ての細胞を懸濁し,30℃,180rpmで―晩培養した。
(6)上記で培養した3%乳酸培養液の一部を採取し,該培養液と等量の0.1%トリパンブルー溶液(DOJINDO社製)と混合して細胞を染色した。青色に染色された細胞は死滅細胞であり,染色されない細胞は生存細胞であるため,これを目印として生存細胞の割合を観察した。
(7)生存細胞の存在を確認した後,3%乳酸培養液の1/3量(50mL)を50mL容遠沈管に採取し,1,000xgで5分間遠心して,細胞を回収した。
-Experimental method-(1) The colon of the pol3 mutant strain was scraped off, inoculated into a test tube (diameter 18 mm) containing 4 mL of liquid medium, and cultured overnight at 30 ° C. and 180 rpm.
(2) The culture solution was collected in a 15 mL centrifuge tube and centrifuged at 1,000 × g for 5 minutes to collect all cells.
(3) All the cells collected above were resuspended in a 300 mL Erlenmeyer flask containing 100 mL of liquid medium and cultured overnight at 30 ° C. and 180 rpm.
(4) The culture solution cultured as described above was placed in a 50 mL centrifuge tube (manufactured by Corning) and centrifuged at 1,000 × g for 5 minutes to collect all cells.
(5) All the cells collected above are suspended in a 300 mL Erlenmeyer flask containing 150 mL of a liquid medium (hereinafter referred to as 3% lactic acid medium) prepared to have a lactic acid concentration of 3%, and 30 ° C., 180 rpm In-night culture.
(6) A part of the 3% lactic acid culture medium cultured as described above was collected and mixed with an equal volume of 0.1% trypan blue solution (manufactured by DOJINDO) to stain the cells. Since the cells stained blue are dead cells and the cells not stained are viable cells, the ratio of viable cells was observed using this as a mark.
(7) After confirming the presence of viable cells, 1/3 volume (50 mL) of 3% lactic acid culture was collected in a 50 mL centrifuge tube and centrifuged at 1,000 × g for 5 minutes to recover the cells.

(8)4%の乳酸培地150mLを入れた300mL容三角フラスコに,回収した細胞を懸濁し,30℃,180rpmで一晩培養した。
(9)上記で培養した4%乳酸培養液の一部を採取し,前記と同様のトリパンブルー染色により細胞を観察した。生存細胞を確認した後,1/3量(50mL)の培養液を50mL容遠沈管に採取し,1,000xgで5分間遠心して細胞を回収した。
(8) The collected cells were suspended in a 300 mL Erlenmeyer flask containing 150 mL of 4% lactic acid medium, and cultured overnight at 30 ° C. and 180 rpm.
(9) A part of the 4% lactic acid culture medium cultured as described above was collected, and the cells were observed by trypan blue staining similar to the above. After confirming the viable cells, 1/3 volume (50 mL) of the culture solution was collected in a 50 mL centrifuge tube, and centrifuged at 1,000 × g for 5 minutes to collect the cells.

(10)5%乳酸培地150mLを入れた300mL容三角フラスコに,回収した細胞を懸濁し,30℃,180rpmで一晩培養した。
(11)上記で培養した5%乳酸培養液の―部を採取し,前記と同様のトリパンブルー染色により生存細胞の確認を行った。
(12)生存細胞の存在を確認した後,5%乳酸培養液1/10量(l5mL)を採取し,1,000xgで5分間遠心して,細胞を回収した。また,5%乳酸培地70mLを入れた200mL容振とうフラスコ(IWAKI社製)に,回収した細胞を懸濁した後,細胞密度を測定した。測定後,これらの培養液を,30℃,180rpmで振とう培養した。
(13)24時間ごとに前記培養液の細胞密度を測定し,培養開始直後の細胞密度に対して,約5〜10倍になるまで培養を行った。
(14)上記の5%乳酸培地で増殖が確認された培養液から,1/10量(7mL)を採取し,1,000xgで5分間遠心して,細胞を回収した。これらの細胞を再び5%乳酸培地に懸濁し,30℃,180rpmで振とう培養した。
(10) The collected cells were suspended in a 300 mL Erlenmeyer flask containing 150 mL of 5% lactic acid medium, and cultured overnight at 30 ° C. and 180 rpm.
(11) A part of the 5% lactic acid culture solution cultured as described above was collected, and viable cells were confirmed by trypan blue staining similar to the above.
(12) After confirming the presence of viable cells, 1/10 volume (15 mL) of 5% lactic acid culture solution was collected and centrifuged at 1,000 × g for 5 minutes to recover the cells. The collected cells were suspended in a 200 mL shake flask (manufactured by IWAKI) containing 70 mL of 5% lactic acid medium, and the cell density was measured. After the measurement, these culture solutions were cultured with shaking at 30 ° C. and 180 rpm.
(13) The cell density of the culture solution was measured every 24 hours and cultured until the cell density immediately after the start of the culture was about 5 to 10 times.
(14) A 1/10 volume (7 mL) was collected from the culture medium in which growth was confirmed in the above-mentioned 5% lactic acid medium, and centrifuged at 1,000 × g for 5 minutes to collect cells. These cells were suspended again in 5% lactic acid medium and cultured with shaking at 30 ° C. and 180 rpm.

(15)前記(11)〜(14)の操作を繰り返すことで,継代培養を行った。なお,継代培養の基準として,(i)トリパンブルー染色により,生存細胞を確認すること,(ii)培養開始直後の細胞密度に対して,約5〜10倍増殖していること,以上の2点を設定した。   (15) Subculture was performed by repeating the operations (11) to (14). In addition, as a reference for subculture, (i) to confirm viable cells by trypan blue staining, (ii) to grow about 5 to 10 times the cell density immediately after the start of culture, Two points were set.

−実験結果− 上述のように,液体培地の乳酸濃度を徐々に高くし,最終的に乳酸濃度5%の乳酸培地で継代培養を行った際の細胞密度を,下記表3及び図4に示す。 -Experimental results- As described above, the cell density when the lactic acid concentration in the liquid medium was gradually increased and finally subcultured in a lactic acid medium having a lactic acid concentration of 5% is shown in Table 3 and FIG. Show.

下記表3及び図4の結果から,下記事実が認められた。
(1)pol3変異株を3%乳酸培地で培養した結果,細胞密度が増大し,また,生存細胞も多く認められた。
(2)3%乳酸培地による培養で増殖したpol3変異株を,4%乳酸培地へ移植した結果,細胞密度の増大及び生存細胞が認められた。
(3)4%乳酸培地による培養で増殖したpol3変異株を,5%乳酸培地へ移植した結果,培養開始から4日目に細胞密度の増大が認められた。
(4)トリパンブルー染色の結果,5%乳酸培地による培養において,多くの生存細胞が認められた(図3)。
(5)5%乳酸培地による培養で増殖したpol3変異株を,再び5%乳酸培地へ移植し,同培地で継代培養を繰り返した。この結果,継代回数が増すごとに細胞増殖の速度が高まる傾向が認められた(表3,図4)。
From the results shown in Table 3 and FIG.
(1) As a result of culturing the pol3 mutant strain in 3% lactic acid medium, the cell density increased and many viable cells were observed.
(2) As a result of transplanting the pol3 mutant grown in culture in 3% lactic acid medium to 4% lactic acid medium, an increase in cell density and viable cells were observed.
(3) As a result of transplanting the pol3 mutant grown in culture in 4% lactic acid medium to 5% lactic acid medium, an increase in cell density was observed on the 4th day from the start of the culture.
(4) As a result of trypan blue staining, many viable cells were observed in the culture with 5% lactic acid medium (FIG. 3).
(5) The pol3 mutant strain grown by culturing in 5% lactic acid medium was transplanted again into 5% lactic acid medium, and subculture was repeated in the same medium. As a result, there was a tendency for the cell growth rate to increase as the number of passages increased (Table 3, FIG. 4).

