JP2010114621A - Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu - Google Patents

Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu Download PDF

Info

Publication number
JP2010114621A
JP2010114621A JP2008285111A JP2008285111A JP2010114621A JP 2010114621 A JP2010114621 A JP 2010114621A JP 2008285111 A JP2008285111 A JP 2008285111A JP 2008285111 A JP2008285111 A JP 2008285111A JP 2010114621 A JP2010114621 A JP 2010114621A
Authority
JP
Japan
Prior art keywords
onu
signal
light
modulated
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008285111A
Other languages
Japanese (ja)
Inventor
Katsumi Iwatsuki
岩月  勝美
Naoto Yoshimoto
直人 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008285111A priority Critical patent/JP2010114621A/en
Publication of JP2010114621A publication Critical patent/JP2010114621A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power splitter type WDM-PON without using a wavelength-variable filter, and a colorless ONU compatible with a self-emitting method. <P>SOLUTION: In the optical communication system, a station-side OLT and a plurality of user-side ONUs are connected through a power splitter and an optical fiber transmission path. Each ONU has one or more subcarrier frequencies different for each ONU allocated thereto, and includes: a transmitter including an RF modulation means to generate an RF modulation signal obtained by modulating an RF carrier of the subcarrier frequency with a transmission signal; and a light source for transmitting, as an up-link signal, modulated light having a wideband spectrum at a predetermined central wavelength and modulated by the RF modulation signal. The OLT includes: a receiver including an optical receiver for receiving, through the power splitter, the up-link signals respectively transmitted from each of the ONUs as subcarrier-multiplexed up-link signals to be converted to electric signals, and an RF demodulator compatible with each of the ONUs for demodulating the transmission signals of the ONUs from the electric signals based on the subcarrier frequencies allocated to each of the ONUs. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光アクセスシステムの高速化に適する光通信システムに関する。また、本発明は、光通信システムにおけるONUの送信器、OLTの受信器、およびONUの上り信号送信方法に関する。   The present invention relates to an optical communication system suitable for increasing the speed of an optical access system. The present invention also relates to an ONU transmitter, an OLT receiver, and an ONU upstream signal transmission method in an optical communication system.

光アクセスシステムの高速化は著しく、この5年程度の間に 100倍の高速・広帯域化が進み、ギガビットクラスのブロードバンドサービスがGE−PON(Gigabit Ethernet( 登録商標)−Passive Optical Network)システムの商用導入で経済的に提供されている。さらなる高速・広帯域化に向けた次世代PON技術のアプローチとしては、主に、これまでの延長技術である時間軸上でユーザ多重を行う時間多重(TDM)方式と、波長軸上でユーザ多重を行う波長多重(WDM)方式があり、後者をWDM−PONと呼んでいる。   The speed of optical access systems has been remarkably high, and in the last five years, the speed and bandwidth have increased by a factor of 100. Gigabit-class broadband services are now commercially available for GE-PON (Gigabit Ethernet (registered trademark)-Passive Optical Network) systems. Provided economically with introduction. The next-generation PON technology approach to further increase the speed and bandwidth is mainly the time multiplexing (TDM) method that performs user multiplexing on the time axis, which is an extension technology, and the user multiplexing on the wavelength axis. There is a wavelength division multiplexing (WDM) system, and the latter is called WDM-PON.

図1は、WDM−PONシステムの構成例を示す(非特許文献1)。
図において、局側に配置されるOLT(Optical Line Terminal:光加入者線終端盤)10と、ユーザ側に配置されるONU(Optical Network Unit:光ネットワーク終端装置)20−1〜20−n(nは自然数)とが、光ファイバ伝送路31、波長スプリッタ33またはパワースプリッタ34、n本の光ファイバ伝送路32を介して1対nで接続される。
FIG. 1 shows a configuration example of a WDM-PON system (Non-Patent Document 1).
In the figure, an OLT (Optical Line Terminal: optical subscriber line terminal board) 10 arranged on the station side and ONUs (Optical Network Unit: optical network termination devices) 20-1 to 20-n (on the user side) n is a natural number) is connected 1 to n through the optical fiber transmission line 31, the wavelength splitter 33 or the power splitter 34, and the n optical fiber transmission lines 32.

図1(a) の波長スプリッタ型WDM−PONでは、ONU20−1〜20−nにそれぞれ対応する波長λd1〜λdnの下り信号は、波長スプリッタ33で波長分波して各ONUに伝送される。また、ONU20−1〜20−nからそれぞれ出力される波長λu1〜λunの上り信号は、波長スプリッタ33で波長合波してOLT10に伝送される。   In the wavelength splitter type WDM-PON of FIG. 1A, the downstream signals of wavelengths λd1 to λdn corresponding to the ONUs 20-1 to 20-n are demultiplexed by the wavelength splitter 33 and transmitted to each ONU. Further, the upstream signals of wavelengths λu1 to λun respectively output from the ONUs 20-1 to 20-n are wavelength-multiplexed by the wavelength splitter 33 and transmitted to the OLT 10.

図1(b) のパワースプリッタ型WDM−PONでは、ONU20−1〜20−nにそれぞれ対応する波長λd1〜λdnの下り信号は、パワースプリッタ34でn分岐して各ONUに伝送される。各ONUは、それぞれ対応する波長λd1〜λdnの下り信号を選択して受信する。ONU20−1〜20−nからそれぞれ出力される波長λu1〜λunの上り信号は、パワースプリッタ34で合流してOLT10に伝送される。   In the power splitter type WDM-PON of FIG. 1B, downstream signals of wavelengths λd1 to λdn corresponding to the ONUs 20-1 to 20-n are branched into n by the power splitter 34 and transmitted to each ONU. Each ONU selects and receives downlink signals of the corresponding wavelengths λd1 to λdn. Uplink signals of wavelengths λu1 to λun output from the ONUs 20-1 to 20-n are joined by the power splitter 34 and transmitted to the OLT 10.

