JP2010066962A - Operation device - Google Patents

Operation device Download PDF

Info

Publication number
JP2010066962A
JP2010066962A JP2008232062A JP2008232062A JP2010066962A JP 2010066962 A JP2010066962 A JP 2010066962A JP 2008232062 A JP2008232062 A JP 2008232062A JP 2008232062 A JP2008232062 A JP 2008232062A JP 2010066962 A JP2010066962 A JP 2010066962A
Authority
JP
Japan
Prior art keywords
reaction force
command value
resistance reaction
force
operated member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008232062A
Other languages
Japanese (ja)
Inventor
Kenjiro Yamamoto
健次郎 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP2008232062A priority Critical patent/JP2010066962A/en
Publication of JP2010066962A publication Critical patent/JP2010066962A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)
  • Mechanical Control Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation device, capable of attaining both the improvement in the sensation operation or the operability at an emergency operation and prevention of an erroneous operation, by making characteristics of the operation device to be varied dynamically. <P>SOLUTION: The operation device 70 for producing an operation instruction value of an actuator of an operation machine, in response to an operation of an operator includes an operation inputting means 76, having a member 71 to be operated which receives an operation input and operation signal producing means 72 for outputting an operation signal based on an operation of the member 71 to be operated; a brake operation detecting means 78 for detecting an operation of the operator for braking the member 71; a resistance reaction force producing means 75 for attenuating an operation of the member 71 to be operated, by adding a force acting to a reverse direction, with respect to the operation direction to the member 71 to be operated; a resistance reaction force instruction value producing means 73 for producing an instruction value to the resistance reaction force producing means 75, based on the detection signal from the brake operation detecting means 78; and an operation supporting means 77, having a resistance reaction force controlling means 74 for outputting an instruction signal to the resistance reaction force producing means 75, according to the instruction value from the resistance reaction force instruction value producing means 73. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、操作者の操作に応じて油圧ショベルや油圧クレーン等の作業機械のアクチュエータの動作指令値を生成する操作装置に関する。   The present invention relates to an operating device that generates an operation command value for an actuator of a work machine such as a hydraulic excavator or a hydraulic crane in accordance with an operation of an operator.

土木工事や解体工事等の作業現場では、一般に油圧ショベルや油圧クレーンに代表される作業機械が用いられる。この種の作業機械は、動力源となる油圧ポンプ、油圧ポンプからの圧油で駆動する油圧アクチュエータ(油圧シリンダ、油圧モータ等)、油圧アクチュエータにより駆動される被駆動部材(アーム、バケット、ワイヤロープ等)、油圧アクチュエータへの圧油の流れ(流量及び方向)を制御する制御弁、被駆動部材の動作を指示する操作装置等を備えている。通常、操作装置は、操作者により操作される被操作部材(操作レバー、ペダル、ボタン等)、及び被操作部材の移動角や移動距離を油圧アクチュエータの動作速度指令値に変換する指令値生成装置から構成されている。操作者によって被操作部材が操作されると操作装置からの指令値を基に制御弁が制御され、指令値に応じた駆動速度で油圧アクチュエータが駆動し被駆動部材の動作として出力される。こうした作業機械では、作業の効率や質等を含めた作業性を高めるために、疲労が少なく作業に適した操作感又は操作性が求められる。   In work sites such as civil engineering work and demolition work, work machines represented by hydraulic excavators and hydraulic cranes are generally used. This type of work machine has a hydraulic pump as a power source, a hydraulic actuator (hydraulic cylinder, hydraulic motor, etc.) driven by pressure oil from the hydraulic pump, and a driven member (arm, bucket, wire rope) driven by the hydraulic actuator. Etc.), a control valve for controlling the flow (flow rate and direction) of the pressure oil to the hydraulic actuator, an operating device for instructing the operation of the driven member, and the like. Usually, the operating device is a member to be operated (operating lever, pedal, button, etc.) operated by an operator, and a command value generating device that converts the movement angle or movement distance of the member to be operated into an operation speed command value of a hydraulic actuator. It is composed of When the operated member is operated by the operator, the control valve is controlled based on a command value from the operating device, and the hydraulic actuator is driven at a driving speed corresponding to the command value and output as an operation of the driven member. In such a working machine, in order to enhance workability including work efficiency and quality, an operation feeling or operability suitable for work is required with less fatigue.

一般的な操作装置には、無操作時に指令値がゼロになるように被操作部材を中立位置に自動復帰させるためのバネが取付けられている。バネ弾性が大きければ被操作部材を中立位置に復帰させる力が強く復帰時間も早くなる。この場合、誤操作を避けてゆっくり慎重に操作する場面では良い操作感が得られるが、被操作部材を動かすのに要する力(操作力)が大きくなるので、急操作や微操作が難しく操作による操作者の疲労も大きくなる。反対に、バネ弾性を小さくすれば操作力が小さくなり、速い操作や微操作が要求される場面や運転時間が長時間に及ぶ場面では有利となるが、バネ弾性が過度に小さいと被操作部材の中立位置への復帰が遅くなる上、操作者の腕のぶれ等が操作に影響し易くなる。したがって、作業機械の操作性をより良くするためには、操作装置の特性(被操作部材の弾性や慣性、操作に関わる流体の粘性、また流体や可動部の摩擦等)を操作者の操作に対して適切に設定する必要がある。   A general operating device is provided with a spring for automatically returning the operated member to the neutral position so that the command value becomes zero when there is no operation. If the spring elasticity is large, the force to return the operated member to the neutral position is strong and the return time is also shortened. In this case, a good feeling of operation can be obtained when operating slowly and carefully, avoiding erroneous operations, but the force (operating force) required to move the operated member is increased, making it difficult to operate quickly and finely. The fatigue of the person will also increase. On the other hand, if the spring elasticity is reduced, the operating force is reduced, which is advantageous in situations where fast operation or fine operation is required or in situations where the operation time is long, but if the spring elasticity is excessively small, the operated member The return to the neutral position is delayed, and the movement of the operator's arm is likely to affect the operation. Therefore, in order to improve the operability of the work machine, the characteristics of the operating device (elasticity and inertia of the operated member, viscosity of the fluid related to the operation, friction of the fluid and movable parts, etc.) It is necessary to set appropriately.

操作装置の操作性の向上を狙った技術は既に多数存在するが、その1つとして操作装置の特性を動的に変更する技術があり、例えば特許文献1には、被操作部材に可変粘性流体を用いたダンパを接続し、被操作部材の操作速度に反比例するように可変粘性流体の粘性抵抗を制御して操作反力を調整する技術が開示されている。この記載技術を用いれば、速い操作のときに操作反力が大きく、遅い操作のときに操作反力が小さくなるので、上記のバネ弾性を小さく設定しても腕のぶれ等による誤操作を抑制することができる。   There are already many technologies aimed at improving the operability of the operating device. One of them is a technology that dynamically changes the characteristics of the operating device. For example, Patent Document 1 discloses a variable viscous fluid as a member to be operated. A technique is disclosed in which an operation reaction force is adjusted by controlling a viscous resistance of a variable viscous fluid so as to be connected in inverse proportion to an operation speed of a member to be operated. If this described technique is used, an operation reaction force is large during a fast operation and an operation reaction force is small during a slow operation. Therefore, even if the spring elasticity is set small, erroneous operation due to arm shake or the like is suppressed. be able to.

特開2000−276244号公報JP 2000-276244 A

しかしながら、上記特許文献1の開示技術では、操作装置のバネ弾性を小さく設定しても微操作時等の誤操作が抑制される利点はあるが、被操作部材を急操作する場面では、被駆動部材の操作速度が十分に上がり切らない間は操作反力が強く速い操作ができない。この場合、過度に力を加えて操作速度を上げようとすると操作速度の上昇に伴って操作反力が急激に軽くなるため、的確な位置に被操作部材を停止させるための力加減も難しくなる。このように、操作感や操作性を向上させるために、操作装置の特性をどのような方法や手段で変化させるかについては更なる改善の余地が残されている。   However, the disclosed technique disclosed in Patent Document 1 has an advantage that erroneous operation such as fine operation is suppressed even if the spring elasticity of the operating device is set to be small. However, in a scene where the operated member is suddenly operated, the driven member As long as the operation speed is not sufficiently increased, the operation reaction force is strong and the operation cannot be performed quickly. In this case, if an excessive force is applied to increase the operation speed, the operation reaction force is drastically reduced as the operation speed is increased. Therefore, it is difficult to adjust the force to stop the operated member at an appropriate position. . As described above, there is still room for further improvement as to how the characteristics of the operating device are changed in order to improve the operational feeling and operability.

本発明は上記課題を解決するためになされたものであり、操作装置の特性を動的に変化させ、急操作時の操作感又は操作性の向上と誤操作の抑制を両立することができる操作装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is an operation device that can dynamically change the characteristics of the operation device and achieve both improvement in operational feeling or operability during sudden operation and suppression of erroneous operation. The purpose is to provide.

(1)上記目的を達成するために、本発明は、操作者の操作に応じて作業機械のアクチュエータの動作指令値を生成する操作装置において、操作入力を受ける被操作部材、及び前記被操作部材の動作を前記アクチュエータの動作指令値に変換し操作信号を出力する操作信号生成手段を有する操作入力手段と、操作中に操作者が前記被操作部材を制動する動作を検出する制動動作検出手段と、前記被操作部材に対して操作方向と反対方向に作用する力を付加し前記被操作部材の動作を減衰させる抵抗反力生成手段、前記制動動作検出手段からの検出信号に基づいて前記抵抗反力生成手段への指令値を生成する抵抗反力指令値生成手段、及び前記抵抗反力指令値生成手段からの指令値に応じて前記抵抗反力生成手段に指令信号を出力する抵抗反力制御手段を有する操作支援手段とを備えたことを特徴とする。   (1) In order to achieve the above object, the present invention provides an operated member that receives an operation input in an operating device that generates an operation command value of an actuator of a work machine in accordance with an operation of an operator, and the operated member An operation input means having an operation signal generating means for converting an operation of the actuator into an operation command value of the actuator and outputting an operation signal; and a braking operation detection means for detecting an operation of the operator to brake the operated member during operation. A resistance reaction force generating means for applying a force acting on the operated member in a direction opposite to the operation direction to attenuate the operation of the operated member, and the resistance reaction based on a detection signal from the braking operation detecting means. A resistance reaction force command value generating means for generating a command value to the force generating means, and a resistance reaction force for outputting a command signal to the resistance reaction force generating means in accordance with a command value from the resistance reaction force command value generating means Characterized in that an operation support means having a control means.

(2)上記(1)において、好ましくは、前記抵抗反力生成手段は、前記被操作部材の移動速度と前記被操作部材の動きに伴って流動する粘性摩擦係数との積で決まる粘性摩擦抵抗反力を生成することを特徴とする。   (2) In the above (1), preferably, the resistance reaction force generating means is a viscous friction resistance determined by a product of a moving speed of the operated member and a viscous friction coefficient that flows along with the movement of the operated member. It is characterized by generating a reaction force.