以上の結果より,上記のような酵母の製造方法を用いることで,pol3変異株に濃度5%の乳酸に対する耐性を付与することができることが示された。   From the above results, it was shown that resistance to lactic acid at a concentration of 5% can be imparted to the pol3 mutant by using the yeast production method as described above.

Figure 2010115112
Figure 2010115112

参考例3 5%乳酸耐性株の培養特性
参考例2において,濃度5%の乳酸に対して耐性を獲得したpol3変異株(以下,5%乳酸耐性株と称する)の培養特性を検討した。実験の方法を以下に示す。
Reference Example 3 Culture Characteristics of 5% Lactic Acid-Resistant Strain In Reference Example 2, the culture characteristics of the pol3 mutant strain that acquired resistance to lactic acid at a concentration of 5% (hereinafter referred to as 5% lactic acid resistant strain) were examined. The experimental method is shown below.

−酵母株− 参考例1と同様の野生株及び,参考例2で得られた5%乳酸耐性株を使用した。 -Yeast strain-The same wild strain as in Reference Example 1 and the 5% lactic acid resistant strain obtained in Reference Example 2 were used.

−実験方法−
参考例2で得られた5%乳酸耐性株は,5%乳酸培地70mLを入れた200mL容バッフル付き三角フラスコで継代培養を行った。この培養は,30℃,200rpmで行行われ,全培養液に対して1/10程度の細胞が継代された。
-Experimental method-
The 5% lactic acid resistant strain obtained in Reference Example 2 was subcultured in a 200 mL baffled Erlenmeyer flask containing 70 mL of 5% lactic acid medium. This culture was performed at 30 ° C. and 200 rpm, and about 1/10 of the cells were passaged with respect to the whole culture solution.

(1)野生株のコロニーを掻き取り,液体培地4mLを入れた試験管(直径18mm)に植菌し,30℃,180rpmで一晩培養した。
(2)野生株の培養液を5,000xgで,3分間遠心して細胞を回収し,液体培地70mLを入れた200mL容バッフル付き三角フラスコに懸濁した。これを30℃,200rpmで回転振とう培養した。
(1) A colony of a wild strain was scraped off, inoculated into a test tube (diameter 18 mm) containing 4 mL of a liquid medium, and cultured overnight at 30 ° C. and 180 rpm.
(2) The culture solution of the wild strain was centrifuged at 5,000 × g for 3 minutes to recover the cells, and suspended in a 200 mL baffled Erlenmeyer flask containing 70 mL of liquid medium. This was cultured with shaking at 30 ° C. and 200 rpm.

(3)5%乳酸培地で継代している5%乳酸耐性株,及び上記で培養した野生株を50mL容遠沈管に採取し,1,000xgで5分間遠心して細胞を回収した。
(4)上記で回収した細胞を数mLの乳酸無添加の液体培地に再懸濁した後,血球計算盤で細胞密度を測定した。
(5)測定した細胞密度をもとに,野生株及び5%乳酸耐性株の細胞密度が等しくなるように,各々を乳酸無添加の液体培地で希釈した。
(3) The 5% lactic acid resistant strain subcultured in the 5% lactic acid medium and the wild strain cultured as described above were collected in a 50 mL centrifuge tube, and centrifuged at 1,000 × g for 5 minutes to collect the cells.
(4) The cells collected above were resuspended in a few mL of liquid medium without lactic acid, and the cell density was measured with a hemocytometer.
(5) Based on the measured cell density, each was diluted with a liquid medium without lactic acid so that the cell densities of the wild strain and the 5% lactic acid resistant strain were equal.

(6)最終細胞密度が約2.0×l0cells/mLとなるように調製された前記細胞希釈液を,5mL容の遠沈管に採取し,1,000xgで5分間遠心して,細胞を回収した。次に,乳酸濃度が5%,6%及び7%の乳酸培地70mLを入れた200mL容バッフル付き三角フラスコに,回収した細胞を懸濁し,30℃,200rpmで回転振とう培養した。なお,野生株については,5%乳酸培地のみで培養を行った。また,これらの乳酸培地は0.45μmの滅菌フィルター(ADVANTEC社製)で濾過して使用した。
(7)懸濁直後を0日目とし,24時間ごとに3日間の細胞密度を測定した。なお,血球計算盤による測定は,1測定につき3回行い,平均値及び標準偏差を算出した。
(6) The cell dilution prepared so that the final cell density is about 2.0 × 10 7 cells / mL is collected in a 5 mL centrifuge tube, centrifuged at 1,000 × g for 5 minutes, and the cells are removed. It was collected. Next, the recovered cells were suspended in a 200 mL baffled Erlenmeyer flask containing 70 mL of lactic acid medium with 5%, 6% and 7% lactic acid concentrations, and cultured with shaking at 30 ° C. and 200 rpm. The wild strain was cultured only in a 5% lactic acid medium. These lactic acid media were used after being filtered with a 0.45 μm sterilizing filter (ADVANTEC).
(7) The cell density for 3 days was measured every 24 hours on the 0th day immediately after suspension. The measurement with a hemocytometer was performed three times for each measurement, and the average value and standard deviation were calculated.

−実験結果−
上述のように,野生株及び5%乳酸耐性株を,各濃度の乳酸培地で培養した際の細胞密度の変化を,下記表4及び図5,図6に示す。
-Experimental results-
As described above, changes in cell density when wild strains and 5% lactic acid resistant strains were cultured in lactic acid medium at various concentrations are shown in Table 4 and FIGS. 5 and 6 below.

下記表4及び図5,図6の結果から,下記事実が認められた。
(1)5%乳酸培養の結果,5%乳酸耐性株は野生株に比べて顕著な増殖が認められ,また,野生株はほとんど増殖していないことが判った(図5)。
(2)5%乳酸耐性株は,濃度が5%及び6%の乳酸を含む培養条件において速やかに増殖し,培養3日目では約10倍に増殖したことが判った(表4,図6)。
(3)5%乳酸耐性株を7%乳酸培地で3日間培養したが,顕著な増殖は認められなかった(表4,図6)。
From the results shown in Table 4 and FIGS. 5 and 6, the following facts were recognized.
(1) As a result of 5% lactic acid culture, it was found that the 5% lactic acid resistant strain showed remarkable growth compared to the wild strain, and the wild strain hardly grew (FIG. 5).
(2) It was found that the 5% lactic acid resistant strain grew rapidly under culture conditions containing lactic acid at concentrations of 5% and 6%, and grew about 10 times on the third day of culture (Table 4, FIG. 6). ).
(3) A 5% lactic acid resistant strain was cultured in a 7% lactic acid medium for 3 days, but no significant growth was observed (Table 4, FIG. 6).

以上の結果より,pol3変異株を乳酸に馴化させることによって取得した5%乳酸耐性株は,5%及び6%乳酸に対して優れた耐性を獲得していることが判明した。   From the above results, it was found that the 5% lactic acid resistant strain obtained by acclimatizing the pol3 mutant strain to lactic acid has acquired excellent resistance to 5% and 6% lactic acid.

Figure 2010115112
Figure 2010115112

参考例4 7%乳酸耐性株の作製
参考例2及び参考例3で示した5%乳酸耐性株に,本発明の乳酸耐性を有する酵母の製造方法を用いて,濃度7%の乳酸への耐性を付与する実験を行った。
Reference Example 4 Preparation of 7% Lactic Acid Resistant Strain Resistant to 7% concentration of lactic acid using the 5% lactic acid resistant strain shown in Reference Example 2 and Reference Example 3 using the method for producing yeast having lactic acid resistance of the present invention The experiment which gives is performed.

