JP2010112867A - Vibration or elastic wave detector - Google Patents

Vibration or elastic wave detector Download PDF

Info

Publication number
JP2010112867A
JP2010112867A JP2008286335A JP2008286335A JP2010112867A JP 2010112867 A JP2010112867 A JP 2010112867A JP 2008286335 A JP2008286335 A JP 2008286335A JP 2008286335 A JP2008286335 A JP 2008286335A JP 2010112867 A JP2010112867 A JP 2010112867A
Authority
JP
Japan
Prior art keywords
fbg
fbg1
vibration
fbg2
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008286335A
Other languages
Japanese (ja)
Other versions
JP5196483B2 (en
Inventor
Hiroshi Tsuda
浩 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008286335A priority Critical patent/JP5196483B2/en
Publication of JP2010112867A publication Critical patent/JP2010112867A/en
Application granted granted Critical
Publication of JP5196483B2 publication Critical patent/JP5196483B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a vibration or elastic wave detector for improving a signal noise ratio of AE, ultrasonic response or response signals for vibration by having a simple structure. <P>SOLUTION: The vibration or elastic wave detector for making wide band light including a reflective wavelength region of a receiving part FBG1 and a filter part FBG2 incident on the receiving part FBG1 and the filter part FBG2 and measuring vibration or elastic waves received with the receiving part FBG1 from intensity change of transmission light or reflection light of the receiving part FBG1 and the filter part FBG2 attaches the receiving part FBG1 and the filter part FBG2 to a specimen 7 so that reflection light distribution of the receiving part FBG1 and the filter part FBG2 is always intersected even when the receiving part FBG1 receives temperature change or strain. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、振動又は弾性波検出装置に関する発明である。   The present invention relates to a vibration or elastic wave detection device.

本発明は、ファイバーブラッグ格子(FBG)を利用して、振動、ひずみ、アコースティック・エミッション(AE)および超音波を検出する振動又は弾性波検出装置に関するもので、構造物の健全性評価等に適用することができる技術に関する。   The present invention relates to a vibration or elastic wave detection device that detects vibration, strain, acoustic emission (AE), and ultrasonic waves using a fiber Bragg grating (FBG), and is applied to structural soundness evaluation, etc. Related to the technology that can be.

従来、振動および弾性波の検出には、それぞれひずみゲージおよび圧電素子が広く用いられている。しかしながら、ひずみゲージおよび圧電素子は、電磁波障害を受けることから電磁波雰囲気では振動および弾性波計測が出来ない。また、圧電素子は、狭帯域な応答周波数特性を有することから検出する振動又は弾性波周波数帯域に合わせて圧電素子の種類を変更する必要があるなどの欠点がある。   Conventionally, strain gages and piezoelectric elements have been widely used for detecting vibrations and elastic waves, respectively. However, since strain gauges and piezoelectric elements are subject to electromagnetic interference, vibration and elastic wave measurement cannot be performed in an electromagnetic wave atmosphere. In addition, since the piezoelectric element has a narrow response frequency characteristic, there is a drawback that it is necessary to change the type of the piezoelectric element in accordance with the vibration or elastic wave frequency band to be detected.

近年、上記したひずみゲージまたは圧電素子による振動又は弾性波計測の問題を解決するため光ファイバセンサの一種であるFBGを用いた振動又は弾性波計測技術が注目されている。FBGは光ファイバの導光路であるコアのファイバ軸方向に周期的にわずかに屈折率を変化させた構造を取り、次の式(1)で与えられるブラッグ波長λBを中心とする狭帯域光を反射する特徴を有する。   In recent years, a vibration or elastic wave measurement technique using an FBG, which is a kind of optical fiber sensor, has been attracting attention in order to solve the above-described problem of vibration or elastic wave measurement using a strain gauge or a piezoelectric element. The FBG has a structure in which the refractive index is slightly changed periodically in the fiber axis direction of the core, which is a light guide path of the optical fiber, and narrow band light centered on the Bragg wavelength λB given by the following equation (1). It has a reflective feature.

λB=2nΛ ………(1)
ここでn、およびΛはコアの屈折率、および屈折率変化の周期間隔を表す。
λB = 2nΛ (1)
Here, n and Λ represent the refractive index of the core and the periodic interval of the refractive index change.

FBGがひずみ、または温度変化を受けたとき、そのブラッグ波長はひずみ、または温度に比例して変化することが知られている。そのためFBGが微小で高速なひずみ振動をもたらす弾性波(AE、または超音波)を受けたときは、FBGのブラッグ波長は弾性波と同期して振動する。   It is known that when an FBG is subjected to strain or temperature change, its Bragg wavelength changes in proportion to strain or temperature. Therefore, when the FBG receives an elastic wave (AE or ultrasonic wave) that causes minute and high-speed strain vibration, the Bragg wavelength of the FBG vibrates in synchronization with the elastic wave.

これまでに利用されてきた広帯域光を光源とし、FBGをセンサとする振動又は弾性波検出システムを図1に示す。FBGセンサの反射波長域を含む広帯域光を光サーキュレータ4を介してFBGセンサに入射し、FBGセンサからの反射光を光サーキュレータ4を介して光学フィルタに入射する。   FIG. 1 shows a vibration or elastic wave detection system using broadband light used as a light source and FBG as a sensor. Broadband light including the reflection wavelength region of the FBG sensor is incident on the FBG sensor via the optical circulator 4, and reflected light from the FBG sensor is incident on the optical filter via the optical circulator 4.

光学フィルタの透過光、または反射光を光電変換器5に入射し、その光強度を電気信号に変換する。弾性波受信に伴うFBGのブラッグ波長の変動は1pm(ピコメートル、10のマイナス12乗)レベル、またはそれ以下の微小なものである。この微小なブラッグ波長の振動を高感度で検出するためには、光学フィルタはFBGのブラッグ波長近傍、数pm〜数十pmの狭い波長域で急峻な特性変化を有する必要がある。   The light transmitted through the optical filter or the reflected light is incident on the photoelectric converter 5 and the light intensity is converted into an electric signal. The fluctuation of the Bragg wavelength of the FBG due to the elastic wave reception is a minute level of 1 pm (picometer, minus 10 to the power of 12) or less. In order to detect the vibration of this minute Bragg wavelength with high sensitivity, the optical filter needs to have a steep characteristic change in the vicinity of the Bragg wavelength of the FBG and in a narrow wavelength range of several pm to several tens of pm.

室温、無ひずみ条件下でブラッグ波長1550nmを有するFBGは温度1℃あたりブラッグ波長は約14pm、1マイクロひずみあたり約1.2pm変化する。このため図1に示したシステムで光学フィルタの光学特性が変化する波長が固定の場合、FBGセンサが10℃以上の温度変化、または100マイクロひずみを超えるひずみ変化を受けた際、FBGセンサのブラッグ波長は光学フィルタの狭帯域な特性変化波長域から外れて、弾性波を検出できなくなる。   An FBG having a Bragg wavelength of 1550 nm under room temperature and unstrained conditions changes the Bragg wavelength by about 14 pm per 1 ° C. and about 1.2 pm per micro strain. Therefore, when the wavelength at which the optical characteristics of the optical filter change is fixed in the system shown in FIG. 1, when the FBG sensor is subjected to a temperature change of 10 ° C. or more, or a strain change exceeding 100 microstrain, the Bragg of the FBG sensor The wavelength deviates from the narrow band characteristic change wavelength region of the optical filter, and the elastic wave cannot be detected.

そのため光学フィルタには波長可変フィルタを用い、FBGセンサの温度、ひずみ変化に伴うブラッグ波長の変動に応じて、光学フィルタの特性変化波長域を制御する必要がある。しかしながら現在市販されている計測器を用いてブラッグ波長の評価を行い、その結果に基づいて波長可変フィルタを制御するには少なくとも1秒程度かかる。   Therefore, it is necessary to use a wavelength tunable filter as the optical filter, and to control the characteristic change wavelength range of the optical filter in accordance with the fluctuation of the Bragg wavelength accompanying the temperature and strain change of the FBG sensor. However, it takes at least about 1 second to evaluate the Bragg wavelength using a commercially available measuring instrument and to control the tunable filter based on the result.

このため連続的なひずみ変化を与えるような振動を受ける部材においては波長可変フィルタを用いたシステムで弾性波を検出することは不可能である。また波長可変フィルタは高価であることもこのシステムの欠点となっている。   For this reason, it is impossible to detect an elastic wave by a system using a wavelength tunable filter in a member that receives a vibration that gives a continuous strain change. Another disadvantage of this system is that the tunable filter is expensive.

本発明者は、特開2008−046036では光フィルタとして波長FSR毎に周期的な透過域を有するファブリ・ペローフィルタを用いてFBGセンサが大きなひずみ、または温度変化を受けてブラッグ波長が大きく変動しても弾性波を常時検出可能とする発明を提案した(特許文献1参照)。   The inventor of the present invention uses a Fabry-Perot filter having a periodic transmission band for each wavelength FSR as an optical filter in Japanese Patent Application Laid-Open No. 2008-046036. The FBG sensor undergoes large distortion or temperature change, and the Bragg wavelength greatly fluctuates. However, an invention that can always detect elastic waves has been proposed (see Patent Document 1).

この発明では、FBGの反射波長幅と同等なFSRを有する二つのファブリ・ペローフィルタの透過域をFSR/4だけ異なるように温度調節器を用いて設定する。上記した仕様を満たす二つのファブリ・ペローフィルタを、図1中で並列配置して光学フィルタとすることで、FBGセンサがひずみ、または温度変化を受けてブラッグ波長が変動しても、FBGセンサの反射特性が単調変化する波長域に常にどちらかのファブリ・ペローフィルタの透過域が存在することになり、弾性波の検出が常時可能になる。   In the present invention, a temperature controller is used to set the transmission ranges of two Fabry-Perot filters having an FSR equivalent to the reflection wavelength width of the FBG so as to differ by FSR / 4. By arranging two Fabry-Perot filters satisfying the above specifications in parallel in FIG. 1 as an optical filter, even if the FBG sensor is subjected to distortion or temperature change, the Bragg wavelength fluctuates. The transmission region of either Fabry-Perot filter always exists in the wavelength region where the reflection characteristic changes monotonously, and the elastic wave can always be detected.

特開2008−046036JP2008-046036

上記特許文献1記載の発明は、ファブリ・ペローフィルタ、およびその透過域を制御するための温度調節器を要することから、装置自体が高価になる欠点がある。また、上記した波長可変フィルタやファブリ・ペローフィルタを用いた弾性波計測システムでは、これらの装置をチャンネル毎に揃える必要がある。そのため多チャンネルで弾性波計測を行うとき、非常にコストのかかる装置となる。   The invention described in Patent Document 1 requires a Fabry-Perot filter and a temperature controller for controlling the transmission region thereof, so that the apparatus itself is expensive. In the elastic wave measurement system using the above-described wavelength tunable filter and Fabry-Perot filter, it is necessary to arrange these devices for each channel. Therefore, it becomes a very expensive device when performing elastic wave measurement with multiple channels.