(3)上記(1)又は(2)において、好ましくは、前記制動動作検出手段として、前記被操作部材に加わる操作力を検出する操作力検出手段又は前記操作信号生成手段が出力する操作信号の加速度成分を演算する加速度演算手段を設け、前記抵抗反力指令値生成手段は、前記制動動作検出手段により検出された前記操作力の変化率又は前記加速度成分の変化率の絶対値が予め設定した第1閾値以上に増大した後、前記操作力の変化率又は前記加速度成分の変化率が正負逆転して絶対値が予め設定した第2閾値以上に増大した場合、前記操作力又は前記加速度成分に応じて前記抵抗反力生成手段への指令値を生成し、前記操作力の変化率又は前記加速度成分の変化率の絶対値が前記第1及び第2閾値よりも小さな第3閾値以下にある場合、前記抵抗反力生成手段への指令値の出力を停止することを特徴とする。   (3) In the above (1) or (2), preferably, as the braking operation detection means, an operation force detection means for detecting an operation force applied to the operated member or an operation signal output by the operation signal generation means An acceleration calculating means for calculating an acceleration component is provided, and the resistance reaction force command value generating means is preset with a change rate of the operating force detected by the braking operation detecting means or an absolute value of the change rate of the acceleration component. After the increase to the first threshold value or more, when the change rate of the operation force or the change rate of the acceleration component is reversed between positive and negative and the absolute value increases to a second threshold value or more that is set in advance, the operation force or the acceleration component In response, a command value to the resistance reaction force generating means is generated, and the absolute value of the change rate of the operating force or the change rate of the acceleration component is equal to or smaller than a third threshold value smaller than the first and second threshold values. ,in front Characterized by stopping the output of the command value to the resistance reaction force generation means.

(4)上記(1)又は(2)において、好ましくは、前記制動動作検出手段として、操作者が前記被操作部材を動かすときに活動する主動筋と制動するときに活動する拮抗筋の緊張度を測定する筋緊張測定手段を設け、前記抵抗反力指令値生成手段は、前記主動筋と前記拮抗筋の同時出力の拮抗度に応じて前記抵抗反力生成手段への指令値を生成することを特徴とする。   (4) In the above (1) or (2), preferably, as the braking operation detecting means, the tension of the main muscle that is active when the operator moves the operated member and the degree of tension of the antagonistic muscle that is active when braking And a resistance reaction force command value generating means for generating a command value to the resistance reaction force generating means according to the degree of antagonism of the simultaneous output of the main muscle and the antagonist muscle. It is characterized by.

(5)上記(1)又は(2)において、好ましくは、前記制動動作検出手段として、操作者が前記被操作部材を把持する握り圧又は握り力を検出する握り量検出手段を設け、前記抵抗反力指令値生成手段は、前記握り量検出手段で検出された握り量に応じて前記抵抗反力生成手段への指令値を生成することを特徴とする。   (5) In the above (1) or (2), preferably, as the braking operation detecting means, a grip amount detecting means for detecting a grip pressure or a grip force by which an operator grips the operated member is provided, and the resistance The reaction force command value generation unit generates a command value to the resistance reaction force generation unit according to the grip amount detected by the grip amount detection unit.

(6)上記(1)又は(2)において、好ましくは、前記制動動作検出手段として、操作者が操作レバーである前記被操作部材を軸方向に押し付ける力又は圧力を検出する押し付け量検出手段を設け、前記抵抗反力指令値生成手段は、前記押し付け量検出手段で検出された押し付け量に応じて前記抵抗反力生成手段への指令値を生成することを特徴とする。   (6) In the above (1) or (2), preferably, as the braking operation detecting means, a pressing amount detecting means for detecting a force or pressure by which an operator presses the operated member as an operating lever in the axial direction. The resistance reaction force command value generation unit generates a command value to the resistance reaction force generation unit according to the pressing amount detected by the pressing amount detection unit.

本発明によれば、操作装置の特性を動的に変化させることによって、適当な操作反力を被操作部材に適時に付与することができるので、急操作時の操作感又は操作性の向上と誤操作の抑制を両立することができる。   According to the present invention, an appropriate operation reaction force can be imparted to the operated member in a timely manner by dynamically changing the characteristics of the operating device, so that the operational feeling or operability during sudden operation is improved. It is possible to suppress erroneous operations.

以下に図面を用いて本発明の実施形態を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の操作装置の適用対象である作業機械の一例である油圧ショベルの側面図である。まず図1に示した油圧ショベルを例に、本発明の操作装置の適用対象である作業機械の概略構成を説明する。以下の説明では、特に断り書きのない場合は図1中の左右を機体の前後方向とする。   FIG. 1 is a side view of a hydraulic excavator that is an example of a work machine to which the operating device of the present invention is applied. First, a schematic configuration of a work machine to which the operating device of the present invention is applied will be described using the hydraulic excavator shown in FIG. 1 as an example. In the following description, unless otherwise specified, the left and right in FIG.

図1に示した油圧ショベルは、大きく分けて走行体1及びこの走行体1上に旋回可能に搭載された旋回体2から構成される。   The hydraulic excavator shown in FIG. 1 includes a traveling body 1 and a revolving body 2 that is mounted on the traveling body 1 so as to be able to swivel.

走行体1は、無限軌道履帯を有する左右のクローラを備えており、左右のクローラを左右の走行モータ33E,33F(後述する図4参照)によりそれぞれ駆動することで走行する。走行モータ33E,33Fは油圧アクチュエータであり、走行体1は走行モータ33E,33Fにより駆動される被駆動部材を構成する。   The traveling body 1 includes left and right crawlers having endless track tracks, and travels by driving the left and right crawlers by left and right traveling motors 33E and 33F (see FIG. 4 described later). The traveling motors 33E and 33F are hydraulic actuators, and the traveling body 1 constitutes a driven member that is driven by the traveling motors 33E and 33F.

旋回体2は、旋回フレーム3を有し、旋回フレーム3には、前方側に操作者が搭乗するキャブボックス4が、キャブボックス4の後方側に機械室を画成する建屋カバー5が、最後部に機体の前後方向のバランスを調整するカウンタウェイト6が搭載されている。旋回フレーム3には旋回モータ33D(後述する図4参照)が設けられており、旋回体2はこの旋回モータによって旋回駆動される。旋回モータ33Dは油圧アクチュエータであり、旋回体2は旋回モータ33Dにより駆動される被駆動部材を構成する。   The swivel body 2 has a swivel frame 3. The swivel frame 3 has a cab box 4 on which an operator gets on the front side, and a building cover 5 that defines a machine room on the rear side of the cab box 4. A counterweight 6 that adjusts the balance in the front-rear direction of the airframe is mounted on the part. The turning frame 3 is provided with a turning motor 33D (see FIG. 4 described later), and the turning body 2 is driven to turn by this turning motor. The turning motor 33D is a hydraulic actuator, and the turning body 2 constitutes a driven member that is driven by the turning motor 33D.

また、旋回体2の前部(本例ではキャブボックス4の右側)には、旋回体2に対して俯仰動作するフロント作業装置8が設けられている。このフロント作業装置8は、旋回体2の旋回フレーム3にピン結合されたブーム8Aと、ブーム8Aの先端側にピン結合されたアーム8Bと、アーム8Bの先端側にピン結合された作業具(バケット)8Cとによって構成されている。そして、ブーム8A、アーム8B及びバケット8Cは、ブームシリンダ33A、アームシリンダ33B及びバケットシリンダ33C等の油圧アクチュエータによって駆動される。ブーム8A、アーム8B及びバケット8Cは、それぞれブームシリンダ33A、アームシリンダ33B及びバケットシリンダ33Cにより駆動される被駆動部材を構成している。   In addition, a front working device 8 that moves up and down with respect to the swivel body 2 is provided at a front portion of the swivel body 2 (right side of the cab box 4 in this example). The front working device 8 includes a boom 8A pin-coupled to the revolving frame 3 of the revolving structure 2, an arm 8B pin-coupled to the tip side of the boom 8A, and a work tool (pin-coupled to the tip side of the arm 8B). Bucket) 8C. The boom 8A, the arm 8B, and the bucket 8C are driven by hydraulic actuators such as the boom cylinder 33A, the arm cylinder 33B, and the bucket cylinder 33C. The boom 8A, arm 8B, and bucket 8C constitute driven members that are driven by the boom cylinder 33A, arm cylinder 33B, and bucket cylinder 33C, respectively.

図2はキャブボックス4の内部の概略構成を表す側面図である。   FIG. 2 is a side view illustrating a schematic configuration inside the cab box 4.

図2に示すように、キャブボックス4の床板4A上には、運転席7と運転席7の左右両側に配置された操作装置11(左側のみ図示)が設けられている。操作装置11は、被駆動部材としての旋回体2やフロント作業装置8の動作を指示するものである。この操作装置11については、後に図3を用いて詳述するが、操作者の操作入力を受ける被操作部材である操作レバー15と、操作レバー15を支持するレバー支持体12とを備えている。レバー支持体12は、レバースタンド13と、操作レバー15のケーシング14とを備えている。レバースタンド13は、運転席7の側方に位置し、キャブボックス4の床板4Aに取付けられている。左右の操作レバー15を前後左右に傾転操作することによって、ブームシリンダ33A、アームシリンダ33B、バケットシリンダ33C及び旋回モータ33Dが駆動され、ブーム8A、アーム8B、バケット8C及び旋回体2が動作する。また、運転席7の前方には、走行体1の左右のクローラに対応する一対の被操作部材であるペダル付き操作レバー15C(左側のみ図示)が、キャブボックス4の床板4Aに取付けられている。   As shown in FIG. 2, on the floor plate 4 </ b> A of the cab box 4, there are provided a driver's seat 7 and an operation device 11 (shown only on the left side) arranged on both the left and right sides of the driver's seat 7. The operating device 11 instructs the operation of the swing body 2 and the front work device 8 as driven members. As will be described in detail later with reference to FIG. 3, the operation device 11 includes an operation lever 15 that is an operated member that receives an operation input from the operator, and a lever support 12 that supports the operation lever 15. . The lever support 12 includes a lever stand 13 and a casing 14 for the operation lever 15. The lever stand 13 is located on the side of the driver's seat 7 and is attached to the floor plate 4 </ b> A of the cab box 4. The boom cylinder 33A, the arm cylinder 33B, the bucket cylinder 33C, and the swing motor 33D are driven by tilting the left and right operation levers 15 back and forth and left and right, and the boom 8A, the arm 8B, the bucket 8C, and the swing body 2 operate. . Further, in front of the driver's seat 7, a pedal-equipped operation lever 15 </ b> C (shown only on the left side), which is a pair of operated members corresponding to the left and right crawlers of the traveling body 1, is attached to the floor plate 4 </ b> A of the cab box 4. .

図3は操作レバー15の構成を表す断面図である。   FIG. 3 is a cross-sectional view illustrating the configuration of the operation lever 15.