−実験方法−
参考例2及び参考例3で得られた5%乳酸耐性株(pol3変異株)は,5%乳酸培地70mLを入れた200mL容バッフル付き三角フラスコを用いて,30℃,200rpmで継代培養を行った。新しい培地への継代は,2〜3日ごとに行い,全培養液に対して1/10量の細胞を回収し,移植した。
-Experimental method-
The 5% lactic acid resistant strain (pol3 mutant) obtained in Reference Example 2 and Reference Example 3 was subcultured at 30 ° C. and 200 rpm using a 200 mL baffled Erlenmeyer flask containing 70 mL of 5% lactic acid medium. went. Passage to a new medium was performed every 2 to 3 days, and 1/10 amount of cells were collected from the whole culture and transplanted.

(1)5%乳酸耐性株の継代培養から全培養液の1/5量を採取し,1,000xgで5分間遠心して,細胞を回収した。乳酸濃度が7%の7%乳酸培地70mLを入れた200mL容バッフル付き三角フラスコに回収した細胞を懸濁し,30℃,200rpmで一晩培養した(継代1回目)。
(2)上記培養後の全培養液の1/5量を採取し,1,000xgで5分間遠心して,細胞を回収した。新鮮な7%乳酸培地70mLに,回収した細胞を懸濁し,30℃,200rpmで5日間培養した(継代2回目)。
(3)上記培養後の全培養液の1/10量を採取し,1,000xgで5分間遠心して,細胞を回収した。新鮮な7%乳酸培地70mLに,回収した細胞を懸濁し,30℃,200rpmで5日間培養した(継代3回目)。
(4)上記培養後の全培養液の1/10量を採取し,1,000xgで5分間遠心して,細胞を回収した。新鮮な7%乳酸培地70mLに,回収した細胞を懸濁し,30℃,200rpmで4日間培養した(継代4回目)。
(5)上記4回目の継代培養株,及び液体培地で―晩前培養した野生株の一部を,7%乳酸培地に移植し,30℃,200rpmで一晩回転振とう培養した。これらの細胞についてトリパンブルー染色を行い,生存細胞を顕微鏡観察することによって,7%の乳酸濃度への耐性を確認した。
(1) A 1/5 volume of the whole culture was collected from the subculture of a 5% lactic acid resistant strain, and centrifuged at 1,000 × g for 5 minutes to collect cells. The recovered cells were suspended in a 200 mL baffled Erlenmeyer flask containing 70 mL of 7% lactic acid medium having a lactic acid concentration of 7%, and cultured overnight at 30 ° C. and 200 rpm (first passage).
(2) One-fifth of the whole culture solution after the above culture was collected and centrifuged at 1,000 × g for 5 minutes to collect cells. The collected cells were suspended in 70 mL of fresh 7% lactic acid medium and cultured at 30 ° C. and 200 rpm for 5 days (second passage).
(3) A 1/10 volume of the whole culture solution after the culture was collected and centrifuged at 1,000 × g for 5 minutes to collect cells. The collected cells were suspended in 70 mL of fresh 7% lactic acid medium and cultured at 30 ° C. and 200 rpm for 5 days (the third passage).
(4) A 1/10 volume of the whole culture solution after the above culture was collected and centrifuged at 1,000 × g for 5 minutes to collect cells. The collected cells were suspended in 70 mL of fresh 7% lactic acid medium and cultured at 30 ° C. and 200 rpm for 4 days (passage 4th time).
(5) The fourth subculture strain and a part of the wild strain previously cultured in the liquid medium were transplanted into 7% lactic acid medium and cultured with shaking at 30 ° C. and 200 rpm overnight. These cells were stained with trypan blue, and the survival cells were observed under a microscope to confirm resistance to 7% lactic acid concentration.

−実験結果−
上述のように,5%乳酸耐性株を7%乳酸培地で継代培養した際の細胞密度の変化を,下記表5及び図7に示す。
-Experimental results-
As described above, changes in cell density when a 5% lactic acid resistant strain is subcultured in a 7% lactic acid medium are shown in Table 5 and FIG.

下記表5及び図7の結果から,下記事実が認められた。
(1)継代培養2回目において5日間培養したところ,継代直後に比べて約6.7倍の増殖が認められた(表5,図7)。
(2)継代培養3回目において5日間培養したところ,継代直後に比べて約66.9倍の増殖が認められた(表5,図7)。
(3)継代培養4回目において4日間培養したところ,継代直後に比べて約310倍の増殖が認められた(表5,図7)。
(4)トリパンブルー染色の結果,野生株はほぼ全ての細胞が死滅したにも関わらず,乳酸耐性株では,多くの生存細胞が観察された(図8)。
From the results shown in Table 5 and FIG.
(1) When cultured for 5 days in the second subculture, about 6.7 times the proliferation was observed as compared to immediately after the subculture (Table 5, FIG. 7).
(2) When the cells were cultured for 5 days at the third subculture, about 66.9 times the proliferation was observed as compared to immediately after the subculture (Table 5, FIG. 7).
(3) When cultured for 4 days in the 4th subculture, the growth was about 310 times that immediately after the subculture (Table 5, FIG. 7).
(4) As a result of trypan blue staining, although almost all cells were killed in the wild strain, many viable cells were observed in the lactate resistant strain (FIG. 8).

Figure 2010115112
Figure 2010115112

実施例で得られた乳酸耐性株を,BYD5−LA7(濃度7%の乳酸を含むYPD培地中で増殖可能)と命名した。   The lactic acid resistant strain obtained in the example was named BYD5-LA7 (can grow in YPD medium containing 7% lactic acid).

参考例5 乳酸耐性を有する酵母の製造方法を用いた酵母の製造−酵母株−
参考例5では,野生株としてサッカロマイセス セレビシエ (Saccharomyces cerevisiae) YPH499株を用いた。なお,YPH499株は,公知の野生株であり,たとえばNITEが運営する分譲機関において,カタログ番号NBRC10505として紹介されている。
−培地− 液体培地として、YPDA Broth(YPD Broth(Difco社製),20mg/L Adenine sulfate(和光純薬工業社製))を用いた。固体培地として、YPDA Broth(YPD Broth(Difco社製),20mg/L Adenine sulfate(和光純薬工業社製),20g/L Bacto Agar (Beccton Dickinson社製))を用いた。乳酸として,L−乳酸(和光純薬工業社製)を用いた また、5−FOA固体培地として、(20g/L D-Glucose(和光純薬工業社製),6.7g/L Yeast Nitrogen Base w/o Amino acids (Beccton Dickinson社製),0.79g/L Complete supplement mixture(FORMEDIUM社製,40mg/L Adenine sulfate(和光純薬工業社製),1g/L 5-Fuloroorotic Acid(和光純薬工業社製),20g/L Bacto Agar (Beccton Dickinson社製))を用いた。
Reference Example 5 Yeast Production Using Yeast Production Method with Lactic Acid Resistance- Yeast Strain-
In Reference Example 5, Saccharomyces cerevisiae YPH499 strain was used as a wild strain. The YPH499 strain is a known wild strain, and is introduced as a catalog number NBRC10505, for example, in a sales agency operated by NITE.
-Medium-YPDA Broth (YPD Broth (Difco), 20 mg / L Adenine sulfate (Wako Pure Chemical Industries)) was used as a liquid medium. As the solid medium, YPDA Broth (YPD Broth (Difco), 20 mg / L Adenine sulfate (Wako Pure Chemical Industries), 20 g / L Bacto Agar (Becton Dickinson)) was used. L-lactic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was used as lactic acid. Also, as a 5-FOA solid medium, (20 g / L D-Glucose (manufactured by Wako Pure Chemical Industries, Ltd.), 6.7 g / L Yeast Nitrogen Base). w / o Amino acids (manufactured by Beckton Dickinson), 0.79 g / L Complete supplement mixture (manufactured by FORMIUMIUM, 40 mg / L Adenine sulfate (manufactured by Wako Pure Chemical Industries, Ltd.), 1 g / Lor oc Kogyo Co., Ltd.), 20 g / L Bacto Agar (Becton Dickinson)).