本発明は、上記従来の問題を解決することを目的とするものであり、構成が簡単で、しかも弾性波応答や振動に対する応答信号の信号ノイズ比を改善可能な振動又は弾性波検出装置を実現することを課題とする。   The present invention aims to solve the above-mentioned conventional problems, and realizes a vibration or elastic wave detection device that has a simple configuration and can improve the signal-to-noise ratio of the response signal to the elastic wave response and vibration. The task is to do.

本発明は上記課題を解決するために、受信部FBGおよびフィルタ部FBGの反射波長域を含む広帯域光を、受信部FBGおよびフィルタ部FBGに入射し、受信部FBGおよびフィルタ部FBGの透過光または反射光の強度変化から受信部FBGが受ける振動又は弾性波を計測する振動又は弾性波検出装置において、受信部FBGがひずみまたは温度変化を受けても受信部FBGおよびフィルタ部FBGの反射光分布が常に交差するように受信部FBGおよびフィルタ部FBGを被検体に取り付けることを特徴とする振動又は弾性波検出装置を提供する。   In order to solve the above-described problem, the present invention makes broadband light including the reflection wavelength range of the reception unit FBG and the filter unit FBG incident on the reception unit FBG and the filter unit FBG, or the transmitted light of the reception unit FBG and the filter unit FBG or In the vibration or elastic wave detection device that measures the vibration or elastic wave received by the receiving unit FBG from the intensity change of the reflected light, the reflected light distribution of the receiving unit FBG and the filter unit FBG remains even if the receiving unit FBG is subjected to distortion or temperature change. Provided is a vibration or elastic wave detection device in which a reception unit FBG and a filter unit FBG are attached to a subject so as to always intersect.

本発明は上記課題を解決するために、受信部FBGおよびフィルタ部FBGの反射波長域を含む広帯域光を、受信部FBGおよびフィルタ部FBGに入射し、受信部FBGおよびフィルタ部FBGの透過光または反射光の強度変化から受信部FBGが受ける振動およびひずみを計測する振動又は弾性波検出装置において、受信部FBGが受ける温度変化をフィルタであるFBGにも等しく受けさせることを特徴とする振動又は弾性波検出装置を提供する。   In order to solve the above-described problem, the present invention makes broadband light including the reflection wavelength range of the reception unit FBG and the filter unit FBG incident on the reception unit FBG and the filter unit FBG, or the transmitted light of the reception unit FBG and the filter unit FBG or In a vibration or elastic wave detection device that measures vibration and distortion received by the receiving unit FBG from intensity change of reflected light, the vibration or elasticity that causes the FBG that is a filter to receive the temperature change received by the receiving unit FBG equally. A wave detection device is provided.

一つのFBGに局所的なひずみを導入して反射特性に二つのピークを持たせることで、受信部FBGとフィルタ部FBGの二つの機能を一つのFBGに持たせる構成としてもよい。   A configuration may be adopted in which one FBG has two functions of the receiving unit FBG and the filter unit FBG by introducing local distortion into one FBG to have two peaks in reflection characteristics.

本発明の振動又は弾性波検出装置は、任意の箇所で振動又は弾性波検出するために利用されるものである。   The vibration or elastic wave detection device of the present invention is used to detect vibration or elastic waves at an arbitrary location.

本発明によれば、構成が簡単で、しかも弾性波応答や振動に対する応答信号の信号ノイズ比を改善可能な振動又は弾性波検出装置を得ることができる。   According to the present invention, it is possible to obtain a vibration or elastic wave detection device that has a simple configuration and that can improve the signal-to-noise ratio of the response signal to the elastic wave response and vibration.

本発明に係る弾性波計測装置および計測方法の実施の形態を実施例に基づいて図面を参照して、以下に説明する。   DESCRIPTION OF EMBODIMENTS Embodiments of an elastic wave measuring apparatus and a measuring method according to the present invention will be described below with reference to the drawings based on examples.

図2は、本発明の全体構成を説明する図である。この図2に示すように、本発明では、FBGから成る受信部1(以下、「受信部FBG」という。)およびFBGから成るフィルタ部2(以下、「フィルタ部FBG」という。)が設けられている。なお、図2中、受信部FBG1とフィルタ部FBG2の順番を逆にしても以下に述べる振動又は弾性波を検出する機能は変わらない。   FIG. 2 is a diagram illustrating the overall configuration of the present invention. As shown in FIG. 2, in the present invention, a receiving unit 1 made of FBG (hereinafter referred to as “receiving unit FBG”) and a filter unit 2 made of FBG (hereinafter referred to as “filter unit FBG”) are provided. ing. In FIG. 2, even if the order of the receiving unit FBG1 and the filter unit FBG2 is reversed, the function of detecting vibrations or elastic waves described below does not change.

広帯域光源3から、受信部FBG1およびフィルタ部FBG2の反射波長域を含む広帯域光を、光サーキュレータ4を介して受信部FBG1およびフィルタ部FBG2に入射し、受信部FBG1およびフィルタ部FBG2からの反射光を光サーキュレータ4を介して光強度を電気信号に変換する光電変換器5に入射し、その電気信号を収録し、必要に応じて表示する装置(信号収録・表示装置)6に接続されている。   Broadband light including the reflection wavelength range of the receiving unit FBG1 and the filter unit FBG2 is incident on the receiving unit FBG1 and the filter unit FBG2 via the optical circulator 4 from the broadband light source 3, and reflected light from the receiving unit FBG1 and the filter unit FBG2 Is incident on a photoelectric converter 5 that converts light intensity into an electric signal via an optical circulator 4 and is connected to a device (signal recording / display device) 6 that records the electric signal and displays it as necessary. .

図2のように、受信部FBG1およびフィルタ部FBG2が直列に配置されている場合、図2の光電変換器5に入射される受信部FBG1およびフィルタ部FBG2からの反射光強度は、受信部FBG1およびフィルタ部FBG2の反射光強度分布曲線で囲まれる面積で表される。   When the receiving unit FBG1 and the filter unit FBG2 are arranged in series as shown in FIG. 2, the reflected light intensity from the receiving unit FBG1 and the filter unit FBG2 incident on the photoelectric converter 5 in FIG. And the area surrounded by the reflected light intensity distribution curve of the filter unit FBG2.

被検体がある温度において無ひずみ状態では、受信部FBG1とフィルタ部FBG2の反射光分布は、図3(a)で表されるものとする。   In a non-distorted state at a certain temperature of the subject, the reflected light distribution of the receiving unit FBG1 and the filter unit FBG2 is represented by FIG.

受信部FBG1に弾性波が到達して、受信部FBG1に微小な引張りと圧縮が交互に現れるひずみ変化が生じた場合を考える。受信部FBG1が引張りを受けた場合は、図3(b)のように、受信部FBG1のブラッグ波長が長波長側にシフトし、両反射光分布曲線が交差する面積が減少し、両反射光分布曲線で囲まれる面積が増加することから光電変換器5出力は増加する。   Consider a case where an elastic wave arrives at the receiving unit FBG1 and a strain change in which minute tension and compression alternately appear in the receiving unit FBG1. When the receiving unit FBG1 is pulled, as shown in FIG. 3B, the Bragg wavelength of the receiving unit FBG1 is shifted to the long wavelength side, the area where both reflected light distribution curves intersect is reduced, and both reflected light is reflected. Since the area surrounded by the distribution curve increases, the output of the photoelectric converter 5 increases.

逆に受信部FBG1が圧縮を受けた場合は、図3(c)のように、両反射光分布曲線で囲まれる面積が減少することから光電変換器5出力は低下する。このように受信部FBG1とフィルタ部FBG2の反射光分布が常時、交差する場合においては上記した原理に基づいて弾性波を検出することができる。   On the contrary, when the receiving unit FBG1 is compressed, as shown in FIG. 3C, the area surrounded by the both reflected light distribution curves decreases, and thus the output of the photoelectric converter 5 decreases. As described above, when the reflected light distributions of the reception unit FBG1 and the filter unit FBG2 always intersect, an elastic wave can be detected based on the principle described above.

しかしながら受信部FBG1およびフィルタ部FBG2の反射光分布曲線が完全に分離するほど大きなひずみや温度変化を受けた場合、反射光分布曲線が交差していないため弾性波を受信部FBG1が受けても光電変換器5出力に変化は現れない。ひずみや温度変化(参考:FBGの反射光分布は、温度変化により熱膨張に起因する熱ひずみの他、光ファイバの光学特性である光弾性定数が温度に依存し、温度変化に伴うひずみと光弾性定数の変化を受けてブラッグ波長は変動する。)に関係なく、図3のように受信部FBG1およびフィルタ部FBG2の反射光分布を常時交差させるための手段として、以下の二つが考えられる。   However, if the reflected light distribution curves of the receiving unit FBG1 and the filter unit FBG2 are subjected to a large distortion or temperature change so as to be completely separated, the reflected light distribution curves do not intersect, so that even if the receiving unit FBG1 receives an elastic wave, No change appears in the converter 5 output. Strain and temperature change (Reference: FBG reflected light distribution is not only thermal strain caused by thermal expansion due to temperature change, but also the photoelastic constant, which is the optical characteristic of optical fiber, depends on temperature. Regardless of the change in the elastic constant, the Bragg wavelength fluctuates.) Regardless of whether the Bragg wavelength fluctuates, the following two methods are conceivable as means for constantly intersecting the reflected light distributions of the receiving unit FBG1 and the filter unit FBG2 as shown in FIG.

第一の手段は、FBGの一部を接着材で被検体表面に固定する、または被検体内部に埋め込み固定することによりFBGの一部にひずみが残留できるようにする。即ち、図26に示すように、一つのFBGの一部を被検体に接着または埋め込んで受信部FBG1とし、残りの非接着部、または非埋め込み部をフィルタ部FBG2とする。この構成では、受信部FBG1とフィルタ部FBG2は光ファイバ軸方向に連続しており、接着または埋め込み界面が、受信部FBG1−フィルタ部FBG2の界面となる。   The first means allows a strain to remain in a part of the FBG by fixing a part of the FBG to the surface of the subject with an adhesive or by embedding and fixing the FBG inside the subject. That is, as shown in FIG. 26, a part of one FBG is bonded or embedded in a subject to form a receiving unit FBG1, and the remaining non-bonded or non-embedded unit is used as a filter unit FBG2. In this configuration, the receiving unit FBG1 and the filter unit FBG2 are continuous in the optical fiber axial direction, and the bonding or embedding interface is the interface between the receiving unit FBG1 and the filter unit FBG2.

このように、FBGの一部に残留ひずみを与えることにより、FBGに二つの異なるひずみ状態が存在することになる。そのため二つの異なるブラッグ波長の反射光分布が現れ、残留ひずみを制御することで二つの反射光分布を交差させることができる。FBGの接着、または埋め込み時の圧着力、および光ファイバ軸方向の引張り、または圧縮力の調整によりFBGに与える残留ひずみを制御することができる。   Thus, by giving a residual strain to a part of the FBG, two different strain states exist in the FBG. Therefore, reflected light distributions of two different Bragg wavelengths appear, and the two reflected light distributions can be crossed by controlling the residual strain. Residual strain applied to the FBG can be controlled by adjusting the bonding force of the FBG, or the pressing force at the time of embedding, and the tensile or compressive force in the optical fiber axial direction.