操作レバー15のケーシング14は、その蓋16のフランジ部がレバースタンド13の開口部13Aに取付けられることによってレバースタンド13に固定されている。操作レバー15は、軸15Aとその先端部に装着されたグリップ15Bで構成されている。軸15Aの基端部はカム40に固定的に接続されている。カム40は自由継手41を介してケーシング14の蓋16の中央に連結されており、操作レバー15の前後左右への傾転動作を許容する構成となっている。カム40は、操作レバー15の傾転動作によりプッシャ42を押し下げ、またプッシャ42からの反力で操作レバー15を中立位置に復帰させる構成となっている。全ては図示していないが、プッシャ42は自由継手41の前後左右に各1つずつ計4つ設けられており、プッシャ42の下部には操作装置11の操作特性を決定するバネ等の反力生成要素が取付けられている。プッシャ42の押し込み量(又は押し込みエネルギ)は、図示しない操作信号生成装置によって作業機械の動作速度や移動量の指令値となる電気信号、油圧の圧力値等の操作信号に変換される。   The casing 14 of the operation lever 15 is fixed to the lever stand 13 by attaching the flange portion of the lid 16 to the opening 13 </ b> A of the lever stand 13. The operation lever 15 is composed of a shaft 15A and a grip 15B attached to the tip portion thereof. The base end portion of the shaft 15A is fixedly connected to the cam 40. The cam 40 is connected to the center of the lid 16 of the casing 14 through a free joint 41 and is configured to allow the operation lever 15 to tilt forward, backward, left and right. The cam 40 is configured to push down the pusher 42 by the tilting operation of the operation lever 15 and return the operation lever 15 to the neutral position by a reaction force from the pusher 42. Although not shown in all figures, four pushers 42 are provided in each of the front, rear, left and right of the free joint 41, and the reaction force of a spring or the like that determines the operating characteristics of the operating device 11 is provided below the pusher 42. A generating element is installed. The push-in amount (or push-in energy) of the pusher 42 is converted into an operation signal such as an electric signal, a hydraulic pressure value, or the like as a command value for the operation speed or movement amount of the work machine by an operation signal generator (not shown).

図4は作業機械に備えられた油圧アクチュエータの駆動回路の概略図である。   FIG. 4 is a schematic diagram of a drive circuit of a hydraulic actuator provided in the work machine.

図4に示すように、油圧アクチュエータすなわち、ブームシリンダ33A、アームシリンダ33B、バケットシリンダ33C、旋回モータ33D、走行モータ33E,33Fは、建屋カバー5内に設けられた動力源としての油圧ポンプ30からの圧油(作動油)により駆動する。油圧ポンプ30はエンジン(図示せず)により駆動される。油圧ポンプ30から吐出された圧油は、吐出配管31Aを流通して電磁・油圧パイロット式の制御弁(3位置コントロールバルブ)32A〜32Fに供給され、それぞれ制御弁32A〜32Fによって流れ(方向及び流量)を制御されて油圧アクチュエータ33A〜33Fに供給される。油圧アクチュエータ33A〜33Fからの各戻り油は、それぞれ制御弁32A〜32Fを介して戻り油配管31Bに流れ込みタンク38に戻される。また、吐出配管31Aの圧油の最高圧はリリーフ弁36により規制される。   As shown in FIG. 4, the hydraulic actuator, that is, the boom cylinder 33 </ b> A, the arm cylinder 33 </ b> B, the bucket cylinder 33 </ b> C, the turning motor 33 </ b> D, and the traveling motors 33 </ b> E and 33 </ b> F are supplied from the hydraulic pump 30 as a power source provided in the building cover 5. It is driven by pressure oil (hydraulic oil). The hydraulic pump 30 is driven by an engine (not shown). The pressure oil discharged from the hydraulic pump 30 flows through the discharge pipe 31A and is supplied to electromagnetic / hydraulic pilot type control valves (three-position control valves) 32A to 32F, and flows (direction and direction) by the control valves 32A to 32F, respectively. The flow rate is controlled and supplied to the hydraulic actuators 33A to 33F. The return oil from the hydraulic actuators 33A to 33F flows into the return oil pipe 31B through the control valves 32A to 32F, and is returned to the tank 38. Further, the maximum pressure of the pressure oil in the discharge pipe 31 </ b> A is regulated by the relief valve 36.

左右の操作レバー15(図2参照)には、操作方向(前・後又は左・右)及び操作量に応じ、油圧アクチュエータ33A〜33Dの動作指令値をそれぞれ生成する指令値生成装置34A〜34Dが設けられており、指令値生成装置34A〜34Dで生成された指令値は制御ユニット37に出力される。また、ペダル付き操作レバー15C(図2参照)には、それぞれ対応付けられた側の操作レバー15Cの操作方向(前・後)及び操作量に応じ、走行モータ33E,33Fの動作指令値をそれぞれ生成する指令値生成装置34E,34Fが設けられており、指令値生成装置34E,34Fで生成された指令値が制御ユニット37に出力される。   The left and right operation levers 15 (see FIG. 2) have command value generation devices 34A to 34D that generate operation command values for the hydraulic actuators 33A to 33D, respectively, according to the operation direction (front / rear or left / right) and the operation amount. The command values generated by the command value generation devices 34 </ b> A to 34 </ b> D are output to the control unit 37. Further, the operation lever 15C with a pedal (see FIG. 2) is provided with the operation command values of the travel motors 33E and 33F according to the operation direction (front and rear) and the operation amount of the operation lever 15C on the associated side. Command value generation devices 34E and 34F to be generated are provided, and the command values generated by the command value generation devices 34E and 34F are output to the control unit 37.

制御ユニット37は、油圧アクチュエータの動作を制御する動作制御手段であり、指令値生成装置34A〜34Fからの指令値を基にそれぞれ制御弁32A〜32Fへの制御信号を生成し、それぞれ制御弁32A〜32Fのソレノイドに制御信号を出力する。制御ユニット37からの制御信号により制御弁32A〜32Fのポジションがそれぞれ切り換わり、油圧アクチュエータ33A〜33Fへの圧油の流れ(方向及び流量)が制御され、油圧アクチュエータ33A〜33Fが駆動制御される。   The control unit 37 is an operation control means for controlling the operation of the hydraulic actuator, generates control signals to the control valves 32A to 32F based on the command values from the command value generators 34A to 34F, and controls the control valve 32A. A control signal is output to the solenoid of 32F. The positions of the control valves 32A to 32F are switched by control signals from the control unit 37, the flow (direction and flow rate) of the pressure oil to the hydraulic actuators 33A to 33F is controlled, and the hydraulic actuators 33A to 33F are driven and controlled. .

このような油圧系は、大きな力を効率良く伝達することが可能である反面、振動が生じ易く減衰し難い性質を持つ振動系となることが知られている。特に配管の長い作業機械や重量物のハンドリングでは、操作者が被操作部材15,15Cに対して急な操作を加えると振動が生じ易い。この場合、ゆっくり慎重に操作する必要があり、被操作部材の反力を強めに設定すると操作性が良い。一方、振動の小さな作業機械では、変化の早い動作指令値を与えても安定に動作するため早い操作が可能となり、被操作部材の反力を弱めに設定すると操作性が良い。   Such a hydraulic system is known to be a vibration system that can transmit a large force efficiently, but has a property of being prone to vibration and difficult to attenuate. In particular, in a work machine with a long piping and handling of heavy objects, vibration is likely to occur when an operator performs a sudden operation on the operated members 15 and 15C. In this case, it is necessary to operate slowly and carefully, and operability is good if the reaction force of the operated member is set to be strong. On the other hand, in a work machine with small vibrations, even if an operation command value that changes quickly is given, it can operate stably because it operates stably, and operability is good if the reaction force of the operated member is set weak.

次に本発明の操作装置の第1実施形態について説明する。   Next, a first embodiment of the operating device of the present invention will be described.

まず、操作者の操作動作の基本特性についての分析と本発明の理論的背景について図5を用いて説明する。図5は操作者の操作動作の特性図である。   First, an analysis of the basic characteristics of the operation operation of the operator and the theoretical background of the present invention will be described with reference to FIG. FIG. 5 is a characteristic diagram of the operation operation of the operator.

図5(a)は目標追従波形を示した図であり、ランダムに変化する目標値50(実線)に操作装置の指令値51(点線)が追従するように操作者が操作装置を操作した時の出力信号の波形を表している。   FIG. 5A is a diagram showing a target follow-up waveform. When the operator operates the operating device so that the command value 51 (dotted line) of the operating device follows a target value 50 (solid line) that changes randomly. Represents the waveform of the output signal.

図5(a)の信号波形を取得するには、第一に、表示装置に目標値と指令値の差を示し、その差がゼロになるように操作者が操作しているときの操作装置の出力信号を取得する方法がある。このときの操作動作は補償動作と呼ばれる。第二に、目標値と指令値を同時に表示し、指令値が目標値に一致すように操作者が操作しているときの操作装置の出力信号を取得する方法もある。この操作動作は追跡動作と呼ばれる。補償動作は、ある時点の誤差を認識してその誤差を補正する能力が要求され、追跡動作は、加えて目標値の将来の値を予測してその値に指令値を合わせる能力も要求される。但し、どちらの方法で測定した場合でも、目標追従波形は同じ傾向を示し、目標値50から指令値51までの伝達関数は、むだ時間と一次遅れの特性に近似できることが知られている。むだ時間は200ms程度、一次遅れ特性のゲインが0dBの周波数は0.1〜1Hz程度と言われている。   In order to obtain the signal waveform of FIG. 5A, first, an operating device when the operator is operating so that the difference between the target value and the command value is shown on the display device and the difference becomes zero is obtained. There is a method of acquiring the output signal of The operation operation at this time is called a compensation operation. Secondly, there is a method in which the target value and the command value are displayed at the same time, and an output signal of the operating device is acquired when the operator is operating so that the command value matches the target value. This operation operation is called a tracking operation. Compensation operation requires the ability to recognize an error at a certain point in time and correct the error, and tracking operation also requires the ability to predict a future value of the target value and match the command value to that value. . However, it is known that the target follow-up waveform shows the same tendency regardless of which method is used, and the transfer function from the target value 50 to the command value 51 can be approximated to the characteristics of dead time and first-order lag. It is said that the dead time is about 200 ms, and the frequency at which the gain of the first-order lag characteristic is 0 dB is about 0.1 to 1 Hz.

図5(b)は図5(a)の指令値51の一部(数百ms程度)を拡大して表した図であり、操作動作の平均的な基本単位を示している。   FIG. 5B is an enlarged view of a part (about several hundred ms) of the command value 51 of FIG. 5A, and shows an average basic unit of the operation action.