−実験方法−
(1)サッカロマイセス セレビシエ (Saccharomyces cerevisiae) YPH499株を変異型DNAポリメラーゼδ発現プラスミドYEplac195 pol3−01で形質転換した。図9に,上記の変異型DNAポリメラーゼδ発現プラスミドの構築図を示す。変異型DNAポリメラーゼδ発現プラスミドYEplac195 pol3−01は,酵母細胞中に遺伝情報を導入するためのベクタープラスミドであるYEplac195のマルチクローニングサイトに,変異型DNAポリメラーゼδ遺伝子を組み込んで構築されたプラスミドである。変異型DNAポリメラーゼδ遺伝子を組み込むことができる同様なプラスミドとして,酵母細胞内で染色体と独立して複製する高コピープラスミドであるYEpシリーズやYRpシリーズ,酵母細胞内で染色体と独立して複製する低コピープラスミドであるYCpシリーズ,及び酵母細胞内で染色体に組み込まれるプラスミドであるYIpシリーズがあげられる。
(2)形質転換株のコロニーを掻き取り,液体培地4mLを入れた試験管に植菌し,30℃,180rpmで一晩振とう培養した。
(3)培養液の一部を濃度3.5%の乳酸を含有した固形培地に蒔き、30℃で5日間培養し、生えてきたコロニー数個を釣菌した。
(4)濃度3.5%の乳酸を含有した固体培地に、(3)で釣菌したコロニーを植え継ぎ、30℃で1晩培養し、生えてきたコロニーを釣菌した。
(5)液体培地に、(4)で釣菌したコロニーを植え継ぎ、30℃で6時間培養し、培養液から遠心分離により再度全ての細胞を回収した。
(6)濃度4.0%の乳酸を含有した液体培地に、(5)で回収した細胞を植え継ぎ、30℃で1晩培養した。
(7)培養液の一部を濃度4.0%の乳酸を含有した固体培地に蒔き、30℃で4日間培養し、生えてきたコロニーを釣菌した。
(8)液体培地に、(7)で釣菌したコロニーを植え継ぎ、30℃で8時間培養し、培養液から遠心分離により再度全ての細胞を回収した。
(9)濃度5%の乳酸を含有した液体培地に、(8)で回収した細胞を植え継ぎ、30℃で3晩培養した。
(10)5%培養液中の細胞からYEplac195 pol3−01を脱落させ、5%培養液を5−FOA固体培地に蒔き、30℃で3晩培養し、生えてきたコロニーについてプラスミドを保持していないことをPCRによって確認した。
(11)(10)で、YEplac195 pol3−01の脱落が確認された株について、濃度4.5%の乳酸を含有した液体培地で30℃で2晩培養し、培養開始直後の細胞密度に対して約5〜10倍になるまで培養を行なうことにより,4.5%の乳酸濃度に対する耐性を獲得した酵母株を単離した。
-Experimental method-
(1) Saccharomyces cerevisiae YPH499 strain was transformed with the mutant DNA polymerase δ expression plasmid YEplac195 pol3-01. FIG. 9 shows a construction diagram of the above mutant DNA polymerase δ expression plasmid. The mutant DNA polymerase δ expression plasmid YElac195 pol3-01 is a plasmid constructed by incorporating a mutant DNA polymerase δ gene into the multicloning site of YElac195, a vector plasmid for introducing genetic information into yeast cells. . Similar plasmids that can incorporate the mutant DNA polymerase δ gene include the YEp series and YRp series, which are high-copy plasmids that replicate independently of chromosomes in yeast cells, and the low-value that replicate independently of chromosomes in yeast cells. Examples thereof include the YCp series which is a copy plasmid and the YIp series which is a plasmid integrated into a chromosome in yeast cells.
(2) The colony of the transformed strain was scraped off, inoculated into a test tube containing 4 mL of a liquid medium, and cultured with shaking at 30 ° C. and 180 rpm overnight.
(3) A part of the culture solution was seeded on a solid medium containing 3.5% lactic acid and cultured at 30 ° C. for 5 days, and several colonies that had grown were caught.
(4) The colony fished in (3) was inoculated in a solid medium containing lactic acid at a concentration of 3.5% and cultured at 30 ° C. overnight, and the grown colonies were fished.
(5) The colony fished in (4) was inoculated in a liquid medium, cultured at 30 ° C. for 6 hours, and all cells were again collected from the culture solution by centrifugation.
(6) The cells collected in (5) were inoculated into a liquid medium containing 4.0% lactic acid and cultured overnight at 30 ° C.
(7) A part of the culture solution was seeded on a solid medium containing 4.0% lactic acid and cultured at 30 ° C. for 4 days, and the grown colonies were fished.
(8) The colony fished in (7) was inoculated in a liquid medium, cultured at 30 ° C. for 8 hours, and all cells were again collected from the culture solution by centrifugation.
(9) The cells collected in (8) were inoculated into a liquid medium containing 5% lactic acid and cultured at 30 ° C. for 3 nights.
(10) YEplac195 pol3-01 is removed from cells in 5% culture solution, 5% culture solution is seeded on 5-FOA solid medium, cultured at 30 ° C. for 3 nights, and plasmids are retained for the colonies that have grown. The absence was confirmed by PCR.
(11) The strain in which YElac195 pol3-01 is eliminated in (10) is cultured in a liquid medium containing 4.5% lactic acid at 30 ° C. for 2 nights. By culturing until about 5 to 10 times, a yeast strain having acquired resistance to 4.5% lactic acid concentration was isolated.

参考例5で得られた乳酸耐性株を,HRSC207,HRSC208,HRSC210,及びHRSC214とそれぞれ命名した。   The lactic acid resistant strains obtained in Reference Example 5 were named HRSC207, HRSC208, HRSC210, and HRSC214, respectively.

参考例6 乳酸耐性を有する酵母の製造方法を用いた酵母の製造−酵母株−
参考例5と同様の株を用いた。
−培地−
参考例5と同様の培地を用いた。
Reference Example 6 Yeast Production Using Yeast Production Method with Lactic Acid Resistance- Yeast Strain-
The same strain as in Reference Example 5 was used.
-Medium-
The same medium as in Reference Example 5 was used.

