JP2010106734A - Egr control method for internal combustion engine, and internal combustion engine - Google Patents

Egr control method for internal combustion engine, and internal combustion engine Download PDF

Info

Publication number
JP2010106734A
JP2010106734A JP2008278906A JP2008278906A JP2010106734A JP 2010106734 A JP2010106734 A JP 2010106734A JP 2008278906 A JP2008278906 A JP 2008278906A JP 2008278906 A JP2008278906 A JP 2008278906A JP 2010106734 A JP2010106734 A JP 2010106734A
Authority
JP
Japan
Prior art keywords
egr
value
cylinder pressure
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008278906A
Other languages
Japanese (ja)
Inventor
Keita Arato
景太 荒戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2008278906A priority Critical patent/JP2010106734A/en
Publication of JP2010106734A publication Critical patent/JP2010106734A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an EGR control method for an internal combustion engine accurately determining whether or not an appropriate EGR control is performed to prevent EGR gas from being excessive to prevent misfire, and supplying a proper amount of EGR gas to secure an appropriate EGR ratio, in an internal combustion engine provided with an EGR system, and to provide an internal combustion engine. <P>SOLUTION: In an EGR control method for an internal combustion engine, a cylinder pressure progress calculation data Pcc(i) as time-series data of cylinder pressure in a preset period is calculated by using, as input, a cylinder pressure combustion model using an EGR ratio estimation value ηec or an EGR ratio target value ηet calculated from detection values of an EGR gas flow rate sensor 33 and an intake air amount sensor 14, and a deviation amount ΔPc between the cylinder pressure progress calculation data Pcc(i) and a cylinder pressure progress detection data Pcm(i) in a period detected by a cylinder pressure sensor 16 is acquired. When the deviation amount ΔPc becomes a preset threshold value ΔPc1 or more, it is determined that an EGR ratio satisfying the EGR ratio target value ηet is not achieved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関のEGR制御方法及び内燃機関に関し、より詳細には、内燃機関のEGR制御において、実際に行われているEGR制御におけるEGR率とEGR率目標値との差異の有無を精度よく検出でき、しかも、差異が予め設定した閾値より大きいと判定されたときには、EGR率目標値を調整することにより、実際のEGR制御におけるEGR率をエンジン運転状態に対して要求されているEGR率と適合させるように調整できる内燃機関のEGR制御方法及び内燃機関に関する。   The present invention relates to an EGR control method for an internal combustion engine and an internal combustion engine. More specifically, in EGR control for an internal combustion engine, whether or not there is a difference between an EGR rate and an EGR rate target value in EGR control actually performed is accurately determined. When it is determined that the difference is greater than the preset threshold value, the EGR rate in the actual EGR control is required for the engine operating state by adjusting the EGR rate target value. The present invention relates to an EGR control method for an internal combustion engine and an internal combustion engine that can be adjusted to be adapted to the above.

ガソリンエンジンやディーゼルエンジン等の内燃機関では、NOx(窒素酸化物)の発生量を低減するために、排気ガスの一部を吸気側に戻してシリンダ内の燃焼温度を下げるEGR(排気還流:排気再循環)を行うためのEGR装置を備えている。このEGRでは、十分な効果を得るためには、シリンダ内に入る新気AとEGRガスGに対するEGRガスGの割合〔G/(A+G)〕であるEGR率を適切に制御する必要がある。従来技術では、EGR通路に設けたEGRガス流量センサや、吸気通路に設けたMAFセンサ等の吸入空気量センサを用いて実際のEGR率を推定し、EGR率目標値に一致するようにEGR通路のEGR弁やEGRクーラー等を制御している。   In an internal combustion engine such as a gasoline engine or a diesel engine, in order to reduce the amount of NOx (nitrogen oxide) generated, EGR (exhaust gas recirculation: exhaust gas) lowers the combustion temperature in the cylinder by returning a part of the exhaust gas to the intake side. EGR device for performing recirculation). In this EGR, in order to obtain a sufficient effect, it is necessary to appropriately control the EGR rate which is the ratio [G / (A + G)] of the EGR gas G to the fresh air A and the EGR gas G entering the cylinder. In the prior art, an actual EGR rate is estimated by using an intake air amount sensor such as an EGR gas flow rate sensor provided in the EGR passage or a MAF sensor provided in the intake passage, and the EGR passage is set so as to coincide with the EGR rate target value. The EGR valve and EGR cooler are controlled.

しかしながら、EGR通路は、排気通路が接続しており排気脈動の影響を受け易いため、EGR通路内に吸気側から排気側に流れる逆流を生じて、EGRガス流量センサの測定誤差が大きくなるという問題がある。また、EGRガス流量センサは、排気ガス中に存在する水蒸気が結露する等の原因で測定値に誤差が生じるおそれもある。EGRガス流量センサの測定値に誤差が生じると、エンジンの制御装置(ECU)がEGR率目標値を満足していると判定していても、実際には適切なEGR率でEGRが行われなくなる。実際のEGR率がEGR率目標値より低いと筒内(シリンダ内)の燃焼温度が高くなってNOx排出量が増加し、逆に実際のEGR率がEGR率目標値より高いと酸素が不足して失火等が発生することになる。   However, since the EGR passage is connected to the exhaust passage and is easily affected by exhaust pulsation, a backflow that flows from the intake side to the exhaust side is generated in the EGR passage, resulting in a large measurement error of the EGR gas flow sensor. There is. In addition, the EGR gas flow rate sensor may cause an error in the measurement value due to condensation of water vapor present in the exhaust gas. If an error occurs in the measured value of the EGR gas flow sensor, even if the engine control unit (ECU) determines that the EGR rate target value is satisfied, EGR is not actually performed at an appropriate EGR rate. . If the actual EGR rate is lower than the EGR rate target value, the in-cylinder (in-cylinder) combustion temperature increases and the amount of NOx emissions increases. Conversely, if the actual EGR rate is higher than the EGR rate target value, oxygen is insufficient. Misfire will occur.