WDM−PONの物理的なトポロジーはパッシブダブルスターで、伝送路である光ファイバを複数のユーザで共用しているが、ユーザごとに異なる波長を割り当てているため、論理的なトポロジーはシングルスターとなっている。このため、伝送路をユーザで共用しながら、他のユーザに影響を与えることなく、ユーザごとに独立にサービスを設定・変更することができる。
K.Iwatsuki, J.Kani, H.Suzuki, and M.Fujiwara,"Access and Metro Networks based on WDM Technologies", IEEE J.Lightwave Technol.,Vol.22, No.11, pp.2623-2630,(2004)
The physical topology of WDM-PON is passive double star, and the optical fiber that is the transmission path is shared by multiple users, but since different wavelengths are assigned to each user, the logical topology is single star. It has become. For this reason, the service can be set and changed independently for each user without affecting other users while sharing the transmission path with the user.
K. Iwatsuki, J. Kani, H. Suzuki, and M. Fujiwara, "Access and Metro Networks based on WDM Technologies", IEEE J. Lightwave Technol., Vol. 22, No. 11, pp. 2623-2630, ( 2004)

WDM−PONでは、各ONUに波長が固定的に割り当てられるため、ユーザごとに送信波長が異なるONUを用意しなければならず、ユーザの利便性や保守運用性に欠けることになる。このため、波長を意識することなく使いやすいONUを実現するには、ONUを単一品種化し、局側(OLT側)からONUの送信波長を設定できるようにする必要があり、このような機能を実現する技術をONUのカラーレス技術と呼んでいる。   In WDM-PON, since a wavelength is fixedly assigned to each ONU, it is necessary to prepare ONUs having different transmission wavelengths for each user, and the convenience and maintenance operability for the user are lacking. For this reason, in order to realize an easy-to-use ONU without being aware of the wavelength, it is necessary to make the ONU as a single product so that the transmission wavelength of the ONU can be set from the station side (OLT side). This technology is called ONU's colorless technology.

カラーレス技術は、自発光方式と搬送波供給方式に大別できる。自発光方式は、図2(a) に示すように、ONU自身に波長選択性をもつ光源が搭載されており、開通時に局側から各ONUの送信波長を設定する。ここでは、ONU20−1〜20−nの送信器がそれぞれ波長λu1〜λunの上り信号を送信する。   Colorless technology can be broadly divided into a self-luminous system and a carrier wave supply system. As shown in FIG. 2 (a), in the self-light emitting method, a light source having wavelength selectivity is mounted on the ONU itself, and the transmission wavelength of each ONU is set from the station side at the time of opening. Here, the transmitters of the ONUs 20-1 to 20-n transmit uplink signals having wavelengths λu1 to λun, respectively.

搬送波供給方式は、図2(b) に示すように、ONU20−1〜20−nの送信器に光変調器が搭載されており、OLT10の光源から送信された波長λu1〜λunの連続光を波長スプリッタ33で波長分波し、各ONUに供給される各波長の連続光を変調して上り信号を生成している。例えば、ONU20−1に波長λd1の下り信号と波長λu1の連続光が入力し、波長λu1の連続光を変調して上り信号として折り返す構成を示す。   As shown in FIG. 2 (b), the carrier wave supply system includes an ONU 20-1 to 20 -n transmitter in which an optical modulator is mounted, and the continuous light of wavelengths λu 1 to λun transmitted from the light source of the OLT 10 is received. The wavelength splitter 33 demultiplexes the wavelength and modulates the continuous light of each wavelength supplied to each ONU to generate an upstream signal. For example, a configuration is shown in which a downstream signal of wavelength λd1 and continuous light of wavelength λu1 are input to ONU 20-1, and the continuous light of wavelength λu1 is modulated and turned back as an upstream signal.

図3は、既存PON(GE−PON)とWDM−PONが共存するシステム構成例を示す。ここでは、既存PONの光スプリッタはパワースプリッタであるため、共存するWDM−PONは図1(b) に示すパワースプリッタ34を用いた構成となる。   FIG. 3 shows a system configuration example in which an existing PON (GE-PON) and a WDM-PON coexist. Here, since the optical splitter of the existing PON is a power splitter, the coexisting WDM-PON has a configuration using the power splitter 34 shown in FIG.

図において、GE−PONに対応するOLT(GE−OLT)とONU(GE−ONU)、WDM−PONで波長λ1 を占有するOLT(λ1 −OLT)とONU(λ1 −ONU)、WDM−PONで波長λ2 を占有するOLT(λ2 −OLT)とONU(λ2 −ONU)は、波長合分波器35、光ファイバ伝送路31、パワースプリッタ34、光ファイバ伝送路32を介して接続される。GE−PONは、1波長を複数のONUで共用し、複数のONUで帯域を時間的にシェアする帯域共有サービスである。WDM−PONは、GE−PONとは別の波長帯でONUごとに1つの波長λ1,λ2を割り当て、各波長ごとに伝送速度の設定が可能な帯域占有サービスである。   In the figure, OLT (GE-OLT) and ONU (GE-ONU) corresponding to GE-PON, OLT (λ1 -OLT) and ONU (λ1 -ONU) occupying wavelength λ1 in WDM-PON, and WDM-PON The OLT (λ 2 -OLT) and the ONU (λ 2 -ONU) occupying the wavelength λ 2 are connected via a wavelength multiplexer / demultiplexer 35, an optical fiber transmission line 31, a power splitter 34, and an optical fiber transmission line 32. GE-PON is a bandwidth sharing service in which one wavelength is shared by a plurality of ONUs, and the bandwidth is temporally shared by a plurality of ONUs. The WDM-PON is a band occupation service in which one wavelength λ1 and λ2 is assigned to each ONU in a wavelength band different from that of the GE-PON, and a transmission rate can be set for each wavelength.

図3に示すパワースプリッタ型WDM−PONにおいて、自発光方式のカラーレスONUの送信器は、波長可変光源の発振波長を変化させる手法、または広帯域な光源の光スペクトルを波長可変フィルタで切り出す(波長可変フィルタの中心波長が送信波長となる)手法が用いられる。しかし、応答性が高く、広帯域で選択波長を可変できる安価な波長可変フィルタを実現することは困難であり、自発光方式のカラーレスONUを実現する上で課題になっていた。また、自発光方式では、局側から波長をモニタし他のONUと波長が重複しないように波長管理を行う必要があり、柔軟な運用を行う上で課題になっていた。   In the power splitter type WDM-PON shown in FIG. 3, a transmitter of a self-luminous colorless ONU uses a method of changing the oscillation wavelength of a wavelength tunable light source or a light spectrum of a broadband light source using a wavelength tunable filter (wavelength (The center wavelength of the variable filter is the transmission wavelength). However, it is difficult to realize an inexpensive wavelength tunable filter that has high responsiveness and can vary the selected wavelength in a wide band, and has been a problem in realizing a self-luminous colorless ONU. Further, in the self-light-emitting method, it is necessary to monitor the wavelength from the station side and perform wavelength management so that the wavelength does not overlap with other ONUs, which has been a problem for flexible operation.