図5(b)に例示された信号波形は、物を掴む時に掴む物まで手を伸ばす動作に伴う信号波形に類似しており、到達動作と呼ばれるものである。期間52は操作者が目標の認識(目標の位置や動きの認知・予測)や操作動作の計画等を行っている期間であり、期間53は目標の近傍まで早い速度で移動する期間、期間54は目標位置への動作補正期間である。このような動作の連続したより巨視的な波形が図5(a)の指令値51である。したがって、操作者の基本操作は数百ms程度の周期で繰り返されるフィードバック制御特性と等価であると言え、その特性が前述のむだ時間と一次遅れ特性に近似される。この図5(b)に示した微視的な到達動作の操作性を向上させることが、操作系全体の操作性向上に大きく寄与すると考えられる。   The signal waveform illustrated in FIG. 5B is similar to the signal waveform associated with the operation of reaching for the object to be grasped when grasping the object, and is called a reaching operation. The period 52 is a period during which the operator recognizes the target (recognition / prediction of the target position and movement), plans the operation, and the like. The period 53 is a period during which the operator moves at high speed to the vicinity of the target. Is an operation correction period to the target position. A more macroscopic waveform having such a continuous operation is the command value 51 in FIG. Therefore, it can be said that the basic operation of the operator is equivalent to a feedback control characteristic repeated at a cycle of about several hundred ms, and the characteristic is approximated to the above-described dead time and first-order lag characteristic. It is considered that improving the operability of the microscopic reaching operation shown in FIG. 5B greatly contributes to improving the operability of the entire operation system.

図5(c)は図5(b)の期間53,54の操作者が被操作部材に加える力(操作力)の波形55を表した図であり、例えば被操作部材からの反力は速い操作への対応に配慮して小さく設定されているものとする。この図を用いて操作者の筋肉の活動について説明する。   FIG. 5C shows a waveform 55 of the force (operating force) applied to the operated member by the operator in the periods 53 and 54 of FIG. 5B. For example, the reaction force from the operated member is fast. It is assumed that the size is set small in consideration of the operation. The muscle activity of the operator will be described with reference to this figure.

まず初動時には、被操作部材を操作方向へ動かすための操作力(図の正の領域)が増加する(期間53a)。その後、操作力は直ぐに一定の値に到達して減少に転じ、さらに被操作部材が到達目標位置に近付くにつれて被操作部材を到達目標位置に停止させるために被操作部材を制動する力(操作方向と反対方向の力)が加わることで負の値になる(期間53b)。そして、到達目標位置近くではゼロに近い領域で操作力を微調整して被操作部材を到達目標位置に収束させる(期間54)。このとき期間53aでは、操作者は腕の剛性を下げ(力を抜いて柔らかくした状態)、主動筋(被操作部材を所定の方向に動かすときに主に活動する腕の筋肉)のみを用いて被操作部材の動きを加速操作し、期間53bでは主動筋以外に拮抗筋(主動筋と反対方向に出力し被操作部材を制動する筋肉)を動かして腕の剛性を上げ(力を入れて腕を硬くし、粘性抵抗を増加させ、被操作部材の動きを抑制する状態)、被操作部材の動きを減速操作する。また期間54では、操作力はゼロ付近でも腕に力が入っている状態であり、到達目標位置にうまく停止できない場合は、主動筋と拮抗筋の筋力のバランスを微妙に変えながら被操作部材を到達目標位置に収束させる。   First, at the initial movement, an operation force (positive region in the figure) for moving the operated member in the operation direction increases (period 53a). Thereafter, the operating force immediately reaches a certain value and starts to decrease, and further, the force that brakes the operated member to stop the operated member at the reaching target position as the operated member approaches the reaching target position (operation direction). And a negative value (period 53b). Then, the operation force is finely adjusted in the region near zero near the target position to converge the operated member to the target position (period 54). At this time, in the period 53a, the operator lowers the rigidity of the arm (a state where the force is released and softened), and uses only the main muscle (the muscle of the arm that is mainly active when the operated member is moved in a predetermined direction). In the period 53b, the movement of the operated member is accelerated, and the antagonistic muscle (muscle that outputs in the opposite direction to the main driving muscle and brakes the operated member) is moved in addition to the main driving muscle to increase the rigidity of the arm. , The viscosity resistance is increased, and the movement of the operated member is suppressed), and the operation of the operated member is decelerated. Also, during the period 54, the arm is in a state where the operating force is near zero, and if it cannot be stopped successfully at the target position, the operated member is moved while slightly changing the balance of the muscle strength of the main and antagonist muscles. It converges to the target position.

このように、操作者は腕の剛性を変えることで被操作部材を操作する動特性を動的に変化させている。一般に被操作部材を素早く動かすときは腕の剛性を下げ(粘性抵抗は小)、腕のぶれ等の誤操作を避けてゆっくり慎重に動かすとき、微操作時や停止時等は腕の剛性を上げる傾向にある。腕の剛性を上げると筋力負担が増して操作感を損なう結果、疲労を感じ易くなり、また誤操作も増えて操作性低下の要因ともなり得る。また腕の剛性がうまく調整できないと、被操作部材の加減速がうまく調整できない上、図5(c)の期間54に示したように被操作部材を目標位置に収束させるまでに振動的な動作となり、結果として応答が遅れ前述したむだ時間と一次遅れ特性が悪化する。したがって本実施形態では、操作装置の特性を動的に調整し、腕の剛性を上げた場合の粘性抵抗を補助することでこの微視的な到達動作の操作性を向上させることを目的とする。   In this way, the operator dynamically changes the dynamic characteristics of operating the operated member by changing the rigidity of the arm. Generally, when moving a member to be operated quickly, the rigidity of the arm is lowered (viscosity resistance is small), and when moving slowly and carefully avoiding misoperation such as shaking of the arm, it tends to increase the rigidity of the arm at the time of fine operation or stopping It is in. Increasing the rigidity of the arm increases the muscular strength and impairs the feeling of operation. As a result, it becomes easy to feel fatigue, and the number of erroneous operations increases, which can cause operability degradation. In addition, if the arm stiffness cannot be adjusted well, the acceleration / deceleration of the operated member cannot be adjusted well, and the oscillatory operation is performed until the operated member converges to the target position as shown in the period 54 of FIG. As a result, the response is delayed, and the above-described dead time and first-order lag characteristics are deteriorated. Therefore, the present embodiment aims to improve the operability of this microscopic reaching operation by dynamically adjusting the characteristics of the operating device and assisting the viscous resistance when the rigidity of the arm is increased. .

図5(d)は本発明を適用したときの、操作指令値59と操作力60、被操作部材からの抵抗反力61(反力なので負の値で示した)の一例を示した図である。この図のように腕の剛性が上がる減速期間と停止期間で、操作装置からの抵抗反力61を大きくすると、目標位置停止までの期間が短くなり(振動もない)、操作性が向上する。   FIG. 5D is a diagram showing an example of the operation command value 59, the operation force 60, and the resistance reaction force 61 (represented by a negative value because of the reaction force) when the present invention is applied. is there. If the resistance reaction force 61 from the operating device is increased during the deceleration period and the stop period in which the arm stiffness increases as shown in this figure, the period until the target position stops is shortened (no vibration), and the operability is improved.

図6は本発明の操作装置の第1実施形態の機能ブロック図である。   FIG. 6 is a functional block diagram of the first embodiment of the operating device of the present invention.

図6に示したように、本発明の操作装置70は、操作者(オペレータ)の操作に応じて作業機械のアクチュエータ(図1−図4の例では図3の油圧モータ33D−33F、油圧シリンダ33A−33C)の動作指令値を生成する装置である。この操作装置70は、操作者による操作入力に応じてアクチュエータの動作を指示する操作信号を出力する操作入力手段76と、操作中に操作者が操作を抑制する動作を検出する制動動作検出手段78と、この操作者の操作を抑制する動きを支援する操作支援手段77とを備えている。   As shown in FIG. 6, the operating device 70 of the present invention includes an actuator of a work machine (hydraulic motors 33 </ b> D- 33 </ b> F and hydraulic cylinders of FIG. 3 in the example of FIGS. 1 to 4) according to the operation of an operator (operator). 33A-33C). The operation device 70 includes an operation input unit 76 that outputs an operation signal instructing the operation of the actuator in response to an operation input by the operator, and a braking operation detection unit 78 that detects an operation in which the operator suppresses the operation during the operation. And an operation support means 77 for supporting a movement for suppressing the operation of the operator.

操作入力手段76は、操作者による物理的な操作入力(レバーであれば傾転動作等)を受ける被操作部材71(図1−図4の例では図2の操作レバー15,15C)、及び被操作部材71の動作をアクチュエータの動作指令値に変換し操作信号を出力する操作信号生成手段72を有している。   The operation input means 76 is a member to be operated 71 (operation levers 15 and 15C in FIG. 2 in the example of FIGS. 1 to 4) that receives a physical operation input by the operator (in the case of a lever, tilting operation or the like), and Operation signal generating means 72 is provided for converting the operation of the operated member 71 into an operation command value for the actuator and outputting an operation signal.

被操作部材71は、無操作時に指令値がゼロになるように中立位置に自動復帰させるためのバネ等の反力生成機構(図1−図4の例では図3のプッシャ42)が取り付けられている。本実施形態においては、反力生成機構の弾性係数をあまり大きな値には設定せず、早い操作をする際の操作性を考慮して被操作部材71の動きを軽めに調整する。   The operated member 71 is attached with a reaction force generating mechanism such as a spring (the pusher 42 in FIG. 3 in the example of FIGS. 1 to 4) for automatically returning to the neutral position so that the command value becomes zero when there is no operation. ing. In the present embodiment, the elastic coefficient of the reaction force generation mechanism is not set to a very large value, and the movement of the operated member 71 is adjusted lightly in consideration of operability when performing an early operation.

操作信号生成手段72は、被操作部材71の移動角や移動距離等を含めた操作量を、作業機械のアクチュエータの動作速度や移動量の指令値となる電気信号又は油圧の圧力値などの操作信号に変換する手段であり、図1−図4の例では図3のプッシャ42の押し込み量を測定する変位センサや被操作部材の傾斜角度を検出するポテンショメータ等で構成することができる。   The operation signal generating means 72 operates the operation amount including the movement angle, the movement distance, etc. of the operated member 71 as an operation signal such as an electric signal or a hydraulic pressure value as an operation speed or movement amount command value of the actuator of the work machine. 1 to 4, it can be constituted by a displacement sensor that measures the push-in amount of the pusher 42 in FIG. 3, a potentiometer that detects the inclination angle of the operated member, or the like.

制動動作検出手段78は、操作中に操作者が被操作部材71を制動する動作を検出するものであり、例えば図1−図4の例において操作レバー15の場合、操作者の操作動作によって操作レバー15(被操作部材71)に加わる少なくとも操作方向(この場合、前後方向及び左右方向)への荷重(操作力)を検出する力センサ(歪センサ)を、制動動作検出手段78としてグリップ15B(図3参照)に取り付けることができる。   The braking operation detection means 78 detects an operation in which the operator brakes the operated member 71 during the operation. For example, in the case of the operation lever 15 in the example of FIGS. A force sensor (strain sensor) that detects a load (operation force) in at least an operation direction (in this case, the front-rear direction and the left-right direction) applied to the lever 15 (operated member 71) is used as a braking operation detection unit 78 as a grip 15B ( (See FIG. 3).