これに関連して、吸気通路のスロットル弁の下流側に吸気圧力を検出する吸気圧力センサを設けて、エンジンの制御装置(ECU)によって、少なくともスロットル弁の開度、EGR弁の開度及びエンジンの回転数に基づいてEGR装置が正常に作動した場合の吸気圧力を推定し、検出された実際の吸気圧力と推定された吸入圧力との偏差が所定値以上となった場合にEGR装置が異常であると判定する排気還流装置の異常検出装置が提案されている(例えば、特許文献1参照)。   In this connection, an intake pressure sensor for detecting intake pressure is provided downstream of the throttle valve in the intake passage, and at least the throttle valve opening, the EGR valve opening, and the engine are controlled by an engine control unit (ECU). The intake pressure when the EGR device operates normally is estimated based on the rotational speed of the EGR device, and the EGR device malfunctions when the deviation between the detected actual intake pressure and the estimated intake pressure exceeds a predetermined value An abnormality detection device for an exhaust gas recirculation device that is determined to be is proposed (for example, see Patent Document 1).

この排気還流装置の異常検出装置では、スロットル開度、EGR弁開度、エンジン回転速度からEGR装置が正常に作動した場合の吸気圧力の推定値を算出する際に、所定の制御マップから読み出しているので、この制御マップを用意する必要がある。この制御マップは、ベンチテスト等による測定から設定され、予めエンジン制御装置(ECU)のROMに予め記憶される。   In this exhaust gas recirculation device abnormality detection device, when calculating an estimated value of the intake pressure when the EGR device operates normally from the throttle opening, the EGR valve opening, and the engine rotation speed, it is read from a predetermined control map. Therefore, it is necessary to prepare this control map. This control map is set from measurement by a bench test or the like, and is stored in advance in a ROM of an engine control unit (ECU).

この制御マップは、実機のベンチテストでEGR装置が正常に作動し、かつ、EGR実行条件が成立している条件下で、スロットル開度、EGR弁開度、エンジン回転速度の3つのパラメータの組合せを種々変更しながら、その組合せ毎に吸気圧力を測定して設定している。吸気圧力は、内燃機関の仕様や周囲環境(大気温度、大気圧力)が異なる場合には変化するため、各条件に対応させて逐次測定する必要があり、著しく手間が掛かることになる。そのために長時間にわたるベンチテストが必要になるという問題がある。   This control map is a combination of three parameters: throttle opening, EGR valve opening, and engine speed under conditions where the EGR device operates normally in the bench test of the actual machine and the EGR execution conditions are satisfied. While changing variously, the intake pressure is measured and set for each combination. Since the intake pressure changes when the specifications of the internal combustion engine and the surrounding environment (atmospheric temperature, atmospheric pressure) are different, it is necessary to measure sequentially according to each condition, which takes much time. Therefore, there is a problem that a bench test for a long time is required.

更に、排気ターボ過給機を備えた内燃機関では、燃料噴射量も吸気圧に影響を及ぼすので、燃料噴射量も加味して吸気圧力を推定する必要があり、更に多くの制御マップが必要となる。また、多段過給システムや可変バルブタイミングシステムなどのシステムを採用した際には、吸気圧力に影響を与えるパラメータが更に増えるため、これらのパラメータを考慮した制御マップを設定する必要があり、EGR制御に十分な精度を確保できるような制御マップを予め設定することは難しくなる。   Furthermore, in an internal combustion engine equipped with an exhaust turbocharger, the fuel injection amount also affects the intake pressure. Therefore, it is necessary to estimate the intake pressure taking into account the fuel injection amount, and more control maps are required. Become. In addition, when a system such as a multistage supercharging system or a variable valve timing system is adopted, parameters that affect the intake pressure further increase. Therefore, it is necessary to set a control map that takes these parameters into account, and EGR control It is difficult to preset a control map that can ensure sufficient accuracy.

また、この排気還流装置の異常検出装置では、吸気圧力の算出値と検出値との乖離からEGR装置が異常であるか否かを検知するのみであり、異常であった場合には、異常判定を行うだけであり、その後のEGR制御の継続には触れていない。
特開2002−227727公報
The abnormality detection device for the exhaust gas recirculation device only detects whether or not the EGR device is abnormal from the difference between the calculated value of the intake pressure and the detection value. It does not touch the continuation of the subsequent EGR control.
JP 2002-227727 A

本発明は、上記の状況を鑑みてなされたものであり、その目的は、EGRシステムを備えた内燃機関において、適切なEGR制御が行われているか否かを精度よく判定し、これにより、EGRガスが過剰となることを防いで失火を防止することができると共に、適量のEGRガスを供給して適切なEGR率を確保することで良好なNOx低減効果を得ることができる内燃機関のEGR制御方法及び内燃機関を提供することにある。   The present invention has been made in view of the above situation, and an object of the present invention is to accurately determine whether or not appropriate EGR control is being performed in an internal combustion engine equipped with an EGR system. EGR control of an internal combustion engine that can prevent misfire by preventing an excess of gas and can obtain a good NOx reduction effect by supplying an appropriate amount of EGR gas and ensuring an appropriate EGR rate It is to provide a method and an internal combustion engine.

上記の目的を達成するための内燃機関のEGR制御方法は、EGRシステムを備えた内燃機関において、EGR率目標値又はEGRガス流量センサと吸入空気量センサの検出値から算出されたEGR率推定値を入力とする筒内燃焼モデルを用いて、予め設定した期間内の筒内圧力の時系列データである筒内圧力経過算出データを算出し、該筒内圧力経過算出データと、筒内圧力センサにより検出した前記期間内の筒内圧力経過検出データとの間の偏差量を求め、この偏差量が予め設定した閾値以上になったときに、前記EGR率目標値を満足するEGR率を達成できていないと判定することを特徴とする方法である。   An EGR control method for an internal combustion engine for achieving the above object is an EGR rate estimated value calculated from an EGR rate target value or a detection value of an EGR gas flow rate sensor and an intake air amount sensor in an internal combustion engine equipped with an EGR system. Is used to calculate in-cylinder pressure progress calculation data, which is time-series data of in-cylinder pressure within a preset period, and the in-cylinder pressure progress calculation data and the in-cylinder pressure sensor The amount of deviation from the in-cylinder pressure progress detection data within the period detected by the above is obtained, and when the amount of deviation exceeds a preset threshold value, an EGR rate that satisfies the EGR rate target value can be achieved. It is a method characterized in that it is determined that it is not.