本発明は、波長可変フィルタを用いずにパワースプリッタ型WDM−PONおよび自発光方式に対応するカラーレスONUを実現できる光通信システム、ONUの送信器、OLTの受信器、およびONUの上り信号送信方法を提供することを目的とする。   The present invention relates to an optical communication system, an ONU transmitter, an OLT receiver, and an ONU upstream signal transmission capable of realizing a power splitter type WDM-PON and a colorless ONU corresponding to a self-light-emitting method without using a wavelength tunable filter. It aims to provide a method.

第1の発明は、局側に配置されるOLTと、複数のユーザ側にそれぞれ配置されるONUがパワースプリッタおよび光ファイバ伝送路を介して接続された光通信システムにおいて、各ONUは、ONUごとに異なる少なくとも1つのサブキャリア周波数が割り当てられ、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成するRF変調手段と、所定の中心波長で広帯域なスペクトルを有しRF変調信号で変調した変調光を上り信号として送信する光源とを含む送信器を備え、OLTは、各ONUからそれぞれ送信された上り信号をパワースプリッタを介してサブキャリア多重された上り信号として受光して電気信号に変換する受光器と、各ONUに割り当てられたサブキャリア周波数に基づいて電気信号から各ONUの送信信号を復調する各ONU対応のRF復調器とを含む受信器を備える。   A first invention is an optical communication system in which an OLT arranged on a station side and ONUs arranged on a plurality of users are connected via a power splitter and an optical fiber transmission line, and each ONU is provided for each ONU. And at least one different subcarrier frequency is assigned, and RF modulation means for generating an RF modulation signal obtained by modulating an RF carrier of the assigned subcarrier frequency with a transmission signal, and having a broadband spectrum at a predetermined center wavelength A transmitter including a light source that transmits the modulated light modulated by the RF modulation signal as an upstream signal, and the OLT receives the upstream signal transmitted from each ONU as an upstream signal that is subcarrier-multiplexed via the power splitter. Based on the subcarrier frequency assigned to each ONU Comprising a receiver including a respective ONU corresponding RF demodulator for demodulating a transmission signal of each ONU from the electrical signal.

また、OSUの光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力し、RF変調信号でCW光を変調した変調光を上り信号として送信する光変調器を備えてもよい。また、OSUの光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力し、RF変調信号でCW光を変調し、かつ片側の変調スペクトルのみを有する変調光を上り信号として送信する光変調器を備えてもよい。   Further, instead of the OSU light source, an optical modulator is provided that inputs CW light having a wide spectrum at a predetermined center wavelength from an external light source, and transmits the modulated light obtained by modulating the CW light with an RF modulation signal as an upstream signal. May be. Also, instead of the OSU light source, CW light having a broad spectrum at a predetermined center wavelength is input from an external light source, the CW light is modulated with an RF modulation signal, and modulated light having only one side of the modulation spectrum is transmitted. You may provide the optical modulator transmitted as a signal.

また、OLTは、広帯域な上り信号を各波長成分に分波する波長分波器と、各ONU対応の受光器とを備え、波長分波器で分波された各波長成分の上り信号を各ONU対応の受光器でそれぞれ電気信号に変換し、各ONU対応のRF復調器で復調する構成としてもよい。   The OLT includes a wavelength demultiplexer that demultiplexes a broadband upstream signal into each wavelength component, and a receiver that supports each ONU, and each upstream signal of each wavelength component that is demultiplexed by the wavelength demultiplexer. An ONU-compatible light receiver may convert each signal into an electrical signal, and a demodulator may be demodulated by each ONU-compatible RF demodulator.

第2の発明は、第1の発明の光通信システムのONUの送信器において、各ONUに対して互いに異なる少なくとも1つのサブキャリア周波数が割り当てられ、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成するRF変調手段と、所定の中心波長で広帯域なスペクトルを有する出力光をRF変調信号で変調した変調光を上り信号として送信する光源とを備える。   According to a second aspect of the present invention, in the ONU transmitter of the optical communication system of the first aspect, at least one subcarrier frequency different from each other is assigned to each ONU, and RF carriers of the assigned subcarrier frequencies are transmitted. RF modulation means for generating an RF modulation signal modulated with a signal, and a light source for transmitting, as an upstream signal, modulated light obtained by modulating output light having a wide spectrum at a predetermined center wavelength with an RF modulation signal.

また、光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力し、RF変調信号でCW光を変調した変調光を上り信号として送信する光変調器を備えてもよい。また、光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力し、RF変調信号でCW光を変調し、かつ片側の変調スペクトルのみを有する変調光を上り信号として送信する光変調器を備えてもよい。   Further, instead of the light source, an optical modulator may be provided that inputs CW light having a wide spectrum at a predetermined center wavelength from an external light source, and transmits the modulated light obtained by modulating the CW light with an RF modulation signal as an upstream signal. Good. Also, instead of the light source, CW light having a wide spectrum at a predetermined center wavelength is input from an external light source, the CW light is modulated with an RF modulation signal, and modulated light having only one side modulation spectrum is used as an upstream signal. An optical modulator for transmission may be provided.

第3の発明は、第1の発明の光通信システムのOLTの受信器において、各ONUからそれぞれ送信された上り信号をパワースプリッタを介してサブキャリア多重された上り信号として受光して電気信号に変換する受光器と、各ONUに割り当てられたサブキャリア周波数に基づいて電気信号から各ONUの送信信号を復調する各ONU対応のRF復調器とを備える。   According to a third aspect of the present invention, in the OLT receiver of the optical communication system according to the first aspect, the upstream signal transmitted from each ONU is received as an upstream signal that is subcarrier multiplexed via the power splitter and converted into an electrical signal. A light receiver for conversion and an RF demodulator for each ONU that demodulates the transmission signal of each ONU from an electrical signal based on a subcarrier frequency assigned to each ONU.

第4の発明は、第1の発明の光通信システムのONUの上り信号送信方法において、各ONUに対して互いに異なる少なくとも1つのサブキャリア周波数が割り当てられたRF変調手段が、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成し、所定の中心波長で広帯域なスペクトルを有する光源からRF変調信号で変調した変調光を上り信号として送信する。   According to a fourth aspect of the present invention, in the upstream signal transmission method for an ONU of the optical communication system according to the first aspect of the present invention, the RF modulation means to which at least one subcarrier frequency different from each other is assigned to each ONU An RF modulation signal obtained by modulating an RF carrier wave having a carrier frequency with a transmission signal is generated, and modulated light modulated with the RF modulation signal is transmitted as an upstream signal from a light source having a broadband spectrum at a predetermined center wavelength.