操作支援手段77は、被操作部材71に対して操作方向と反対方向に作用する力(抵抗反力)を付加し被操作部材71の動作を減衰させる抵抗反力生成手段75、制動動作検出手段78からの検出信号に基づいて抵抗反力生成手段75への指令値を生成する抵抗反力指令値生成手段73、及び抵抗反力指令値生成手段73からの指令値に応じて抵抗反力生成手段75に指令信号を出力する抵抗反力制御手段74を有している。   The operation support means 77 includes a resistance reaction force generation means 75 that applies a force (resistance reaction force) acting on the operated member 71 in the direction opposite to the operation direction to attenuate the operation of the operated member 71, and a braking operation detection means. Resistance reaction force command value generation means 73 for generating a command value to the resistance reaction force generation means 75 based on the detection signal from 78, and resistance reaction force generation according to the command value from the resistance reaction force command value generation means 73 A resistance reaction force control means 74 for outputting a command signal to the means 75 is provided.

抵抗反力生成手段75は、上記の通り被操作部材71の動作方向とは逆の方向に反力を生成し、その動作を減衰する手段である。このような反力を生成する要素には、粘性流体を用いた粘性摩擦抵抗、或いは固体を用いた乾性摩擦抵抗がある。粘性摩擦抵抗の反力は、被操作部材71の移動速度と被操作部材71の動きに伴って流動する粘性流体の粘性摩擦係数との積で決まる抵抗反力を生成し、乾性摩擦抵抗による抵抗反力は被操作部材71の稼働部分に固体を押し付けたときに、その押し付け力と摩擦の生ずる固体間の摩擦係数の積で決まる抵抗反力を生成する。本実施形態では、操作者の腕の粘性抵抗の支援を行うものであるため、粘性摩擦抵抗を用いる方が望ましい。   The resistance reaction force generating means 75 is a means for generating a reaction force in the direction opposite to the operation direction of the operated member 71 as described above and attenuating the operation. Elements that generate such a reaction force include viscous frictional resistance using a viscous fluid or dry frictional resistance using a solid. The reaction force of the viscous friction resistance generates a resistance reaction force determined by the product of the moving speed of the operated member 71 and the viscous friction coefficient of the viscous fluid flowing along with the movement of the operated member 71, and the resistance caused by the dry friction resistance The reaction force generates a resistance reaction force determined by the product of the pressing force and the coefficient of friction between the solids that generate friction when the solid is pressed against the operating portion of the operated member 71. In the present embodiment, the viscous resistance of the operator's arm is supported, so it is desirable to use the viscous frictional resistance.

粘性摩擦抵抗を用いて抵抗反力生成手段75を構成する場合、例えば特開2000−276244号公報に開示された反力発生装置を適用することができる。この反力発生装置は、プッシャに連動するピストンに流体抵抗を与えるダンパ機構を応用した装置であり、通電により粘性が変化する可変粘性流体を用い、可変粘性流体に通電することでダンパの重さを変化させることによって操作装置の操作に反力を付与する構成となっている。本実施形態に適用する場合、後述する条件の下、抵抗反力指令値生成手段73により可変粘性流体への通電を制御する構成とすることができる。この他に、ダンパのボトム側から排出される流体を流通する流路に可変絞りを設ければ、可変粘性流体を用いずとも、可変絞りの開度によってプッシャの押動に対する反力を調整する構成とすることができる。これを本実施形態に適用する場合も、後述する条件の下、抵抗反力指令値生成手段73により可変絞りの開度を制御する構成とすることで実現できる。   When the resistance reaction force generation means 75 is configured using viscous frictional resistance, for example, a reaction force generator disclosed in Japanese Patent Application Laid-Open No. 2000-276244 can be applied. This reaction force generator is a device that applies a damper mechanism that gives fluid resistance to the piston that is linked to the pusher, and uses a variable viscous fluid whose viscosity changes when energized. It is the structure which gives reaction force to operation of an operating device by changing. When applying to this embodiment, it can be set as the structure which controls electricity supply to a variable viscous fluid by the resistance reaction force command value generation means 73 under the conditions mentioned later. In addition, if a variable throttle is provided in the flow path through which the fluid discharged from the bottom side of the damper is provided, the reaction force against the pusher push can be adjusted by the opening of the variable throttle without using a variable viscous fluid. It can be configured. Even when this is applied to the present embodiment, it can be realized by a configuration in which the opening degree of the variable throttle is controlled by the resistance reaction force command value generation means 73 under the conditions described later.

乾性摩擦抵抗を用いて抵抗反力生成手段75を構成する場合、例えば図1−図4の例の各プッシャ42(図3参照)の外周面にそれぞれ押し付け可能なパッド(図示せず)を設け、押動されるプッシャ42の外周面にパッドを押し付けることで操作レバー15(被操作部材71)の操作に対する抵抗反力を生成することができる。また、自由継手41の軸部とブラケット部の間に作用する摩擦力を変化させる構成、例えばブラケット部側に軸部の外周部にパッドを押し付ける構成を設けることもできる。これら乾性摩擦抵抗を用いる構成も、抵抗反力指令値生成手段73によって後述の条件下でパッドの動きを制御することで実現することができる。   When the resistance reaction force generating means 75 is configured using dry friction resistance, for example, pads (not shown) that can be pressed against the outer peripheral surface of each pusher 42 (see FIG. 3) in the example of FIGS. The resistance reaction force against the operation of the operation lever 15 (operated member 71) can be generated by pressing the pad against the outer peripheral surface of the pushed pusher 42. Moreover, the structure which changes the frictional force which acts between the axial part of the free joint 41 and a bracket part, for example, the structure which presses a pad to the outer peripheral part of a axial part can also be provided in the bracket part side. The configuration using these dry friction resistances can also be realized by controlling the movement of the pad under the conditions described later by the resistance reaction force command value generating means 73.

抵抗反力指令値生成手段73は、被操作部材71への抵抗反力の指令値を生成する手段であり、本実施形態では、先に図5(d)で述べた抵抗反力61に相当する抵抗反力を生成するための指令値を生成し、抵抗反力制御手段74に出力する。本実施形態では制動動作検出手段78として被操作部材71のグリップ部分に力センサを設けているので、図5(c)及び図5(d)を用いて説明すると、抵抗反力指令値生成手段73は、制動動作検出手段78により測定された操作力60の変化率(図5(c)の波形56)の絶対値が予め設定した第1閾値P1以上に増大した後、操作力60の変化率が正負逆転して絶対値が予め設定した第2閾値P2以上に設定時間内に増大した場合、操作力60に応じて抵抗反力生成手段75への指令値を生成する。また、操作力60の変化率の絶対値が第1閾値P1及び第2閾値P2よりも小さな第3閾P3値以下に設定時間以上あれば(ゼロ近傍に収束しているときは)、抵抗反力生成手段75への指令値の出力を停止して被操作部材71への操作反力の付与を停止する。なお図5(c)において、第2閾値P2は波形56の図示に合わせて負の領域に表してあり、また第1閾値と異なる値とすることも同値とすることもできる。また、第3閾値P3は正負の両領域に表してある。   The resistance reaction force command value generation means 73 is a means for generating a resistance reaction force command value to the operated member 71, and in this embodiment, corresponds to the resistance reaction force 61 described above with reference to FIG. A command value for generating the resistance reaction force to be generated is generated and output to the resistance reaction force control means 74. In the present embodiment, since a force sensor is provided in the grip portion of the operated member 71 as the braking operation detecting means 78, a resistance reaction force command value generating means will be described with reference to FIGS. 5 (c) and 5 (d). 73 shows a change in the operating force 60 after the absolute value of the change rate of the operating force 60 (the waveform 56 in FIG. 5C) measured by the braking operation detecting unit 78 increases to a preset first threshold value P1 or more. When the rate is reversed between positive and negative and the absolute value increases within a set time to a preset second threshold value P2 or more, a command value to the resistance reaction force generating means 75 is generated according to the operating force 60. In addition, if the absolute value of the change rate of the operating force 60 is equal to or less than the third threshold value P3 smaller than the first threshold value P1 and the second threshold value P2 for the set time (when converged near zero), the resistance resistance The output of the command value to the force generation means 75 is stopped, and the application of the operation reaction force to the operated member 71 is stopped. In FIG. 5C, the second threshold value P2 is shown in a negative region in accordance with the illustration of the waveform 56, and may be a value different from the first threshold value or the same value. The third threshold value P3 is represented in both positive and negative areas.

抵抗反力制御手段74は、上記の通り、抵抗反力指令値生成手段73からの抵抗反力の指令値を抵抗反力生成手段75の制御信号に変換する手段である。ただし、ここで言う指令値や信号は、電気的な信号に限定されず、圧力や力等の機械的又は物理的な信号も含まれる。例えば、上記の抵抗反力生成手段75が可変絞りの開度によって粘性摩擦係数を決定する場合、可変絞りの面積を抵抗反力の指令値(電気信号、圧力、力等)に対応した値に制御する信号(電気信号、圧力、力など)に変換する。   The resistance reaction force control means 74 is a means for converting the resistance reaction force command value from the resistance reaction force command value generation means 73 into a control signal of the resistance reaction force generation means 75 as described above. However, the command values and signals referred to here are not limited to electrical signals, but also include mechanical or physical signals such as pressure and force. For example, when the resistance reaction force generating means 75 determines the viscous friction coefficient based on the opening of the variable throttle, the area of the variable throttle is set to a value corresponding to the resistance reaction force command value (electrical signal, pressure, force, etc.). Convert to control signal (electrical signal, pressure, force, etc.).

次に本実施形態の操作装置の操作に伴う動作と作用を順次説明する。   Next, operations and actions associated with the operation of the operation device according to the present embodiment will be sequentially described.

操作者により被操作部材71が操作されると、操作信号生成手段72は被操作部材71の単位時間当たりの操作量と操作方向に応じ、操作方向に対応するアクチュエータへの動作指令値を生成する。図1−図4の例において当該操作が「ブーム上げ」の動作を指示する場合、動作指令値に応じた大きさの操作信号が制御弁32Aの図3中の右側のソレノイド駆動部に出力され、制御弁32Aが図中右側のポジションに切り換わり、ブームシリンダ33Aのボトム側に圧油が供給され、操作に応じてブーム8Aが上昇する。   When the operated member 71 is operated by the operator, the operation signal generating unit 72 generates an operation command value for the actuator corresponding to the operation direction according to the operation amount per unit time and the operation direction of the operated member 71. . In the example of FIGS. 1 to 4, when the operation instructs the “boom raising” operation, an operation signal having a magnitude corresponding to the operation command value is output to the right solenoid drive unit in FIG. 3 of the control valve 32 </ b> A. Then, the control valve 32A is switched to the right position in the drawing, pressure oil is supplied to the bottom side of the boom cylinder 33A, and the boom 8A is raised according to the operation.