この方法によれば、予め設定した期間内の筒内圧力の時系列データにおける筒内圧力経過算出データと筒内圧力経過検出データとの間の偏差量を判定基準としているので精度よく実際のEGR率とEGR率目標値との間の乖離を求めることができ、精度よく適切なEGR率でEGR制御が行われているか否かを判定することができる。特に、多量のEGRでかつ早期噴射で実現される予混合圧縮着火燃焼方式で作動する内燃機関では、着火時期がEGR率の影響を大きく受けるため、EGR率をより適切に制御することが求められるので、より効果が大きい。   According to this method, since the deviation amount between the in-cylinder pressure progress calculation data and the in-cylinder pressure progress detection data in the time-series data of the in-cylinder pressure within a preset period is used as a determination criterion, the actual EGR can be accurately performed. The difference between the rate and the EGR rate target value can be obtained, and it can be determined whether or not the EGR control is performed with an appropriate EGR rate with high accuracy. In particular, in an internal combustion engine that operates with a premixed compression ignition combustion system that is realized with a large amount of EGR and early injection, the ignition timing is greatly affected by the EGR rate, and therefore it is required to control the EGR rate more appropriately. So it is more effective.

上記の内燃機関のEGR制御方法において、前記筒内圧力経過算出データは、前記EGR率目標値又は前記EGR率推定値、燃料噴射時期の制御量、燃料噴射量の制御量、燃料噴射圧力の制御量、吸気圧力の測定値、吸気温度の測定値、エンジン回転数の測定値又は制御値を基に前記筒内燃焼モデルで算出される。   In the EGR control method for an internal combustion engine, the in-cylinder pressure progress calculation data includes the EGR rate target value or the EGR rate estimation value, a fuel injection timing control amount, a fuel injection amount control amount, and a fuel injection pressure control. The in-cylinder combustion model is calculated based on the measured value, the measured value of the intake pressure, the measured value of the intake air temperature, the measured value of the engine speed, or the control value.

この筒内燃焼モデルは、ディーゼルエンジンでは、噴霧燃焼予測モデルとも呼ばれ、エンジン回転数、EGR率、燃料噴射時期、燃料噴射量、燃料噴射圧力、吸気圧力、吸気温度を入力として、筒内燃焼状態、排気エミッション、エンジントルクなどを予測するもので、燃料噴射で発生する噴霧を幾つかの領域に分割して各領域で燃料の蒸発、燃焼などを計算することで、筒内における噴霧燃焼を短時間で模擬(シミュレーション)することができる。この筒内燃焼モデルを用いることにより、周囲環境(大気圧、大気温度等)の変化や異なるエンジン形状に対してもその都度制御マップなどを作成する必要がなくなる。   This in-cylinder combustion model is also called a spray combustion prediction model in a diesel engine. The in-cylinder combustion model is input with engine speed, EGR rate, fuel injection timing, fuel injection amount, fuel injection pressure, intake pressure, and intake air temperature as inputs. It predicts the state, exhaust emission, engine torque, etc., and divides the spray generated by fuel injection into several regions and calculates the fuel evaporation, combustion, etc. in each region. It can be simulated (simulated) in a short time. By using this in-cylinder combustion model, it is not necessary to create a control map for each change in the surrounding environment (atmospheric pressure, atmospheric temperature, etc.) and different engine shapes.

上記の内燃機関のEGR制御方法において、前記筒内圧力経過算出データから着火時期算出値を算出し、前記筒内圧力経過検出データから求められた着火時期検出値又は着火センサから検出された着火時期検出値と比較し、前記着火時期算出値が前記着火時期検出値よりも早い場合は前記EGR率目標値を減少するように補正し、前記着火時期算出値が前記着火時期検出値よりも遅い場合は前記EGR率目標値を増加するように補正する。   In the above EGR control method for an internal combustion engine, an ignition timing calculation value is calculated from the in-cylinder pressure progress calculation data, and an ignition timing detection value obtained from the in-cylinder pressure progress detection data or an ignition timing detected from an ignition sensor When the ignition timing calculated value is earlier than the ignition timing detected value compared with the detected value, the EGR rate target value is corrected to be decreased, and the ignition timing calculated value is later than the ignition timing detected value Corrects the EGR rate target value to increase.

この判定と補正では、着火時期算出値が着火時期検出値よりも早い場合は、実際のEGR率がEGR率目標値よりも大きく、EGRガスが過剰に筒内に流入しており失火の虞があるので、EGR率目標値を減少し、実際のEGR率を下げるようにする。また、着火時期算出値が着火時期検出値よりも遅い場合は、実際のEGR率がEGR率目標値より小さく、適正なEGR率を確保できておらず、NOx排出量の増加につながるため、EGR率目標値が増加する。これにより実際のEGR率が必要とされるEGR率になるようにする。   In this determination and correction, when the calculated ignition timing is earlier than the detected ignition timing value, the actual EGR rate is larger than the EGR rate target value, and EGR gas is excessively flowing into the cylinder, which may cause misfire. Therefore, the EGR rate target value is decreased and the actual EGR rate is lowered. In addition, when the calculated ignition timing is later than the detected ignition timing value, the actual EGR rate is smaller than the target EGR rate, and an appropriate EGR rate cannot be secured, leading to an increase in NOx emissions. Rate target value increases. As a result, the actual EGR rate is set to the required EGR rate.

また、上記の目的と達成するための内燃機関は、EGRシステムとEGR制御手段を備えた内燃機関において、前記EGR制御手段が、上記の内燃機関のEGR制御方法を実施するように構成される。この構成によれば、予め設定した期間内の筒内圧力の時系列データにおける筒内圧力経過算出データと筒内圧力経過検出データの間の偏差量を判定基準としているので、精度よく実際のEGR率とEGR率目標値との間の乖離を求めることができ、より正確に適切なEGR率でEGR制御が行われているか否かを判定することができる。また、実際のEGR率とEGR率目標値との間が乖離していた場合でも、実際のEGR率が必要とされるEGR率になるようにEGR制御することができる。   Further, an internal combustion engine for achieving the above object is an internal combustion engine provided with an EGR system and an EGR control means, wherein the EGR control means is configured to implement the EGR control method for the internal combustion engine. According to this configuration, since the deviation amount between the in-cylinder pressure progress calculation data and the in-cylinder pressure progress detection data in the time-series data of the in-cylinder pressure within a preset period is used as the determination criterion, the actual EGR is accurately obtained. The difference between the rate and the EGR rate target value can be obtained, and it can be determined whether or not the EGR control is performed more accurately at an appropriate EGR rate. Further, even when the actual EGR rate and the EGR rate target value are different, the EGR control can be performed so that the actual EGR rate becomes the required EGR rate.