また、光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力する光変調器を用い、RF変調信号でCW光を変調した変調光を上り信号として送信してもよい。また、光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力する光変調器を用い、RF変調信号でCW光を変調し、かつ片側の変調スペクトルのみを有する変調光を上り信号として送信してもよい。   Further, instead of the light source, an optical modulator that inputs CW light having a wide spectrum at a predetermined center wavelength from an external light source may be used, and modulated light obtained by modulating CW light with an RF modulation signal may be transmitted as an upstream signal. Good. Also, instead of a light source, an optical modulator that inputs CW light having a wide spectrum at a predetermined center wavelength from an external light source is used to modulate CW light with an RF modulation signal and to have only one side modulation spectrum Light may be transmitted as an upstream signal.

本発明は、互いに異なるサブキャリア周波数を利用する各ONUにおいて、サブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成し、所定の中心波長で広帯域なスペクトルを有する光源からRF変調信号で変調した変調光を上り信号として送信する。各ONUから送信された上り信号は、パワースプリッタを介してサブキャリア多重された上り信号としてOLTに入力される。OLTでは、この上り信号を電気信号に変換し、各ONUに割り当てられたサブキャリア周波数に基づいて電気信号から各ONUの送信信号を復調する。   The present invention generates an RF modulated signal obtained by modulating an RF carrier having a subcarrier frequency with a transmission signal in each ONU that uses different subcarrier frequencies, and generates an RF modulated signal from a light source having a wide spectrum at a predetermined center wavelength. The modulated light modulated in step S1 is transmitted as an upstream signal. The uplink signal transmitted from each ONU is input to the OLT as an uplink signal that is subcarrier multiplexed via the power splitter. In the OLT, this upstream signal is converted into an electric signal, and the transmission signal of each ONU is demodulated from the electric signal based on the subcarrier frequency assigned to each ONU.

このように、RF搬送波のサブキャリア周波数を各ONUとOLTの各RF復調器で対応させることにより、ONUとRF変調器が1対1に対応し、波長可変フィルタを用いずにパワースプリッタ型WDM−PONおよび自発光方式に対応するカラーレスONUを実現することができる。なお、ONUに電子回路からなるRF変調手段をもたせた方が、ONUに光モジュールである波長可変フィルタをもたせるよりも圧倒的に安価なONUを実現することができる。   In this way, by making the subcarrier frequency of the RF carrier correspond to each ONU and each RF demodulator of the OLT, the ONU and the RF modulator correspond one-to-one, and a power splitter type WDM without using a wavelength tunable filter. -A colorless ONU corresponding to the PON and the self-light-emitting method can be realized. Note that when the ONU is provided with RF modulation means made of an electronic circuit, an ONU that is overwhelmingly less expensive than when the ONU is provided with a wavelength tunable filter that is an optical module can be realized.

(第1の実施形態)
図4は、本発明の光通信システムの第1の実施形態を示す。
図において、局側に配置されるOLT10と、複数のユーザ側にそれぞれ配置されるONU20−1〜20−nは、光ファイバ伝送路31,32およびパワースプリッタ34を介して1対nに接続される。ここでは、ONU20−1〜20−nの送信器および各ONUに対応する上り信号を受信するOLT10の受信器の構成例を示し、下り信号の伝送系であるOLT10の送信器およびONU20−1〜20−nの受信器の構成は省略している。
(First embodiment)
FIG. 4 shows a first embodiment of the optical communication system of the present invention.
In the figure, the OLT 10 arranged on the station side and the ONUs 20-1 to 20-n arranged on the plurality of user sides are connected in a one-to-n relationship via optical fiber transmission lines 31 and 32 and a power splitter 34, respectively. The Here, a configuration example of a transmitter of the ONUs 20-1 to 20-n and a receiver of the OLT 10 that receives an upstream signal corresponding to each ONU is shown, and a transmitter of the OLT 10 that is a downstream signal transmission system and the ONUs 20-1 to 20-1 The configuration of the 20-n receiver is omitted.

ONU20−nの送信器は、乗算器21でサブキャリア周波数fn のRF搬送波にベースバンド送信信号を重畳し、フィルタ22で乗算器21から出力されるRF変調信号の片側帯波およびRF搬送波成分を切り出し、増幅器23およびバイアスT回路24を介して広帯域なスペクトルをもつスーパールミッセントダイオード(SLD)25に入力する構成である。ONU20−nのSLD25は、サブキャリア周波数fn のRF変調信号で変調された広帯域の変調光を出力する。なお、フィルタ23は省いてもよい。   The transmitter of the ONU 20-n superimposes the baseband transmission signal on the RF carrier having the subcarrier frequency fn by the multiplier 21, and the one-sideband and RF carrier component of the RF modulation signal output from the multiplier 21 by the filter 22. It is configured to cut out and input to a superluminescent diode (SLD) 25 having a broadband spectrum via an amplifier 23 and a bias T circuit 24. The SLD 25 of the ONU 20-n outputs a broadband modulated light modulated by an RF modulation signal having a subcarrier frequency fn. Note that the filter 23 may be omitted.

ここで、ONU20−1〜20−nの各送信器でベースバンド送信信号が重畳されるRF搬送波は、互いに異なるサブキャリア周波数f1 〜fn が用いられる。したがって、パワースプリッタ34で各ONUからの上り信号(変調光)が合流したときに、広帯域光に対してそれぞれサブキャリア周波数f1 〜fn の変調成分がサブキャリア多重された状態になる。   Here, mutually different subcarrier frequencies f1 to fn are used for RF carriers on which baseband transmission signals are superimposed by the transmitters of the ONUs 20-1 to 20-n. Therefore, when the upstream signal (modulated light) from each ONU is merged by the power splitter 34, the modulated components of the subcarrier frequencies f1 to fn are subcarrier multiplexed with respect to the broadband light.

OLT10の受信器は、受信する変調光を受光器12で電気信号に変換し、増幅器13で増幅し、増幅した電気信号を分配器14で各ONU対応の中心周波数f1 〜fn のRF復調器15−1〜15−nに分配する構成である。中心周波数fn のRF復調器15−nは、電気信号からサブキャリア周波数fn 成分を復調することにより、ONU20−nから送信されたベースバンド送信信号を抽出する。   The receiver of the OLT 10 converts the modulated light to be received into an electric signal by the light receiver 12, amplifies the amplified signal by the amplifier 13, and an RF demodulator 15 having center frequencies f 1 to f n corresponding to each ONU by the distributor 14. It is the structure distributed to -1 to 15-n. The RF demodulator 15-n having the center frequency fn extracts the baseband transmission signal transmitted from the ONU 20-n by demodulating the subcarrier frequency fn component from the electrical signal.