このとき、被操作部材71は比較的弱い操作力で円滑に動作するように反力生成要素(プッシャ42やバネ等)が設定されているため、操作の初動から到達目標位置近傍に被操作部材71を粗寄せする間の位置調整を伴わない速い操作は、円滑にすることができる。この間、操作者により被操作部材71に加えられる操作力は主に主動筋による操作方向への荷重が支配的で、操作力の変化率は第1閾値を超えても変化率が正負逆転しないため、抵抗反力指令値生成手段73では制御指令値が生成されず、抵抗反力生成手段75から被操作部材71に反力は付加されない。一方、到達目標位置近傍で被操作部材71を停止させる過程において、主動筋の活動に対する拮抗筋の活動が増大して(被操作部材71に操作方向と反対方向から加わる力が大きくなって)操作力の変化率が正負逆転する。この際、拮抗筋の活動が支配的になるにつれ、設定時間内に主動筋の動作時とは逆符号の変化率が第2閾値を超えた場合、抵抗反力生成手段73は、その際の操作力(例えば操作方向と反対方向に作用する操作力、又は操作方向への操作力とその反対方向への操作力の差)に応じた抵抗反力指令値を生成し、その結果、抵抗反力生成手段75によって被操作部材71に反力が付与さる。この場合、操作者が被操作部材71を停止させる際の筋力負担が軽減される。また、微操作時にも操作者は腕に力を入れて主動筋と拮抗筋の活動が拮抗させるので、その状態が制動動作検出手段78により検出されることで、操作支援手段77からの反力の作用によって被操作部材71の操作が重くなる。   At this time, since the reaction force generating element (the pusher 42, the spring, etc.) is set so that the operated member 71 operates smoothly with a relatively weak operating force, the operated member 71 is located in the vicinity of the target position from the initial operation. A fast operation that does not involve position adjustment while roughly moving 71 can be made smooth. During this time, the operating force applied to the operated member 71 by the operator is mainly dominated by the load in the operating direction by the main muscle, and even if the rate of change of the operating force exceeds the first threshold, the rate of change does not reverse positive or negative. The resistance reaction force command value generation means 73 does not generate a control command value, and no reaction force is applied from the resistance reaction force generation means 75 to the operated member 71. On the other hand, in the process of stopping the operated member 71 in the vicinity of the reaching target position, the activity of the antagonistic muscle to the activity of the main muscle increases (the force applied to the operated member 71 from the direction opposite to the operation direction increases). The rate of change of force reverses positive and negative. At this time, as the antagonistic muscle activity becomes dominant, if the rate of change of the sign opposite to that during the operation of the main muscle within the set time exceeds the second threshold value, the resistance reaction force generating means 73 A resistance reaction force command value corresponding to an operation force (for example, an operation force acting in the opposite direction to the operation direction or a difference between the operation force in the operation direction and the operation force in the opposite direction) is generated. A reaction force is applied to the operated member 71 by the force generating means 75. In this case, the muscular strength burden when the operator stops the operated member 71 is reduced. In addition, since the operator exerts a force on the arm even during a fine operation and the activities of the main and antagonist muscles antagonize, the reaction force from the operation support means 77 is detected when the state is detected by the braking action detection means 78. As a result, the operation of the operated member 71 becomes heavy.

以上のように、本実施形態によれば、被操作部材71の操作特性を動的に調整することができる。具体的には、速く粗い操作の時には操作反力が作用しないので(又は弱いので)、軽い力で操作することができ疲労も小さい。一方、被操作部材71の急制動時や微操作時等のように慎重な操作によって操作者の腕の剛性が上がる場面では、被操作部材71の操作反力が大きくなるため、腕のぶれ等に起因する誤操作を抑制することができ、また操作者の被操作部材71の制動動作に要する筋力負担を軽減することができる点で疲労低減の効果が期待できる。このように動作解析に基づく操作者の筋肉の動きを制御概念に取り込み、操作装置の特性を動的に変化させることによって、本実施形態によれば、適当な操作反力を被操作部材71に適時に付与することができるので、急操作時の操作感又は操作性の向上と誤操作の抑制を両立することができる。これにより、操作感及び操作性を向上させることができ、ひいては、作業機械の動作の安定性、作業精度及び作業効率を向上させることができ、操作者の負担及び疲労を低減することができる。   As described above, according to the present embodiment, the operation characteristics of the operated member 71 can be dynamically adjusted. Specifically, since the reaction force does not act (or is weak) during fast and rough operation, it can be operated with a light force and fatigue is small. On the other hand, in a scene where the rigidity of the operator's arm is increased by careful operation, such as when the operated member 71 is suddenly braked or finely operated, the operating reaction force of the operated member 71 increases, so that the arm shakes, etc. The effect of reducing fatigue can be expected in that the erroneous operation caused by the above can be suppressed and the muscular force burden required for the braking operation of the operated member 71 by the operator can be reduced. Thus, according to the present embodiment, an appropriate operation reaction force is applied to the operated member 71 by incorporating the movement of the operator's muscle based on the motion analysis into the control concept and dynamically changing the characteristics of the operating device. Since it can be given in a timely manner, it is possible to achieve both improvement in operational feeling or operability during sudden operations and suppression of erroneous operations. As a result, the operational feeling and operability can be improved. As a result, the operational stability, work accuracy and work efficiency of the work machine can be improved, and the burden and fatigue on the operator can be reduced.

なお、本実施形態では、制動動作検出手段78として被操作部材71に取り付けた力センサを例に上げて説明したが、これに限られない。図5(d)に示した抵抗反力61は腕の剛性が高まったときの粘性抵抗を補助するものであるから、腕の剛性が高まったときに抵抗反力指令値が大きくなるように、抵抗反力指令値生成手段73を構成することもできる。この場合、例えば操作者が被操作部材71を操作するときの腕の主動筋と拮抗筋となり得る筋肉に、制動動作検出手段78として筋肉の緊張度合いを測定する筋電センサを取り付け、両方の筋肉が同時に緊張しているときに主動筋と拮抗筋の同時出力の拮抗度に応じて、抵抗反力指令値生成手段73が抵抗反力生成手段75への指令値を生成する構成とすることもできる。このように構成すると、素早く腕を動かしているときのように腕の剛性が低い場合は被操作部材71の抵抗反力は小さくなり、腕のぶれ等の誤操作を避けてゆっくり慎重に動かすとき、また微操作時や停止時のように腕の剛性が高い場合は被操作部材71の抵抗反力は大きくなる。これにより、適切なタイミングで適切な操作支援が可能となり、操作感及び操作性が向上する。   In the present embodiment, the force sensor attached to the operated member 71 is described as an example of the braking operation detection unit 78, but the present invention is not limited thereto. The resistance reaction force 61 shown in FIG. 5 (d) assists the viscous resistance when the arm rigidity increases, so that the resistance reaction force command value increases when the arm rigidity increases. The resistance reaction force command value generation means 73 can also be configured. In this case, for example, an electromyographic sensor for measuring the degree of muscle tension is attached as a braking operation detecting means 78 to muscles that can be the main and antagonist muscles of the arm when the operator operates the operated member 71, and both muscles are attached. It is also possible to adopt a configuration in which the resistance reaction force command value generation means 73 generates a command value to the resistance reaction force generation means 75 according to the degree of antagonism of the simultaneous output of the main and antagonist muscles when the two are simultaneously tense. it can. With this configuration, when the arm stiffness is low, such as when moving the arm quickly, the resistance reaction force of the operated member 71 becomes small, and when moving slowly and carefully avoiding erroneous operations such as arm shake, Further, when the arm has high rigidity, such as during fine operation or when stopped, the resistance reaction force of the operated member 71 increases. Thereby, appropriate operation support can be performed at an appropriate timing, and the operational feeling and operability are improved.

また、操作装置70を操作する際、操作者は腕の剛性が高まるのと同時に被操作部材71を強く握る傾向があるので、腕の剛性を直接測定する代わりに、操作者が被操作部材71を把持する握り圧又は握る力を検出し、その検出値に応じて抵抗反力指令値生成手段71が抵抗反力指令値を決定する構成とすることもできる。この場合、例えば被操作部材71のグリップ部分に青銅動作検出手段78として圧力分布センサを設置し、操作者の被操作部材71の握り圧の測定値に応じて抵抗反力指令値生成手段71が抵抗反力指令値を決定する構成とすることができる。また、圧力分布センサの代わりに押し込み力により出力が変化するセンサ(力センサ等)を1つ又は複数用いて指や掌にかかる力を測定し、その測定値に応じて抵抗反力指令値生成手段71が抵抗反力指令値を決定する構成とすることもできる。   Further, when operating the operating device 70, the operator tends to grip the operated member 71 at the same time as the rigidity of the arm is increased. Therefore, instead of directly measuring the stiffness of the arm, the operator does not directly measure the operated member 71. It is also possible to adopt a configuration in which a gripping pressure or gripping force for gripping is detected, and the resistance reaction force command value generating means 71 determines the resistance reaction force command value according to the detected value. In this case, for example, a pressure distribution sensor is installed as a bronze motion detecting unit 78 in the grip portion of the operated member 71, and the resistance reaction force command value generating unit 71 corresponds to the measured value of the grip pressure of the operated member 71 of the operator. It can be set as the structure which determines resistance reaction force command value. In addition, instead of using a pressure distribution sensor, one or more sensors (such as force sensors) whose output changes due to the pushing force are used to measure the force applied to the finger or palm, and a resistance reaction force command value is generated according to the measured value. The means 71 may be configured to determine the resistance reaction force command value.

さらには、被操作部材71が図3に示した操作レバー15のような構成である場合、操作者は粘性反力が必要なときにグリップ15Bを握る力を増加させるだけでなく、軸15A方向に操作レバー15を押し込む傾向がある。この現象を利用し、例えば軸15Aにその軸方向に押し付ける力又は圧力を測定する力センサ又は圧力分布センサを制動動作検出手段78として設け、その測定値に応じて抵抗反力指令値生成手段71が抵抗反力指令値を決定する構成とすることもできる。   Furthermore, when the operated member 71 is configured as the operation lever 15 shown in FIG. 3, the operator not only increases the force for gripping the grip 15B when a viscous reaction force is required, but also in the direction of the axis 15A. There is a tendency to push in the operation lever 15. Utilizing this phenomenon, for example, a force sensor or a pressure distribution sensor for measuring the force or pressure that is pressed against the shaft 15A in the axial direction is provided as the braking operation detecting means 78, and the resistance reaction force command value generating means 71 according to the measured value. Can also be configured to determine the resistance reaction force command value.

本発明の操作装置の第2の実施形態を説明する。   A second embodiment of the operating device of the present invention will be described.

図7は本発明の操作装置の第2実施形態の機能ブロック図である。図7において既出図面と同様の部分には既出の符号を付して説明を省略する。   FIG. 7 is a functional block diagram of the second embodiment of the operating device of the present invention. In FIG. 7, the same reference numerals are given to the same parts as those in the above-described drawings, and the description is omitted.