第二の手段は、図27に示すように、二つのFBGをそれぞれ受信部FBG1およびフィルタ部FBG2として用い、両FBGの反射光分布が交差するように被検体表面、または内部に両FBGを取り付ける。   As shown in FIG. 27, the second means uses two FBGs as the receiving unit FBG1 and the filter unit FBG2, respectively, and attaches both FBGs on the surface of the subject or inside so that the reflected light distributions of both FBGs intersect each other. .

ここで、具体的な被検体への受信部FBG1およびフィルタ部FBG2の取り付け構造例を以下に挙げる。   Here, an example of a structure for attaching the receiving unit FBG1 and the filter unit FBG2 to a specific subject will be described below.

構造例1:
二つの個別のFBGを、図4(a)において、受信部FBG1およびフィルタ部FBG2として、図3に示すように二つのFBGの反射光分布が交差するように、被検体7の表面または被検体7の内部に取り付ける。
Structural example 1:
In FIG. 4A, the two individual FBGs are used as the receiving unit FBG1 and the filter unit FBG2 so that the reflected light distributions of the two FBGs intersect as shown in FIG. 7 is attached inside.

被検体7が温度、およびひずみ変化を受けても、両反射光分布が交差するように受信部FBG1とフィルタ部FBG2が受ける温度、およびひずみに差が現れない箇所に取り付ける。また受信部FBG1が受けるひずみや温度変化が微小で、両反射光分布が交差する条件を崩さない場合はフィルタ部を未接着とする取り付け構造も可能である。   Even if the subject 7 is subjected to temperature and strain changes, it is attached to a location where there is no difference in the temperature and strain received by the receiving unit FBG1 and the filter unit FBG2 so that both reflected light distributions intersect. In addition, when the distortion and temperature change received by the receiving unit FBG1 are very small and the conditions where the two reflected light distributions cross each other are not destroyed, an attachment structure in which the filter unit is not bonded is also possible.

構造例2:
図4(b)に示すように被検体7が受けるひずみを伝えることなく、被検体7を伝搬する弾性波を導波する板(導波板と呼ぶ)を被検体7に取り付け、導波板に二つの個別のFBGを受信部FBG1およびフィルタ部FBG2として図3に示すように二つのFBGの反射光分布が交差するように接着させる。
Structural example 2:
As shown in FIG. 4B, a plate (referred to as a waveguide plate) for guiding an elastic wave propagating through the subject 7 without transmitting the strain received by the subject 7 is attached to the subject 7, and the waveguide plate The two individual FBGs are bonded as the receiving unit FBG1 and the filter unit FBG2 so that the reflected light distributions of the two FBGs intersect as shown in FIG.

なお、光ファイバと同じ熱膨張率を有する部材を導波板8に用いることで、フィルタ部FBG2が導波板8に接着されていなくても、受信部FBG1とフィルタ部FBG2は温度変化により同じブラッグ波長変化を受けることになる。このため温度変化が生じても受信部FBG1とフィルタ部FBG2の反射光分布が交差する条件は崩れることがない。   In addition, by using a member having the same thermal expansion coefficient as that of the optical fiber for the waveguide plate 8, even if the filter unit FBG2 is not bonded to the waveguide plate 8, the reception unit FBG1 and the filter unit FBG2 are the same due to temperature changes. It will be subject to Bragg wavelength change. For this reason, even if a temperature change occurs, the condition where the reflected light distributions of the reception unit FBG1 and the filter unit FBG2 intersect is not broken.

構造例3:
この取付構造は、図4(c)に示すように、被検体7に取り付けた導波板8に接着した部分が受信部FBG1となり、非接着部分がフィルタ部FBG2となるように取り付ける。受信部FBG1に局所的な残留ひずみを与えることで図3に示すような二つのピークが存在し、両反射光分布が交差する反射特性を持つFBGを構成することができる。なお、図4(c)では接着された受信部FBG1を光サーキュレータ4と結合させても、非接着のフィルタ部FBG2を光サーキュレータ4と結合させても機能は変わらない。
Structure example 3:
As shown in FIG. 4C, this attachment structure is attached so that the part adhered to the waveguide plate 8 attached to the subject 7 becomes the receiving part FBG1, and the non-adhesive part becomes the filter part FBG2. By giving local residual distortion to the receiving unit FBG1, two peaks as shown in FIG. 3 exist, and an FBG having reflection characteristics in which both reflected light distributions intersect can be configured. In FIG. 4C, the function does not change even if the bonded receiver FBG 1 is coupled to the optical circulator 4 or the non-adhered filter unit FBG 2 is coupled to the optical circulator 4.

このとき導波板8に光ファイバとは異なる熱膨張率の部材を用いた場合、温度変化により受信部FBG1とフィルタ部FBG2が受けるブラッグ波長変化は異なる。このため弾性波検出に必要な受信部FBG1とフィルタ部FBG2の反射光分布が交差する条件が崩れる恐れがある。光ファイバと同じ熱膨張率を有する部材を導波板8に用いた場合、温度変化に伴う両者が受けるブラッグ波長変化は同じで、弾性波検出感度を保つことができる。   At this time, when a member having a coefficient of thermal expansion different from that of the optical fiber is used for the waveguide plate 8, the Bragg wavelength change received by the receiving unit FBG1 and the filter unit FBG2 differs depending on the temperature change. For this reason, there is a possibility that the condition where the reflected light distributions of the reception unit FBG1 and the filter unit FBG2 that are necessary for elastic wave detection intersect is broken. When a member having the same coefficient of thermal expansion as that of the optical fiber is used for the waveguide plate 8, the Bragg wavelength change that both undergo with the temperature change is the same, and the elastic wave detection sensitivity can be maintained.

上述したように導波板8に受信部FBG1とフィルタ部FBG2を取り付けた場合、被検体7が受けるひずみ変化は受信部、およびフィルタ部FBG2のブラッグ波長に全く影響を与えない。また温度変化が生じても導波板8に光ファイバと同じ熱膨張率を有する部材を用いることで、受信部、およびフィルタ部FBG2のブラッグ波長は同様に変化することになる。つまり被検体7が受ける温度やひずみ変化に関係なく弾性波検出に必要な両反射光分布が交差する条件を崩すことがなく、弾性波検出感度を保つことができる。   As described above, when the receiving unit FBG1 and the filter unit FBG2 are attached to the waveguide plate 8, the distortion change received by the subject 7 does not affect the Bragg wavelengths of the receiving unit and the filter unit FBG2 at all. Even if the temperature changes, by using a member having the same coefficient of thermal expansion as that of the optical fiber for the waveguide plate 8, the Bragg wavelengths of the receiving unit and the filter unit FBG2 are similarly changed. That is, the condition for detecting the elastic wave can be maintained without breaking the condition in which the two reflected light distributions necessary for the elastic wave detection intersect regardless of the temperature or strain change received by the subject 7.

また、受信部FBG1が受けるひずみや温度変化が微小で、両反射光分布が交差する条件を崩さない場合は、導波板8を介さず、図28に示すように、受信部FBG1を、接着剤によって被検体7に固定することで局所的残留ひずみを与えた状態で、フィルタ部FBG2とともに、直接、被検体7に取り付ける構成としてよい。   Further, when the distortion or temperature change received by the receiving unit FBG1 is very small and the conditions where the two reflected light distributions intersect do not break, the receiving unit FBG1 is bonded without using the waveguide plate 8 as shown in FIG. It may be configured to be directly attached to the subject 7 together with the filter unit FBG2 in a state in which local residual strain is given by being fixed to the subject 7 with an agent.

構造例4:
被検体7よりも音速の低い材料を被検体7表面に水などのカップラントを介して接触させると弾性波の導波板8として機能する(特開2006−132952号公報)。また、被検体7との音速の大小に関わらず板厚を薄くしていくと導波板8として機能する。
Structural example 4:
When a material having a sound velocity lower than that of the subject 7 is brought into contact with the surface of the subject 7 via a coupling agent such as water, it functions as an acoustic wave waveguide plate 8 (Japanese Patent Laid-Open No. 2006-132952). Further, the wave guide plate 8 functions as the plate thickness is reduced regardless of the speed of sound with the subject 7.

例えば、図4(d)に示すように導波板8に二つの個別のFBGを、受信部FBG1およびフィルタ部FBG2として、図3に示すように、二つのFBGの反射光分布が交差するように接着させる。このような受信部FBG1を貼り付けた導波板8は被検体7の任意の箇所に取り付けることが出来、可動式弾性波検出部として機能する。   For example, as shown in FIG. 4 (d), two individual FBGs are provided on the waveguide plate 8 as a receiving unit FBG1 and a filter unit FBG2, so that the reflected light distributions of the two FBGs intersect as shown in FIG. Adhere to. The waveguide plate 8 to which the receiving unit FBG1 is attached can be attached to an arbitrary portion of the subject 7 and functions as a movable elastic wave detection unit.

なお、温度変化を受けても受信部FBG1とフィルタ部FBG2の反射光分布が交差する条件を崩さないような光ファイバと同じ熱膨張率を有する部材を導波板8として用いた場合は、フィルタ部FBG2を導波板8へ未接着とする取り付け構造も可能である。   When a member having the same coefficient of thermal expansion as that of the optical fiber that does not break the condition that the reflected light distributions of the receiving unit FBG1 and the filter unit FBG2 intersect even when the temperature is changed is used as the waveguide plate 8, the filter An attachment structure in which the portion FBG2 is not bonded to the waveguide plate 8 is also possible.

局所的残留ひずみを与えて交差する反射光分布を持たせた受信部FBG1およびフィルタ部FBG2を、図29に示すように貼り付けた導波板8は、温度変化が微小で反射光分布が交差する条件が崩れない場合、または導波板8に光ファイバと同じ熱膨張率の部材を用いることにより、可動式弾性波検出部として機能する。   The waveguide plate 8 in which the reception unit FBG1 and the filter unit FBG2 that have crossed reflected light distributions by giving local residual strain are pasted as shown in FIG. 29 has a minute temperature change and the reflected light distributions intersect. If the conditions to be used are not broken, or a member having the same coefficient of thermal expansion as that of the optical fiber is used for the waveguide plate 8, it functions as a movable elastic wave detector.

受信部FBG1およびフィルタ部FBG2の被検体7または導波板8への取り付けの際、受信部FBG1およびフィルタ部FBG2に広帯域光を入射し、光スペクトルアナライザを用いて受信部FBG1およびフィルタ部FBG2からの反射光分布の交差状況を確認しながら作業することが好ましい。   When the receiving unit FBG1 and the filter unit FBG2 are attached to the subject 7 or the waveguide plate 8, broadband light is incident on the receiving unit FBG1 and the filter unit FBG2, and is received from the receiving unit FBG1 and the filter unit FBG2 using an optical spectrum analyzer. It is preferable to work while confirming the intersection of the reflected light distributions.