このように、RF搬送波のサブキャリア周波数f1 〜fn をONU20−1〜20−nとOLT10のRF復調器15−1〜15−nで対応させることにより、ONUとRF変調器が1対1に対応し、波長可変フィルタを用いずにパワースプリッタ型WDM−PONおよび自発光方式に対応するカラーレスONUを実現することができる。   In this way, the ONUs and RF modulators have a one-to-one correspondence by making the subcarrier frequencies f1 to fn of the RF carrier correspond to the ONUs 20-1 to 20-n and the RF demodulators 15-1 to 15-n of the OLT 10. Correspondingly, it is possible to realize a power splitter type WDM-PON and a colorless ONU corresponding to a self-luminous system without using a wavelength tunable filter.

(第2の実施形態)
図5は、本発明の光通信システムの第2の実施形態を示す。
第1の実施形態は、各ONUにおいてSLD25をRF変調信号で直接変調する構成であるが、本実施形態はSLD25に代えて光変調器26を用い、外部の広帯域なスペクトルをもつSLD等の光源から入力するCW光を外部変調する構成を特徴とする。その他の構成は第1の実施形態と同様である。
(Second Embodiment)
FIG. 5 shows a second embodiment of the optical communication system of the present invention.
In the first embodiment, the SLD 25 is directly modulated with an RF modulation signal in each ONU. However, in this embodiment, an optical modulator 26 is used instead of the SLD 25, and a light source such as an SLD having an external broadband spectrum is used. The configuration is characterized in that the CW light input from is externally modulated. Other configurations are the same as those of the first embodiment.

(第3の実施形態)
図6は、本発明の光通信システムの第3の実施形態を示す。
第2の実施形態は、各ONUにおいて光変調器26を用い、外部光源から入力するCW光を外部変調する構成であるが、本実施形態は光変調器26に代えてSSB(Single Sid Band) 光変調器27を用い、片側の変調スペクトル成分のみの変調光を下り信号として送信する構成を特徴とする。その他の構成は第1の実施形態および第2の実施形態と同様である。
(Third embodiment)
FIG. 6 shows a third embodiment of the optical communication system of the present invention.
In the second embodiment, an optical modulator 26 is used in each ONU and CW light input from an external light source is externally modulated. However, in this embodiment, an SSB (Single Sid Band) is used instead of the optical modulator 26. The optical modulator 27 is used to transmit modulated light having only one side of the modulated spectrum component as a downstream signal. Other configurations are the same as those in the first embodiment and the second embodiment.

なお、通常の光変調器では、AM変調で生じる両側帯波のように光キャリア(CW光)の両側に変調スペクトルが生じるが、SSB光変調器27では片側の変調スペクトルのみが得られます。通常の光変調器で発生したSCM変調光を送信する場合には、光ファイバの分散により両側の変調スペクトルの干渉状態に影響して波形劣化を生じさせるが、SSB光変調器27を利用することにより分散による波形劣化を低減できる効果がある。   A normal optical modulator generates a modulation spectrum on both sides of the optical carrier (CW light) like a double sideband generated by AM modulation, but the SSB optical modulator 27 can obtain only one side of the modulation spectrum. When transmitting SCM modulated light generated by a normal optical modulator, the dispersion of the optical fiber affects the interference state of the modulation spectrum on both sides and causes waveform deterioration. However, the SSB optical modulator 27 is used. This has the effect of reducing waveform deterioration due to dispersion.

(第4の実施形態)
図7は、本発明の光通信システムの第4の実施形態を示す。
本実施形態は、第1の実施形態のOLT10の構成を変更したものであるが、ONU20−1〜20−nとRF搬送波のサブキャリア周波数f1 〜fn を1対1に対応させ、よってONU20−1〜20−nとOLT10の中心周波数f1 〜fn のRF復調器15−1〜15−nを1対1で対応させるところは同じである。
(Fourth embodiment)
FIG. 7 shows a fourth embodiment of the optical communication system of the present invention.
In this embodiment, the configuration of the OLT 10 of the first embodiment is changed, but the ONUs 20-1 to 20-n and the subcarrier frequencies f1 to fn of the RF carrier are made to correspond one-to-one, and thus the ONU 20- 1 to 20-n and the RF demodulators 15-1 to 15-n having the center frequencies f1 to fn of the OLT 10 are made to correspond one-to-one.

本実施形態のOLT10は、上り信号として入力する広帯域の変調光を波長フィルタ16で波長λ1 〜λn の成分に分波し、各波長の変調光をそれぞれ対応するOSU(Optical Subscriber Unit:光加入者線終端装置) 17−1〜17−nに入力する。なお、各波長の変調光には、サブキャリア周波数f1 〜fn の成分がサブキャリア多重されている。例えばOSU17−nの受信器は、受信する波長λn の変調光を受光器12で電気信号に変換し、増幅器13で増幅し、増幅した電気信号を中心周波数fn のRF復調器15−nに入力する構成である。中心周波数fn のRF復調器15−nは、波長λn の変調光に対応する電気信号から周波数fn 成分を復調することにより、ONU20−nから送信されたベースバンド送信信号を抽出する。なお、本実施形態においてもOSUの下り信号の送信系の構成は省略している。   The OLT 10 of this embodiment demultiplexes broadband modulated light input as an upstream signal into components of wavelengths λ1 to λn by the wavelength filter 16, and each of the modulated light of each wavelength corresponds to an OSU (Optical Subscriber Unit: optical subscriber). Line termination device) Input to 17-1 to 17-n. The modulated light of each wavelength is subcarrier multiplexed with components of subcarrier frequencies f1 to fn. For example, the receiver of the OSU 17-n converts the received modulated light having the wavelength λn into an electric signal by the light receiver 12, amplifies it by the amplifier 13, and inputs the amplified electric signal to the RF demodulator 15-n having the center frequency fn. It is the structure to do. The RF demodulator 15-n having the center frequency fn extracts the baseband transmission signal transmitted from the ONU 20-n by demodulating the frequency fn component from the electrical signal corresponding to the modulated light having the wavelength λn. In this embodiment, the configuration of the transmission system for the OSU downlink signal is also omitted.