本発明に係る内燃機関のEGR制御方法及び内燃機関によれば、予め設定した期間内の筒内圧力の時系列データにおける筒内圧力経過算出データと筒内圧力経過検出データとの間の偏差量を判定基準としているので精度よく実際のEGR率とEGR率目標値との間の乖離を求めることができ、精度よく適切なEGR率でEGR制御が行われているか否かを判定することができる。   According to the EGR control method and the internal combustion engine of the internal combustion engine according to the present invention, the deviation amount between the in-cylinder pressure progress calculation data and the in-cylinder pressure progress detection data in the time-series data of the in-cylinder pressure within a preset period. Therefore, the deviation between the actual EGR rate and the target value of the EGR rate can be obtained with high accuracy, and it can be accurately determined whether the EGR control is being performed with the appropriate EGR rate. .

以下、本発明に係る実施の形態のエンジンについて、図面を参照しながら説明する。図1に、本発明に係る実施の形態のエンジン(内燃機関)1の構成を示す。   Hereinafter, an engine according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of an engine (internal combustion engine) 1 according to an embodiment of the present invention.

このエンジン1には、吸気通路2と排気通路3が設けられており、エンジン1の燃料噴射機構4には、燃料噴射ノズル5とコモンレール6とが備えられ、シリンダ7内の燃料噴射を行っている。また、ターボチャージャ8を備え、そのタービン9が排気通路3に配置され、タービン9に駆動されるコンプレッサ10が吸気通路2に配置されている。   The engine 1 is provided with an intake passage 2 and an exhaust passage 3, and a fuel injection mechanism 4 of the engine 1 is provided with a fuel injection nozzle 5 and a common rail 6, and performs fuel injection in the cylinder 7. Yes. Further, a turbocharger 8 is provided, the turbine 9 thereof is disposed in the exhaust passage 3, and the compressor 10 driven by the turbine 9 is disposed in the intake passage 2.

更に、排気スロットル弁11が排気通路3に、吸気スロットル弁12が吸気通路2に配置されている。また、排気ガス処理装置13がタービン9の下流側の排気通路3に、吸入空気量センサ(エアクリーナー)14がコンプレッサ10の上流側の吸気通路2に配置されている。そして、EGRシステム31が、排気通路3と吸気通路2とを接続するEGR通路32とEGR弁33とEGRクーラー34で構成されている。このエンジン1を制御するために、ECU(エンジンコントロールユニット)と呼ばれる制御装置15が設けられ、更に、筒内圧力センサ16が設けられている。この筒内圧力センサ16は、エンジン1の気筒(例えば4気筒)に最低一つ搭載される。また、吸気マニホールド1aには、吸気圧力センサ17と吸気温度センサ18が設けられる。   Further, the exhaust throttle valve 11 is disposed in the exhaust passage 3, and the intake throttle valve 12 is disposed in the intake passage 2. An exhaust gas processing device 13 is disposed in the exhaust passage 3 on the downstream side of the turbine 9, and an intake air amount sensor (air cleaner) 14 is disposed in the intake passage 2 on the upstream side of the compressor 10. The EGR system 31 includes an EGR passage 32, an EGR valve 33, and an EGR cooler 34 that connect the exhaust passage 3 and the intake passage 2. In order to control the engine 1, a control device 15 called an ECU (engine control unit) is provided, and an in-cylinder pressure sensor 16 is further provided. At least one in-cylinder pressure sensor 16 is mounted on a cylinder (for example, four cylinders) of the engine 1. The intake manifold 1 a is provided with an intake pressure sensor 17 and an intake temperature sensor 18.

次に、本発明の内燃機関のEGR制御方法について説明する。このEGR制御方法は、EGRシステム31を備えたエンジン1において、EGRガス流量センサ35の検出値Vemと吸入空気量センサ14の検出値Vamから算出されたEGR率推定値ηecを入力とする筒内燃焼モデルを用いて、クランク角度に関して予め設定した期間内における筒内圧力の時系列データである筒内圧力経過算出データPcc(i)を算出する。ここで,iは正数で、データ個数をIとすると、i=1,2,3.....Iである。なお、EGR率推定値ηecとEGR率目標値ηetが等しいとしている場合の計算であるので、EGR率推定値ηecの代わりに、EGR率目標値ηetを入力としてもよい。   Next, an EGR control method for an internal combustion engine according to the present invention will be described. This EGR control method uses an engine 1 equipped with an EGR system 31 in a cylinder that receives an EGR rate estimated value ηec calculated from the detected value Vem of the EGR gas flow sensor 35 and the detected value Vam of the intake air amount sensor 14 as inputs. Using the combustion model, in-cylinder pressure progress calculation data Pcc (i) that is time-series data of the in-cylinder pressure within a preset period with respect to the crank angle is calculated. Here, i is a positive number, and i = 1, 2, 3,. . . . . I. Since the calculation is performed when the EGR rate estimated value ηec is equal to the EGR rate target value ηet, the EGR rate target value ηet may be input instead of the EGR rate estimated value ηec.