本実施形態は、図5及び図6で説明した第1実施形態の操作装置が制動動作検出手段78として力センサを被操作部材71に取付けて操作力60を測定する構成を採っていたのに対し、操作信号生成手段72の出力である操作信号の加速度成分を基に被操作部材71に付与する抵抗反力を演算する例である。操作信号の加速度成分は被操作部材71に加わる操作力の変化率と同じように変動する傾向があるため、被操作部材71に加わる操作力の代わりに操作信号の加速度成分を操作反力の制御の基礎に利用することができる。   In the present embodiment, the operating device of the first embodiment described with reference to FIGS. 5 and 6 employs a configuration in which the operating force 60 is measured by attaching a force sensor to the operated member 71 as the braking operation detecting means 78. On the other hand, this is an example in which the resistance reaction force applied to the operated member 71 is calculated based on the acceleration component of the operation signal that is the output of the operation signal generating means 72. Since the acceleration component of the operation signal tends to fluctuate in the same manner as the rate of change of the operation force applied to the operated member 71, the acceleration component of the operation signal is controlled for the operation reaction force instead of the operation force applied to the operated member 71. Can be used as a basis for

本実施形態では、操作信号生成手段72が出力する操作信号の加速度成分を演算する加速度演算手段を制動動作検出手段78Aとして設けている。この制動動作検出手段78Aで演算された操作信号の加速度は抵抗反力指令値生成手段73に出力される。抵抗反力指令値生成手段73は、制動動作検出手段78Aにより演算された操作信号の加速度成分の絶対値が予め設定した第1閾値以上に増大した後、加速度成分が正負逆転して絶対値が予め設定した第2閾値(第1閾値と異なる値にも同値にも設定可能)以上に増大した場合、その時点の加速度成分に応じて抵抗反力生成手段75への指令値を生成する。一方、加速度成分の絶対値が第1及び第2閾値よりも小さな第3閾値以下にある場合、抵抗反力生成手段75への指令値の出力を停止する。   In the present embodiment, acceleration calculation means for calculating the acceleration component of the operation signal output from the operation signal generation means 72 is provided as the braking operation detection means 78A. The acceleration of the operation signal calculated by the braking operation detection unit 78A is output to the resistance reaction force command value generation unit 73. The resistance reaction force command value generation unit 73 increases the absolute value of the acceleration component of the operation signal calculated by the braking operation detection unit 78A to a predetermined first threshold or higher and then reverses the positive / negative acceleration component. When it increases beyond a preset second threshold value (can be set to a value different from the first threshold value or the same value), a command value to the resistance reaction force generating means 75 is generated according to the acceleration component at that time. On the other hand, when the absolute value of the acceleration component is equal to or smaller than the third threshold value smaller than the first and second threshold values, the output of the command value to the resistance reaction force generating means 75 is stopped.

本実施形態によっても第1実施形態と同様の効果が得られる。   According to this embodiment, the same effect as that of the first embodiment can be obtained.

本発明の操作装置の第3の実施形態を説明する。   A third embodiment of the operating device of the present invention will be described.

前述した各実施形態では粘性摩擦抵抗や乾性摩擦抵抗を利用して被操作部材に操作反力を与える構成を例に上げて説明したが、本実施形態では被操作部材の動きに抗う能動的な反力を作り出して被操作部材に付与する。   In each of the above-described embodiments, the configuration in which the operation reaction force is applied to the operated member using viscous friction resistance or dry friction resistance has been described as an example. However, in the present embodiment, the active force resisting the movement of the operated member is described. A reaction force is created and applied to the operated member.

図8は本発明の操作装置の第3実施形態の反力生成構造を模式的に表した概略図である。図8において既出図面と同様の部分には既出の符号を付して説明を省略する。   FIG. 8 is a schematic view schematically showing the reaction force generation structure of the third embodiment of the operating device of the present invention. In FIG. 8, the same reference numerals are given to the same parts as those in the above-described drawings, and the description thereof is omitted.

図8に示したように、本実施形態の操作装置11では、操作レバー15がそれぞれ前後方向・左右方向に回動するアーチ状のガイド部材51,52の頂部に設けた長穴51a,52aに通されている。例えば操作レバー15を前後方向に操作すると、操作レバー15はガイド部材52の長穴52a内を長穴52aの長手方向に移動する一方、操作レバー15の前後への動きに伴ってガイド部材51が前後に回動する。反対に、操作レバー15を左右方向に操作すると、操作レバー15はガイド部材51の長穴51a内を長穴51aの長手方向に移動する一方、操作レバー15の左右への動きに伴ってガイド部材52が左右に回動する。操作レバー15を複合操作した場合、例えば操作レバー15を左前方に操作した場合には、操作レバー15の動作に伴ってガイド部材51,52がそれぞれ前方及び左方向に回動する。   As shown in FIG. 8, in the operating device 11 of the present embodiment, the operating lever 15 is inserted into the long holes 51a and 52a provided at the tops of the arch-shaped guide members 51 and 52 that rotate in the front-rear direction and the left-right direction, respectively. Has been passed. For example, when the operation lever 15 is operated in the front-rear direction, the operation lever 15 moves in the longitudinal direction of the elongated hole 52 a in the elongated hole 52 a of the guide member 52, while the guide member 51 is moved along the longitudinal movement of the operation lever 15. Rotate back and forth. On the other hand, when the operation lever 15 is operated in the left-right direction, the operation lever 15 moves in the long hole 51a of the guide member 51 in the longitudinal direction of the long hole 51a, while the guide member is moved in the left-right direction. 52 rotates left and right. When the operation lever 15 is operated in combination, for example, when the operation lever 15 is operated to the left front, the guide members 51 and 52 are rotated forward and left in accordance with the operation of the operation lever 15, respectively.

このとき、ガイド部材51,52の支軸には、抵抗反力生成手段である電動モータ53,54の出力軸がそれぞれ連結されている。これら電動モータ53,54は、ガイド部材51,52に対し、ガイド部材51,52の回動方向と対向する方向(反対方向)にトルクを与え、操作レバー15に与える操作反力を生成する反力生成手段として機能する。   At this time, output shafts of electric motors 53 and 54, which are resistance reaction force generating means, are connected to the support shafts of the guide members 51 and 52, respectively. These electric motors 53, 54 apply torque to the guide members 51, 52 in a direction (opposite direction) opposite to the rotation direction of the guide members 51, 52, and generate reaction reaction force applied to the operation lever 15. Functions as force generation means.

したがって、抵抗反力指令値生成手段73において、第1又は第2実施形態で抵抗反力指令値を生成したのと同じ条件下で、制動動作検出手段からの検出値を基に電動モータ53,54への指令値を演算し、この指令値に応じて抵抗反力制御手段74を介して電動モータ53,54に制御信号を出力することによって、被操作部材71に操作反力を適時に作用させることができる。よって、本実施形態によっても第1及び第2実施形態と同様の効果を得ることができる。   Therefore, in the resistance reaction force command value generation means 73, the electric motor 53, based on the detection value from the braking operation detection means under the same conditions as the resistance reaction force command value generated in the first or second embodiment. A command value to 54 is calculated, and a control signal is output to the electric motors 53 and 54 via the resistance reaction force control means 74 in accordance with this command value, so that the operation reaction force is applied to the operated member 71 in a timely manner. Can be made. Therefore, the present embodiment can provide the same effects as those of the first and second embodiments.

以上、本発明の操作装置は、土木工事、解体工事等の作業現場に使用される、油圧ショベルや油圧クレーンに代表される作業機械の操作装置に利用することができる。また、工場、宇宙、その他の環境で操作者の操作する作業機械等にも利用可能である。   As described above, the operating device of the present invention can be used for an operating device of a work machine represented by a hydraulic excavator or a hydraulic crane, which is used at a work site such as civil engineering work and demolition work. It can also be used for work machines operated by operators in factories, space, and other environments.

本発明の操作装置の適用対象である作業機械の一例である油圧ショベルの側面図である。It is a side view of the hydraulic excavator which is an example of the working machine which is the application object of the operating device of this invention. 図1の油圧ショベルに備えられたキャブボックスの内部の概略構成を表す側面図である。It is a side view showing the schematic structure inside the cab box with which the hydraulic excavator of FIG. 1 was equipped. 図1の油圧ショベルに備えられた操作レバーの構成を表す断面図である。It is sectional drawing showing the structure of the operation lever with which the hydraulic shovel of FIG. 1 was equipped. 図1の油圧ショベルに備えられた油圧アクチュエータの駆動回路の概略図である。It is the schematic of the drive circuit of the hydraulic actuator with which the hydraulic shovel of FIG. 1 was equipped. 操作者の操作動作の特性図である。It is a characteristic view of an operator's operation action. 本発明の操作装置の第1実施形態の機能ブロック図である。It is a functional block diagram of 1st Embodiment of the operating device of this invention. 本発明の操作装置の第2実施形態の機能ブロック図である。It is a functional block diagram of 2nd Embodiment of the operating device of this invention. 本発明の操作装置の第3実施形態の反力生成構造を模式的に表した概略図である。It is the schematic which represented typically the reaction force production | generation structure of 3rd Embodiment of the operating device of this invention.

符号の説明Explanation of symbols

11,70 操作装置
15 操作レバー
15A 軸
15B グリップ
15C ペダル付き操作レバー
33A ブームシリンダ
33B アームシリンダ
33C バケットシリンダ
33D 旋回モータ
33E,F 走行モータ
53,54 電動モータ
59 操作指令値
60 操作力
61 抵抗反力
71 被操作部材
72 操作信号生成手段
73 抵抗反力指令値生成手段
74 抵抗反力制御手段
75 抵抗反力生成手段
76 操作入力手段
77 操作支援手段
78,78A 制動動作検出手段
P1 第1閾値
P2 第2閾値
P3 第3閾値
11, 70 Operating device 15 Operating lever 15A Shaft 15B Grip 15C Operating lever 33A with pedal Boom cylinder 33B Arm cylinder 33C Bucket cylinder 33D Turning motor 33E, F Traveling motor 53, 54 Electric motor 59 Operation command value 60 Operation force 61 Resistance reaction force 71 Operation target member 72 Operation signal generation means 73 Resistance reaction force command value generation means 74 Resistance reaction force control means 75 Resistance reaction force generation means 76 Operation input means 77 Operation support means 78, 78A Braking action detection means P1 First threshold value P2 First 2 threshold P3 3rd threshold

Claims (6)