また、本実施形態のOLT10およびOSU17の構成は、第2の実施形態および第3の実施形態においても同様に適用することができる。   Further, the configurations of the OLT 10 and the OSU 17 of the present embodiment can be similarly applied to the second embodiment and the third embodiment.

(第5の実施形態)
第1〜第4の実施形態では、ONU20−1〜20−nとRF搬送波のサブキャリア周波数f1 〜fn を1対1に対応させ、よってONU20−1〜20−nとOLT10の中心周波数f1 〜fn のRF復調器15−1〜15−nを1対1で対応させていた。
(Fifth embodiment)
In the first to fourth embodiments, the ONUs 20-1 to 20-n and the subcarrier frequencies f1 to fn of the RF carrier are made to correspond one-to-one, so that the center frequencies f1 to the ONUs 20-1 to 20-n and the OLT 10 The RF demodulators 15-1 to 15-n of fn are made to correspond one-to-one.

第1〜第4の実施形態において、各ONUに割り当てるRF搬送波のサブキャリア周波数を複数とし、例えば互いに異なるサブキャリア周波数のRF搬送波に複数のベースバンド送信信号を重畳した複数のRF変調信号を多重し、多重RF変調信号で波長λ1 〜λn のCW光を変調する。ONUの送信器の一例を図8に示す。図8では、ベースバンド送信信号a,bをそれぞれサブキャリア周波数fa,fb のRF搬送波で変調したRF変調信号を加算器28で加算し、多重RF変調信号としている。一方、OLT10においても各ONUごとに複数のサブキャリア周波数に対応させた中心周波数を有するRF復調器を用いることにより、各ONUに割り当てる帯域の増大が可能となる。   In the first to fourth embodiments, a plurality of subcarrier frequencies of the RF carrier to be assigned to each ONU are set, for example, a plurality of RF modulation signals in which a plurality of baseband transmission signals are superimposed on RF carriers having different subcarrier frequencies are multiplexed. Then, the CW light of wavelengths λ1 to λn is modulated with the multiple RF modulation signal. An example of an ONU transmitter is shown in FIG. In FIG. 8, RF modulation signals obtained by modulating baseband transmission signals a and b with RF carriers of subcarrier frequencies fa and fb are added by an adder 28 to form a multiplexed RF modulation signal. On the other hand, also in the OLT 10, by using an RF demodulator having a center frequency corresponding to a plurality of subcarrier frequencies for each ONU, it is possible to increase the bandwidth allocated to each ONU.

また、各ONUに割り当てる複数のRF搬送波のサブキャリア周波数を固定的ではなく、OLTからの制御信号により動的に変更することにより、各ONUに割り当てる帯域を可変制御することができる。例えば、ONUの変調方式にOFDM(Orthogonal Frequency Division Multiplexing) を利用し、OFDMの各周波数成分をONUとOLTのRF復調器との間で割り当てることにより、帯域割り当てのきめ細かい制御が可能となる。   Further, the subcarrier frequencies of a plurality of RF carriers assigned to each ONU are not fixed, but can be variably controlled by dynamically changing the subcarrier frequencies according to a control signal from the OLT. For example, by using OFDM (Orthogonal Frequency Division Multiplexing) as the modulation scheme of the ONU and assigning each frequency component of OFDM between the ONU and the RF demodulator of the OLT, fine control of band allocation becomes possible.

WDM−PONシステムの構成例を示す図。The figure which shows the structural example of a WDM-PON system. カラーレスONUを用いたWDM−PONシステムの構成例を示す図。The figure which shows the structural example of the WDM-PON system using a colorless ONU. 既存PON(GE−PON)とWDM−PONが共存するシステム構成例を示す図。The figure which shows the system structural example in which the existing PON (GE-PON) and WDM-PON coexist. 本発明の光通信システムの第1の実施形態を示す図。The figure which shows 1st Embodiment of the optical communication system of this invention. 本発明の光通信システムの第2の実施形態を示す図。The figure which shows 2nd Embodiment of the optical communication system of this invention. 本発明の光通信システムの第3の実施形態を示す図。The figure which shows 3rd Embodiment of the optical communication system of this invention. 本発明の光通信システムの第4の実施形態を示す図。The figure which shows 4th Embodiment of the optical communication system of this invention. 本発明の光通信システムの第5の実施形態におけるONUの送信器の一例を示す図。The figure which shows an example of the transmitter of ONU in 5th Embodiment of the optical communication system of this invention.

符号の説明Explanation of symbols

10 OLT(光加入者線終端盤)
12 受光器
13 増幅器
14 分配器
15 RF復調器
16 波長フィルタ
17 OSU(光加入者線終端装置)
20 ONU(光ネットワーク終端装置)
21 乗算器
22 フィルタ
23 増幅器
24 光変調器
25 スーパールミッセントダイオード(SLD)
26 光変調器
27 SSB光変調器
28 加算器
31,32 光ファイバ伝送路
33 波長スプリッタ
34 パワースプリッタ
35 波長合分波器
10 OLT (Optical subscriber line terminal board)
DESCRIPTION OF SYMBOLS 12 Light receiver 13 Amplifier 14 Divider 15 RF demodulator 16 Wavelength filter 17 OSU (Optical subscriber line termination device)
20 ONU (Optical network terminator)
21 Multiplier 22 Filter 23 Amplifier 24 Optical Modulator 25 Super Luminescent Diode (SLD)
26 Optical modulator 27 SSB optical modulator 28 Adder 31, 32 Optical fiber transmission line 33 Wavelength splitter 34 Power splitter 35 Wavelength multiplexer / demultiplexer

Claims (11)