この筒内圧力経過算出データPcc(i)と、筒内圧力センサ18により検出した期間Rac内の筒内圧力経過検出データPcm(i)との間の偏差量ΔPc(=Σ|Pcc(i)−Pcm(i)|)を求め、この偏差量ΔPcが予め設定した閾値ΔPc1以上になったときに、EGR率目標値ηetを満足するEGR率ηeを達成できていないと判定する。なお、ここでは、両者の差の絶対値の積算値を採用したが、これに限定されず、偏差を適切に表現できる量であればよく、例えば、両者の差 (偏差) の2乗を平均して、その平均値の平方根をとった標準偏差σ等を用いてもよい。   Deviation ΔPc (= Σ | Pcc (i) between the in-cylinder pressure progress calculation data Pcc (i) and the in-cylinder pressure progress detection data Pcm (i) within the period Rac detected by the in-cylinder pressure sensor 18 -Pcm (i) |) is obtained, and it is determined that the EGR rate ηe satisfying the EGR rate target value ηet is not achieved when the deviation amount ΔPc is equal to or larger than a preset threshold value ΔPc1. Here, the integrated value of the absolute value of the difference between the two is adopted, but the present invention is not limited to this, and any amount that can appropriately express the deviation may be used. For example, the square of the difference (deviation) between the two is averaged. A standard deviation σ or the like obtained by taking the square root of the average value may be used.

このEGR制御方法は、例えば、図2に示すような判定用の制御フローに従って判定される。この図2の制御フローはエンジンの運転開始と共に、上級の制御フローからEGR制御と並行して呼ばれて実行される。この図2の制御フローがスタートすると、ステップS11で機関運転状態を読み込む。   This EGR control method is determined according to a control flow for determination as shown in FIG. 2, for example. The control flow of FIG. 2 is called and executed in parallel with the EGR control from the advanced control flow as the engine starts. When the control flow in FIG. 2 starts, the engine operating state is read in step S11.

このステップS11で読み込む機関運転状態を示すデータとしては、エンジンの回転数、負荷などが主となり、エンジン冷却水温度等のエンジン運転に必要な量も読み込まれる。また、燃料噴射装置4等の燃料噴射時期の制御量Ftt、燃料噴射量の制御量Fvt、燃料噴射圧力の制御量Fpt等、各制御装置の制御量が算出され、また、EGR制御量として、EGR率目標値ηetが算出される。更に、EGRガス流量センサ35からの検出値Vemと吸入空気量センサ14からの検出値VamからEGR率推定値ηecを算出する。   As the data indicating the engine operation state read in step S11, the engine speed, the load, and the like are mainly used, and the amount necessary for the engine operation such as the engine coolant temperature is also read. Further, the control amount of each control device, such as the control amount Ftt of the fuel injection timing of the fuel injection device 4 and the like, the control amount Fvt of the fuel injection amount, the control amount Fpt of the fuel injection pressure, etc. is calculated, and as the EGR control amount, An EGR rate target value ηet is calculated. Further, an estimated EGR rate ηec is calculated from the detected value Vem from the EGR gas flow sensor 35 and the detected value Vam from the intake air amount sensor 14.

次のステップS12では、EGR率推定値ηecがEGR率目標値ηetと等しいか否かを判定する。なお、実際には、この判定では、厳密な意味での一致ではなく、EGR率推定値ηecがEGR率目標値ηetの制御の許容範囲内にあるか否かを判定する。つまり、EGR率推定値ηecがEGR率目標値ηetと略等しいか否かを判定する。これにより、EGR率推定値ηecがEGR率目標値ηetに追従し終わったか否かを判定する。両者が等しくなく、追従し終えていない場合(NO)は、ステップS11を繰り返して、EGR率推定値ηecがEGR率目標値ηetになるまで待つ。   In the next step S12, it is determined whether or not the EGR rate estimated value ηec is equal to the EGR rate target value ηet. Actually, in this determination, it is not a coincidence in a strict sense, but it is determined whether or not the EGR rate estimated value ηec is within an allowable range of control of the EGR rate target value ηet. That is, it is determined whether the EGR rate estimated value ηec is substantially equal to the EGR rate target value ηet. Thereby, it is determined whether or not the EGR rate estimated value ηec has finished following the EGR rate target value ηet. If they are not equal and have not been followed (NO), step S11 is repeated, and the process waits until the EGR rate estimated value ηec becomes the EGR rate target value ηet.

ステップS12の判定で、EGR率推定値ηecがEGR率目標値ηetに等しいと判定された場合(YES)には、ステップS13とステップS14を並行して実施する。ステップS13では筒内圧力センサ18による筒内圧力経過検出データPcm(i)を算出する。一方、ステップS14では、筒内燃焼モデルから筒内圧力経過算出データPcc(i)を算出する。この筒内圧力経過検出データPcm(i)と筒内圧力経過算出データPcc(i)の一例を図3に示す。   If it is determined in step S12 that the EGR rate estimated value ηec is equal to the EGR rate target value ηet (YES), step S13 and step S14 are performed in parallel. In step S13, in-cylinder pressure progress detection data Pcm (i) by the in-cylinder pressure sensor 18 is calculated. On the other hand, in step S14, in-cylinder pressure progress calculation data Pcc (i) is calculated from the in-cylinder combustion model. An example of the in-cylinder pressure progress detection data Pcm (i) and the in-cylinder pressure progress calculation data Pcc (i) is shown in FIG.

この筒内燃焼モデルでは、筒内圧力経過算出データPcc(i)を、EGR率目標値ηet、燃料噴射時期の制御量Ftt、燃料噴射量の制御量Fvt、燃料噴射圧力の制御量Fpt、吸気圧力の測定値Pim、吸気温度の測定値Tim、エンジン回転数の測定値Nem又は制御値Necを基に算出する。なお、これらの基となる値は、制御装置15で算定される。   In this in-cylinder combustion model, the in-cylinder pressure progress calculation data Pcc (i) is converted into the EGR rate target value ηet, the fuel injection timing control amount Ftt, the fuel injection amount control amount Fvt, the fuel injection pressure control amount Fpt, the intake air Calculation is made based on the pressure measurement value Pim, the intake air temperature measurement value Tim, the engine rotation speed measurement value Nem, or the control value Nec. Note that these base values are calculated by the control device 15.