構造例5:
受信部FBG1とフィルタ部FBG2を同じ温度を受けるように被検体7に取り付けることで、被検体7の可聴域振動や変形によるひずみを計測することが可能である。受信部FBG1と同じ温度変化をフィルタ部FBG2に与え、被検体7が受けるひずみを受信部FBG1に伝えるための構造例として、図5(a)、(b)のように被検体7の二点を光ファイバと同じ熱膨張率の部材で接続し、その接続部材にFBG受信部のみを接着させ、フィルタ部FBG2は受信部と同じ温度を受ける範囲に設置する。
Structural example 5:
By attaching the receiving unit FBG1 and the filter unit FBG2 to the subject 7 so as to receive the same temperature, it is possible to measure distortion of the subject 7 due to audible vibration and deformation. As a structural example for giving the same temperature change to the filter unit FBG2 as the receiving unit FBG1 and transmitting the strain received by the subject 7 to the receiving unit FBG1, two points of the subject 7 as shown in FIGS. Are connected by a member having the same coefficient of thermal expansion as that of the optical fiber, only the FBG receiving unit is adhered to the connecting member, and the filter unit FBG2 is installed in a range that receives the same temperature as the receiving unit.

なお、図5(a)は、受信部FBG1およびフィルタ部FBG2は、それぞれ個別のFBGで構成されている。図5(b)は、受信部FBG1に局所的残留ひずみを導入することで、受信部FBG1とフィルタ部FBG2が、単一FBGで構成され、単一FBGに二つの機能を持たせた検出部を表している。   In FIG. 5A, the receiving unit FBG1 and the filter unit FBG2 are each configured by an individual FBG. FIG. 5B shows a detection unit in which the reception unit FBG1 and the filter unit FBG2 are configured by a single FBG by introducing local residual strain into the reception unit FBG1, and the single FBG has two functions. Represents.

また、温度変化を無視しても良い場合は、導波板8を介することなく、図30に示すように、被検体7表面または内部に、受信部FBG1を取り付けることで振動、ひずみ計測が可能である。   If the temperature change can be ignored, vibration and strain can be measured by attaching the receiving unit FBG1 to the surface of or inside the subject 7 as shown in FIG. It is.

構造例6:
振動・ひずみ検出部として導波板8を介さず図5(c)に示すように直接、受信部FBG1およびフィルタ部FBG2を取り付けることも可能である。受信部FBG1およびフィルタ部FBG2を被検体7の異なる箇所に貼り付ける。このとき両FBGは同じ温度を受けるように設置する。受信部FBG1とフィルタ部FBG2の貼り付け箇所におけるひずみの差を測定することができる。なお、図4と図5は、共通する構造が示されているが、図4はすべて弾性波計測用のセンサ構造であり、図5はすべてひずみ・振動計測用のセンサ構造である。
Structural example 6:
As shown in FIG. 5C, it is possible to directly attach the receiving unit FBG1 and the filter unit FBG2 without using the waveguide plate 8 as the vibration / strain detecting unit. The receiving unit FBG1 and the filter unit FBG2 are attached to different portions of the subject 7. At this time, both FBGs are installed to receive the same temperature. It is possible to measure the difference in strain at the location where the receiving unit FBG1 and the filter unit FBG2 are attached. 4 and 5 show a common structure, FIG. 4 is a sensor structure for elastic wave measurement, and FIG. 5 is a sensor structure for strain / vibration measurement.

二つのFBGを受信部とフィルタ部に用いる場合、フィルタ部FBG2のグレーティング長を受信部FBG1と比較して短くする、またはフィルタにチャープFBGを用いることで図6のように受信部の反射特性と比較して広い波長域の反射特性をフィルタ部FBG2に持たせることができる。   When two FBGs are used for the reception unit and the filter unit, the grating length of the filter unit FBG2 is made shorter than that of the reception unit FBG1, or by using a chirp FBG for the filter, as shown in FIG. In comparison, the filter section FBG2 can have reflection characteristics in a wide wavelength range.

図6のように受信部の反射特性と比較して広い波長域の反射特性をフィルタ部FBG2に持たせた場合、受信部FBG1およびフィルタ部FBG2からの反射光強度は受信部FBG1のブラッグ波長におけるフィルタ部FBG2の反射率の高さに比例することになる。   As shown in FIG. 6, when the filter unit FBG2 has a reflection characteristic in a wider wavelength range than the reflection characteristic of the reception unit, the reflected light intensity from the reception unit FBG1 and the filter unit FBG2 is the Bragg wavelength of the reception unit FBG1. This is proportional to the height of the reflectance of the filter unit FBG2.

したがって、受信部FBG1のひずみ変化に伴うブラッグ波長変化を受信部FBG1およびフィルタ部FBG2からの反射光強度として検出することができることから、図6のような光学特性を有する二つのFBGの組み合わせは振動・ひずみ検出センサとして機能することになる。このようなセンサにおいては反射特性の異なるFBGの組み合わせることで振動・ひずみ測定が可能なひずみ範囲を制御することができる。   Therefore, since the Bragg wavelength change accompanying the distortion change of the receiving unit FBG1 can be detected as the reflected light intensity from the receiving unit FBG1 and the filter unit FBG2, the combination of two FBGs having optical characteristics as shown in FIG.・ It will function as a strain detection sensor. In such a sensor, by combining FBGs having different reflection characteristics, a strain range in which vibration / strain measurement is possible can be controlled.

FBGの一部を被検体7に接着剤で貼り付けて、FBGに局所的残留ひずみを導入して反射特性に二つのピークを持たせることで、1つのFBGに、受信部とフィルタ部の二つの機能を持たせ、被検体7を伝搬する弾性波を検出した実験を実施例1として以下説明する。   A part of the FBG is attached to the subject 7 with an adhesive, and a local residual strain is introduced into the FBG so that the reflection characteristic has two peaks. An experiment that has two functions and detects an elastic wave propagating through the subject 7 will be described below as a first embodiment.

この実施例1の振動又は弾性波検出装置を図7に示す。この実施例1では、弾性波を伝搬させる被検体7としてアルミ板を用い、FBGの半分の長さの部分を接着材で被検体7に固定させて受信部FBG1とし、残りの非接着のFBGをフィルタ部FBG2とした。超音波発振子9には信号発生器10から超音波励起信号が送られ、超音波発振子9から被検体7に超音波を伝搬させるような構成とした。   FIG. 7 shows the vibration or elastic wave detection device of the first embodiment. In the first embodiment, an aluminum plate is used as the subject 7 for propagating the elastic wave, and a half-length portion of the FBG is fixed to the subject 7 with an adhesive material to form the receiving unit FBG1, and the remaining non-adhered FBG. Was defined as a filter unit FBG2. An ultrasonic excitation signal is sent from the signal generator 10 to the ultrasonic oscillator 9, and the ultrasonic wave is propagated from the ultrasonic oscillator 9 to the subject 7.

一方、広帯域光源3からの広帯域光を光サーキュレータ4を通して受信部FBG1およびフィルタ部FBG2に入射し、受信部FBG1およびフィルタ部FBG2からの反射光は、光サーキュレータ4を通して光電変換器5に送られ、そこで反射光強度は電気信号に変換される構成とした。そして、光電変換器5出力は、信号増幅器11、電気信号フィルタ12を通して信号収録・表示装置6に送られる構成とした。   On the other hand, the broadband light from the broadband light source 3 is incident on the receiving unit FBG1 and the filter unit FBG2 through the optical circulator 4, and the reflected light from the receiving unit FBG1 and the filter unit FBG2 is sent to the photoelectric converter 5 through the optical circulator 4, Therefore, the reflected light intensity is converted into an electric signal. The output of the photoelectric converter 5 is sent to the signal recording / display device 6 through the signal amplifier 11 and the electric signal filter 12.

被検体7を伝搬する超音波は被検体7と接着している受信部FBG1を通過し、受信部FBG1の反射光分布は超音波振動に同期して振動することになる。一方、フィルタ部FBG2の反射光分布は超音波の影響を受けず固定されていることから、図3を用いて説明したように光電変換器5出力が超音波振動に同期して変化することになる。   The ultrasonic wave propagating through the subject 7 passes through the receiving unit FBG1 bonded to the subject 7, and the reflected light distribution of the receiving unit FBG1 vibrates in synchronization with the ultrasonic vibration. On the other hand, since the reflected light distribution of the filter unit FBG2 is fixed without being affected by the ultrasonic wave, the output of the photoelectric converter 5 changes in synchronization with the ultrasonic vibration as described with reference to FIG. Become.

この実施例1では、超音波検出感度が最大になるように被検体7であるアルミ板にひずみを与えることで、受信部FBG1にひずみを与え、超音波検出感度が最大となるように受信部FBG1の反射特性を制御した。   In the first embodiment, the receiving unit FBG1 is distorted by distorting the aluminum plate which is the subject 7 so that the ultrasonic detection sensitivity is maximized, and the ultrasonic wave detection sensitivity is maximized. The reflection characteristics of FBG1 were controlled.

図8に、被検体7に接着する前の受信部FBG1反射特性と、実施例1のようにFBGの一部を接着し超音波検出感度が最大となった場合の受信部とフィルタ部の二つの機能を持たせたFBG反射特性を、比較して示す。被検体7に接着する前の反射光分布には一つの反射光ピークが存在した。被検体7にFBGの一部を接着した場合は、接着部にひずみを与えることにより、接着部である受信部FBG1と非接着部であるフィルタ部FBG2からの2つの反射ピークが現れた(図8参照)。   FIG. 8 shows the reflection characteristics of the receiving part FBG1 before bonding to the subject 7 and the receiving part and the filter part when the ultrasonic detection sensitivity is maximized by bonding a part of the FBG as in the first embodiment. The FBG reflection characteristics having two functions are shown in comparison. There was one reflected light peak in the reflected light distribution before adhering to the subject 7. When a part of the FBG is bonded to the subject 7, two reflection peaks appear from the receiving unit FBG1 that is the bonded unit and the filter unit FBG2 that is the non-bonded unit by applying distortion to the bonded unit (FIG. 8).

受信部FBG1とフィルタ部FBG2の反射光分布を模式図で示すと、図9のように表すことができる。反射率の高さ、つまり反射光強度が異なるのは受信部とフィルタ部のグレーティング長さが異なっていることに起因していると考えられる。   When the reflected light distributions of the receiving unit FBG1 and the filter unit FBG2 are schematically shown, they can be expressed as shown in FIG. The high reflectance, that is, the reflected light intensity is different because the grating lengths of the receiving unit and the filter unit are different.

被検体7を伝搬した超音波を、図7に示すような振動又は弾性波検出装置で検出した応答信号を、図10に示す。尚、超音波応答波形収録においては、512回の平均化処理を行った。図10の一番下にフィルタ処理を行わなかった場合の応答波形を示す。試験時間0ms以降から現れる信号が超音波に対する応答である。   FIG. 10 shows a response signal in which the ultrasonic wave propagated through the subject 7 is detected by a vibration or elastic wave detection device as shown in FIG. In addition, in the ultrasonic response waveform recording, the averaging process was performed 512 times. The response waveform when the filter processing is not performed is shown at the bottom of FIG. A signal appearing after the test time of 0 ms is a response to the ultrasonic wave.