操作者の操作に応じて作業機械のアクチュエータの動作指令値を生成する操作装置において、
操作入力を受ける被操作部材、及び前記被操作部材の動作を前記アクチュエータの動作指令値に変換し操作信号を出力する操作信号生成手段を有する操作入力手段と、
操作中に操作者が前記被操作部材を制動する動作を検出する制動動作検出手段と、
前記被操作部材に対して操作方向と反対方向に作用する力を付加し前記被操作部材の動作を減衰させる抵抗反力生成手段、前記制動動作検出手段からの検出信号に基づいて前記抵抗反力生成手段への指令値を生成する抵抗反力指令値生成手段、及び前記抵抗反力指令値生成手段からの指令値に応じて前記抵抗反力生成手段に指令信号を出力する抵抗反力制御手段を有する操作支援手段と
を備えたことを特徴とする操作装置。
In an operating device that generates an operation command value of an actuator of a work machine according to an operation of an operator,
An operation input unit having an operation signal receiving unit that receives an operation input, and an operation signal generation unit that converts an operation command value of the actuator into an operation command value of the actuator and outputs an operation signal;
Braking operation detecting means for detecting an operation of the operator to brake the operated member during operation;
Resistive reaction force generating means for applying a force acting on the operated member in a direction opposite to the operation direction to attenuate the operation of the operated member, and the resistance reaction force based on a detection signal from the braking operation detecting means Resistance reaction force command value generation means for generating a command value to the generation means, and resistance reaction force control means for outputting a command signal to the resistance reaction force generation means in accordance with a command value from the resistance reaction force command value generation means An operation device comprising: an operation support means having
前記抵抗反力生成手段は、前記被操作部材の移動速度と前記被操作部材の動きに伴って流動する粘性摩擦係数との積で決まる粘性摩擦抵抗反力を生成することを特徴とする請求項1の操作装置。   The resistance reaction force generating means generates a viscous frictional resistance reaction force determined by a product of a moving speed of the operated member and a viscous friction coefficient that flows along with the movement of the operated member. 1 operating device. 前記制動動作検出手段として、前記被操作部材に加わる操作力を検出する操作力検出手段又は前記操作信号生成手段が出力する操作信号の加速度成分を演算する加速度演算手段を設け、
前記抵抗反力指令値生成手段は、前記制動動作検出手段により検出された前記操作力の変化率又は前記加速度成分の変化率の絶対値が予め設定した第1閾値以上に増大した後、前記操作力の変化率又は前記加速度成分の変化率が正負逆転して絶対値が予め設定した第2閾値以上に増大した場合、前記操作力又は前記加速度成分に応じて前記抵抗反力生成手段への指令値を生成し、前記操作力の変化率又は前記加速度成分の変化率の絶対値が前記第1及び第2閾値よりも小さな第3閾値以下にある場合、前記抵抗反力生成手段への指令値の出力を停止する
ことを特徴とする請求項1又は2の操作装置。
As the braking operation detection means, an operation force detection means for detecting an operation force applied to the operated member or an acceleration calculation means for calculating an acceleration component of an operation signal output by the operation signal generation means is provided,
The resistance reaction force command value generation means is configured to increase the operation force change rate detected by the braking action detection means or the absolute value of the acceleration component change rate to a predetermined first threshold value or more, and then operate the operation force. When the rate of change of force or the rate of change of the acceleration component is reversed in the positive and negative directions and the absolute value increases to a predetermined second threshold value or more, a command to the resistance reaction force generating means according to the operating force or the acceleration component When the absolute value of the change rate of the operating force or the change rate of the acceleration component is equal to or smaller than a third threshold value smaller than the first and second threshold values, a command value to the resistance reaction force generating means is generated. The operation device according to claim 1 or 2, wherein the output of the operation is stopped.
前記制動動作検出手段として、操作者が前記被操作部材を動かすときに活動する主動筋と制動するときに活動する拮抗筋の緊張度を測定する筋緊張測定手段を設け、
前記抵抗反力指令値生成手段は、前記主動筋と前記拮抗筋の同時出力の拮抗度に応じて前記抵抗反力生成手段への指令値を生成する
ことを特徴とする請求項1又は2の操作装置。
As the braking operation detecting means, muscle tension measuring means for measuring the tension of the main muscle that is active when the operator moves the operated member and the antagonistic muscle that is active when braking is provided,
The resistance reaction force command value generation unit generates a command value to the resistance reaction force generation unit according to the degree of antagonism of the simultaneous output of the main muscle and the antagonist muscle. Operating device.
前記制動動作検出手段として、操作者が前記被操作部材を把持する握り圧又は握り力を検出する握り量検出手段を設け、
前記抵抗反力指令値生成手段は、前記握り量検出手段で検出された握り量に応じて前記抵抗反力生成手段への指令値を生成する
ことを特徴とする請求項1又は2の操作装置。
As the braking operation detection means, a grip amount detection means for detecting a grip pressure or a grip force with which an operator grips the operated member is provided,
3. The operating device according to claim 1, wherein the resistance reaction force command value generation unit generates a command value to the resistance reaction force generation unit according to a grip amount detected by the grip amount detection unit. .
前記制動動作検出手段として、操作者が操作レバーである前記被操作部材を軸方向に押し付ける力又は圧力を検出する押し付け量検出手段を設け、
前記抵抗反力指令値生成手段は、前記押し付け量検出手段で検出された押し付け量に応じて前記抵抗反力生成手段への指令値を生成する
ことを特徴とする請求項1又は2の操作装置。
As the braking operation detecting means, a pressing amount detecting means for detecting a force or pressure by which an operator presses the operated member which is an operating lever in the axial direction is provided,
3. The operating device according to claim 1, wherein the resistance reaction force command value generation unit generates a command value to the resistance reaction force generation unit according to a pressing amount detected by the pressing amount detection unit. .
JP2008232062A 2008-09-10 2008-09-10 Operation device Pending JP2010066962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232062A JP2010066962A (en) 2008-09-10 2008-09-10 Operation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232062A JP2010066962A (en) 2008-09-10 2008-09-10 Operation device

Publications (1)

Publication Number Publication Date
JP2010066962A true JP2010066962A (en) 2010-03-25

Family

ID=42192502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232062A Pending JP2010066962A (en) 2008-09-10 2008-09-10 Operation device

Country Status (1)

Country Link
JP (1) JP2010066962A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238061A (en) * 2010-05-11 2011-11-24 Tokai Rika Co Ltd Input device
JP2011235780A (en) * 2010-05-11 2011-11-24 Tokai Rika Co Ltd Remote input device
CN107709672A (en) * 2015-09-10 2018-02-16 日立建机株式会社 Engineering machinery
JP2018131890A (en) * 2017-02-16 2018-08-23 住友重機械工業株式会社 Shovel
WO2018155338A1 (en) * 2017-02-21 2018-08-30 マツダ株式会社 Operation device for vehicle
JP2018145684A (en) * 2017-03-06 2018-09-20 株式会社小松製作所 Working vehicle, method to be installed in computer for controlling a working vehicle comprising work machine, and controlling method
JP2020051166A (en) * 2018-09-28 2020-04-02 コベルコ建機株式会社 Operation lever control device
KR20220025016A (en) * 2019-09-12 2022-03-03 가부시키가이샤 고마쓰 세이사쿠쇼 Work vehicle and control method of work vehicle
WO2022210981A1 (en) * 2021-03-31 2022-10-06 住友建機株式会社 Work machine and operation device for work machine
WO2023053542A1 (en) * 2021-09-29 2023-04-06 コベルコ建機株式会社 System for controlling manipulation reaction force and method for controlling manipulation reaction force
US12001236B2 (en) 2019-09-12 2024-06-04 Komatsu Ltd. Work vehicle and method for controlling work vehicle

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011235780A (en) * 2010-05-11 2011-11-24 Tokai Rika Co Ltd Remote input device
JP2011238061A (en) * 2010-05-11 2011-11-24 Tokai Rika Co Ltd Input device
CN107709672B (en) * 2015-09-10 2020-03-31 日立建机株式会社 Construction machine
CN107709672A (en) * 2015-09-10 2018-02-16 日立建机株式会社 Engineering machinery
JP2018131890A (en) * 2017-02-16 2018-08-23 住友重機械工業株式会社 Shovel
JP7113599B2 (en) 2017-02-16 2022-08-05 住友重機械工業株式会社 Excavator
US11048288B2 (en) 2017-02-21 2021-06-29 Mazda Motor Corporation Operation device for vehicle
WO2018155338A1 (en) * 2017-02-21 2018-08-30 マツダ株式会社 Operation device for vehicle
JP2018145684A (en) * 2017-03-06 2018-09-20 株式会社小松製作所 Working vehicle, method to be installed in computer for controlling a working vehicle comprising work machine, and controlling method
JP2020051166A (en) * 2018-09-28 2020-04-02 コベルコ建機株式会社 Operation lever control device
JP7135676B2 (en) 2018-09-28 2022-09-13 コベルコ建機株式会社 Operating lever control device
KR20220025016A (en) * 2019-09-12 2022-03-03 가부시키가이샤 고마쓰 세이사쿠쇼 Work vehicle and control method of work vehicle
CN114258446A (en) * 2019-09-12 2022-03-29 株式会社小松制作所 Work vehicle and work vehicle control method
CN114258446B (en) * 2019-09-12 2023-08-08 株式会社小松制作所 Work vehicle and control method for work vehicle
KR102641401B1 (en) * 2019-09-12 2024-02-27 가부시키가이샤 고마쓰 세이사쿠쇼 Work vehicles and control methods for work vehicles
US12001236B2 (en) 2019-09-12 2024-06-04 Komatsu Ltd. Work vehicle and method for controlling work vehicle
WO2022210981A1 (en) * 2021-03-31 2022-10-06 住友建機株式会社 Work machine and operation device for work machine
WO2023053542A1 (en) * 2021-09-29 2023-04-06 コベルコ建機株式会社 System for controlling manipulation reaction force and method for controlling manipulation reaction force

Similar Documents

Publication Publication Date Title
JP2010066962A (en) Operation device
JP4167289B2 (en) Swivel control device and construction machine
JP5125048B2 (en) Swing control device for work machine
JP4851802B2 (en) Swivel drive device for construction machinery
JP5053457B2 (en) Construction machine, construction machine control method, and program for causing computer to execute the method
JP4099006B2 (en) Rotation drive device for construction machinery
JP2009167673A (en) Work device
US11697916B2 (en) Excavator and method of controlling the same
JP6695620B2 (en) Construction machinery
JP7223526B2 (en) work vehicle
KR101572112B1 (en) A method for controlling a hydraulic system
JP5476555B2 (en) Hybrid construction machine
JP5615732B2 (en) Excavator
KR20190131015A (en) Shovel
KR20100044585A (en) Hydraulic circuit of construction equipment of having swing apparatus
JP2010106511A (en) Slewing control device of working machine
WO1996032670A1 (en) Operational reaction force control device for an operating lever of a working machine
JP2012127150A (en) Operation device of work machine
JP6671849B2 (en) Excavator, Excavator damping method
JP6445352B2 (en) Work machine
JP4990212B2 (en) Electric / hydraulic drive for construction machinery
JP6486664B2 (en) Excavator
JP6851701B2 (en) Excavator
JP2000265497A (en) Operational drive device for two-piece boom type working machinery
JPH04189925A (en) Vibration restraining and control device for work device in hydraulic work machine