この筒内燃焼モデルは、ディーゼルエンジンでは、噴霧燃焼予測モデルとも呼ばれ、エンジン回転数Ne、EGR率ηe、燃料噴射時期Ft、燃料噴射量Fv、燃料噴射圧力Fp、吸気圧力Pi、吸気温度Tiを入力として、筒内燃焼状態、排気エミッション、エンジントルクなどを予測するものであり、燃料噴射で発生する噴霧を幾つかの領域に分割して各領域で燃料の蒸発、燃焼などを計算することで、筒内における噴霧燃焼を短時間で模擬(シミュレーション)することができる。この筒内燃焼モデルを用いることにより、周囲環境(大気圧、大気温度等)の変化や異なるエンジン形状に対してもその都度制御マップなどを作成する必要がなくなる。   In a diesel engine, this in-cylinder combustion model is also called a spray combustion prediction model, and the engine speed Ne, EGR rate ηe, fuel injection timing Ft, fuel injection amount Fv, fuel injection pressure Fp, intake air pressure Pi, intake air temperature Ti Is used to predict the in-cylinder combustion state, exhaust emission, engine torque, etc., and divide the spray generated by fuel injection into several regions and calculate the fuel evaporation, combustion, etc. in each region Thus, spray combustion in the cylinder can be simulated (simulated) in a short time. By using this in-cylinder combustion model, it is not necessary to create a control map for each change in the surrounding environment (atmospheric pressure, atmospheric temperature, etc.) and different engine shapes.

このステップS13とステップS14の算出後は、ステップS15に行き、両者の偏差量ΔPcをΔPc=Σ|Pcc(i)−Pcm(i)|で算出する。このΣはi=1〜Iで積算される。次のステップS16では、この偏差量ΔPcと閾値ΔPc1との比較を行う。この比較で、偏差量ΔPcが閾値ΔPc1以下の場合(YES)は、EGR率推定値ηecは実際のEGR率ηeに近いとして、リターンする。また、ステップS16の比較で、偏差量ΔPcが閾値ΔPc1より大きい場合(NO)は、EGR率推定値ηecは実際のEGR率ηeから離れているとして、ステップS17に行く。   After the calculation in step S13 and step S14, the process goes to step S15, and the deviation amount ΔPc between them is calculated as ΔPc = Σ | Pcc (i) −Pcm (i) |. This Σ is integrated with i = 1 to I. In the next step S16, the deviation amount ΔPc is compared with the threshold value ΔPc1. In this comparison, when the deviation amount ΔPc is equal to or smaller than the threshold value ΔPc1 (YES), the EGR rate estimated value ηec is close to the actual EGR rate ηe, and the process returns. If the deviation amount ΔPc is larger than the threshold value ΔPc1 in the comparison in step S16 (NO), it is determined that the EGR rate estimated value ηec is far from the actual EGR rate ηe, and the process goes to step S17.

ステップS17では、筒内圧力経過算出データPcc(i)から、着火時期算出値Tfcを算出し、筒内圧力経過検出データPcm(i)から着火時期検出値Tfmを算出する。なお、着火センサを備えている場合には、この着火センサから検出された着火時期を着火時期検出値Tfmとする。この着火時期は筒内圧力が急激に変化するので容易に算出及び検出できる。   In step S17, an ignition timing calculation value Tfc is calculated from the in-cylinder pressure progress calculation data Pcc (i), and an ignition timing detection value Tfm is calculated from the in-cylinder pressure progress detection data Pcm (i). If an ignition sensor is provided, the ignition timing detected from this ignition sensor is set as an ignition timing detection value Tfm. This ignition timing can be easily calculated and detected because the in-cylinder pressure changes rapidly.

次のステップS18では、着火時期算出値Tfcと着火時期検出値Tfmとを比較し、着火時期算出値Tfcが着火時期検出値Tfmよりも早い場合はEGR率の目標制御量であるEGR率目標値ηetが減少するように調整し、着火時期算出値Tfcが着火時期検出値Tfmよりも遅い場合はEGR率目標値ηetが増加するように調整する。この調整を行った後、リターンする。この着火時期算出値Tfcが着火時期検出値Tfmよりも早い場合を図4に示し、着火時期算出値Tfcが着火時期検出値Tfmよりも遅い場合を図5に示す。   In the next step S18, the ignition timing calculated value Tfc and the ignition timing detected value Tfm are compared, and if the ignition timing calculated value Tfc is earlier than the ignition timing detected value Tfm, an EGR rate target value that is a target control amount of the EGR rate. ηet is adjusted to decrease, and when the ignition timing calculated value Tfc is later than the ignition timing detection value Tfm, the EGR rate target value ηet is adjusted to increase. After making this adjustment, return. FIG. 4 shows the case where the ignition timing calculated value Tfc is earlier than the ignition timing detected value Tfm, and FIG. 5 shows the case where the ignition timing calculated value Tfc is later than the ignition timing detected value Tfm.

このステップS18の判定と調整では、着火時期算出値Tfcが着火時期検出値Tfmよりも早い場合は実際のEGR率が大きく、EGRガスが過剰に筒内に流入しており失火の虞があるので、EGR率の目標制御量であるEGR率目標値ηetを減少し、実際のEGR率を下げるようにする。また、着火時期算出値Tfcが着火時期検出値Tfmよりも遅い場合実際のEGR率が小さく、適正なEGR率を確保できておらず、NOx排出量の増加につながるため、EGR率目標値ηetが増加するように補正する。   In the determination and adjustment in step S18, when the ignition timing calculated value Tfc is earlier than the ignition timing detection value Tfm, the actual EGR rate is large, and the EGR gas flows excessively into the cylinder, which may cause misfire. The EGR rate target value ηet, which is the target control amount of the EGR rate, is decreased to lower the actual EGR rate. In addition, when the calculated ignition timing Tfc is slower than the detected ignition timing Tfm, the actual EGR rate is small and an appropriate EGR rate cannot be secured, leading to an increase in NOx emissions. Correct to increase.

図2の制御フローは、リターンして上級の制御フローに戻った後、この上級の制御フローからEGR制御と並行して繰り返し呼ばれて実行され、エンジンの運転の終了と共に図2の制御フローも終了する。なお、EGR制御を実行していない場合には、図2の制御フローは使用できないので、図2の制御フローの呼び出しがなくなり、図2の制御フローの実行は中断する。   The control flow of FIG. 2 returns and returns to the advanced control flow, and is then repeatedly called and executed in parallel with the EGR control from the advanced control flow. The control flow of FIG. finish. When the EGR control is not executed, the control flow of FIG. 2 cannot be used, so that the control flow of FIG. 2 is not called, and the execution of the control flow of FIG. 2 is interrupted.