−実験方法−
(1)サッカロマイセス セレビシエ (Saccharomyces cerevisiae) YPH499株を変異型DNAポリメラーゼδ発現プラスミドYEplac195 pol3−01で形質転換した。
(2)形質転換株のコロニーを掻き取り,液体培地4mLを入れた試験管に植菌し,30℃,180rpmで一晩振とう培養した。
(3)培養液の一部を濃度5.0%の乳酸を含有した固形培地に蒔き、30℃で2日間培養し、生えてきたコロニー数個を釣菌した。
(4)濃度5.5%の乳酸を含有した培養液に(3)で釣菌したコロニーを植菌し、30℃で1晩培養した。
(5)培養液から遠心分離により再度全ての細胞を回収した。
(6)5.5%培養液中の細胞からYEplac195 pol3−01を脱落させるため、5.5%培養液を5−FOA固体培地に蒔き、30℃で3晩培養し、生えてきたコロニーについてプラスミドを保持していないことをPCRによって確認した。
(7)(6)で、YEplac195 pol3−01の脱落が確認された株について、濃度4.5%の乳酸を含有した液体培地で30℃で2晩培養し、培養開始直後の細胞密度に対して約5〜10倍になるまで培養を行なうことにより,4.5%の乳酸濃度に対する耐性を獲得した酵母株を単離した。
-Experimental method-
(1) Saccharomyces cerevisiae YPH499 strain was transformed with the mutant DNA polymerase δ expression plasmid YEplac195 pol3-01.
(2) The colony of the transformed strain was scraped off, inoculated into a test tube containing 4 mL of a liquid medium, and cultured with shaking at 30 ° C. and 180 rpm overnight.
(3) A part of the culture solution was spread on a solid medium containing lactic acid having a concentration of 5.0%, cultured at 30 ° C. for 2 days, and several colonies that had grown were caught.
(4) The colony fished in (3) was inoculated into a culture solution containing lactic acid at a concentration of 5.5% and cultured at 30 ° C. overnight.
(5) All the cells were again collected from the culture solution by centrifugation.
(6) In order to drop YEplac195 pol3-01 from the cells in the 5.5% culture solution, the 5.5% culture solution was seeded on 5-FOA solid medium and cultured at 30 ° C. for 3 nights. It was confirmed by PCR that the plasmid was not retained.
(7) The strain in which YEplac195 pol3-01 has been confirmed to drop in (6) is cultured in a liquid medium containing 4.5% lactic acid at 30 ° C. for 2 nights. By culturing until about 5 to 10 times, a yeast strain having acquired resistance to 4.5% lactic acid concentration was isolated.

参考例6で得られた乳酸耐性株を,TBSCR5,TBSCR8と命名した。   The lactic acid resistant strain obtained in Reference Example 6 was named TBSCR5 and TBSCR8.

参考例7 4.5%乳酸耐性株の培養特性1
参考例5,6において,濃度4.5%の乳酸に対して耐性を獲得した変異株(以下4.5%乳酸耐性株と称する)の培養特性を検討した。実験の方法を以下に示す。
Reference Example 7 Culture characteristics of 4.5% lactic acid resistant strain 1
In Reference Examples 5 and 6, the culture characteristics of mutant strains that acquired resistance to lactic acid at a concentration of 4.5% (hereinafter referred to as 4.5% lactic acid resistant strains) were examined. The experimental method is shown below.

−酵母株− 参考例5と同様の野生株(YPH499株)及び,参考例5,6で得られた4.5%乳酸耐性株(HRSC207,HRSC208,HRSC210,HRSC214,TBSCR5及びTBSCR8)を使用した。−培地− 液体培地として、YPDA Broth(YPD Broth(Difco社製),20mg/L Adenine sulfate(和光純薬工業社製))を用いた。 -Yeast strain-The same wild strain (YPH499 strain) as in Reference Example 5 and 4.5% lactic acid resistant strains (HRSC207, HRSC208, HRSC210, HRSC214, TBSCR5 and TBSCR8) obtained in Reference Examples 5 and 6 were used. . -Medium-YPDA Broth (YPD Broth (Difco), 20 mg / L Adenine sulfate (Wako Pure Chemical Industries)) was used as a liquid medium.

−実験方法−
(1)野生株及び4.5%乳酸耐性株をそれぞれ液体培地4mLを入れた試験管に植菌し,30℃,180rpmで一晩培養した。培養液から遠心分離により細胞を回収し,滅菌水で3回洗浄した後、2時間放置し、希釈して濁度(OD660)を測定した。
(2)濃度4.5%の乳酸を含有した液体培地3mLに、それぞれOD660=1.0に希釈した菌体培養液を0.05mLずつ植菌し、30℃、180rpmで36時間培養後、それぞれのOD660値を測定した。
-Experimental method-
(1) Wild strains and 4.5% lactic acid resistant strains were inoculated into test tubes containing 4 mL of liquid medium, and cultured overnight at 30 ° C. and 180 rpm. Cells were collected from the culture broth by centrifugation, washed 3 times with sterilized water, allowed to stand for 2 hours, diluted, and turbidity (OD660) was measured.
(2) Inoculate 0.05 mL each of a cell culture solution diluted to OD660 = 1.0 in 3 mL of a liquid medium containing 4.5% lactic acid, and after culturing at 30 ° C. and 180 rpm for 36 hours, Each OD660 value was measured.

−実験結果−
上記実験の結果,図10,11に示すように,4.5%乳酸耐性株は,野生株に比べて顕著な増殖を示した。なお、TBSCR5株は乳酸耐性能は低いが、高い凝集性を示した。
以上の結果より,変異型DNAポリメラーゼδ発現株を乳酸に馴化させることにより取得した4.5%乳酸耐性株は,4.5%の乳酸存在下において顕著な耐性を示し,細胞増殖を行うことが示された。
-Experimental results-
As a result of the above experiment, as shown in FIGS. 10 and 11, the 4.5% lactic acid resistant strain showed remarkable growth compared to the wild strain. The TBSCR5 strain had low lactic acid resistance, but exhibited high aggregation properties.
Based on the above results, the 4.5% lactic acid resistant strain obtained by acclimatizing the mutant DNA polymerase δ-expressing strain to lactic acid exhibits remarkable resistance in the presence of 4.5% lactic acid and proliferates cells. It has been shown.

参考例8 4.5%乳酸耐性株の培養特性2
参考例5,6において4.5%の乳酸濃度に対して耐性を獲得した変異株(以下4.5%乳酸耐性株)の培養特性を検討した。
(1)野生株及び4.5%乳酸耐性株を,YPDA培地(10g/L Bacto Yeast extract(Difco社製),20g/L Bacto trypton(Difco社製),20g/L Glucose,40mg/L Adenine sulfate(Sigma社製))を,それぞれ10mLずつ入れた各試験管に植菌し,30℃,120rpmで一晩培養した。
(2)該培養液0.1mLを濃度4%の乳酸を含むYPDA液体培地10mLに添加し,30℃,120rpmで振とう培養した。
(3)培養開始14時間,22時間,38時間,45時間,及び70時間後に培養液のOD600を測定した。その結果,図12に示すように,参考例5,6で取得した4.5%乳酸耐性株は,野生株に比較して,4%濃度の乳酸存在下で顕著に増殖することが示された。
Reference Example 8 Culture characteristics of 4.5% lactic acid resistant strain 2
In Reference Examples 5 and 6, the culture characteristics of mutant strains that acquired resistance to a lactic acid concentration of 4.5% (hereinafter referred to as 4.5% lactic acid resistant strains) were examined.
(1) Wild strains and 4.5% lactic acid resistant strains were obtained from YPDA medium (10 g / L Bacto Yeast extract (Difco), 20 g / L Bacto trypton (Difco), 20 g / L Glucose, 40 mg / L Adenine. sulfate (manufactured by Sigma)) was inoculated into each test tube containing 10 mL each, and cultured overnight at 30 ° C. and 120 rpm.
(2) 0.1 mL of the culture solution was added to 10 mL of YPDA liquid medium containing 4% lactic acid, and cultured with shaking at 30 ° C. and 120 rpm.
(3) The OD600 of the culture was measured 14 hours, 22 hours, 38 hours, 45 hours, and 70 hours after the start of the culture. As a result, as shown in FIG. 12, it was shown that the 4.5% lactic acid resistant strain obtained in Reference Examples 5 and 6 proliferated significantly in the presence of 4% lactic acid compared to the wild strain. It was.