この未フィルタ処理信号の周波数成分強度を調べた結果を図11に示す。この場合、400kHz以下に高い周波数成分強度が現れた。そこで電気信号フィルタを用いて低周波通過処理を行った。100から500kHzまでの低周波通過処理を行った応答波形を図10の上5つに示す。このように電気信号フィルタによるフィルタ処理を施すことで、この振動又は弾性波検出装置を用いてさらに明確な超音波応答の検出が可能になった。   FIG. 11 shows the result of examining the frequency component intensity of the unfiltered signal. In this case, a high frequency component intensity appeared below 400 kHz. Therefore, low-frequency pass processing was performed using an electric signal filter. The top five response waveforms after the low-frequency pass processing from 100 to 500 kHz are shown in FIG. By performing the filtering process using the electric signal filter as described above, it becomes possible to detect the ultrasonic response more clearly using the vibration or elastic wave detection device.

材料の破壊に伴い発生するAEの検出を模擬することを目的に、シャープペンシル芯の圧折時に発生するAEを検出した実験を実施例2として説明する。用いた振動又は弾性波検出装置は、図7において超音波発振子の代わりにシャープペンシル芯の圧折を被検体7上で行い、被検体7に擬似AEを伝搬させた。   For the purpose of simulating the detection of AE that occurs due to the destruction of the material, an experiment in which AE that occurs when the mechanical pencil core is crushed will be described as Example 2. The vibration or elastic wave detector used in FIG. 7 performed a mechanical pencil core collapse on the subject 7 instead of the ultrasonic oscillator, and propagated the pseudo AE to the subject 7.

それ以外は、図7と同じ振動又は超音波検出装置を用いている。ただし偶発的に生じる材料破壊に伴うAE信号の検出を模擬しているため、応答波形収録において平均化処理は行っていない。   Other than that, the same vibration or ultrasonic detection device as in FIG. 7 is used. However, since AE signal detection accompanying accidental material destruction is simulated, averaging processing is not performed in response waveform recording.

図12にシャープペンシル芯圧折時の擬似AE応答波形を示す。図12の一番下が電気信号フィルタ12によるフィルタ処理を行わなかった場合の応答波形である。ノイズに埋もれて擬似AEが検出できたのか識別できない。   FIG. 12 shows a pseudo AE response waveform at the time of mechanical pencil crushing. The bottom of FIG. 12 is a response waveform when the filtering process by the electric signal filter 12 is not performed. It is not possible to identify whether the pseudo AE has been detected due to noise.

この未フィルタ処理波形の周波数成分強度を図13に示す。平均化処理を行っていないこの応答波形にはノイズ成分が多く含まれ、広い周波数特性が現れた。しかし、一般に破壊発生に伴うAEは数100kHz以下の帯域を計測すれば破壊検知には十分である。そこでペンシル芯圧折時の応答信号を50kHz、100kHz、および200kHzをカットオフ周波数として低周波通過フィルタ処理した。   FIG. 13 shows the frequency component intensity of this unfiltered waveform. This response waveform not subjected to the averaging process contains a lot of noise components, and a wide frequency characteristic appears. However, in general, the AE associated with the occurrence of destruction is sufficient for detecting the destruction if a band of several hundred kHz or less is measured. Therefore, the response signal at the time of the pencil core folding was subjected to low-frequency pass filter processing using 50 kHz, 100 kHz, and 200 kHz as cutoff frequencies.

それらの結果を図12の上3つのグラフに示す。このように低周波通過フィルタ処理を施すことで高周波ノイズに埋もれていた擬似AE信号を本振動又は弾性波検出装置を用いて検出することが可能になった。   The results are shown in the upper three graphs of FIG. By performing the low-frequency pass filter processing in this way, it becomes possible to detect the pseudo AE signal buried in the high-frequency noise using the main vibration or elastic wave detection device.

実施例1および実施例2で説明した振動又は弾性波検出装置では、一つのFBGに局所的残留ひずみを与えることで弾性波検出可能な受信部とフィルタ部FBG2の反射光分布が交差する図8のような反射光分布を持たせている。   In the vibration or elastic wave detection device described in the first and second embodiments, the reflected light distributions of the reception unit and the filter unit FBG2 that can detect elastic waves intersect each other by applying local residual strain to one FBG. The reflected light distribution is given as follows.

このような特徴を有する反射特性は、上記構造例1〜4として示したFBGの取り付け構造でも実現できることから、これらの取り付け構造により、同様に弾性波検出が可能である。   Since the reflection characteristics having such characteristics can be realized by the FBG mounting structures shown as the structural examples 1 to 4 above, the elastic waves can be similarly detected by these mounting structures.

被検体7に局所的残留ひずみを導入したFBGを貼り付けて、振動を計測した実験を実施例3として説明する。用いた振動又は弾性波検出装置は、図14に示すようにFBG13の約半分の長さを接着材14で被検体7の表面に貼り付け、残りは被検体7と接着させずにひずみを与えない状態にした。   An experiment in which vibration is measured by attaching an FBG with a local residual strain introduced to the subject 7 will be described as Example 3. As shown in FIG. 14, the vibration or elastic wave detection apparatus used has a length of about half of the FBG 13 attached to the surface of the subject 7 with the adhesive 14, and the rest is distorted without being adhered to the subject 7. There was no state.

接着部のFBGは、被検体7と同じひずみを受けることから受信部FBG1として機能し、非接着部のFBGは、接着部FBGのひずみに伴うブラッグ波長の変動を反射光強度に変換するフィルタ部FBG2としての役割を果たすことになる。   Since the FBG of the bonded portion receives the same strain as the subject 7, it functions as the receiving portion FBG 1, and the FBG of the non-bonded portion converts the fluctuation of the Bragg wavelength accompanying the strain of the bonded portion FBG into a reflected light intensity. It will play the role of FBG2.

広帯域光は、光サーキュレータ4を通して、受信部FBG1およびフィルタ部FBG2に入射され、受信部FBG1とフィルタ部FBG2からの反射光は、光サーキュレータ4を介して、光電変換器5に入射され、光強度は、電気信号に変換されて信号収録・表示装置6に保存される。   The broadband light is incident on the receiving unit FBG1 and the filter unit FBG2 through the optical circulator 4, and the reflected light from the receiving unit FBG1 and the filter unit FBG2 is incident on the photoelectric converter 5 through the optical circulator 4, and the light intensity. Is converted into an electrical signal and stored in the signal recording / display device 6.

被検体7を、図14のように片持ち梁として、自由端に曲げ負荷を与えて自由振動させたときの光電変換器5出力を収録した。また参照のためひずみゲージを受信部FBG1(接着部14)の隣に貼り付けて、ひずみも同時に収録した。   The output of the photoelectric converter 5 was recorded when the subject 7 was cantilevered as shown in FIG. 14 and subjected to free vibration by applying a bending load to the free end. For reference, a strain gauge was attached next to the receiving unit FBG1 (bonding unit 14), and strain was recorded at the same time.

片持ち梁の自由振動時における光電変換器5出力とひずみゲージから測定されたひずみを図15に示す。試験開始の曲げ負荷を与えた際の引っ張りひずみの増加に伴い、光電変換器5出力は、あるひずみを超えてから増加率が低下し、最大引っ張りひずみ時に最大出力を示した。   FIG. 15 shows the strain measured from the output of the photoelectric converter 5 and the strain gauge during free vibration of the cantilever. With the increase in tensile strain when a bending load at the start of the test was applied, the output rate of the photoelectric converter 5 decreased after exceeding a certain strain, and the maximum output was shown at the maximum tensile strain.

その後、自由振動により引張り−圧縮が周期的に現れるひずみ変化に対して、試験時間約5秒までの光電変換器5出力は、周期的なひずみ変化とは同期しない応答挙動を示した。しかしそれ以降は、ひずみ変化と一致する周期的な光電変換器5出力が観察された。   Thereafter, with respect to the strain change in which tension-compression appears periodically due to free vibration, the output of the photoelectric converter 5 up to a test time of about 5 seconds showed a response behavior that was not synchronized with the periodic strain change. However, after that, periodic photoelectric converter 5 output consistent with the strain change was observed.

周期的なひずみ変化と同期しない光電変換器5出力が現れた時点の応答を、図16に拡大して示す。光電変換器5出力の極大点は、ひずみの極大、または極小点に対応する。また、光電変換器5出力の極小点は30マイクロひずみ程度の圧縮ひずみを受けるときである。   The response when the output of the photoelectric converter 5 that does not synchronize with the periodic strain change appears is shown in an enlarged manner in FIG. The maximum point of the photoelectric converter 5 output corresponds to the maximum or the minimum point of distortion. The minimum point of the photoelectric converter 5 output is when it receives a compressive strain of about 30 microstrain.

このような光電変換器5出力−ひずみ関係から、ひずみに伴う受信部FBG1、およびフィルタ部FBG2の反射光分布変化は、次のように考えられる。尚、図3を用いて説明したように受信部FBG1およびフィルタ部FBG2からの反射光強度はそれぞれの反射光分布曲線で囲まれる面積に比例する。   From such a photoelectric converter 5 output-distortion relationship, the reflected light distribution change of the receiving unit FBG1 and the filter unit FBG2 due to the distortion is considered as follows. As described with reference to FIG. 3, the intensity of reflected light from the receiving unit FBG1 and the filter unit FBG2 is proportional to the area surrounded by the respective reflected light distribution curves.

無ひずみの状態では、図18(c)のように受信部FBG1のブラッグ波長がフィルタ部FBG2のそれよりも長波長側にあり、両者の反射光分布は交差していた。そして圧縮を受けると、図18(d)のように、受信部FBG1のブラッグ波長が低周波側にシフトした。   In the undistorted state, as shown in FIG. 18C, the Bragg wavelength of the receiving unit FBG1 is longer than that of the filter unit FBG2, and the reflected light distributions of both of them intersect. When subjected to compression, the Bragg wavelength of the receiving unit FBG1 shifted to the low frequency side as shown in FIG.

このとき、両反射光分布曲線で囲まれる面積が同18(c)の場合と比較して減少することから、反射光強度は低下した。そして30マイクロひずみ程度の圧縮を受けると受信部FBG1とフィルタ部FBG2からの反射光分布が重なり合う図18(e)の反射分布に移行し、反射光強度は極小になった。   At this time, since the area surrounded by the both reflected light distribution curves was reduced as compared with the case of 18 (c), the reflected light intensity was lowered. When subjected to compression of about 30 microstrain, the reflected light distribution from the reception unit FBG1 and the filter unit FBG2 shifts to the reflection distribution of FIG. 18 (e), and the reflected light intensity is minimized.