上記の内燃機関のEGR制御方法及び内燃機関(エンジン)によれば、予め設定した期間内の筒内圧力の時系列データである筒内圧力経過算出データと筒内圧力経過検出データの間の偏差量を判定基準としているので、精度よく実際のEGR率とEGR率目標値との間の乖離を求めることができ、これにより、実際に適切なEGR率でEGR制御が行われているか否かを精度よく判定することができる。   According to the above-described EGR control method and internal combustion engine (engine) of the internal combustion engine, the deviation between the in-cylinder pressure progress calculation data and the in-cylinder pressure progress detection data, which is time-series data of the in-cylinder pressure within a preset period. Since the quantity is used as a determination criterion, the deviation between the actual EGR rate and the target value of the EGR rate can be obtained with high accuracy, so that whether or not the EGR control is actually performed at an appropriate EGR rate is determined. It can be determined with high accuracy.

特に、多量のEGRでかつ早期噴射で実現される予混合圧縮着火燃焼方式で作動する内燃機関では、着火時期がEGR率の影響を大きく受けるため、EGR率をより適切に制御することが求められるので、より効果が大きい。   In particular, in an internal combustion engine that operates with a premixed compression ignition combustion system that is realized with a large amount of EGR and early injection, the ignition timing is greatly affected by the EGR rate, and therefore it is required to control the EGR rate more appropriately. So it is more effective.

また、この内燃機関のEGR制御方法と内燃機関によれば、筒内圧力経過の算出データPcc(i)と検出データPcm(i)を判定基準としているので、EGRシステム31の各装置33、34、35に異常がある場合でも、筒内圧力経過の算出データPcc(i)と検出データPcm(i)とから求めた着火時期の算出値Tfcと検出値Tfmを比較して、適切なEGR率が確保できて適切な筒内燃焼を得ることができるように、EGR弁34等を制御できる。これにより、EGR装置33、34、35の異常時においても失火防止やNOx低減効果を得ることができる。   Further, according to the EGR control method and the internal combustion engine of the internal combustion engine, the calculation data Pcc (i) and the detection data Pcm (i) of the in-cylinder pressure are used as the determination criteria, so that the devices 33 and 34 of the EGR system 31 are used. , 35, even if there is an abnormality, the calculated ignition timing Tfc obtained from the in-cylinder pressure progress calculation data Pcc (i) and the detection data Pcm (i) is compared with the detection value Tfm to obtain an appropriate EGR rate. Therefore, the EGR valve 34 and the like can be controlled so that proper in-cylinder combustion can be obtained. Thereby, even when the EGR devices 33, 34, and 35 are abnormal, it is possible to obtain misfire prevention and NOx reduction effects.

更に、この内燃機関のEGR制御方法と内燃機関では、エンジンシステムの違いや周囲環境の違い等の影響も考慮した筒内燃焼モデルにより算出される値を判定基準とすればよいため、これらの影響を入れたデータ数が多い制御用のマップデータを有している必要がなくなる。   Furthermore, in the EGR control method for an internal combustion engine and the internal combustion engine, the value calculated by the in-cylinder combustion model that takes into account the effects of differences in the engine system and the surrounding environment may be used as a criterion. There is no need to have map data for control with a large number of data including.

本発明の実施の形態のエンジンの構成を示す図である。It is a figure which shows the structure of the engine of embodiment of this invention. 本発明の実施の形態における内燃機関のEGR制御方法の制御フローの一例を示す図である。It is a figure which shows an example of the control flow of the EGR control method of the internal combustion engine in embodiment of this invention. 筒内圧力経過算出データと筒内圧力経過検出データの関係の一例を示す図である。It is a figure which shows an example of the relationship between cylinder pressure progress calculation data and cylinder pressure progress detection data. 着火時期算出値が着火時期検出値よりも早い場合の本筒内圧力経過算出データと筒内圧力経過検出データの関係の一例を示す図である。It is a figure which shows an example of the relationship between main cylinder pressure progress calculation data and cylinder pressure progress detection data in case ignition timing calculation value is earlier than ignition timing detection value. 着火時期算出値が着火時期検出値よりも遅い場合の本筒内圧力経過算出データと筒内圧力経過検出データの関係の一例を示す図である。It is a figure which shows an example of the relationship between main cylinder pressure progress calculation data and cylinder pressure progress detection data in case ignition timing calculation value is later than ignition timing detection value.

符号の説明Explanation of symbols

1 エンジン
14 吸入空気量センサ
16 筒内圧力センサ
17 吸気圧センサ
18 吸気温度センサ
35 EGRガス流量センサ
DESCRIPTION OF SYMBOLS 1 Engine 14 Intake air amount sensor 16 In-cylinder pressure sensor 17 Intake pressure sensor 18 Intake temperature sensor 35 EGR gas flow sensor

Claims (4)