参考例9 乳酸合成酵素(乳酸脱水素酵素,L−ldh)遺伝子のクローニング
ウシ(ボス・トウラス(Bos taurus))の骨格筋由来cDNAライブラリー(STRATAGENE社製)より、付属のプロトコールに従いファージミドを調製した。得られたファージミドを鋳型とし、配列番号1および配列番号2で表されるオリゴヌクレオチドをプライマーセットとしたKOD Plus DNA polymeraseによるPCRにより乳酸合成酵素遺伝子のクローニングを行った。各PCR増幅断片を精製し末端をT4 Polynucleotide Kinase(宝酒造社製)によりリン酸化後、pUC118ベクター(制限酵素Hinc IIで切断し、切断面を脱リン酸化処理したもの)に、ライゲーションした。ライゲーションは、DNA Ligation Kit Ver.2(宝酒造社製)を用いて行った。ライゲーションプラスミド産物で大腸菌DH5αを形質転換し、プラスミドDNAを回収することにより、ウシ由来乳酸合成酵素(L−ldh−b)遺伝子(配列番号3)をクローニングした。クローニングしたL−ldh−b遺伝子をGAPDH(グリセルアルデヒド−3‘−リン酸デヒドロゲナーゼ)プロモーター制御下に連結し、L−ldh−b発現プラスミドpLDH−bを構築した。
Reference Example 9 Cloning of Lactate Synthase (Lactate Dehydrogenase, L-ldh) Gene Phagemid was prepared from a skeletal muscle-derived cDNA library of bovine (Bos taurus) (manufactured by STRATAGENE) according to the attached protocol. did. The lactate synthase gene was cloned by PCR using KOD Plus DNA polymerase using the obtained phagemid as a template and the oligonucleotides represented by SEQ ID NO: 1 and SEQ ID NO: 2 as a primer set. Each PCR amplified fragment was purified, and the end was phosphorylated with T4 Polynucleotide Kinase (Takara Shuzo Co., Ltd.), and then ligated to pUC118 vector (cleaved with restriction enzyme Hinc II and the cleavage surface was dephosphorylated). Ligation was performed using DNA Ligation Kit Ver. 2 (Takara Shuzo) was used. Escherichia coli DH5α was transformed with the ligation plasmid product, and the plasmid DNA was recovered to clone the bovine-derived lactic acid synthase (L-ldh-b) gene (SEQ ID NO: 3). The cloned L-ldh-b gene was ligated under the control of a GAPDH (glyceraldehyde-3′-phosphate dehydrogenase) promoter to construct an L-ldh-b expression plasmid pLDH-b.

4.5%乳酸耐性株による乳酸生産試験
参考例5において作製し、参考例7,8において乳酸存在下で親株であるYPH499株よりも良好な生育が確認された4.5%乳酸耐性株の中で、HRSC207株,HRSC208株,TBSCR8株と,親株であるYPH499株とを,pLDH−bを用いて形質転換した。図13に,pLDH−bの構築図を示す。形質転換はYEASTMAKER Yeast Transformation System(CLONTECH社製)を用いた酢酸リチウム法により行った。詳細は,付属のプロトコールに従った。
宿主とするHRSC207株,HRSC208株,TBSCR8株,およびYPH499株はウラシル合成能を欠損した株であり,pLDH−b上にあるURA3遺伝子の働きにより,ウラシル非添加培地上で形質転換体を選抜することができる。作製したHRSC207/pLDH−b株,HRSC208/pLDH−b株,TBSCR8/pLDH−b株,YPH499/pLDH−b株を用いて,次のように,乳酸発酵試験を行った。
(1)5mLのSC2−Ura培地(100g/L グルコース,6.7g/L Yeast Nitrogen Base w/o Amino acids(Difco社製),3.84g/L Drop−out supplement without uracil(Sigma社製))を用いて,30℃の温度で24時間振とう培養した。
(2)該培養液0.5mLをSC2−Ura培地50mLを入れた200mL容三角フラスコに接種した後,30℃の温度で65時間振とう培養し,計時的に1mLサンプリングした。培養中にグルコースが枯渇しないように,培養開始40時間後、50時間後のサンプリング後にそれぞれ20%グルコース溶液を10mL,50%グルコース溶液を5mL添加し,65時間振とう培養した。
(3)サンプリングした該培養液から遠心分離により菌体を除去し,上清のグルコース濃度と乳酸濃度を測定した。グルコース濃度はテストワコーGLU−II(和光純薬工業社製)を用いて測定し,乳酸濃度は以下の条件でHPLCを用いて測定した。
・カラム:Shim−Pack SPR−H(島津製作所社製)
・移動相:5mM p−トルエンスルホン酸(流速0.8mL/min)
・反応液:5mM p−トルエンスルホン酸,20mM ビストリス,0.1mM EDTA・2Na(流速0.8mL/min)
・検出方法:電気伝導度
・カラムオーブン温度:45℃
Lactic acid production test with 4.5% lactic acid resistant strains In 4.5% lactic acid resistant strains, which were produced in Reference Example 5 and confirmed to grow better than Reference YPH499 strain in Reference Examples 7 and 8 in the presence of lactic acid. Among them, HRSC207 strain, HRSC208 strain, TBSCR8 strain and parent strain YPH499 strain were transformed with pLDH-b. FIG. 13 shows a construction diagram of pLDH-b. The transformation was carried out by the lithium acetate method using a YASTMAKER Yeast Transformation System (manufactured by CLONTECH). For details, the attached protocol was followed.
The HRSC207, HRSC208, TBSCR8, and YPH499 strains used as hosts are strains lacking the ability to synthesize uracil, and transformants are selected on a uracil-free medium by the action of the URA3 gene on pLDH-b. be able to. Using the prepared HRSC207 / pLDH-b strain, HRSC208 / pLDH-b strain, TBSCR8 / pLDH-b strain, and YPH499 / pLDH-b strain, a lactic acid fermentation test was performed as follows.
(1) 5 mL of SC2-Ura medium (100 g / L glucose, 6.7 g / L Yeast Nitrogen Base w / o Amino acids (manufactured by Difco), 3.84 g / L Drop-out supplement with uracil (manufactured by Sigma) ), And cultured with shaking at a temperature of 30 ° C. for 24 hours.
(2) After inoculating 0.5 mL of the culture solution into a 200 mL Erlenmeyer flask containing 50 mL of SC2-Ura medium, the culture was shaken at a temperature of 30 ° C. for 65 hours, and 1 mL was sampled in time. To prevent glucose from being depleted during the culture, 10 mL of 20% glucose solution and 5 mL of 50% glucose solution were added after sampling after 40 hours and 50 hours, respectively, and cultured with shaking for 65 hours.
(3) The cells were removed from the sampled culture solution by centrifugation, and the glucose concentration and lactic acid concentration in the supernatant were measured. The glucose concentration was measured using Test Wako GLU-II (manufactured by Wako Pure Chemical Industries, Ltd.), and the lactic acid concentration was measured using HPLC under the following conditions.
Column: Shim-Pack SPR-H (manufactured by Shimadzu Corporation)
-Mobile phase: 5 mM p-toluenesulfonic acid (flow rate 0.8 mL / min)
Reaction solution: 5 mM p-toluenesulfonic acid, 20 mM Bistris, 0.1 mM EDTA · 2Na (flow rate 0.8 mL / min)
・ Detection method: Electric conductivity ・ Column oven temperature: 45 ℃

実験の結果,図14に示すように,YPH499/pLDH−b株と比較して、HRSC207/pLDH−b株およびHRSC208/pLDH−b株は5%,TBSCR8/pLDH−b株は12%,それぞれ乳酸の生産性が向上していることが示され、乳酸耐性能力向上株を作出することにより,より高い乳酸の生産株を構築できることが明らかとなった。   As a result of the experiment, as shown in FIG. 14, compared with the YPH499 / pLDH-b strain, the HRSC207 / pLDH-b strain and the HRSC208 / pLDH-b strain were 5%, and the TBSCR8 / pLDH-b strain was 12%, respectively. It was shown that the productivity of lactic acid was improved, and it was clarified that a strain producing higher lactic acid could be constructed by creating a strain with improved lactic acid tolerance.