さらに圧縮を受けると図18(f)のように受信部FBG1のブラッグ波長がフィルタ部のそれよりも低波長側にシフトし、反射光分布が重なり合う面積が増加することから反射光強度は増加した。その後、圧縮ひずみから引張りひずみに転じるようになると、二つの反射光分布は図18(f)から図18(b)へと変化した。そして圧縮の場合と同様に引張りひずみの極大点で反射光強度は極大になった。   When further compressed, the Bragg wavelength of the receiving unit FBG1 is shifted to a lower wavelength side than that of the filter unit as shown in FIG. 18 (f), and the reflected light intensity increases because the area where the reflected light distribution overlaps increases. . After that, when the compressive strain changed to the tensile strain, the two reflected light distributions changed from FIG. 18 (f) to FIG. 18 (b). As in the case of compression, the reflected light intensity reached a maximum at the maximum point of tensile strain.

ひずみと光電変換器5出力が同期して周期的変化を示した時点の両応答挙動を図17に拡大して示す。この振動における受信部FBG1とフィルタ部FBG2の反射光分布の位置関係は図18(b)から図18(d)の範囲で変化したと考えられる。   Both response behaviors when the strain and the output of the photoelectric converter 5 show a periodic change in synchronization are enlarged and shown in FIG. It is considered that the positional relationship between the reflected light distributions of the receiving unit FBG1 and the filter unit FBG2 in this vibration has changed in the range from FIG. 18 (b) to FIG. 18 (d).

また、曲げによる引張りひずみを最初に与えた試験時間2秒付近でひずみが線形に増加しているときに、光電変換器5出力増加率が低下した理由は次の通りである。受信部FBG1が大きな引張りひずみを受けると図18(a)のように理想的には受信部FBG1とフィルタ部FBG2からの反射光分布は分離されるべきである。   The reason why the output increase rate of the photoelectric converter 5 decreased when the strain increased linearly around the test time of 2 seconds when the tensile strain due to bending was first applied is as follows. When the receiving unit FBG1 is subjected to a large tensile strain, ideally the reflected light distributions from the receiving unit FBG1 and the filter unit FBG2 should be separated as shown in FIG.

しかし、この実施例3では、一つのFBGの半分を受信部FBG1、残りをフィルタ部FBG2とする構成であった。このような構成では、受信部FBG1が大きな引張りひずみを受けたときに実際に得られる反射光分布は、図19の300マイクロ引っ張りひずみを与えたときの反射光分布のように受信部FBG1、およびフィルタ部FBG2の反射ピークは離れているが、反射強度の低い領域では両分布は分離せずに交差している。   However, in the third embodiment, half of one FBG is the receiving unit FBG1, and the rest is the filter unit FBG2. In such a configuration, the reflected light distribution actually obtained when the receiving unit FBG1 is subjected to a large tensile strain is the receiving unit FBG1 like the reflected light distribution when the 300 micro tensile strain in FIG. Although the reflection peaks of the filter unit FBG2 are far apart, both distributions intersect without being separated in a region where the reflection intensity is low.

そして、さらに大きなひずみを与えた400マイクロ引っ張りひずみでは、受信部FBG1、およびフィルタ部FBG2に対応する大きな反射光分布が長波長側、および短波長側に存在するが、その中間に小さな反射ピークが現れている。このように一つのFBGで受信部FBG1とフィルタ部FBG2を構成する場合は、大きなひずみを受けたとき、反射光分布が完全に分離せずに、反射光強度の低い領域が拡がっていくことになる。   And in the 400 micro tensile strain given a larger strain, there is a large reflected light distribution corresponding to the receiving unit FBG1 and the filter unit FBG2 on the long wavelength side and the short wavelength side, but there is a small reflection peak in the middle. Appears. In this way, when the receiving unit FBG1 and the filter unit FBG2 are configured by one FBG, when receiving a large strain, the reflected light distribution is not completely separated, and the region where the reflected light intensity is low spreads. Become.

このように、反射光強度の低い領域の拡がりをもたらすような大きな引張りひずみの領域では、ひずみの増加に伴い光電変換器5出力は増加率を下げながらも増加することになる。受信部FBG1とフィルタ部FBG2を個別のFBGで構成した場合、大きなひずみを受けると反射光分布は完全に分離し、光電変換器5出力は飽和すると考えられる。   Thus, in the region of a large tensile strain that causes the region of low reflected light intensity to expand, the output of the photoelectric converter 5 increases while decreasing the increase rate as the strain increases. When the receiving unit FBG1 and the filter unit FBG2 are configured by individual FBGs, it is considered that the reflected light distribution is completely separated and the output of the photoelectric converter 5 is saturated when subjected to a large strain.

このような実験結果から、次のことが言える。受信部FBG1とフィルタ部FBG2を個別のFBGで構成し、受信部FBG1のブラッグ波長がフィルタ部FBG2のそれよりも長波長側にある場合を考える。受信部FBG1が圧縮を受けてフィルタ部FBG2のブラッグ波長よりも低波長側にシフトすると、振動に対する応答の位相が反転する。   From these experimental results, the following can be said. Consider a case where the receiving unit FBG1 and the filter unit FBG2 are configured by individual FBGs, and the Bragg wavelength of the receiving unit FBG1 is on the longer wavelength side than that of the filter unit FBG2. When the receiving unit FBG1 is compressed and shifted to a lower wavelength side than the Bragg wavelength of the filter unit FBG2, the phase of the response to vibration is inverted.

また、逆に受信部FBG1が引っ張りを受けて受信部FBG1のブラッグ波長が長波長側にシフトして、受信部FBG1とフィルタ部FBG2の反射光分布が完全に分離したとき、光電変換器5出力は飽和する。ここでは、受信部FBG1のブラッグ波長がフィルタ部FBG2のそれよりも長波長側にある場合を挙げたが、逆の関係でも同様なことが言える。   Conversely, when the receiving unit FBG1 is pulled and the Bragg wavelength of the receiving unit FBG1 shifts to the long wavelength side, and the reflected light distributions of the receiving unit FBG1 and the filter unit FBG2 are completely separated, the output of the photoelectric converter 5 Is saturated. Here, the case where the Bragg wavelength of the receiving unit FBG1 is on the longer wavelength side than that of the filter unit FBG2 has been described, but the same applies to the reverse relationship.

ひずみがある値を超えたかどうかを判別したい場合、そのひずみからもたらされる受信部FBG1のブラッグ波長シフト量を無ひずみ状態における受信部FBG1とフィルタ部FBG2のブラッグ波長差に設定する、または受信部FBG1とフィルタ部FBG2の反射光分布が完全に分離するように設定する。   When it is desired to determine whether or not the distortion exceeds a certain value, the Bragg wavelength shift amount of the receiving unit FBG1 resulting from the distortion is set to the Bragg wavelength difference between the receiving unit FBG1 and the filter unit FBG2 in the undistorted state, or the receiving unit FBG1. And the reflected light distribution of the filter unit FBG2 are set to be completely separated.

受信部FBG1およびフィルタ部FBG2のひずみ測定対象物(被検体7)への取り付け時に、受信部FBG1に与える残留ひずみを制御すること、また反射特性の異なる受信部FBG1およびフィルタ部FBG2を用いることで、受信部FBG1とフィルタ部FBG2とのブラッグ波長差や反射光分布が分離するための波長差を容易に制御することができる。   By controlling the residual strain applied to the receiving unit FBG1 when the receiving unit FBG1 and the filter unit FBG2 are attached to the strain measurement object (subject 7), and using the receiving unit FBG1 and the filter unit FBG2 having different reflection characteristics. The Bragg wavelength difference between the receiving unit FBG1 and the filter unit FBG2 and the wavelength difference for separating the reflected light distribution can be easily controlled.

このような反射特性を有するFBGを用いることで、しきい値となるひずみ以下では振動によりもたらされるひずみと同期した光電変換器5出力が得られる。そして、しきい値以上のひずみが生じると、光電変換器5出力に位相反転挙動(図16参照)や飽和が現れることになり、過ひずみが加わったことを識別することができる。   By using the FBG having such a reflection characteristic, the output of the photoelectric converter 5 synchronized with the strain caused by the vibration can be obtained below the strain serving as the threshold. And when distortion more than a threshold value arises, a phase inversion behavior (refer FIG. 16) and saturation will appear in the output of the photoelectric converter 5, and it can identify that the overstrain was added.

実施例3の振動又は弾性波検出装置による、ひずみ、振動測定では一つのFBGに局所的残留ひずみを与えて二つのピークを持つ反射光分布を持たせている。このような特徴を有する反射特性は課題を解決するための上記構造例5および構造例6に記載したFBGの取り付け構造でも実現できることから、これらの取り付け方により同様にひずみ、振動測定が可能である。   In strain and vibration measurement by the vibration or elastic wave detection device of the third embodiment, a local residual strain is given to one FBG to give a reflected light distribution having two peaks. Since the reflection characteristics having such characteristics can also be realized by the FBG mounting structure described in Structural Example 5 and Structural Example 6 for solving the problems, the strain and vibration can be similarly measured by these mounting methods. .

ここで記載したAE、超音波検出、またはひずみ・振動計測を多点で行う場合は、図20、21に示したシステムにより受信部FBG1が受信するAE、超音波、ひずみ・振動を多点同時計測することが可能であると考えられる。   When the AE, ultrasonic detection, or strain / vibration measurement described here is performed at multiple points, the AE, ultrasonic wave, strain / vibration received by the receiving unit FBG1 by the system shown in FIGS. It is considered possible to measure.

広帯域光を1×Nカップラで分岐し、分岐された広帯域光をそれぞれの受信部FBG1およびフィルタ部FBG2に入射し、その反射光、または透過光強度を光電変換器5で電気信号に変換し、信号収録・表示装置6に出力するシステムである。   The broadband light is branched by a 1 × N coupler, the branched broadband light is incident on the receiving unit FBG1 and the filter unit FBG2, and the reflected light or transmitted light intensity is converted into an electrical signal by the photoelectric converter 5, This is a system for outputting to the signal recording / display device 6.

受信部FBG1およびフィルタ部FBG2の透過光強度と反射光強度の変化は、位相反転の関係にあることから、図21に示したようなFBGの透過光強度を測定する場合でも、反射光強度を測定する図20と同様な検出が可能と考えられる。   Since the changes in the transmitted light intensity and the reflected light intensity of the receiving unit FBG1 and the filter unit FBG2 are in a phase inversion relationship, even when the transmitted light intensity of the FBG as shown in FIG. It can be considered that detection similar to that in FIG.

図22および図23に示すシステムのように受信部、およびフィルタ部FBG2への広帯域光の入射を光スイッチにより選択することによりAE、超音波、振動計測を行いたいFBGを選択することができる。   As in the systems shown in FIGS. 22 and 23, the FBG to be subjected to AE, ultrasonic wave, and vibration measurement can be selected by selecting the incidence of broadband light to the receiving unit and the filter unit FBG2 by the optical switch.