EGRシステムを備えた内燃機関において、EGR率目標値又はEGRガス流量センサと吸入空気量センサの検出値から算出されたEGR率推定値を入力とする筒内燃焼モデルを用いて、予め設定した期間内の筒内圧力の時系列データである筒内圧力経過算出データを算出し、該筒内圧力経過算出データと、筒内圧力センサにより検出した前記期間内の筒内圧力経過検出データとの間の偏差量を求め、この偏差量が予め設定した閾値以上になったときに、前記EGR率目標値を満足するEGR率を達成できていないと判定することを特徴とする内燃機関のEGR制御方法。   In an internal combustion engine equipped with an EGR system, a period set in advance using an in-cylinder combustion model that receives an EGR rate target value or an EGR rate estimated value calculated from an EGR gas flow rate sensor and a detected value of an intake air amount sensor. In-cylinder pressure progress calculation data that is time-series data of the in-cylinder pressure is calculated, and between the in-cylinder pressure progress calculation data and the in-cylinder pressure progress detection data within the period detected by the in-cylinder pressure sensor. And determining that an EGR rate that satisfies the EGR rate target value is not achieved when the deviation amount is equal to or greater than a preset threshold value. . 前記筒内圧力経過算出データは、前記EGR率目標値又は前記EGR率推定値、燃料噴射時期の制御量、燃料噴射量の制御量、燃料噴射圧力の制御量、吸気圧力の測定値、吸気温度の測定値を基に前記筒内燃焼モデルで算出されることを特徴とする請求項1記載の内燃機関のEGR制御方法。   The in-cylinder pressure progress calculation data includes the EGR rate target value or the EGR rate estimation value, the control amount of the fuel injection timing, the control amount of the fuel injection amount, the control amount of the fuel injection pressure, the measured value of the intake pressure, the intake air temperature The EGR control method for an internal combustion engine according to claim 1, wherein the EGR control method is calculated by the in-cylinder combustion model based on the measured value. 前記筒内圧力経過算出データから着火時期算出値を算出し、前記筒内圧力経過検出データから求められた着火時期検出値又は着火センサから検出された着火時期検出値と比較し、前記着火時期算出値が前記着火時期検出値よりも早い場合は前記EGR率目標値を減少するように補正し、前記着火時期算出値が前記着火時期検出値よりも遅い場合は前記EGR率目標値を増加するように補正することを特徴とする請求項1又は2記載の内燃機関のEGR制御方法。   The ignition timing calculation value is calculated from the in-cylinder pressure progress calculation data, and compared with the ignition timing detection value obtained from the in-cylinder pressure progress detection data or the ignition timing detection value detected from the ignition sensor, and the ignition timing calculation When the value is earlier than the ignition timing detection value, the EGR rate target value is corrected to decrease, and when the ignition timing calculated value is later than the ignition timing detection value, the EGR rate target value is increased. The EGR control method for an internal combustion engine according to claim 1, wherein the EGR control method corrects to: EGRシステムとEGR制御手段を備えた内燃機関において、前記EGR制御手段が、請求項1、2又は3のいずれかに記載の内燃機関のEGR制御方法を実施することを特徴とする内燃機関。   An internal combustion engine comprising an EGR system and an EGR control means, wherein the EGR control means implements the EGR control method for an internal combustion engine according to any one of claims 1, 2, and 3.
JP2008278906A 2008-10-29 2008-10-29 Egr control method for internal combustion engine, and internal combustion engine Pending JP2010106734A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278906A JP2010106734A (en) 2008-10-29 2008-10-29 Egr control method for internal combustion engine, and internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278906A JP2010106734A (en) 2008-10-29 2008-10-29 Egr control method for internal combustion engine, and internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010106734A true JP2010106734A (en) 2010-05-13

Family

ID=42296421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278906A Pending JP2010106734A (en) 2008-10-29 2008-10-29 Egr control method for internal combustion engine, and internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010106734A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2594775A1 (en) * 2011-11-16 2013-05-22 Delphi Technologies Holding S.à.r.l. A method of assessing the functioning of an EGR cooler in an internal combustion engine
US9243576B2 (en) 2011-11-22 2016-01-26 Hyundai Motor Company System and method for controlling NOx
US9845771B2 (en) 2012-12-18 2017-12-19 Continental Automotive France Method for determining the recycled air flow rate and the quantity of oxygen available at the inlet of an internal combustion engine cylinder
WO2021193036A1 (en) * 2020-03-27 2021-09-30 株式会社クボタ Intake air amount measurement device and engine
WO2023063304A1 (en) * 2021-10-12 2023-04-20 浩明 坪川 Combustion state diagnosis system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2594775A1 (en) * 2011-11-16 2013-05-22 Delphi Technologies Holding S.à.r.l. A method of assessing the functioning of an EGR cooler in an internal combustion engine
US9410494B2 (en) 2011-11-16 2016-08-09 Delphi International Operations Luxembourg SARL. Method of assessing the functioning of an EGR cooler in an internal combustion engine
US9243576B2 (en) 2011-11-22 2016-01-26 Hyundai Motor Company System and method for controlling NOx
US9845771B2 (en) 2012-12-18 2017-12-19 Continental Automotive France Method for determining the recycled air flow rate and the quantity of oxygen available at the inlet of an internal combustion engine cylinder
WO2021193036A1 (en) * 2020-03-27 2021-09-30 株式会社クボタ Intake air amount measurement device and engine
WO2023063304A1 (en) * 2021-10-12 2023-04-20 浩明 坪川 Combustion state diagnosis system
WO2023063305A1 (en) * 2021-10-12 2023-04-20 浩明 坪川 Combustion state diagnosis system

Similar Documents

Publication Publication Date Title
US8712668B2 (en) Control system for an internal combustion engine
US7654133B2 (en) Malfunction diagnostic apparatus and malfunction diagnostic method for combustion improvement device
JP5043899B2 (en) EGR flow control device for internal combustion engine
JP6707038B2 (en) Control device for internal combustion engine
WO2013030562A1 (en) System for calibrating egr pressure sensing systems
US7769531B2 (en) Control device of internal combustion engine
US20150275782A1 (en) Control device for engine equipped with supercharger
US8751137B2 (en) Apparatus for estimating exhaust gas recirculation quantity
JP2010106734A (en) Egr control method for internal combustion engine, and internal combustion engine
JP6860313B2 (en) Engine control method and engine
JP2009047130A (en) Control device for internal combustion engine
JP2008025374A (en) Ignition timing control device for internal combustion engine
JP5076879B2 (en) Fuel injection control system for internal combustion engine
JP5111534B2 (en) EGR control device for internal combustion engine
JP5004036B2 (en) Exhaust gas purification device for internal combustion engine
JP2015190397A (en) Internal combustion engine soot emission estimation device
CN108999709B (en) Method for calculating the charge of an internal combustion engine
JP2014190305A (en) Control device of diesel engine
JP6115571B2 (en) Diesel engine control device
JP7206625B2 (en) Control device for internal combustion engine
JP5760924B2 (en) In-cylinder pressure estimation device for internal combustion engine
JP5146367B2 (en) Apparatus and method for adapting parameters to be operated of internal combustion engine
JP5418787B2 (en) Intake control device for internal combustion engine
JP6332014B2 (en) Internal combustion engine control device
JP2017057743A (en) Opening area estimation device and opening area estimation method