図1は,乳酸添加による培地の変化を示した写真である(写真左:乳酸無添加のYPD液体培地,写真右:濃度3%の乳酸を加えたYPD液体培地)。FIG. 1 is a photograph showing changes in the culture medium due to the addition of lactic acid (photo left: YPD liquid medium without lactic acid, photo right: YPD liquid medium with 3% concentration of lactic acid). 図2は,乳酸添加による野生株及びpol3変異株の細胞増殖を比較したグラフである。FIG. 2 is a graph comparing the cell growth of the wild strain and the pol3 mutant by addition of lactic acid. 図3は,培養2日目における5%乳酸耐性株をトリパンブルー染色して観察した写真である。写真上で黒く示された細胞はトリパンブルーにより青色に染色された死滅細胞で,染色されていない白色の細胞が生存細胞である。FIG. 3 is a photograph of a 5% lactic acid resistant strain on the second day of culture observed with trypan blue staining. The cells shown in black in the photograph are dead cells stained blue with trypan blue, and the unstained white cells are viable cells. 図4は,5%乳酸培養におけるpol3変異株の細胞増殖の変化を示すグラフである。FIG. 4 is a graph showing changes in cell proliferation of the pol3 mutant in 5% lactic acid culture. 図5は,5%乳酸培養における野生株及び5%乳酸耐性株の細胞増殖を比較したグラフである。FIG. 5 is a graph comparing cell growth of a wild type strain and a 5% lactate resistant strain in 5% lactic acid culture. 図6は,野生株及び5%乳酸耐性株の乳酸添加による細胞増殖への影響を示したグラフである。FIG. 6 is a graph showing the effect of lactic acid addition on cell growth of wild strains and 5% lactic acid resistant strains. 図7は,5%乳酸耐性株を7%乳酸培地で継代培養した際の細胞密度の変化を示したグラフである。FIG. 7 is a graph showing changes in cell density when a 5% lactic acid resistant strain is subcultured in a 7% lactic acid medium. 図8は,7%乳酸培地で培養した1日目の野生株及び乳酸耐性株をトリパンブルー染色した写真である。写真上で黒く示された細胞はトリパンブルーにより青色に染色された死滅細胞で,染色されていない白色の細胞が生存細胞である。FIG. 8 is a photograph of a wild strain and a lactic acid resistant strain on day 1 cultured in 7% lactic acid medium stained with trypan blue. The cells shown in black in the photograph are dead cells stained blue with trypan blue, and the unstained white cells are viable cells. 図9は,本発明で用いられるプラスミドYEplac195 pol3−01の構築図である。FIG. 9 is a construction diagram of the plasmid YEplac195 pol3-01 used in the present invention. 図10は,参考例7における4.5%乳酸耐性株(HRSC207,HRSC208,HRSC210,HRSC214)の,4.5%の乳酸濃度下での増殖比較を示すグラフである。FIG. 10 is a graph showing a growth comparison of 4.5% lactic acid resistant strains (HRSC207, HRSC208, HRSC210, HRSC214) in Reference Example 7 under a lactic acid concentration of 4.5%. 図11は,参考例7における4.5%乳酸耐性株(TBSCR5,TBSCR8)の,4.5%乳酸濃度下での増殖比較を示すグラフである。FIG. 11 is a graph showing a growth comparison of 4.5% lactic acid resistant strains (TBSCR5, TBSCR8) in Reference Example 7 under a 4.5% lactic acid concentration. 図12は,参考例8における4.5%乳酸耐性株の4%乳酸濃度下での増殖比較を示すグラフである。FIG. 12 is a graph showing growth comparison of the 4.5% lactic acid resistant strain in Reference Example 8 under a 4% lactic acid concentration. 図13は,本発明で用いられるプラスミドpLDH−bの構築図である。FIG. 13 is a construction diagram of plasmid pLDH-b used in the present invention. 図14は,実施例1における4.5%乳酸耐性株と野生株を用いた乳酸生産を比較したグラフである。FIG. 14 is a graph comparing lactic acid production using a 4.5% lactic acid resistant strain and a wild strain in Example 1.

配列番号1:プライマー
配列番号2:プライマー
Sequence number 1: Primer Sequence number 2: Primer

Claims (13)