局側に配置される光加入者線終端盤(以下「OLT」という)と、複数のユーザ側にそれぞれ配置される光ネットワーク終端装置(以下「ONU」という)がパワースプリッタおよび光ファイバ伝送路を介して接続された光通信システムにおいて、
前記各ONUは、ONUごとに異なる少なくとも1つのサブキャリア周波数が割り当てられ、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成するRF変調手段と、所定の中心波長で広帯域なスペクトルを有し前記RF変調信号で変調した変調光を上り信号として送信する光源とを含む送信器を備え、
前記OLTは、前記各ONUからそれぞれ送信された前記上り信号を前記パワースプリッタを介してサブキャリア多重された上り信号として受光して電気信号に変換する受光器と、前記各ONUに割り当てられたサブキャリア周波数に基づいて前記電気信号から前記各ONUの送信信号を復調する各ONU対応のRF復調器とを含む受信器を備えた
ことを特徴とする光通信システム。
An optical subscriber line termination board (hereinafter referred to as “OLT”) disposed on the station side and an optical network termination device (hereinafter referred to as “ONU”) disposed on each of a plurality of users are connected to the power splitter and the optical fiber transmission line. In an optical communication system connected via
Each ONU is assigned at least one different subcarrier frequency for each ONU, and an RF modulation means for generating an RF modulation signal obtained by modulating an RF carrier wave of the assigned subcarrier frequency with a transmission signal, and a predetermined center wavelength A transmitter having a broadband spectrum and a light source that transmits the modulated light modulated by the RF modulation signal as an upstream signal,
The OLT receives the upstream signal transmitted from each ONU as a subcarrier multiplexed upstream signal via the power splitter and converts it into an electrical signal, and a sub-assignment assigned to each ONU. An optical communication system comprising: a receiver including an ONU-compatible RF demodulator that demodulates a transmission signal of each ONU from the electrical signal based on a carrier frequency.
請求項1に記載の光通信システムにおいて、
前記OSUの光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力し、前記RF変調信号でCW光を変調した変調光を上り信号として送信する光変調器を備えた
ことを特徴とする光通信システム。
The optical communication system according to claim 1,
In place of the OSU light source, an optical modulator is provided that inputs CW light having a broad spectrum at a predetermined center wavelength from an external light source, and transmits the modulated light obtained by modulating the CW light with the RF modulation signal as an upstream signal. An optical communication system characterized by that.
請求項1に記載の光通信システムにおいて、
前記OSUの光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力し、前記RF変調信号でCW光を変調し、かつ片側の変調スペクトルのみを有する変調光を上り信号として送信する光変調器を備えた
ことを特徴とする光通信システム。
The optical communication system according to claim 1,
Instead of the OSU light source, CW light having a broad spectrum at a predetermined center wavelength is input from an external light source, the CW light is modulated by the RF modulation signal, and modulated light having only one side modulation spectrum is transmitted. An optical communication system comprising an optical modulator for transmitting as a signal.
請求項1に記載の光通信システムにおいて、
前記OLTは、広帯域な前記上り信号を各波長成分に分波する波長分波器と、前記各ONU対応の受光器とを備え、前記波長分波器で分波された各波長成分の上り信号を前記各ONU対応の受光器でそれぞれ電気信号に変換し、前記各ONU対応のRF復調器で復調する構成である
ことを特徴とする光通信システム。
The optical communication system according to claim 1,
The OLT includes a wavelength demultiplexer for demultiplexing the broadband upstream signal into each wavelength component, and a receiver for each ONU, and the upstream signal of each wavelength component demultiplexed by the wavelength demultiplexer. An optical communication system, wherein the optical signal is converted into an electrical signal by each of the ONU-compatible light receivers and demodulated by the ONU-compatible RF demodulator.
請求項1に記載の光通信システムのONUの送信器において、
前記各ONUに対して互いに異なる少なくとも1つのサブキャリア周波数が割り当てられ、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成するRF変調手段と、
所定の中心波長で広帯域なスペクトルを有する出力光を前記RF変調信号で変調した変調光を上り信号として送信する光源と
を備えたことを特徴とするONUの送信器。
The ONU transmitter of the optical communication system according to claim 1,
RF modulation means for generating at least one subcarrier frequency different from each other for each ONU, and generating an RF modulation signal obtained by modulating an RF carrier of the assigned subcarrier frequency with a transmission signal;
An ONU transmitter comprising: a light source that transmits, as an upstream signal, modulated light obtained by modulating output light having a broadband spectrum at a predetermined center wavelength with the RF modulation signal.
請求項5に記載の光通信システムOSUの送信器において、
前記光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力し、前記RF変調信号でCW光を変調した変調光を上り信号として送信する光変調器を備えた
ことを特徴とするOSUの送信器。
The transmitter of the optical communication system OSU according to claim 5,
Instead of the light source, an optical modulator is provided that inputs CW light having a wide spectrum at a predetermined center wavelength from an external light source, and transmits the modulated light obtained by modulating the CW light with the RF modulation signal as an upstream signal. An OSU transmitter characterized by the above.
請求項5に記載の光通信システムOSUの送信器において、
前記光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力し、前記RF変調信号でCW光を変調し、かつ片側の変調スペクトルのみを有する変調光を上り信号として送信する光変調器を備えた
ことを特徴とするOSUの送信器。
The transmitter of the optical communication system OSU according to claim 5,
Instead of the light source, CW light having a broad spectrum at a predetermined center wavelength is input from an external light source, the CW light is modulated by the RF modulation signal, and modulated light having only one side of the modulation spectrum is used as an upstream signal. An OSU transmitter comprising an optical modulator for transmission.
請求項1に記載の光通信システムのOLTの受信器において、
前記各ONUからそれぞれ送信された前記上り信号を前記パワースプリッタを介してサブキャリア多重された上り信号として受光して電気信号に変換する受光器と、
前記各ONUに割り当てられたサブキャリア周波数に基づいて前記電気信号から前記各ONUの送信信号を復調する各ONU対応のRF復調器と
を備えたことを特徴とするOLTの受信器。
The OLT receiver of the optical communication system according to claim 1,
A light receiver that receives the upstream signal transmitted from each ONU as an upstream signal that is subcarrier-multiplexed via the power splitter and converts it into an electrical signal;
An OLT receiver comprising: an RF demodulator corresponding to each ONU that demodulates a transmission signal of each ONU from the electrical signal based on a subcarrier frequency assigned to each ONU.
請求項1に記載の光通信システムのONUの上り信号送信方法において、
前記各ONUに対して互いに異なる少なくとも1つのサブキャリア周波数が割り当てられたRF変調手段が、それぞれ割り当てられたサブキャリア周波数のRF搬送波を送信信号で変調したRF変調信号を生成し、
所定の中心波長で広帯域なスペクトルを有する光源から前記RF変調信号で変調した変調光を上り信号として送信する
ことを特徴とするONUの上り信号送信方法。
The ONU upstream signal transmission method of the optical communication system according to claim 1,
RF modulation means to which at least one subcarrier frequency different from each other is assigned to each ONU generates an RF modulation signal obtained by modulating an RF carrier of the assigned subcarrier frequency with a transmission signal,
An upstream signal transmission method for an ONU, wherein modulated light modulated by the RF modulation signal is transmitted as an upstream signal from a light source having a broadband spectrum at a predetermined center wavelength.
請求項9に記載のONUの上り信号送信方法において、
前記光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力する光変調器を用い、前記RF変調信号でCW光を変調した変調光を上り信号として送信する
ことを特徴とするONUの上り信号送信方法。
The ONU uplink signal transmission method according to claim 9,
In place of the light source, an optical modulator that inputs CW light having a wide spectrum at a predetermined center wavelength from an external light source is used, and modulated light obtained by modulating the CW light with the RF modulation signal is transmitted as an upstream signal. An ONU upstream signal transmission method characterized by
請求項9に記載のONUの上り信号送信方法において、
前記光源に代えて、外部光源から所定の中心波長で広帯域なスペクトルを有するCW光を入力する光変調器を用い、前記RF変調信号でCW光を変調し、かつ片側の変調スペクトルのみを有する変調光を上り信号として送信する
ことを特徴とするONUの上り信号送信方法。
The ONU uplink signal transmission method according to claim 9,
Instead of the light source, an optical modulator that inputs CW light having a wide spectrum at a predetermined center wavelength from an external light source is used, and the CW light is modulated by the RF modulation signal and only one side of the modulation spectrum is modulated. An ONU upstream signal transmission method characterized by transmitting light as an upstream signal.
JP2008285111A 2008-11-06 2008-11-06 Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu Pending JP2010114621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008285111A JP2010114621A (en) 2008-11-06 2008-11-06 Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008285111A JP2010114621A (en) 2008-11-06 2008-11-06 Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu

Publications (1)

Publication Number Publication Date
JP2010114621A true JP2010114621A (en) 2010-05-20

Family

ID=42302838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008285111A Pending JP2010114621A (en) 2008-11-06 2008-11-06 Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu

Country Status (1)

Country Link
JP (1) JP2010114621A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172680A1 (en) * 2011-06-17 2012-12-20 三菱電機株式会社 Subcarrier access control device, optical network system, and subcarrier access control method for optical network system
JP2014068092A (en) * 2012-09-25 2014-04-17 Nippon Telegr & Teleph Corp <Ntt> Optical communication system
CN114172580A (en) * 2021-12-22 2022-03-11 欧梯恩智能科技(苏州)有限公司 Optical sensor network WDM-PON system based on adjustable ONU and signal propagation method
CN114389689A (en) * 2022-01-12 2022-04-22 烽火通信科技股份有限公司 Coherent transmitting/receiving device, coherent PON system, and uplink burst processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183519A (en) * 1992-01-07 1993-07-23 Nec Corp Subscriber system optical network communication system
JP2001077794A (en) * 1999-09-08 2001-03-23 Matsushita Electric Ind Co Ltd Optical transmission system and optical transmitter
JP2006246104A (en) * 2005-03-04 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength division multiplex transmitter, optical wavelength division multiplex transmission system, and optical transmission circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05183519A (en) * 1992-01-07 1993-07-23 Nec Corp Subscriber system optical network communication system
JP2001077794A (en) * 1999-09-08 2001-03-23 Matsushita Electric Ind Co Ltd Optical transmission system and optical transmitter
JP2006246104A (en) * 2005-03-04 2006-09-14 Nippon Telegr & Teleph Corp <Ntt> Optical wavelength division multiplex transmitter, optical wavelength division multiplex transmission system, and optical transmission circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172680A1 (en) * 2011-06-17 2012-12-20 三菱電機株式会社 Subcarrier access control device, optical network system, and subcarrier access control method for optical network system
JP2014068092A (en) * 2012-09-25 2014-04-17 Nippon Telegr & Teleph Corp <Ntt> Optical communication system
CN114172580A (en) * 2021-12-22 2022-03-11 欧梯恩智能科技(苏州)有限公司 Optical sensor network WDM-PON system based on adjustable ONU and signal propagation method
CN114172580B (en) * 2021-12-22 2023-07-25 欧梯恩智能科技(苏州)有限公司 Optical sensing network WDM-PON system based on adjustable ONU and signal propagation method
CN114389689A (en) * 2022-01-12 2022-04-22 烽火通信科技股份有限公司 Coherent transmitting/receiving device, coherent PON system, and uplink burst processing method
CN114389689B (en) * 2022-01-12 2023-05-23 烽火通信科技股份有限公司 Coherent transmitting/receiving device, coherent PON system, and uplink burst processing method

Similar Documents

Publication Publication Date Title
Cvijetic et al. 100 Gb/s optical access based on optical orthogonal frequency-division multiplexing
Cvijetic et al. Orthogonal frequency division multiple access PON (OFDMA-PON) for colorless upstream transmission beyond 10 Gb/s
Chow et al. Studies of OFDM signal for broadband optical access networks
US8705970B2 (en) Method for data processing in an optical network, optical network component and communication system
US8934773B2 (en) Method for data processing in an optical network, optical network component and communication system
KR100785436B1 (en) Wavelength division multiplexing passive optical network for convergence broadcasting service and communication service
JP6351877B2 (en) Optical communication device, control signal receiving circuit, and optical communication system
US20070121189A1 (en) Data transmission devices for communication facilities of a passive optical network
KR20090018573A (en) Time division multiple access over wavelength division multiplexed passive optical network
US20110076018A1 (en) Improved Optical Access Network and Nodes
KR20140076112A (en) Optical line terminal for monitoring and controlling of upstream/downstream optical signals
Shaddad et al. Emerging optical broadband access networks from TDM PON to OFDM PON
JP2010245987A (en) Optical/radio access system
JP2010114621A (en) Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
WO2010064999A1 (en) Wavelength division multiplexed passive optical network
JP5122498B2 (en) Optical signal transmission method, optical communication system, optical transmitter and optical receiver
JP5896415B2 (en) Optical transceiver
Yeh et al. Symmetric> 67 Gbps OFDM-IMDD based WDM access network for mitigating Rayleigh backscattering interference noise
JP2010114622A (en) Optical communication system, transmitter of optical subscriber unit, receiver of optical network unit, and method for transmitting outgoing signal of optical subscriber unit
JP5122499B2 (en) Optical signal transmission method, optical communication system, optical transmitter and optical receiver
JP4699413B2 (en) Wavelength multiplexer
KR100845412B1 (en) Wdm-pon networks with tone frequency
JP2003124893A (en) Optical wavelength multiplex distribution type network group
JP2010114623A (en) Optical communication system, transmitter of onu, receiver of olt, and method of transmitting up-link signal of onu
KR101150688B1 (en) Device and method for generating the millimeter-wave based radio over fiber system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911