受信部FBG1およびフィルタ部FBG2からの透過光と反射光強度の変化は、位相反転の関係にあるので、図24のように受信部FBG1およびフィルタ部FBG2からの透過光と反射光の両方を光電変換器5に入射し、どちらかの光電変換器5の位相を反転させて合成することで弾性波応答や振動に対する応答信号の信号ノイズ比を改善することができる。さらに、参考文献(Tsudaら、Composites Science and Technology 2007 Vol.67 p.1353-1361)に記した方法を用いてひずみを定量評価することができる。   Since the changes in the intensity of the transmitted light and the reflected light from the receiving unit FBG1 and the filter unit FBG2 are in a phase inversion relationship, both the transmitted light and the reflected light from the receiving unit FBG1 and the filter unit FBG2 are photoelectrically converted as shown in FIG. The signal-to-noise ratio of the response signal to the elastic wave response or vibration can be improved by entering the converter 5 and inverting and synthesizing the phase of one of the photoelectric converters 5. Furthermore, strain can be quantitatively evaluated using the method described in the reference (Tsuda et al., Composites Science and Technology 2007 Vol. 67 p.1353-1361).

図25のように一本の光ファイバ上に反射波長域の異なる複数の受信部、およびフィルタ部FBG2を設け、これらの反射波長域をカバーする広帯域光を入射して、その反射光を光分波器を用いてそれぞれのFBGからの反射光のみを光電変換器5に入れることにより、多点同時にAE・超音波検出、またはひずみ・振動計測を行うことができる。   As shown in FIG. 25, a plurality of receiving units having different reflection wavelength ranges and a filter unit FBG2 are provided on a single optical fiber, and broadband light covering these reflection wavelength ranges is incident, and the reflected light is divided into optical components. By inputting only the reflected light from each FBG into the photoelectric converter 5 using a waver, AE / ultrasonic detection or strain / vibration measurement can be performed simultaneously at multiple points.

以上、本発明に係る振動又は弾性波検出装置の最良の形態を実施例に基づいて説明したが、本発明は、このような実施例に限定されることなく、特許請求の範囲記載の技術的事項の範囲内で、いろいろな実施例があることは言うまでもない。   As described above, the best mode of the vibration or elastic wave detection device according to the present invention has been described based on the embodiments. However, the present invention is not limited to such embodiments, and the technical scope described in the claims is not limited thereto. It goes without saying that there are various embodiments within the scope of the matter.

本発明に係る振動又は弾性波検出装置は、上記構成のとおりであるから、構造物が運用中に受ける振動やひずみを測定することで、構造物が異常な稼働状況に置かれていないかを判断することができる。また材料が破壊するときにはアコースティック・エミッション(AE)が発生することから、AEを検出することにより構造物の破損を検知することができる。また超音波を利用して材料・構造物の損傷状態を非破壊で検査することができる。   Since the vibration or elastic wave detection device according to the present invention is as described above, it is possible to determine whether the structure is placed in an abnormal operating state by measuring vibration and strain that the structure receives during operation. Judgment can be made. Further, since acoustic emission (AE) occurs when the material breaks down, it is possible to detect damage to the structure by detecting AE. In addition, the damage state of the material / structure can be inspected nondestructively using ultrasonic waves.

広帯域光を利用した従来のFBGセンサ弾性波検出システムの構成図である。It is a block diagram of the conventional FBG sensor elastic wave detection system using broadband light. 広帯域光を利用した本発明に基づくFBGセンサ弾性波検出システムの構成図である。It is a block diagram of the FBG sensor elastic wave detection system based on this invention using broadband light. 本発明に基づき、受信部FBGがひずみを受けた場合の受信部FBGおよびフィルタ部FBGの反射特性を表した図である。It is a figure showing the reflective characteristic of receiving part FBG and filter part FBG when receiving part FBG receives distortion based on the present invention. 本発明に基づいた弾性波検出のための受信部FBGおよびフィルタ部FBGの構成例を示した図である。It is the figure which showed the structural example of the receiving part FBG and the filter part FBG for the elastic wave detection based on this invention. 本発明に基づいた振動・ひずみ検出のための受信部FBGおよびフィルタ部FBGの構成例を示した図である。It is the figure which showed the structural example of the receiving part FBG and the filter part FBG for the vibration and distortion detection based on this invention. 異なる反射特性を有する受信部FBGおよびフィルタ部FBGを組み合わせた場合の反射特性模式図である。It is a reflection characteristic schematic diagram at the time of combining receiving part FBG and filter part FBG which have different reflection characteristics. 本発明に基づき単一FBGから受信部FBGおよびフィルタ部FBGを構成させ、超音波検出した実験、実施例1におけるシステム構成を示した図面である。It is drawing which showed the system configuration | structure in the experiment and Example 1 which comprised the receiving part FBG and the filter part FBG from single FBG, and detected the ultrasonic wave based on this invention. 単一FBGの一部を被検体に接着させることにより受信部FBGおよびフィルタ部FBGを構成させたことによる反射スペクトルの変化を示した図です。It is the figure which showed the change of the reflection spectrum by having constituted the receiving part FBG and the filter part FBG by adhering a part of single FBG to the subject. 受信部FBGおよびフィルタ部FBGの反射特性を模式的に示した図である。It is the figure which showed typically the reflective characteristic of the receiving part FBG and the filter part FBG. 実施例1における超音波応答波形を示した図である。It is the figure which showed the ultrasonic response waveform in Example 1. FIG. 実施例1において収録した未フィルタ処理波形の周波数解析結果を示した図である。It is the figure which showed the frequency analysis result of the unfiltered waveform recorded in Example 1. FIG. 実施例2における擬似AE検出波形を示した図である。It is the figure which showed the pseudo | simulation AE detection waveform in Example 2. FIG. 実施例2において収録した未フィルタ処理波形の周波数解析結果を示した図である。It is the figure which showed the frequency analysis result of the unfiltered waveform recorded in Example 2. FIG. 実施例3において用いた実験システムの構成図である。FIG. 6 is a configuration diagram of an experimental system used in Example 3. 実施例3における片持ち梁自由振動時の光電変換器出力およびひずみゲージ出力を示した図である。It is the figure which showed the photoelectric converter output at the time of cantilever free vibration in Example 3, and a strain gauge output. 実施例3において周期的なひずみ変化と同期しない光電変換器出力が現れた時点の応答を拡大した図である。It is the figure which expanded the response at the time of the photoelectric converter output which does not synchronize with a periodic distortion change in Example 3. FIG. 実施例3において周期的なひずみ変化と同期した光電変換器出力が現れた時点の応答を拡大した図である。It is the figure which expanded the response at the time of the photoelectric converter output which synchronized with the periodic distortion change in Example 3. FIG. 実施例3におけるひずみ変化に伴う受信部FBGおよびフィルタ部FBGの反射特性変化を示した図である。It is the figure which showed the reflective characteristic change of the receiving part FBG and the filter part FBG accompanying the distortion change in Example 3. FIG. 単一FBGから構成される受信部FBGおよびフィルタ部FBGにおいて引張りひずみを印加し続けた場合の反射特性変化を示した図である。It is the figure which showed the reflective characteristic change at the time of continuing applying a tensile strain in the receiving part FBG and filter part FBG which consist of single FBG. 多点同時にAE・超音波検出、またはひずみ・振動計測を行うためのシステム構成例(その1)を示した図である。It is the figure which showed the system configuration example (the 1) for performing AE and ultrasonic detection or distortion and vibration measurement simultaneously at multiple points. 多点同時にAE・超音波検出、またはひずみ・振動計測を行うためのシステム構成例(その2)を示した図である。It is the figure which showed the system configuration example (the 2) for performing AE and ultrasonic detection or distortion and vibration measurement simultaneously at multiple points. 多点に取り付けたFBGセンサを選択してAE・超音波検出、振動・ひずみ計測を行うためのシステム構成例(その1)を示した図である。It is the figure which showed the system configuration example (the 1) for selecting the FBG sensor attached to multiple points, and performing AE and ultrasonic detection, and vibration and distortion measurement. 多点に取り付けたFBGセンサを選択してAE・超音波検出、振動・ひずみ計測を行うためのシステム構成例(その2)を示した図である。It is the figure which showed the system configuration example (the 2) for selecting the FBG sensor attached to multiple points, and performing AE and ultrasonic detection, and vibration and distortion measurement. 応答信号の信号ノイズ比を改善するためにFBGの反射光および透過光を合成するためのシステム構成図である。It is a system block diagram for combining the reflected light and transmitted light of the FBG in order to improve the signal-to-noise ratio of the response signal. 一本の光ファイバ上に複数のFBGを配置して、多点同時にAE・超音波検出、またはひずみ・振動計測を行うためのシステム構成例を示す図である。It is a figure which shows the example of a system structure for arrange | positioning several FBG on one optical fiber, and performing AE and ultrasonic detection or distortion and vibration measurement simultaneously at multiple points. 実施例1の第1の手段を説明する図である。It is a figure explaining the 1st means of Example 1. FIG. 実施例1の第2の手段を説明する図である。It is a figure explaining the 2nd means of Example 1. FIG. 実施例1の構造例3を説明する図である。FIG. 6 is a diagram for explaining a structural example 3 of the first embodiment. 実施例1の構造例4を説明する図である。FIG. 6 is a diagram for explaining a structural example 4 of the first embodiment. 実施例1の構造例5を説明する図である。FIG. 6 is a diagram for explaining a structural example 5 of the first embodiment.

符号の説明Explanation of symbols

1 受信部FBG
2 フィルタ部FBG
3 広帯域光源
4 光サーキュレータ
5 光電変換器
6 信号収録・表示装置
7 被検体
8 導波板
9 超音波発振子
10 信号発生器
11 信号増幅器
12 電気信号フィルタ
13 FBG
14 接着剤
1 Receiver FBG
2 Filter section FBG
DESCRIPTION OF SYMBOLS 3 Broadband light source 4 Optical circulator 5 Photoelectric converter 6 Signal recording and display apparatus 7 Test object 8 Waveguide plate 9 Ultrasonic oscillator 10 Signal generator 11 Signal amplifier 12 Electric signal filter 13 FBG
14 Adhesive

Claims (4)