DNAポリメラーゼの校正機能を制御した酵母の変異株を,少なくとも1%(v/v)以上の乳酸濃度下で培養した後,生存細胞を単離することによって得られた酵母に,乳酸合成酵素遺伝子を導入する,乳酸合成能を有する酵母の製造方法。   After culturing a yeast mutant strain in which the proofreading function of the DNA polymerase is controlled under a lactic acid concentration of at least 1% (v / v) or more, the yeast obtained by isolating viable cells is transformed into a lactic acid synthase gene. A method for producing yeast having the ability to synthesize lactic acid. 前記酵母の変異株は,変異型DNAポリメラーゼδをコードする遺伝子が導入された株である,請求項1に記載の酵母の製造方法。   The method for producing yeast according to claim 1, wherein the mutant strain of yeast is a strain into which a gene encoding mutant DNA polymerase δ has been introduced. 前記酵母の変異株は,Pol3のアミノ酸配列を改変した出芽酵母の変異株である,請求項1に記載の酵母の製造方法。   The method for producing yeast according to claim 1, wherein the mutant strain of yeast is a mutant strain of budding yeast obtained by modifying the amino acid sequence of Pol3. 所定の乳酸濃度下で培養した後,生存細胞を単離する工程を繰り返し,
前記所定の乳酸濃度が1%(v/v)以上7%(v/v)以下であり,
前記培養及び単離工程を繰り返すにつれ,乳酸濃度を高くする,
請求項1に記載の酵母の製造方法。
After culturing under the specified lactic acid concentration, the process of isolating viable cells is repeated,
The predetermined lactic acid concentration is 1% (v / v) or more and 7% (v / v) or less,
As the culture and isolation steps are repeated, the lactic acid concentration is increased.
The method for producing a yeast according to claim 1.
乳酸合成酵素遺伝子が導入されるとともに,DNAポリメラーゼの校正機能を制御した酵母の変異株を,少なくとも1%(v/v)以上の乳酸濃度下で培養した後,生存細胞を単離する工程を含む,
乳酸合成能を有する酵母の製造方法。
A step of isolating viable cells after culturing a mutant strain of yeast in which a lactic acid synthase gene has been introduced and the proofreading function of DNA polymerase is controlled at a lactic acid concentration of at least 1% (v / v). Including,
A method for producing yeast having the ability to synthesize lactic acid.
DNAポリメラーゼの校正機能を制御した酵母の変異株を用い, 少なくとも1%(v/v)以上の乳酸濃度下で培養した後に生存細胞を単離する工程を,前記乳酸濃度を1%(v/v)以上7%(v/v)以下の範囲内で高くしつつ繰り返すことにより乳酸耐性を有する酵母を得た後に,乳酸合成酵素遺伝子が導入されることにより得られる 乳酸合成能を有する酵母。   The step of isolating viable cells after culturing under a lactic acid concentration of at least 1% (v / v) or more using a mutant strain of yeast in which the DNA polymerase proofreading function is controlled, v) A yeast having the ability to synthesize lactic acid, which is obtained by introducing a lactic acid synthase gene after obtaining a yeast having lactic acid resistance by repeating while increasing it within a range of not less than 7% (v / v). 前記酵母の変異株は,変異型DNAポリメラーゼδをコードする遺伝子が導入された株である,請求項6に記載の酵母。 The yeast according to claim 6, wherein the yeast mutant is a strain into which a gene encoding mutant DNA polymerase δ has been introduced. 乳酸合成酵素遺伝子が導入されるとともに,DNAポリメラーゼの校正機能を制御した酵母の変異株を用い, 少なくとも1%(v/v)以上の乳酸濃度下で培養した後に生存細胞を単離する工程を,前記乳酸濃度を1%(v/v)以上7%(v/v)以下の範囲内で高くしつつ繰り返すことにより得られる
乳酸合成能を有する酵母。
A process of isolating viable cells after culturing under a lactic acid concentration of at least 1% (v / v) or more using a yeast mutant strain into which a lactic acid synthase gene has been introduced and the proofreading function of DNA polymerase is controlled. Yeast having the ability to synthesize lactic acid, obtained by repeating while increasing the lactic acid concentration within the range of 1% (v / v) to 7% (v / v).
前記酵母の変異株は,変異型DNAポリメラーゼδをコードする遺伝子が導入された株である,請求項8に記載の酵母。 The yeast according to claim 8, wherein the mutant strain of yeast is a strain into which a gene encoding mutant DNA polymerase δ has been introduced. 前記酵母が,サッカロマイセス(Saccharomyces)属に属する酵母である請求項6又は8に記載の酵母。   The yeast according to claim 6 or 8, wherein the yeast belongs to the genus Saccharomyces. 前記酵母が,出芽酵母(Saccharomyces cerevisiae)である請求項6又は8に記載の酵母。   The yeast according to claim 6 or 8, wherein the yeast is Saccharomyces cerevisiae. 独立行政法人製品評価技術基盤機構特許微生物寄託センターに受託番号「NITE AP−319」,「NITE AP−320」,又は「NITE AP−321」として寄託されている酵母に乳酸合成酵素遺伝子が導入されることにより得られる乳酸合成能を有する酵母。   Lactic acid synthase gene was introduced into yeast deposited under the accession number “NITE AP-319”, “NITE AP-320”, or “NITE AP-321” to the Patent Microorganism Depositary, National Institute of Technology and Evaluation Yeast having the ability to synthesize lactic acid. 請求項1から請求項5のいずれかに記載の酵母の製造方法により得られた酵母,又は請求項6から請求項12のいずれかに記載の酵母を糖質存在下で培養し,乳酸を生成させ,培養物から前記乳酸を採取する乳酸の製造方法。   A yeast obtained by the yeast production method according to any one of claims 1 to 5, or the yeast according to any one of claims 6 to 12 is cultured in the presence of a carbohydrate to produce lactic acid. And producing the lactic acid by collecting the lactic acid from the culture.
JP2007050851A 2007-02-28 2007-02-28 Method of preparing yeast, the yeast, and method of producing lactic acid Pending JP2010115112A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007050851A JP2010115112A (en) 2007-02-28 2007-02-28 Method of preparing yeast, the yeast, and method of producing lactic acid
PCT/JP2008/000353 WO2008105175A1 (en) 2007-02-28 2008-02-26 Method of preparing yeast, the yeast and method of producing lactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007050851A JP2010115112A (en) 2007-02-28 2007-02-28 Method of preparing yeast, the yeast, and method of producing lactic acid

Publications (1)

Publication Number Publication Date
JP2010115112A true JP2010115112A (en) 2010-05-27

Family

ID=39721017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007050851A Pending JP2010115112A (en) 2007-02-28 2007-02-28 Method of preparing yeast, the yeast, and method of producing lactic acid

Country Status (2)

Country Link
JP (1) JP2010115112A (en)
WO (1) WO2008105175A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147903A1 (en) * 2011-04-28 2012-11-01 東レ株式会社 Mutant strain of lactic acid producing yeast and process for producing lactic acid
US10927389B2 (en) 2014-04-14 2021-02-23 Toray Industries, Inc. Method of producing chemical substance by continuous fermentation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458536B2 (en) * 2008-09-17 2014-04-02 不二製油株式会社 Method for producing lactic acid and additive for lactic acid fermentation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1294728B1 (en) * 1997-09-12 1999-04-12 Biopolo S C A R L YEAST STRAWS FOR THE REPRODUCTION OF LACTIC ACID
JP2001204468A (en) * 2000-01-27 2001-07-31 Toyota Motor Corp Acid-resistant lactic acid-producing microorganism
JP2003259878A (en) * 2002-03-11 2003-09-16 Toyota Central Res & Dev Lab Inc Dna encoding lactate dehydrogenase and utilization of the same
JP2007061024A (en) * 2005-08-31 2007-03-15 Neo-Morgan Laboratory Inc Organism excellent in resistance to lactic acid and method for preparing organism excellent in resistance to lactic acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147903A1 (en) * 2011-04-28 2012-11-01 東レ株式会社 Mutant strain of lactic acid producing yeast and process for producing lactic acid
JPWO2012147903A1 (en) * 2011-04-28 2014-07-28 東レ株式会社 Lactic acid-producing yeast mutant and method for producing lactic acid
US9217165B2 (en) 2011-04-28 2015-12-22 Toray Industries, Inc. Mutant strain of lactic acid producing yeast and process for producing lactic acid
JP6111667B2 (en) * 2011-04-28 2017-04-12 東レ株式会社 Lactic acid-producing yeast mutant and method for producing lactic acid
US10927389B2 (en) 2014-04-14 2021-02-23 Toray Industries, Inc. Method of producing chemical substance by continuous fermentation

Also Published As

Publication number Publication date
WO2008105175A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
Park et al. Low‐pH production of d‐lactic acid using newly isolated acid tolerant yeast Pichia kudriavzevii NG7
EP2468860B1 (en) Transformant and process for production thereof, and process for production of lactic acid
JP5605597B2 (en) Genetic manipulation of thermostable Bacillus coagulans for D (-)-lactic acid production
US11655478B2 (en) Promoter derived from organic acid-resistant yeast and method for expression of target gene by using same
US9617570B2 (en) Acid resistant yeast cell and use thereof
EP2128262A1 (en) Improved yeast strains for organic acid production
CN102089421A (en) Production method
JP2015514434A (en) Novel D-lactic acid producing strain and use thereof
CN106715679A (en) Method for producing acetoin
US20130210097A1 (en) Glycolic acid fermentative production with a modified microorganism
CN112789353A (en) Recombinant acid-resistant yeast inhibiting ethanol production and method for preparing lactic acid using same
JP2008029329A (en) Method for producing yeast and l-lactic acid
EP2738266B1 (en) Fermentation process for producing chemicals
CN105296371B (en) Yeast with improved productivity and method for producing product
JP2010115112A (en) Method of preparing yeast, the yeast, and method of producing lactic acid
CN115244180A (en) Load-producing strain
JP2014023528A (en) Modified microorganism and method for producing 1,4-butanediol using it
JP2015130808A (en) Recombinant microorganisms that produce alkyl diol with high selectivity from fermentable substrates and uses thereof
JP5013448B2 (en) Combination of multiple gene disruptions to improve lactate tolerance or productivity of budding yeast
EP1437405B1 (en) Gene overexpression system
JP2013021940A (en) Method for producing gene knockout yeast
JP2008043325A (en) Yeast having temperature-sensitive alcoholdehydrogenase, and method for producing organic acid
CN111094570A (en) Microorganisms having stable copy number of functional DNA sequences and related methods
KR101686899B1 (en) Novel Kluyveromyces marxianus MJ1 and use thereof
CN105189744A (en) Promoter exhibiting high expression activity in mortierella microorganisms