受信部FBGおよびフィルタ部FBGの反射波長域を含む広帯域光を、受信部FBGおよびフィルタ部FBGに入射し、受信部FBGおよびフィルタ部FBGの透過光または反射光の強度変化から受信部FBGが受ける振動又は弾性波を計測する振動又は弾性波検出装置において、
受信部FBGがひずみまたは温度変化を受けても受信部FBGおよびフィルタ部FBGの反射光分布が常に交差するように受信部FBGおよびフィルタ部FBGを被検体に取り付けることを特徴とする振動又は弾性波検出装置。
Broadband light including the reflection wavelength range of the reception unit FBG and the filter unit FBG is incident on the reception unit FBG and the filter unit FBG, and the reception unit FBG receives the intensity change of transmitted light or reflected light of the reception unit FBG and the filter unit FBG. In a vibration or elastic wave detector for measuring vibration or elastic wave,
Vibration or elastic wave, characterized in that the receiving unit FBG and the filter unit FBG are attached to the subject so that the reflected light distributions of the receiving unit FBG and the filter unit FBG always intersect even if the receiving unit FBG receives distortion or temperature change. Detection device.
受信部FBGおよびフィルタ部FBGの反射波長域を含む広帯域光を、受信部FBGおよびフィルタ部FBGに入射し、受信部FBGおよびフィルタ部FBGの透過光または反射光の強度変化から受信部FBGが受ける振動およびひずみを計測する振動又は弾性波検出装置において、
受信部FBGが受ける温度変化をフィルタであるFBGにも等しく受けさせることを特徴とする振動又は弾性波検出装置。
Broadband light including the reflection wavelength range of the reception unit FBG and the filter unit FBG is incident on the reception unit FBG and the filter unit FBG, and the reception unit FBG receives the intensity change of transmitted light or reflected light of the reception unit FBG and the filter unit FBG. In a vibration or elastic wave detector for measuring vibration and strain,
A vibration or elastic wave detection device characterized in that a temperature change received by the receiving unit FBG is also received equally by the FBG as a filter.
一つのFBGに局所的なひずみを導入して反射特性に二つのピークを持たせることで、受信部FBGとフィルタ部FBGの二つの機能を一つのFBGに持たせることを特徴とする請求項1または2記載の振動又は弾性波検出装置。   2. A single FBG is provided with two functions of a receiving unit FBG and a filter unit FBG by introducing local distortion into one FBG and having two peaks in reflection characteristics. Or the vibration or elastic wave detection apparatus of 2. 請求項1記載の振動又は弾性波検出装置は、任意の箇所で振動又は弾性波検出するために利用されることを特徴とする振動又は弾性波検出装置。   The vibration or elastic wave detection device according to claim 1 is used for detecting vibration or elastic wave at an arbitrary place.
JP2008286335A 2008-11-07 2008-11-07 Vibration or elastic wave detector Expired - Fee Related JP5196483B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008286335A JP5196483B2 (en) 2008-11-07 2008-11-07 Vibration or elastic wave detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008286335A JP5196483B2 (en) 2008-11-07 2008-11-07 Vibration or elastic wave detector

Publications (2)

Publication Number Publication Date
JP2010112867A true JP2010112867A (en) 2010-05-20
JP5196483B2 JP5196483B2 (en) 2013-05-15

Family

ID=42301528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008286335A Expired - Fee Related JP5196483B2 (en) 2008-11-07 2008-11-07 Vibration or elastic wave detector

Country Status (1)

Country Link
JP (1) JP5196483B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323527A (en) * 2011-09-09 2012-01-18 北京航空航天大学 Power transformer partial discharge detection system and method based on fiber bragg grating
JP2012037480A (en) * 2010-08-11 2012-02-23 Ihi Inspection & Instrumentation Co Ltd Ae measuring method and equipment by optical fiber sensor using wide band light
CN102537285A (en) * 2012-01-04 2012-07-04 吉林市航盛宏宇电子有限公司 Wear monitoring sensor for transmission case of automobile
WO2013117326A3 (en) * 2012-02-09 2013-12-05 Fachhochschule Düsseldorf Measuring arrangement and method for capturing the stress in a flexible object
JP2014153094A (en) * 2013-02-05 2014-08-25 Fuji Heavy Ind Ltd Displacement measurement instrument and displacement measurement method
JP2016148575A (en) * 2015-02-12 2016-08-18 株式会社日立製作所 Insulation degradation detection system, insulation degradation detection method, and sensor for insulation degradation detection
WO2016163706A1 (en) * 2015-04-08 2016-10-13 김영태 Fiber optic sensor, manufacturing method thereof, and vibroscope using same
WO2017069379A1 (en) * 2015-10-23 2017-04-27 부산대학교 산학협력단 Light source device and measuring instrument using change over time of intensity of mode-locked oscillated output light
CN106768270A (en) * 2016-11-24 2017-05-31 三峡大学 A kind of superweak fiber grating perimeter security system
KR101832075B1 (en) * 2013-09-17 2018-02-23 아틀라스 엘렉트로닉 게엠베하 Acoustic converter, acoustic converter system, optical hydrophone, acoustic converter array and watercraft
CN109060107A (en) * 2018-11-01 2018-12-21 北京航空航天大学 A kind of high temperature resistant Multi-Axis Fiber Bragg Gratings vibrating sensor
CN111157101A (en) * 2020-01-02 2020-05-15 武汉理工大学 Weak grating array distributed vibration sensing system and method
CN111504220A (en) * 2020-05-01 2020-08-07 西安交通大学 Fiber grating temperature/vibration/strain composite sensor and working method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880243B (en) * 2014-02-27 2018-06-01 同方威视技术股份有限公司 Optical fiber raster vibration sensor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222571A (en) * 2002-01-30 2003-08-08 National Institute Of Advanced Industrial & Technology Optical fiber sensor-aided damage evaluation method and device for material
JP2004177134A (en) * 2002-11-25 2004-06-24 National Institute Of Advanced Industrial & Technology Optical fiber distortion sensor device and detection method of distortion
JP2005003609A (en) * 2003-06-13 2005-01-06 Sakata Denki Cantilever-like displacement conversion mechanism using fiber bragg grating
JP2005274333A (en) * 2004-03-24 2005-10-06 Kyocera Corp Fiber-optic sensing system
JP2006010449A (en) * 2004-06-24 2006-01-12 Kyocera Corp Optical fiber sensing system
JP2006029995A (en) * 2004-07-16 2006-02-02 Fujikura Ltd Optical method and instrument for measuring physical quantity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222571A (en) * 2002-01-30 2003-08-08 National Institute Of Advanced Industrial & Technology Optical fiber sensor-aided damage evaluation method and device for material
JP2004177134A (en) * 2002-11-25 2004-06-24 National Institute Of Advanced Industrial & Technology Optical fiber distortion sensor device and detection method of distortion
JP2005003609A (en) * 2003-06-13 2005-01-06 Sakata Denki Cantilever-like displacement conversion mechanism using fiber bragg grating
JP2005274333A (en) * 2004-03-24 2005-10-06 Kyocera Corp Fiber-optic sensing system
JP2006010449A (en) * 2004-06-24 2006-01-12 Kyocera Corp Optical fiber sensing system
JP2006029995A (en) * 2004-07-16 2006-02-02 Fujikura Ltd Optical method and instrument for measuring physical quantity

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037480A (en) * 2010-08-11 2012-02-23 Ihi Inspection & Instrumentation Co Ltd Ae measuring method and equipment by optical fiber sensor using wide band light
CN102323527A (en) * 2011-09-09 2012-01-18 北京航空航天大学 Power transformer partial discharge detection system and method based on fiber bragg grating
CN102537285A (en) * 2012-01-04 2012-07-04 吉林市航盛宏宇电子有限公司 Wear monitoring sensor for transmission case of automobile
WO2013117326A3 (en) * 2012-02-09 2013-12-05 Fachhochschule Düsseldorf Measuring arrangement and method for capturing the stress in a flexible object
JP2014153094A (en) * 2013-02-05 2014-08-25 Fuji Heavy Ind Ltd Displacement measurement instrument and displacement measurement method
US8922789B2 (en) 2013-02-05 2014-12-30 Fuji Jukogyo Kabushiki Kaisha Displacement measuring device and displacement measuring method
KR101832075B1 (en) * 2013-09-17 2018-02-23 아틀라스 엘렉트로닉 게엠베하 Acoustic converter, acoustic converter system, optical hydrophone, acoustic converter array and watercraft
JP2016148575A (en) * 2015-02-12 2016-08-18 株式会社日立製作所 Insulation degradation detection system, insulation degradation detection method, and sensor for insulation degradation detection
WO2016163706A1 (en) * 2015-04-08 2016-10-13 김영태 Fiber optic sensor, manufacturing method thereof, and vibroscope using same
KR20160120490A (en) * 2015-04-08 2016-10-18 김영태 Optical fiber sensor, method for fabrication the same and vibrometer using the optical fiber sensor
KR101693102B1 (en) * 2015-04-08 2017-01-05 김영태 Optical fiber sensor, method for fabrication the same and vibrometer using the optical fiber sensor
WO2017069379A1 (en) * 2015-10-23 2017-04-27 부산대학교 산학협력단 Light source device and measuring instrument using change over time of intensity of mode-locked oscillated output light
US10309769B2 (en) 2015-10-23 2019-06-04 Pusan National University Industry-University Cooperation Foundation Light source device and measuring instrument using change over time of intensity of mode-locked oscillated output light
CN106768270A (en) * 2016-11-24 2017-05-31 三峡大学 A kind of superweak fiber grating perimeter security system
CN106768270B (en) * 2016-11-24 2019-07-02 三峡大学 A kind of superweak fiber grating perimeter security system
CN109060107A (en) * 2018-11-01 2018-12-21 北京航空航天大学 A kind of high temperature resistant Multi-Axis Fiber Bragg Gratings vibrating sensor
CN111157101A (en) * 2020-01-02 2020-05-15 武汉理工大学 Weak grating array distributed vibration sensing system and method
CN111504220A (en) * 2020-05-01 2020-08-07 西安交通大学 Fiber grating temperature/vibration/strain composite sensor and working method thereof

Also Published As

Publication number Publication date
JP5196483B2 (en) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5196483B2 (en) Vibration or elastic wave detector
JP5586011B2 (en) FBG vibration detection system, apparatus using the system, and vibration detection method
JP3944578B2 (en) Strain and AE measuring device using optical fiber sensor
Teixeira et al. Advanced fiber-optic acoustic sensors
JP5030081B2 (en) AE / ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus provided with the same
Zhang et al. Micro-fiber-based FBG sensor for simultaneous measurement of vibration and temperature
EP1422494B1 (en) Rapid fiber Bragg grating ( FBG ) strain sensor with reflecting/transmitting filter for acoustic emission detection
JP5855693B2 (en) Vibration detection apparatus and vibration detection method
JP5586009B2 (en) Vibration detection system, apparatus using the system, and vibration detection method
JP6159095B2 (en) Displacement measuring device and displacement measuring method
CN104848980B (en) Bridge cable Suo Li online test methods and system based on Fibre Optical Sensor
US9297691B2 (en) Dynamic fiber bragg grating interrogation system and method
Wild et al. Optical fibre Bragg gratings for acoustic sensors
JP2015021814A (en) Impact detection method and device
Fu et al. Fiber optic acoustic emission sensor and its applications in the structural health monitoring of CFRP materials
Giurgiutiu et al. Omnidirectional piezo-optical ring sensor for enhanced guided wave structural health monitoring
JP2005326326A (en) Strain measuring and ultrasound/ae detecting apparatus using optical fiber sensor
Lee et al. Simultaneous multipoint acoustic emission sensing using fibre acoustic wave grating sensors with identical spectrum
Liu et al. Detection of Fundamental Shear Horizontal Guided Waves Using a Surface-Bonded Chirped Fiber-Bragg-Grating Fabry–Perot Interferometer
JP3790815B2 (en) Material damage evaluation method and apparatus using optical fiber sensor
WO2005040727A2 (en) Improvements in and relating to fibre optic sensors
Lin et al. Piezo-Optical Active Sensing With PWAS And FBG Sensors For Structural Health Monitoring
Tsuda Bragg wavelength-insensitive fiber Bragg grating ultrasound detection system based on a fiber ring laser
Cui Fiber sensing of micro-crack
Wang et al. A macrobending fiber based vibration sensor using Whispering Gallery mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196483

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees