JP2010063349A - Driving device, image sensing device with the same, and electronic equipment - Google Patents

Driving device, image sensing device with the same, and electronic equipment Download PDF

Info

Publication number
JP2010063349A
JP2010063349A JP2009175374A JP2009175374A JP2010063349A JP 2010063349 A JP2010063349 A JP 2010063349A JP 2009175374 A JP2009175374 A JP 2009175374A JP 2009175374 A JP2009175374 A JP 2009175374A JP 2010063349 A JP2010063349 A JP 2010063349A
Authority
JP
Japan
Prior art keywords
bending displacement
driven body
displacement member
fixed
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009175374A
Other languages
Japanese (ja)
Inventor
Hideaki Fujita
英明 藤田
Kyoji Kasuga
恭二 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009175374A priority Critical patent/JP2010063349A/en
Priority to PCT/JP2009/063950 priority patent/WO2010016548A1/en
Publication of JP2010063349A publication Critical patent/JP2010063349A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • G02B7/005Motorised alignment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • H10N30/2042Cantilevers, i.e. having one fixed end
    • H10N30/2046Cantilevers, i.e. having one fixed end adapted for multi-directional bending displacement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving device with improved driving stability of a body to be driven. <P>SOLUTION: The driving device 10 includes: a bending displacing member 5 whose one end is fixed and having an excited bending displacement; a frictional member 3 connected at a free end of the bending displacing member 5 on either of surfaces deflected in the bending displacing direction of the bending displacing member 5; and a body to be driven 2 brought into friction-contact with the frictional member 3. Consequently, the driving device 10 brings the frictional member 3 in contact with the body to be driven 2 with a high positional accuracy because the position of the frictional member 3 is not affected by a dimensional tolerance in the longitudinal direction of the bending displacing member 5. Accordingly, the driving stability of the body to be driven 2 can be improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被駆動体を駆動する駆動装置およびこれを備えた撮像装置ならびに電子機器に関するものである。   The present invention relates to a driving device that drives a driven body, an imaging device including the driving device, and an electronic apparatus.

近年、被駆動体を駆動するための駆動装置として、電気機械変換素子(圧電素子)を用いた駆動装置が提案されている。このような駆動装置は、例えば、カメラなどの光学装置のレンズを駆動する駆動装置としてよく用いられる。   In recent years, a drive device using an electromechanical conversion element (piezoelectric element) has been proposed as a drive device for driving a driven body. Such a driving device is often used as a driving device that drives a lens of an optical device such as a camera.

特許文献1および2には、屈曲変位する圧電素子を用いた駆動装置が開示されている。特許文献1および2に開示された駆動装置は、圧電素子と、圧電素子の自由端に形成された摩擦部材(被摺動部材)と、圧電素子を付勢する予圧機構と、被駆動体とを備えている。摩擦部材と被駆動体とは予圧機構の予圧によって摩擦接触しており、電圧印加によって圧電素子が屈曲変位すると、被駆動体は摩擦部材との間の摩擦力によってスライドする。   Patent Documents 1 and 2 disclose a driving device using a piezoelectric element that bends and displaces. The driving devices disclosed in Patent Documents 1 and 2 include a piezoelectric element, a friction member (sliding member) formed at a free end of the piezoelectric element, a preload mechanism for biasing the piezoelectric element, a driven body, It has. The friction member and the driven body are in frictional contact by the preload of the preload mechanism, and when the piezoelectric element is bent and displaced by voltage application, the driven body slides due to the frictional force between the friction member and the driven member.

特開2007−252103号公報(2007年9月27日公開)JP 2007-252103 A (published September 27, 2007) 特開2007−274790号公報(2007年10月18日公開)JP 2007-274790 A (released on October 18, 2007)

しかしながら、特許文献1および2に開示された駆動装置では、摩擦部材は圧電素子の長手方向の先端部に配されており、さらに予圧機構の予圧方向は圧電素子の長手方向と同じ方向であるため、摩擦部材の位置精度は、圧電素子の長手方向の寸法公差による影響を受けやすい。この圧電素子の長手方向は、特に寸法公差が大きい方向である。圧電素子の長手方向の寸法公差によって摩擦部材の予圧方向の位置がずれると、被駆動体と摩擦部材との接触状態の再現性が悪くなり、被駆動体に対する予圧状態が不安定になってしまう。特許文献1および2では、被駆動体を摩擦駆動方式によって駆動しているため、被駆動体に対する予圧状態が不安定であると、被駆動体は安定して駆動することができず、これによって被駆動体の位置再現性が低下してしまう。   However, in the driving devices disclosed in Patent Documents 1 and 2, the friction member is disposed at the longitudinal end portion of the piezoelectric element, and the preload direction of the preload mechanism is the same as the longitudinal direction of the piezoelectric element. The positional accuracy of the friction member is easily influenced by the dimensional tolerance in the longitudinal direction of the piezoelectric element. The longitudinal direction of the piezoelectric element is a direction having a particularly large dimensional tolerance. If the position of the friction member in the preload direction shifts due to the dimensional tolerance of the piezoelectric element in the longitudinal direction, the reproducibility of the contact state between the driven body and the friction member becomes worse, and the preload state on the driven body becomes unstable. . In Patent Documents 1 and 2, since the driven body is driven by the friction drive system, if the preload state with respect to the driven body is unstable, the driven body cannot be stably driven. The position reproducibility of the driven body is reduced.

また、特許文献1および2に開示された駆動装置では、長期間動作させることにより、摩擦部の磨耗が生じて被駆動体と摩擦部材との接触状態が変化したり、摩擦部に傷が生じて被駆動体の位置再現性が低下したりするという課題も存在する。   In addition, in the driving devices disclosed in Patent Documents 1 and 2, the frictional portion is worn by operating for a long period of time, so that the contact state between the driven body and the frictional member is changed, or the frictional portion is scratched. Thus, there is a problem that the position reproducibility of the driven body is lowered.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、摩擦部材の位置精度を高めることによって、被駆動体の駆動安定性が向上した駆動装置を提供することにある。さらに、摩擦部材の経時変化による駆動特性の変動を低減し、長期間の駆動安定性を実現した駆動装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a drive device in which the drive stability of the driven body is improved by increasing the positional accuracy of the friction member. It is another object of the present invention to provide a drive device that reduces fluctuations in drive characteristics due to aging of friction members and realizes long-term drive stability.

本発明に係る駆動装置は、上記の問題を解決するために、被駆動体を駆動する駆動装置であって、一端を固定された、屈曲変位が励起される屈曲変位部材と、上記屈曲変位部材の屈曲変位方向に撓む面のいずれか一方の面において、当該屈曲変位部材の自由端に連結された、上記被駆動体と摩擦接触する摩擦部材と、を備えていることを特徴としている。   In order to solve the above-described problem, the drive device according to the present invention is a drive device that drives a driven body, the bending displacement member having one end fixed and bending displacement excited, and the bending displacement member In any one of the surfaces bent in the bending displacement direction, a friction member connected to the free end of the bending displacement member and in frictional contact with the driven body is provided.

上記構成では、屈曲変位部材が屈曲変位するとき、上記屈曲変位部材の自由端に連結された摩擦部材は、当該屈曲変位部材とともに変位する。摩擦部材の変位は、当該摩擦部材と摩擦接触した被駆動体に伝達される。これによって、被駆動体は駆動される。   In the above configuration, when the bending displacement member is bent and displaced, the friction member connected to the free end of the bending displacement member is displaced together with the bending displacement member. The displacement of the friction member is transmitted to the driven body that is in frictional contact with the friction member. As a result, the driven body is driven.

屈曲変位部材において固定端から自由端に向かう方向を長手方向とする。このとき、摩擦部が連結された、屈曲変位部材の屈曲変位方向に撓む面は、上記長手方向に対して略平行である。このため、屈曲変位部材の長手方向における摩擦部材の位置は、屈曲変位部材の長手方向における寸法公差に影響を受けることはない。   The direction from the fixed end to the free end in the bending displacement member is defined as the longitudinal direction. At this time, the surface of the bending displacement member that is connected to the friction portion and is bent in the bending displacement direction is substantially parallel to the longitudinal direction. For this reason, the position of the friction member in the longitudinal direction of the bending displacement member is not affected by the dimensional tolerance in the longitudinal direction of the bending displacement member.

屈曲変位部材は長手方向において最も大きい寸法公差を有するため、上記構成によれば、摩擦部材の位置精度を向上させることができる。これによって、摩擦部材によって被駆動体に伝達される変位の精度が向上するため、被駆動体を安定的に駆動することができる。   Since the bending displacement member has the largest dimensional tolerance in the longitudinal direction, according to the above configuration, the positional accuracy of the friction member can be improved. This improves the accuracy of the displacement transmitted to the driven body by the friction member, so that the driven body can be driven stably.

さらに、本発明に係る駆動装置において、上記屈曲変位部材の固定された一端は、当該屈曲変位部材において屈曲変位方向に撓む面のいずれか一方の面において固定されており、上記屈曲変位部材の固定された面を固定面とするとき、上記摩擦部材は、上記屈曲変位部材において上記固定面と同一平面上に設けられていることが好ましい。   Furthermore, in the drive device according to the present invention, one end of the bending displacement member that is fixed is fixed to one of the surfaces of the bending displacement member that bends in the bending displacement direction. When the fixed surface is a fixed surface, the friction member is preferably provided on the same plane as the fixed surface in the bending displacement member.

上記構成では、摩擦部材が設けられる面は、屈曲変位部材の固定面と同一の面上にある。この構成によれば、屈曲変位部材の屈曲変位方向に撓む面に対して垂直な方向を屈曲変位部材の厚み方向とするとき、摩擦部材の位置精度は、屈曲変位部材の厚みの寸法公差によって影響を受けることがない。したがって、上記構成は、摩擦部材の位置精度をより向上させることができる。   In the above configuration, the surface on which the friction member is provided is on the same surface as the fixed surface of the bending displacement member. According to this configuration, when the direction perpendicular to the surface of the bending displacement member that is bent in the bending displacement direction is the thickness direction of the bending displacement member, the positional accuracy of the friction member depends on the dimensional tolerance of the thickness of the bending displacement member. Not affected. Therefore, the said structure can improve the positional accuracy of a friction member more.

また、本発明に係る駆動装置は、上記屈曲変位部材の自由端に設けられ、かつ上記屈曲変位部材と異なる方向に屈曲変位する中間部材を備えており、上記摩擦部材は上記中間部材の自由端に設けられており、上記摩擦部材と上記屈曲変位部材の自由端との連結は上記中間部材を介して行われていることが好ましい。   The drive device according to the present invention includes an intermediate member that is provided at a free end of the bending displacement member and is bent and displaced in a direction different from the bending displacement member, and the friction member is a free end of the intermediate member. It is preferable that the connection between the friction member and the free end of the bending displacement member is performed via the intermediate member.

上記構成では、屈曲変位部材が屈曲変位すると、中間部材は屈曲変位部材の屈曲変位に伴って上記屈曲変位部材と異なる方向に屈曲変位する。中間部材の自由端に固定された摩擦部材は、当該中間部材とともに上記屈曲変位部材と異なる方向に変位する。この摩擦部材の変位は、当該摩擦部材と摩擦接触した被駆動体に伝達されるため、本発明に係る駆動装置は、被駆動体を屈曲変位部材の長手方向とは異なる方向に駆動することができる。   In the above configuration, when the bending displacement member is bent, the intermediate member is bent and displaced in a direction different from that of the bending displacement member along with the bending displacement of the bending displacement member. The friction member fixed to the free end of the intermediate member is displaced together with the intermediate member in a direction different from that of the bending displacement member. Since the displacement of the friction member is transmitted to the driven body that is in frictional contact with the friction member, the driving device according to the present invention can drive the driven body in a direction different from the longitudinal direction of the bending displacement member. it can.

さらに、本発明に係る駆動装置において、上記屈曲変位部材の固定された一端は、当該屈曲変位部材において屈曲変位方向に撓む面のいずれか一方の面において固定されており、上記屈曲変位部材の上記固定された面を固定面とするとき、上記中間部材において上記摩擦部材が設けられた面は、上記固定面と同一平面上にあることが好ましい。   Furthermore, in the drive device according to the present invention, one end of the bending displacement member that is fixed is fixed to one of the surfaces of the bending displacement member that bends in the bending displacement direction. When the fixed surface is a fixed surface, the surface of the intermediate member on which the friction member is provided is preferably on the same plane as the fixed surface.

上記構成では、中間部材において摩擦部材が設けられる面は、屈曲変位部材の固定面と同一平面上にある。このため、屈曲変位部材の厚み方向における摩擦部材の位置精度は、屈曲変位部材の厚みの寸法公差による影響を受けることがない。したがって、摩擦部材の位置精度はより向上することができる。   In the above configuration, the surface on which the friction member is provided in the intermediate member is on the same plane as the fixed surface of the bending displacement member. For this reason, the positional accuracy of the friction member in the thickness direction of the bending displacement member is not affected by the dimensional tolerance of the thickness of the bending displacement member. Therefore, the positional accuracy of the friction member can be further improved.

また、本発明に係る駆動装置において、上記屈曲変位部材は、電圧を印加することにより形状変位が励起される変位部材と、上記変位部材に積層されたシム部材とから形成されており、上記シム部材は、上記屈曲変位部材の自由端側に延設されたシム延設部を有しており、上記摩擦部材は、上記シム延設部に設けられていることが好ましい。   In the driving device according to the present invention, the bending displacement member is formed of a displacement member whose shape displacement is excited by applying a voltage, and a shim member stacked on the displacement member. It is preferable that the member has a shim extending portion extended to the free end side of the bending displacement member, and the friction member is provided in the shim extending portion.

上記構成によれば、屈曲変位部材は、変位部材と、上記変位部材に積層されたシム部材とから形成されているため、積層工程よって形成される屈曲変位部材の厚みは、寸法公差が大きくなる。ここで、摩擦部材はシム延設部に設けられているため、屈曲変位部材の厚み方向における、摩擦部材の位置精度は、変位部材の厚みの寸法交差を考慮するのみでよい。したがって、屈曲変位部材の固定面とは同一平面ではない他の面に摩擦部材を設けたとしても、摩擦部材の位置精度は向上することができる。   According to the above configuration, since the bending displacement member is formed of the displacement member and the shim member laminated on the displacement member, the thickness tolerance of the bending displacement member formed by the lamination process increases. . Here, since the friction member is provided in the shim extension portion, the positional accuracy of the friction member in the thickness direction of the bending displacement member only needs to consider the dimension crossing of the thickness of the displacement member. Therefore, even if the friction member is provided on another surface that is not the same plane as the fixed surface of the bending displacement member, the positional accuracy of the friction member can be improved.

さらに、本発明に係る駆動装置において、上記屈曲変位部材の固定された一端は、上記シム部材上にあることが好ましい。   Furthermore, in the drive device according to the present invention, it is preferable that the fixed end of the bending displacement member is on the shim member.

上記構成によれば、摩擦部材が設けられた面と、屈曲変位部材の固定された一端とは、同じシム部材上にある。このため、屈曲変位部材の厚み方向における摩擦部材の位置精度は、シム部材の厚みの寸法公差を考慮するのみでよい。したがって、屈曲変位部材の固定面とは同一平面ではない他の面に摩擦部材を設けたとしても、摩擦部材の位置精度は向上することができる。   According to the above configuration, the surface on which the friction member is provided and the fixed end of the bending displacement member are on the same shim member. For this reason, the positional accuracy of the friction member in the thickness direction of the bending displacement member only needs to consider the dimensional tolerance of the thickness of the shim member. Therefore, even if the friction member is provided on another surface that is not the same plane as the fixed surface of the bending displacement member, the positional accuracy of the friction member can be improved.

さらに、本発明に係る駆動装置において、上記シム延設部には切り欠き部が形成されており、上記シム延設部は、上記屈曲変位部材の自由端と異なる方向に屈曲変位することが好ましい。   Furthermore, in the drive device according to the present invention, it is preferable that the shim extension portion has a notch, and the shim extension portion is bent and displaced in a direction different from the free end of the bending displacement member. .

上記構成によれば、本発明に係る駆動装置は、屈曲変位部材とは別体である中間部材を用いずとも、中間部材を用いた場合と同様に、被駆動体を屈曲変位部材の長手方向とは異なる方向に駆動することができる。   According to the above configuration, the drive device according to the present invention can be configured such that the driven body is moved in the longitudinal direction of the bending displacement member, similarly to the case where the intermediate member is used, without using the intermediate member that is separate from the bending displacement member. Can be driven in different directions.

また、本発明に係る駆動装置において、上記中間部材または上記シム延設部の屈曲変位方向に対して略平行な平面は、上記屈曲変位部材の屈曲変位方向に対して略平行な平面と直交することが好ましい。   In the driving device according to the present invention, a plane substantially parallel to the bending displacement direction of the intermediate member or the shim extending portion is orthogonal to a plane substantially parallel to the bending displacement direction of the bending displacement member. It is preferable.

上記構成によれば、屈曲部材および被駆動体は、屈曲変位部材の厚み方向が被駆動体の移動方向と垂直になるように配置される。この配置によれば、被駆動体の移動方向に対して略垂直な方向において、本発明に係る駆動装置を小型化することが容易となる。   According to the above configuration, the bending member and the driven body are arranged such that the thickness direction of the bending displacement member is perpendicular to the moving direction of the driven body. According to this arrangement, it becomes easy to reduce the size of the drive device according to the present invention in a direction substantially perpendicular to the moving direction of the driven body.

また、本発明に係る駆動装置は、上記摩擦部材が、上記被駆動体に直接接触していることが好ましい。   In the driving apparatus according to the present invention, it is preferable that the friction member is in direct contact with the driven body.

上記構成によれば、本発明に係る駆動装置は、被駆動体を駆動するために、中間的な被駆動体を用いずともよい。これによって、本発明に係る駆動装置を小型化することが容易となる。   According to the above configuration, the driving apparatus according to the present invention does not need to use an intermediate driven body in order to drive the driven body. This facilitates downsizing the drive device according to the present invention.

また、本発明に係る駆動装置は、上記被駆動体の移動方向と、上記屈曲変位部材において屈曲変位方向に撓む面とが略平行であってもよい。   In the drive device according to the present invention, the moving direction of the driven body and the surface of the bending displacement member that bends in the bending displacement direction may be substantially parallel.

また、本発明に係る駆動装置は、上記被駆動体と上記屈曲変位部材との間に配置された固定部を備えており、上記屈曲変位部材の固定された一端は、上記固定部に固定されていることが好ましい。   In addition, the drive device according to the present invention includes a fixing portion disposed between the driven body and the bending displacement member, and one end of the bending displacement member fixed is fixed to the fixing portion. It is preferable.

上記構成によれば、屈曲変位部材の一端は固定部に固定されているため、屈曲変位部材は、屈曲変位する際の変位特性を安定させることができる。また、固定部が被駆動体と屈曲変位部材との間に配置されているため、屈曲変位部材を固定部に固定する時の作業性を向上させることができ、ひいては本発明係る駆動装置の生産性を向上させることができる。   According to the above configuration, since the one end of the bending displacement member is fixed to the fixed portion, the bending displacement member can stabilize the displacement characteristics when the bending displacement is performed. Further, since the fixing portion is disposed between the driven body and the bending displacement member, the workability when fixing the bending displacement member to the fixing portion can be improved, and as a result, the production of the driving device according to the present invention can be improved. Can be improved.

また、本発明に係る駆動装置は、上記被駆動体を上記摩擦部材に付勢する予圧機構を備えていることが好ましい。   The drive device according to the present invention preferably includes a preload mechanism that urges the driven body toward the friction member.

上記構成によれば、被駆動体は、予圧部材によって摩擦部材に常時付勢される。これによって、被駆動体は、安定した位置を保つことができる。   According to the above configuration, the driven body is constantly urged against the friction member by the preload member. Thereby, the driven body can maintain a stable position.

また、本発明に係る駆動装置において、上記被駆動体には、当該被駆動体と一体的に移動し、かつ上記摩擦部材と摩擦接触する接触部材が設けられており、上記摩擦部材および上記接触部材のうち、一方には固体潤滑材料による皮膜が形成されており、他方は炭素焼結材から形成されていることが好ましい。さらに、上記固体潤滑材料による皮膜は、ダイヤモンド状炭素膜であることが好ましい。   In the driving apparatus according to the present invention, the driven body is provided with a contact member that moves integrally with the driven body and that makes frictional contact with the friction member. One of the members is preferably formed with a film made of a solid lubricating material, and the other is formed of a carbon sintered material. Further, the film made of the solid lubricating material is preferably a diamond-like carbon film.

上記構成によれば、接触部材および摩擦部材の磨耗を低減できるとともに、キズの発生を防止することができる。これによって、長期の動作によっても駆動特性の変化が少なく、駆動装置の耐久性を向上させることができる。さらに、耐落下衝撃に優れた駆動装置を提供することができる。   According to the above configuration, wear of the contact member and the friction member can be reduced, and generation of scratches can be prevented. As a result, there is little change in drive characteristics even with long-term operation, and the durability of the drive device can be improved. Furthermore, it is possible to provide a driving device that is excellent in drop impact resistance.

本発明に係る駆動装置は、撮像対象となる物体を結像する光学系と、上記光学系により結像された像を電気信号に変換する撮像素子とを備え、上記被駆動体が上記光学系を保持することによって、撮像装置として用いることができる。   A driving apparatus according to the present invention includes an optical system that forms an image of an object to be imaged, and an image sensor that converts an image formed by the optical system into an electrical signal, and the driven body is the optical system. Can be used as an imaging device.

また、本発明に係る撮像装置は、上記被駆動体の駆動を支持する駆動軸を備えており、上記光学系の光軸と上記駆動軸との間の最短距離は、上記摩擦部材における上記被駆動体との接触部と上記駆動軸との間の最短距離よりも短いことが好ましい。   In addition, the imaging apparatus according to the present invention includes a drive shaft that supports driving of the driven body, and the shortest distance between the optical axis of the optical system and the drive shaft is determined by the driven member in the friction member. It is preferable that the distance is shorter than the shortest distance between the contact portion with the drive body and the drive shaft.

上記構成によれば、例えば駆動装置の製造時の組立てずれなどに起因して、摩擦部材と被駆動体との配置関係にずれが生じる場合においても、被駆動体の傾きを抑えることができる。すなわち、被駆動体の保持する光学系の光学中心位置のずれを低減することができる。また、被駆動体に付勢される予圧方向の変化は低減するため、被駆動体の駆動特性を安定化することができる。   According to the above configuration, the tilt of the driven body can be suppressed even when the positional relationship between the friction member and the driven body is shifted due to, for example, an assembly shift at the time of manufacturing the driving device. That is, the shift of the optical center position of the optical system held by the driven body can be reduced. Moreover, since the change in the preload direction urged by the driven body is reduced, the driving characteristics of the driven body can be stabilized.

また、本発明に係る駆動装置および撮像装置は、電子機器に適用することができる。   In addition, the drive device and the imaging device according to the present invention can be applied to electronic devices.

本発明に係る駆動装置によれば、一端を固定された、屈曲変位が励起される屈曲変位部材と、上記屈曲変位部材の屈曲変位方向に撓む面のいずれか一方の面において、当該屈曲変位部材の自由端に連結された摩擦部材と、上記摩擦部材と摩擦接触した被駆動体と、を備えているため、摩擦部材の位置精度が向上することによって、被駆動体の駆動特性が安定化する。   According to the drive device of the present invention, the bending displacement of one of the bending displacement member having one end fixed and the bending displacement being excited and the surface of the bending displacement member that bends in the bending displacement direction. Since the friction member connected to the free end of the member and the driven body that is in frictional contact with the friction member are provided, the positional accuracy of the friction member is improved, thereby stabilizing the driving characteristics of the driven body. To do.

(a)は本発明の第1の実施形態における駆動装置を概略的に示す平面図であり、(b)はその側面図である。(A) is a top view which shows schematically the drive device in the 1st Embodiment of this invention, (b) is the side view. 本発明の第1の実施形態における駆動装置を概略的に示す斜視図である。1 is a perspective view schematically showing a drive device according to a first embodiment of the present invention. 本発明の第1の実施形態における駆動装置の屈曲変位部材を概略的に示す斜視図である。It is a perspective view which shows roughly the bending displacement member of the drive device in the 1st Embodiment of this invention. (a)(b)は、摩擦部材と被駆動体との位置ずれを説明するための平面図である。(A) (b) is a top view for demonstrating the position shift of a friction member and a to-be-driven body. 本発明の第2の実施形態における駆動装置を概略的に示す斜視図である。It is a perspective view which shows roughly the drive device in the 2nd Embodiment of this invention. 本発明の第2の実施形態における駆動装置の屈曲変位部材を概略的に示す斜視図である。It is a perspective view which shows roughly the bending displacement member of the drive device in the 2nd Embodiment of this invention. 本発明の第3の実施形態における駆動装置を概略的に示す模式図である。It is a schematic diagram which shows schematically the drive device in the 3rd Embodiment of this invention. 本発明の第4の実施形態における駆動装置を概略的に示す模式図である。It is a schematic diagram which shows schematically the drive device in the 4th Embodiment of this invention. 本発明の第5の実施形態における駆動装置を概略的に示す模式図である。It is a schematic diagram which shows schematically the drive device in the 5th Embodiment of this invention.

〔実施形態1〕
本発明の第1の実施形態について、図1から図4に基づいて説明すると以下の通りである。
[Embodiment 1]
The first embodiment of the present invention will be described with reference to FIGS. 1 to 4 as follows.

まず、図1(a)(b)および図2を参照して、本実施形態における駆動装置10の概略構成について説明する。図1(a)は駆動装置10を示す側面図であり、図1(b)はその正面図である。図2は、駆動装置10を示す斜視図である。   First, a schematic configuration of the drive device 10 in the present embodiment will be described with reference to FIGS. FIG. 1 (a) is a side view showing the driving device 10, and FIG. 1 (b) is a front view thereof. FIG. 2 is a perspective view showing the driving device 10.

図1および図2に示すように、駆動装置10は、被駆動体2をZ方向に駆動する駆動装置である。駆動装置10は、電気的制御によって屈曲変位が生じる屈曲変位部材5、屈曲変位部材5に一端が設けられた中間部材4、中間部材4上に設けられた摩擦部材3、被駆動体2の被駆動体接触部2aを摩擦部材3側へ付勢する予圧部材1、ガイド軸(駆動軸)8、および筐体6を備えている。   As shown in FIGS. 1 and 2, the drive device 10 is a drive device that drives the driven body 2 in the Z direction. The driving device 10 includes a bending displacement member 5 in which bending displacement is caused by electrical control, an intermediate member 4 provided with one end on the bending displacement member 5, a friction member 3 provided on the intermediate member 4, and a driven member 2 to be driven. A preload member 1, a guide shaft (drive shaft) 8, and a housing 6 that urge the drive body contact portion 2a toward the friction member 3 are provided.

ここで、被駆動体2は、駆動装置10によって移動する部材であり、被駆動体2から突起状に形成された被駆動体接触部2aと、被駆動体接触部2aにおける摩擦部材3側に形成された接触部材2dとを有している。被駆動体接触部2aおよび接触部材2dは、被駆動体2に接着固定された、あるいは一体に形成された部材であり、被駆動体2と一体となって移動する。したがって、駆動装置10では、被駆動体2を駆動するための中間的な被駆動体などを必要としない。これによって、駆動装置10の小型化を図ることが容易であることに加え、各部材の配置の自由度を増すことができる。   Here, the driven body 2 is a member that is moved by the driving device 10. The driven body contact portion 2 a formed in a protruding shape from the driven body 2 and the friction member 3 side of the driven body contact portion 2 a The contact member 2d is formed. The driven body contact portion 2 a and the contact member 2 d are members that are bonded and fixed to the driven body 2 or integrally formed, and move together with the driven body 2. Therefore, the driving apparatus 10 does not require an intermediate driven body for driving the driven body 2. As a result, the drive device 10 can be easily downsized, and the degree of freedom of arrangement of each member can be increased.

なお、以下の説明においては、図1に示すように、被駆動体2の移動方向をZ方向とし、静止状態における屈曲変位部材5の長手方向であり、かつZ方向に対して垂直である方向をY方向とし、Y方向およびZ方向に対して垂直な方向をX方向とする。   In the following description, as shown in FIG. 1, the direction of movement of the driven body 2 is the Z direction, the longitudinal direction of the bending displacement member 5 in a stationary state, and the direction perpendicular to the Z direction. Is the Y direction, and the direction perpendicular to the Y direction and the Z direction is the X direction.

屈曲変位部材5は、電気的制御によって屈曲変位を生じる部材である。屈曲変位部材5において、筐体6に固定された端部を固定端と称し、Y方向において固定端の反対側である、屈曲変位が生じる端部を自由端と称する。屈曲変位部材5は、図1(a)(b)に示すように、自由端の屈曲変位方向が被駆動体2の移動方向(Z方向)に対して略垂直になるように配置されている。   The bending displacement member 5 is a member that causes bending displacement by electrical control. In the bending displacement member 5, an end fixed to the housing 6 is referred to as a fixed end, and an end on the opposite side of the fixed end in the Y direction where a bending displacement occurs is referred to as a free end. As shown in FIGS. 1A and 1B, the bending displacement member 5 is disposed so that the bending displacement direction of the free end is substantially perpendicular to the moving direction (Z direction) of the driven body 2. .

また、屈曲変位部材5の固定端は、筐体6において被駆動体2の移動方向(Z方向)と平行に配置された固定壁(固定部)6aに接着固定されている。なお、屈曲変位部材5の固定端において固定壁6aに接着固定される部位を固定面5cとする。このとき、屈曲変位部材5の固定面5cは、屈曲変位部材5の厚み方向と直交する面である。なお、屈曲変位部材5の厚み方向とはX方向であり、厚み方向と直交する面とはYZ平面である。   The fixed end of the bending displacement member 5 is bonded and fixed to a fixed wall (fixed portion) 6 a arranged in parallel with the moving direction (Z direction) of the driven body 2 in the housing 6. Note that a portion that is bonded and fixed to the fixed wall 6a at the fixed end of the bending displacement member 5 is defined as a fixed surface 5c. At this time, the fixed surface 5 c of the bending displacement member 5 is a surface orthogonal to the thickness direction of the bending displacement member 5. Note that the thickness direction of the bending displacement member 5 is the X direction, and the plane orthogonal to the thickness direction is the YZ plane.

固定壁6aは、必ずしも筐体6と一体である必要はないが、固定壁6aと筐体6とが一体である方が部材点数の低減および位置精度の向上を図れるため好ましい。また、固定壁6aはX方向において、屈曲変位部材5と被駆動体2の間に配置することが好ましい。このような配置とすることで、屈曲変位部材5を固定壁6aに取り付ける時の作業性が向上し、生産性を高くすることができる。   The fixed wall 6a does not necessarily have to be integrated with the housing 6, but it is preferable that the fixed wall 6a and the housing 6 are integrated because the number of members can be reduced and the positional accuracy can be improved. The fixed wall 6a is preferably disposed between the bending displacement member 5 and the driven body 2 in the X direction. With such an arrangement, workability when the bending displacement member 5 is attached to the fixed wall 6a is improved, and productivity can be increased.

予圧部材1の両端部は、被駆動体2の被駆動体予圧部2bおよび筐体6の筐体予圧部6bのそれぞれに固定されている。予圧部材1と摩擦部材3との間には、被駆動体2の被駆動体接触部2aと、被駆動体接触部2aに接着固定された接触部材2dとが挟まれて配置されている。予圧部材1は、被駆動体2の被駆動体接触部2aを摩擦部材3(接触部材2d)側へ常時付勢する構成であり、接触部材2dと摩擦部材3とは摩擦接触する。このような構成によって、被駆動体2は安定した位置を保つことができる。   Both end portions of the preload member 1 are fixed to the driven body preload portion 2 b of the driven body 2 and the housing preload portion 6 b of the housing 6. Between the preload member 1 and the friction member 3, a driven body contact portion 2a of the driven body 2 and a contact member 2d bonded and fixed to the driven body contact portion 2a are disposed. The preload member 1 is configured to constantly urge the driven body contact portion 2a of the driven body 2 toward the friction member 3 (contact member 2d), and the contact member 2d and the friction member 3 are in frictional contact. With such a configuration, the driven body 2 can maintain a stable position.

予圧部材1は、コイルばねなどのように弾性を有する部材であればよい。予圧部材1がコイルばねである場合には、その一端または両端が弾性の無い密着巻きであることが好ましい。この構成によれば、コイルばねを被駆動体2および筐体6のそれぞれに固定するとき、接着剤などの塗布面積を大きく確保することができる。さらに、製造公差に起因するコイルばねの固定範囲のばらつきが起こらず、コイルばねによって安定した予圧荷重を実現することができる。   The preload member 1 may be a member having elasticity such as a coil spring. In the case where the preload member 1 is a coil spring, it is preferable that one end or both ends of the preload member 1 be tightly wound with no elasticity. According to this configuration, when the coil spring is fixed to each of the driven body 2 and the housing 6, a large application area of an adhesive or the like can be ensured. Furthermore, variations in the fixing range of the coil spring caused by manufacturing tolerances do not occur, and a stable preload can be realized by the coil spring.

ガイド軸8は、被駆動体2の駆動を支持し、被駆動体2をZ方向に沿って円滑に移動させるためのガイドであればよい。本実施形態では、ガイド軸8は筐体6の底面に対して垂直に設けられた軸であり、当該軸は被駆動体2に設けられた軸孔に通されている。ガイド軸8は、被駆動体2をガイドするものであれば軸に限定されず、例えばリニアガイドや板ばね等であってもよい。   The guide shaft 8 may be a guide that supports driving of the driven body 2 and smoothly moves the driven body 2 along the Z direction. In the present embodiment, the guide shaft 8 is a shaft provided perpendicular to the bottom surface of the housing 6, and the shaft is passed through a shaft hole provided in the driven body 2. The guide shaft 8 is not limited to a shaft as long as it guides the driven body 2, and may be, for example, a linear guide or a leaf spring.

ガイド軸8は、被駆動体2の位置を安定に保つ効果を有する。例えば、駆動装置10を携帯電話などの携帯型の電子機器に応用する場合には、当該電子機器は落下などによる衝撃を受けるおそれが高いため、被駆動体2が筐体6から外れることを防止することが望まれる。ガイド軸8は、上記効果を有するため、被駆動体2が筐体6から外れることを防止するために有用である。   The guide shaft 8 has an effect of keeping the position of the driven body 2 stable. For example, when the driving device 10 is applied to a portable electronic device such as a mobile phone, the driven device 2 is prevented from being detached from the housing 6 because the electronic device is highly likely to receive an impact due to dropping or the like. It is desirable to do. Since the guide shaft 8 has the above-described effect, it is useful for preventing the driven body 2 from being detached from the housing 6.

被駆動体2がガイド軸8にガイドされて移動(摺動)するためには、ガイド軸8径よりも被駆動体2の軸孔径が大きいことが必要である。被駆動体2を円滑にガイドするためには、ガイド軸8と被駆動体2の軸孔径とのガタ(被駆動体2の軸孔径−ガイド軸8径)が、例えば5〜15μmになるように管理することが好ましい。このように上記ガタを管理することによって、被駆動体2の傾斜(チルト)が発生することなどを軽減でき、被駆動体2を円滑に駆動することができる。   In order for the driven body 2 to be guided (moved) by the guide shaft 8, the shaft hole diameter of the driven body 2 needs to be larger than the diameter of the guide shaft 8. In order to guide the driven body 2 smoothly, the backlash between the guide shaft 8 and the shaft hole diameter of the driven body 2 (shaft hole diameter of the driven body 2−guide shaft 8 diameter) is, for example, 5 to 15 μm. It is preferable to manage them. By managing the play in this way, it is possible to reduce the occurrence of tilting of the driven body 2 and to drive the driven body 2 smoothly.

筐体6は、予圧部材1や屈曲変位部材5などをその内部に備える枠構造である。本実施形態では、筐体6は駆動装置10の強度や機能を確保するために用いられているが、駆動装置の実装状況によっては不要となる。例えば、駆動装置10が電子機器に内蔵され、当該電子機器に筐体6の代替となる他の構造が設けられている場合には、筐体6は不要である。   The housing 6 has a frame structure including the preload member 1, the bending displacement member 5, and the like inside. In the present embodiment, the housing 6 is used to ensure the strength and function of the driving device 10, but is not necessary depending on the mounting state of the driving device. For example, the housing 6 is unnecessary when the driving device 10 is built in an electronic device and the electronic device is provided with another structure that can replace the housing 6.

次に、図3を参照して、駆動装置10における駆動機構を以下に説明する。図3は、屈曲変位部材5およびその周辺部材を示す斜視図である。   Next, the drive mechanism in the drive device 10 will be described below with reference to FIG. FIG. 3 is a perspective view showing the bending displacement member 5 and its peripheral members.

図3に示すように、駆動装置10における駆動機構は、屈曲変位部材5、中間部材4、および摩擦部材3から形成される。   As shown in FIG. 3, the drive mechanism in the drive device 10 is formed of a bending displacement member 5, an intermediate member 4, and a friction member 3.

屈曲変位部材5には、バイモルフ型の圧電素子を用いている。また、屈曲変位部材5は、図3に示すように、金属板からなるシム部材5a、およびシム部材5aの両面に形成された、形状変位する積層圧電素子(変位部材)5bから構成されている。なお、積層圧電素子5bがシム部材5aの片面のみに形成された構成であってもよい。   As the bending displacement member 5, a bimorph type piezoelectric element is used. Further, as shown in FIG. 3, the bending displacement member 5 is composed of a shim member 5a made of a metal plate and a multilayer piezoelectric element (displacement member) 5b formed on both surfaces of the shim member 5a, which is displaced in shape. . The laminated piezoelectric element 5b may be formed only on one side of the shim member 5a.

また、屈曲変位部材5は、駆動装置が備えるべき正常機能を維持するために必要な屈曲変位度を有していればよいため、屈曲変位部材5は特定の構成や形状に限定されない。例えば、圧電素子の代わりに形状記憶合金などを用いてもよい。   Moreover, since the bending displacement member 5 should just have the bending displacement degree required in order to maintain the normal function which a drive device should have, the bending displacement member 5 is not limited to a specific structure and shape. For example, a shape memory alloy or the like may be used instead of the piezoelectric element.

屈曲変位部材5の電極部(図示しない)は、図1に示す電極端子9に半田付けされており、屈曲変位部材5は、外部駆動回路(図示しない)によって電気的に屈曲変位する。また、屈曲変位部材5の一端は、筐体6の固定壁6aに接着固定された固定端であり、他方の端部は自由端になっている。   An electrode portion (not shown) of the bending displacement member 5 is soldered to the electrode terminal 9 shown in FIG. 1, and the bending displacement member 5 is electrically bent and displaced by an external drive circuit (not shown). Further, one end of the bending displacement member 5 is a fixed end bonded and fixed to the fixed wall 6a of the housing 6, and the other end is a free end.

屈曲変位部材5の自由端には、摩擦部材3が中間部材4を介して連結されている。図3に示すように、中間部材4は、一辺に切り込み4aを形成された板形状であり、切り込み4aが屈曲変位部材5の自由端側の一辺と平行に配置されている。なお、本実施形態における中間部材4は、Z方向に自由端を有する構成であれば限定されず、「L」字形状の一端が屈曲変位部材5の自由端における角部の一方側に固定された構成であってもよい。また、摩擦部材3は中間部材4の自由端に固定されている。   A friction member 3 is connected to a free end of the bending displacement member 5 via an intermediate member 4. As shown in FIG. 3, the intermediate member 4 has a plate shape in which a cut 4 a is formed on one side, and the cut 4 a is arranged in parallel with one side on the free end side of the bending displacement member 5. The intermediate member 4 in the present embodiment is not limited as long as it has a free end in the Z direction, and one end of the “L” shape is fixed to one side of the corner at the free end of the bending displacement member 5. It may be a configuration. The friction member 3 is fixed to the free end of the intermediate member 4.

屈曲変位部材5に電圧を印加すると、屈曲変位部材5の自由端は、図3の矢印(方向1)に示すように、XY平面に略平行な方向に屈曲変位する。一方、屈曲変位部材5の屈曲運動に伴って中間部材4がシーソー運動することによって、中間部材4の自由端は、図3の矢印(方向2)に示すように、XZ平面に略平行な方向に屈曲変位する。これによって、摩擦部材3がXZ平面に略平行な方向に変位する。さらに、摩擦部材3の変位は、予圧部材1により生じている摩擦部材3と接触部材2dとの間の摩擦力によって、被駆動体2に伝達される。ここでは、摩擦部材3がXZ平面に略平行な方向に変位するため、被駆動体2はガイド軸8に沿ってZ方向に移動する。   When a voltage is applied to the bending displacement member 5, the free end of the bending displacement member 5 is bent and displaced in a direction substantially parallel to the XY plane as indicated by an arrow (direction 1) in FIG. On the other hand, when the intermediate member 4 performs a seesaw motion in accordance with the bending movement of the bending displacement member 5, the free end of the intermediate member 4 is in a direction substantially parallel to the XZ plane as shown by an arrow (direction 2) in FIG. Bends and displaces. As a result, the friction member 3 is displaced in a direction substantially parallel to the XZ plane. Further, the displacement of the friction member 3 is transmitted to the driven body 2 by the frictional force generated between the friction member 3 and the contact member 2 d generated by the preload member 1. Here, since the friction member 3 is displaced in a direction substantially parallel to the XZ plane, the driven body 2 moves along the guide shaft 8 in the Z direction.

中間部材4は、屈曲変位部材5と摩擦部材3の間に配置されることにより、屈曲変位部材5の変位方向とは異なる方向に摩擦部材3を移動させる変位方向変換を行う働きを有している。この働きによって、図1および図2に示すように、屈曲変位部材5の厚み方向がZ方向と垂直となるように、屈曲変位部材5を配置することが可能となる。これによって、駆動装置10の幅方向(X方向)の小型化を図ることができる。   The intermediate member 4 is disposed between the bending displacement member 5 and the friction member 3, thereby having a function of performing a displacement direction conversion for moving the friction member 3 in a direction different from the displacement direction of the bending displacement member 5. Yes. With this function, as shown in FIGS. 1 and 2, the bending displacement member 5 can be arranged so that the thickness direction of the bending displacement member 5 is perpendicular to the Z direction. As a result, the driving device 10 can be reduced in size in the width direction (X direction).

駆動装置10における駆動機構は、屈曲変位部材5の往復屈曲速度が異なるように、屈曲変位部材5に印加する電圧を制御する構成を有する。この構成では、被駆動体2と摩擦部材3との間に作用する摩擦力を速度差によって変化させ、被駆動体2と摩擦部材3との間に擦移動差を生じさせることによって、被駆動体2のZ方向における変位量(移動量)を変化させる。屈曲変位部材5を往復屈曲させるための駆動周波数には、数kHz以上、好ましくは非可聴である超音波周波数(20kHz以上)が用いられる。なお、電圧の制御方法に関しては、従来用いられている方法を用いればよい。   The drive mechanism in the drive device 10 has a configuration for controlling the voltage applied to the bending displacement member 5 so that the reciprocating bending speed of the bending displacement member 5 is different. In this configuration, the frictional force acting between the driven body 2 and the friction member 3 is changed depending on the speed difference, and a frictional movement difference is generated between the driven body 2 and the friction member 3, thereby driving the driven body. The displacement amount (movement amount) in the Z direction of the body 2 is changed. As the drive frequency for reciprocally bending the bending displacement member 5, an ultrasonic frequency (20 kHz or more) that is several kHz or more, preferably inaudible is used. As a voltage control method, a conventionally used method may be used.

以下に、摩擦部材3および接触部材2dの材料について説明する。摩擦部材3および接触部材2dの材料としては、基本的に、両者の摩擦係数を考慮して適した材料を選択すればよく、例えば、金属、樹脂、および炭素焼結材や、これらの材料に皮膜を施したものを使用することができる。なお、炭素焼結材とは炭素を1000〜3000℃程度で焼成したものであり、一般に炭素、黒鉛炭素、および黒鉛(グラファイト)と称されるもの、ならびに、これらの材料に添加物を添加したものを称している。   Below, the material of the friction member 3 and the contact member 2d is demonstrated. As a material for the friction member 3 and the contact member 2d, basically, a suitable material may be selected in consideration of the friction coefficient of both, for example, a metal, a resin, a carbon sintered material, and these materials. A coated film can be used. The carbon sintered material is obtained by firing carbon at about 1000 to 3000 ° C., and generally referred to as carbon, graphite carbon, and graphite (graphite), and additives are added to these materials. It refers to things.

摩擦部材3および接触部材2dの材料としては、さらに望ましいものが存在する。ここで、本発明の駆動装置10は摩擦部材3と接触部材2d間の摩擦力により被駆動体2を駆動するものであり、この摩擦駆動に起因して、摩擦部材3と接触部材2dには磨耗やキズが生じやすい。磨耗が生じると、摩擦部材3と接触部材2dとの接触状態が変化し、駆動特性が安定しない。一方、キズが生じると、そのキズの箇所における引っ掛かりに起因して動作特性が大幅に変化し、例えば微小送り精度や位置再現性等が大幅に悪化し、これによって駆動装置10は致命的な影響を受ける。このため、摩擦部材3および接触部材2dの材料としては、摩擦駆動による磨耗およびキズの発生を抑えるものが望ましい。また、キズに関しては、摩擦駆動だけでなく、駆動装置10の落下衝撃等によっても発生する。このため、駆動装置10を携帯電話機等の電子機器に用いる場合には特に、摩擦部材3および接触部材2dが耐落下衝撃に優れることが要求される。   More desirable materials exist for the friction member 3 and the contact member 2d. Here, the driving device 10 of the present invention drives the driven body 2 by the frictional force between the friction member 3 and the contact member 2d. Due to this friction drive, the friction member 3 and the contact member 2d have Wear and scratches are likely to occur. When wear occurs, the contact state between the friction member 3 and the contact member 2d changes, and the drive characteristics are not stable. On the other hand, when a scratch occurs, the operating characteristics change significantly due to the catch at the scratched portion, and the feed accuracy and the position reproducibility, for example, are greatly deteriorated. Receive. For this reason, as a material of the friction member 3 and the contact member 2d, what suppresses the generation | occurrence | production of abrasion and a crack by friction drive is desirable. Further, scratches are generated not only by friction drive but also by a drop impact of the drive device 10 or the like. For this reason, especially when using the drive device 10 for electronic devices, such as a mobile telephone, it is requested | required that the friction member 3 and the contact member 2d are excellent in a drop impact resistance.

上記要求への対応として、摩擦部材3および接触部材2dの両方に、耐摩耗性の高い材料、例えば、チタン、タングステン、またはステンレス鋼等の金属材料や、炭化ケイ素(SiC)等のセラミック材料等を使用することとが考えられる。しかしながら、これらの材料を選択した場合であっても、摩擦駆動や落下衝撃によって摩擦部材3または接触部材2dに微少なキズが生じる場合があり、このキズが上述のような致命的な影響を及ぼすことがある。   As a response to the above requirements, both the friction member 3 and the contact member 2d are made of a highly wear-resistant material, for example, a metal material such as titanium, tungsten, or stainless steel, a ceramic material such as silicon carbide (SiC), or the like. Is considered to be used. However, even when these materials are selected, a slight scratch may occur in the friction member 3 or the contact member 2d due to friction drive or drop impact, and this scratch has a fatal effect as described above. Sometimes.

したがって、キズの発生を防止するためには、摩擦部材3および接触部材2dの両方に耐摩耗性の高い材料を用いるのではなく、どちらか一方に柔らかい材料を用いることが好ましい。例えば、黒鉛等の炭素焼結材は、鉛筆に使用されていることから分かるように、その層状の結晶構造に起因して、潤滑性が良く、自らが磨耗しやすい。このため、摩擦部材3または接触部材2dのどちらか一方に炭素焼結材を用いれば、相手材料へのダメージ(キズ発生)を防止することができる。また、炭素焼結材を用いた部材に微少なキズが発生したとしても、磨耗により略均一な面に回復することができる。   Therefore, in order to prevent the generation of scratches, it is preferable to use a soft material for either one of the friction member 3 and the contact member 2d instead of using a material with high wear resistance. For example, as can be seen from the fact that a carbon sintered material such as graphite is used for a pencil, due to its layered crystal structure, it has good lubricity and tends to wear itself. For this reason, if a carbon sintered material is used for either the friction member 3 or the contact member 2d, damage to the mating material (generation of scratches) can be prevented. Further, even if a slight scratch is generated in a member using a carbon sintered material, it can be recovered to a substantially uniform surface by wear.

ただし、摩擦部材3および接触部材2dの一方を炭素焼結材とした場合、その磨耗量が大きくなるという問題がある。そこで、後述の実施例に記載するように、摩擦部材3と接触部材2dの材料の組み合わせを検討したところ、摩擦部材3および接触部材2dの材料のうち、一方が炭素焼結材であり、他方がダイヤモンド状炭素(DLC:Diamond Like Carbon)膜を形成された材料である場合に、磨耗量が少なく、かつキズの発生も生じないことが判明した。   However, when one of the friction member 3 and the contact member 2d is made of a carbon sintered material, there is a problem that the amount of wear increases. Therefore, as described in the examples described later, when the combination of the materials of the friction member 3 and the contact member 2d was studied, one of the materials of the friction member 3 and the contact member 2d is a carbon sintered material, and the other Is a material having a diamond like carbon (DLC) film formed thereon, it has been found that the amount of wear is small and scratches do not occur.

したがって、摩擦部材3および接触部材2dの材料は、一方が炭素焼結材であり、他方がDLC皮膜を形成された材料であることが好ましい。なお、DLC皮膜は、固体で潤滑性の高い材料(固体潤滑材料)の一種である。   Therefore, it is preferable that one of the materials of the friction member 3 and the contact member 2d is a carbon sintered material and the other is a material on which a DLC film is formed. The DLC film is a kind of solid and highly lubricous material (solid lubricating material).

また、中間部材4の材料としては、弾性を有する金属が好ましく、例えば、ステンレス鋼(SUS)、アルミニウム、リン青銅などの金属を用いることが好ましい。   The material of the intermediate member 4 is preferably a metal having elasticity, and for example, a metal such as stainless steel (SUS), aluminum, phosphor bronze, or the like is preferably used.

本実施形態に係る駆動装置10は、撮像対象となる物体を結像する光学系(レンズなど)と、光学系により結像された像を電気信号に変換する撮像素子とを備えることによって、カメラなどの撮像装置を実現することができる。   The drive device 10 according to the present embodiment includes an optical system (such as a lens) that forms an image of an object to be imaged, and an image sensor that converts an image formed by the optical system into an electrical signal, thereby providing a camera. Such an imaging apparatus can be realized.

そこで、図4を参照して、被駆動体2がその中央部に円環状のレンズ取り付け部2cを有する構成について以下に説明する。図4は、被駆動体2およびその周辺部材を模式的に示す正面図である。   Therefore, with reference to FIG. 4, a configuration in which the driven body 2 has an annular lens mounting portion 2c at the center thereof will be described below. FIG. 4 is a front view schematically showing the driven body 2 and its peripheral members.

例えば、駆動装置10をカメラモジュール(カメラなどの撮像装置のレンズ駆動)に応用する場合、被駆動体2は、その中央部に円環状のレンズ取り付け部2cを有することによって、レンズバレル、またはレンズを直接保持するレンズ保持枠として機能する。被駆動体2がレンズ取り付け部2cにレンズを保有するとき、被駆動体2の移動方向(Z方向)は、上記レンズの光軸方向となる。また、駆動装置10の駆動機構によって被駆動体2が光軸方向(Z方向)に駆動されると、レンズ取り付け部2cに取り付けられたレンズのAF(オートフォーカス)動作が実現する。   For example, when the driving device 10 is applied to a camera module (lens driving of an imaging device such as a camera), the driven body 2 has an annular lens mounting portion 2c at the center thereof, thereby providing a lens barrel or lens. It functions as a lens holding frame that directly holds the lens. When the driven body 2 holds the lens in the lens mounting portion 2c, the moving direction (Z direction) of the driven body 2 is the optical axis direction of the lens. Further, when the driven body 2 is driven in the optical axis direction (Z direction) by the driving mechanism of the driving device 10, an AF (autofocus) operation of the lens attached to the lens attaching portion 2c is realized.

被駆動体2がレンズを保持するときには、レンズの光学中心位置の位置精度が高いこと、すなわち、図4(a)に示すレンズ取り付け部2cにおける光学中心位置Hの位置精度が高いことが要求される。例えば、AF機能を有するカメラモジュールにおいては、レンズの光学中心位置の位置精度は±50μm以下であることが好ましい。   When the driven body 2 holds the lens, the positional accuracy of the optical center position of the lens is required to be high, that is, the positional accuracy of the optical center position H in the lens mounting portion 2c shown in FIG. The For example, in a camera module having an AF function, the positional accuracy of the optical center position of the lens is preferably ± 50 μm or less.

ここで、仮に、駆動装置10において摩擦部材3の位置ずれが生じた場合について説明する。例えば、図4(a)に示すように、予圧部材1による付勢がない状態において、摩擦部材3と接触部材2dとの間にΔXの間隔が生じた場合を考える。なお、図4(a)では現象が判りやすいように位置ずれが大きい場合を示している。図4(a)のような場合、予圧部材1による予圧荷重が付与されると、図4(b)に示すように、摩擦部材3と接触部材2dとが接するまで被駆動体2がガイド軸8を中心として回転してしまう。これによって、光学中心位置Hは、図4(b)に示す光学中心位置H’まで変化してしまう。また、予圧部材1による本来の予圧方向(X方向)とは異なる方向(Y方向)に予圧が付加されてしまい、ガイド軸8と被駆動体2の間に駆動負荷が生じる。このため、被駆動体2の駆動特性が不安定となってしまう。   Here, a case where the friction member 3 is displaced in the driving device 10 will be described. For example, as shown in FIG. 4A, consider a case where an interval of ΔX occurs between the friction member 3 and the contact member 2d in a state where the preload member 1 is not biased. FIG. 4A shows a case where the positional deviation is large so that the phenomenon can be easily understood. In the case as shown in FIG. 4A, when a preload is applied by the preload member 1, the driven body 2 is guided to the guide shaft until the friction member 3 and the contact member 2d come into contact with each other, as shown in FIG. 4B. Rotate around 8. As a result, the optical center position H changes to the optical center position H ′ shown in FIG. Further, preload is applied in a direction (Y direction) different from the original preload direction (X direction) by the preload member 1, and a driving load is generated between the guide shaft 8 and the driven body 2. For this reason, the drive characteristic of the driven body 2 becomes unstable.

このような摩擦部材3の位置ずれが生じる原因としては、各部材の製造公差および組立て公差が挙げられる。特に、屈曲変位部材5が複数の部材の積層構造である場合には、その積層工程の製造公差によって、屈曲変位部材5の厚みの寸法公差は大きくなりやすい。   The cause of the positional deviation of the friction member 3 includes manufacturing tolerance and assembly tolerance of each member. In particular, when the bending displacement member 5 has a laminated structure of a plurality of members, the dimensional tolerance of the thickness of the bending displacement member 5 tends to increase due to the manufacturing tolerance of the lamination process.

そこで、駆動装置10では、屈曲変位部材5の固定面5cと、摩擦部材3において中間部材4に設けられる面とが同一平面上にある構成が好ましい。この構成によれば、例え屈曲変位部材5の厚み公差が大きくとも、摩擦部材3と接触部材2dとの間隔ΔXが大きくならない。このため、光学中心位置Hの変動を減少させることができる。また、予圧部材1による予圧方向が傾くことがなくなり、安定した駆動特性の駆動装置10を実現することができる。したがって、駆動装置10を、カメラモジュールなどの撮像装置に好適に利用することができる。   Therefore, the drive device 10 preferably has a configuration in which the fixed surface 5c of the bending displacement member 5 and the surface of the friction member 3 provided on the intermediate member 4 are on the same plane. According to this configuration, even if the thickness tolerance of the bending displacement member 5 is large, the distance ΔX between the friction member 3 and the contact member 2d does not increase. For this reason, the fluctuation | variation of the optical center position H can be reduced. Further, the preload direction by the preload member 1 is not inclined, and the drive device 10 having stable drive characteristics can be realized. Therefore, the drive device 10 can be suitably used for an imaging device such as a camera module.

また、摩擦部材3の位置ずれが生じる別の原因として、摩擦部材3または接触部材2dの磨耗による経時変化が挙げられる。前述のように、摩擦部材3および接触部材2dの材料を、炭素焼結材とDLCコートを施した材料との組み合わせから選択することによって、この磨耗による経時変化を低減できる。これよって、撮像装置の光学中心ずれを低減できるとともに、駆動装置10の駆動安定性を向上させることができる。   Another cause of the displacement of the friction member 3 is a change with time due to wear of the friction member 3 or the contact member 2d. As described above, by selecting the material of the friction member 3 and the contact member 2d from a combination of a sintered carbon material and a DLC-coated material, it is possible to reduce a change with time due to this wear. Thereby, the optical center shift of the imaging device can be reduced, and the driving stability of the driving device 10 can be improved.

駆動装置10のXY平面において、光学中心位置Hとガイド軸8との距離(最短距離)L1は、摩擦部材3における接触部材2dとの接触点とガイド軸8との距離(最短距離)L2より短くなるように、ガイド軸8の位置を設定することが好ましい。図4を基にこの理由を説明すると以下の通りである。光学中心位置Hはガイド軸8を回転中心として、摩擦部材3と接触部材2dとが接触するまで回転するため、L1<L2に設定することによって、摩擦部材3と接触部材2dとの間隔ΔXに起因する光学中心位置Hのずれを低減することができる。また、L1<L2に設定することによって、被駆動体2の回転角度が小さくなるため、予圧部材1による予圧方向の変化を少なくすることもでき、被駆動体2の駆動特性の安定化にも繋がる。   In the XY plane of the driving device 10, the distance (shortest distance) L1 between the optical center position H and the guide shaft 8 is from the distance (shortest distance) L2 between the contact point of the friction member 3 with the contact member 2d and the guide shaft 8. The position of the guide shaft 8 is preferably set so as to be shorter. The reason for this will be described with reference to FIG. The optical center position H rotates around the guide shaft 8 until the friction member 3 and the contact member 2d come into contact with each other. Therefore, by setting L1 <L2, the distance ΔX between the friction member 3 and the contact member 2d is set. The resulting shift of the optical center position H can be reduced. Further, by setting L1 <L2, the rotation angle of the driven body 2 is reduced, so that the change in the preload direction by the preloading member 1 can be reduced, and the driving characteristics of the driven body 2 can be stabilized. Connected.

また、屈曲変位部材5は、屈曲変位方向に撓む面のいずれか一方の面のみが固定壁6aに接するように接着固定されることが好ましい。これによって、屈曲変位部材5を固定位置は、屈曲変位部材5における長手方向(Y方向)および厚み方向(Z方向)の寸法公差による影響を受けない。したがって、摩擦部材3は、Y方向およびZ方向に位置変動することがない。仮に、摩擦部材3がY方向およびZ方向に位置変動してしまうと、予圧部材1による予圧方向が本来の方向(X方向)とは、異なる方向に予圧が付与されてしまい、被駆動体2の駆動特性が不安定になってしまう。本実施形態では、屈曲変異する面のいずれか一方の面のみが固定される構成によって、被駆動体2の駆動特性を向上させることができる。   Moreover, it is preferable that the bending displacement member 5 is bonded and fixed so that only one of the surfaces bent in the bending displacement direction is in contact with the fixed wall 6a. Thereby, the position where the bending displacement member 5 is fixed is not affected by the dimensional tolerance in the longitudinal direction (Y direction) and the thickness direction (Z direction) of the bending displacement member 5. Therefore, the position of the friction member 3 does not vary in the Y direction and the Z direction. If the friction member 3 changes its position in the Y direction and the Z direction, the preload direction by the preload member 1 is applied in a direction different from the original direction (X direction), and the driven body 2 Drive characteristics become unstable. In the present embodiment, the driving characteristics of the driven body 2 can be improved by a configuration in which only one of the surfaces that are bent and mutated is fixed.

一方、摩擦部材3に位置ずれが発生しても、この位置ずれを吸収することができるガイド機構として、被駆動体2をX方向に平行してずらすことのできるガイド機構を設けることも可能である。しかしながら、このようなガイド機構は、被駆動体2との間に調整用のガタが必要となるため、被駆動体2の傾斜(チルト)などの姿勢変化が生じやすくなってしまう。特に、駆動装置10をカメラモジュールなどの撮像装置に用いる場合には、上記チルトは、光学特性を劣化させる大きな要因となってしまう。   On the other hand, a guide mechanism capable of shifting the driven body 2 in parallel with the X direction can be provided as a guide mechanism that can absorb the positional deviation even if the positional deviation occurs in the friction member 3. is there. However, such a guide mechanism requires adjustment backlash between the driven body 2 and the posture of the driven body 2 such as an inclination (tilt) is likely to occur. In particular, when the driving device 10 is used in an imaging device such as a camera module, the tilt is a major factor that degrades optical characteristics.

また、固定壁6aの位置を移動させることで、摩擦部材3の位置ずれを吸収させることも可能であるが、屈曲変位部材5は高い周波数で振動しているため、固定壁6aを安定させて配置する方が好ましい。   Further, it is possible to absorb the displacement of the friction member 3 by moving the position of the fixed wall 6a. However, since the bending displacement member 5 vibrates at a high frequency, the fixed wall 6a is stabilized. It is preferable to arrange them.

〔実施形態2〕
本発明の第2の実施形態について図5および図6に基づいて以下に説明する。図5は、実施形態2における駆動装置を概略的に示す斜視図であり、図6は、実施形態2における屈曲変位部材5およびその周辺部材を示す斜視図である。
[Embodiment 2]
A second embodiment of the present invention will be described below with reference to FIGS. FIG. 5 is a perspective view schematically showing the drive device in the second embodiment, and FIG. 6 is a perspective view showing the bending displacement member 5 and its peripheral members in the second embodiment.

なお、本実施例においては、実施形態1との相違点を中心に説明し、実施の形態1と同様の部材には同一の部材番号を用いることとする。   In this example, the difference from the first embodiment will be mainly described, and the same member numbers are used for the same members as in the first embodiment.

図6に示すように、本実施形態における屈曲変位部材5は、シム部材5aが自由端側に延設された構成のシム延設部5dを有しており、シム延設部5dには摩擦部材3が固定されている。シム延設部5dは「L」字形状であり、シム延設部5dには切り欠き部5eが形成されている。これによって、シム部材5aは、中間部材4と同様に、屈曲方向変換機能を有する。したがって、本実施形態においても、実施形態1において説明したように、駆動装置10の小型化が可能なように屈曲変位部材5を配置することができる。   As shown in FIG. 6, the bending displacement member 5 in the present embodiment has a shim extension portion 5 d having a configuration in which a shim member 5 a is extended to the free end side, and the shim extension portion 5 d has friction. The member 3 is fixed. The shim extension 5d has an “L” shape, and the shim extension 5d has a notch 5e. As a result, the shim member 5 a has a function of changing the bending direction, like the intermediate member 4. Therefore, also in the present embodiment, as described in the first embodiment, the bending displacement member 5 can be arranged so that the drive device 10 can be downsized.

一方、実施形態1では中間部材4は屈曲変位部材5と別部材であるが、本実施形態ではシム延設部5dはシム部材5aと一体である。これによって、中間部材4に必要であった接着剤などによる固定が必要ではなくなり、駆動装置10を製造するための工程数を省略することができる。また、部品点数が低減され、コスト低減を図ることができるという効果も奏する。   On the other hand, in the first embodiment, the intermediate member 4 is a separate member from the bending displacement member 5, but in this embodiment, the shim extension 5d is integral with the shim member 5a. As a result, it is not necessary to fix the intermediate member 4 with an adhesive or the like, and the number of steps for manufacturing the driving device 10 can be omitted. In addition, the number of parts is reduced, and the cost can be reduced.

また、本実施形態では、摩擦部材3の位置精度に対する部材の寸法公差による影響が減少する。具体的には、中間部材4を用いないため、中間部材4の寸法公差による影響を受けなくなる。さらに、屈曲変位部材5の厚み公差による影響については、屈曲変位部材5の片側の積層圧電素子5bのみを考慮すればよくなり、この影響は実施形態1と比較して半減する。したがって、本実施形態においては、屈曲変位部材5の固定面5cとは異なる面に摩擦部材3を配置した場合においても、光学中心位置のずれや予圧状態の変動などを軽減することができる。これによって、駆動装置10の設計の自由度を増すことができる。   Moreover, in this embodiment, the influence by the dimensional tolerance of the member with respect to the positional accuracy of the friction member 3 reduces. Specifically, since the intermediate member 4 is not used, it is not affected by the dimensional tolerance of the intermediate member 4. Furthermore, regarding the influence due to the thickness tolerance of the bending displacement member 5, only the laminated piezoelectric element 5b on one side of the bending displacement member 5 needs to be considered, and this influence is halved compared to the first embodiment. Therefore, in the present embodiment, even when the friction member 3 is arranged on a surface different from the fixed surface 5c of the bending displacement member 5, it is possible to reduce the shift of the optical center position, the fluctuation of the preload state, and the like. Thereby, the freedom degree of design of the drive device 10 can be increased.

また、図5に示すように、本実施形態は、予圧部材1として圧縮コイルばねを用いている点、および固定壁6aが屈曲変位部材5に対して被駆動体2とは逆側に配置されている点において、実施形態1と異なっている。   Further, as shown in FIG. 5, in the present embodiment, a compression coil spring is used as the preload member 1, and the fixed wall 6 a is disposed on the opposite side to the driven body 2 with respect to the bending displacement member 5. However, the present embodiment is different from the first embodiment.

〔実施形態3〕
本発明の第3の実施形態について図7に基づいて以下に説明する。図7は、実施形態3における駆動装置を示す模式図である。なお、本実施例においては、実施形態1および2との相違点を中心に説明し、実施形態1および2と同様の部材には同一の部材番号を用いることとする。
[Embodiment 3]
A third embodiment of the present invention will be described below with reference to FIG. FIG. 7 is a schematic diagram illustrating a driving device according to the third embodiment. In this example, the difference from the first and second embodiments will be mainly described, and the same member numbers as those in the first and second embodiments will be used.

図7に示すように、本実施形態では、被駆動体接触部2aがアーム状に形成されており、屈曲変位部材5側から被駆動体2に予圧を付与する構成となっている。このように、被駆動体接触部2aの形状を変更することによって、被駆動体2の形状などに合わせて予圧機構(図示しない)を変更することができる。これによって、予圧機構の配置および予圧方向の自由度を増すことができる。   As shown in FIG. 7, in this embodiment, the driven body contact portion 2a is formed in an arm shape, and is configured to apply a preload to the driven body 2 from the bending displacement member 5 side. Thus, by changing the shape of the driven body contact portion 2a, the preload mechanism (not shown) can be changed in accordance with the shape of the driven body 2 and the like. Thereby, the arrangement of the preload mechanism and the degree of freedom in the preload direction can be increased.

なお、本実施形態では、実施形態1において好ましい構成であると説明したように、屈曲変位部材5の固定面5cと、中間部材4において屈曲変位部材5に設けられた面と、摩擦部材3が設けられた面とが、同一平面上にある。このような構成とすることにより、摩擦部材3は、中間部材4の厚み公差による影響を受けることがないため、摩擦部材3をより精度良く配置することができる。その結果、光学中心位置のずれや予圧状態の変動などを軽減することができる。   In the present embodiment, as described in the preferred embodiment 1, the fixed surface 5c of the bending displacement member 5, the surface of the intermediate member 4 provided on the bending displacement member 5, and the friction member 3 are provided. The provided surface is on the same plane. By setting it as such a structure, since the friction member 3 does not receive the influence by the thickness tolerance of the intermediate member 4, the friction member 3 can be arrange | positioned more accurately. As a result, it is possible to reduce the deviation of the optical center position and the fluctuation of the preload state.

〔実施の形態4〕
本発明の第4の実施形態について図8に基づいて以下に説明する。図8は、実施形態4における駆動装置を示す模式図である。なお、本実施例においては、実施形態1〜3との相違点を中心に説明し、実施の形態1〜3と同様の部材には同一の部材番号を用いることとする。
[Embodiment 4]
A fourth embodiment of the present invention will be described below with reference to FIG. FIG. 8 is a schematic diagram illustrating a driving device according to the fourth embodiment. In addition, in a present Example, it demonstrates centering around difference with Embodiment 1-3, and the same member number shall be used for the member similar to Embodiment 1-3.

図8に示すように、本実施形態では、実施形態2と同様のシム延設部5dを有する構成において、固定壁6aに対する屈曲変位部材5の固定が、シム部材5aにおいて摩擦部材3が固定された面と同一の面で行われている。これによって、本実施形態では、実施形態2と異なり、摩擦部材3のX方向の位置精度が屈曲変位部材5の厚み公差による影響を全く受けなくなる。   As shown in FIG. 8, in the present embodiment, in the configuration having the shim extending portion 5d similar to that of the second embodiment, the bending displacement member 5 is fixed to the fixed wall 6a, and the friction member 3 is fixed to the shim member 5a. It is done on the same side as the front side. Thus, in the present embodiment, unlike the second embodiment, the positional accuracy of the friction member 3 in the X direction is not affected by the thickness tolerance of the bending displacement member 5 at all.

〔実施の形態5〕
本発明の第5の実施形態について図9に基づいて以下に説明する。図9は、実施形態5における駆動装置を示す模式図である。
[Embodiment 5]
A fifth embodiment of the present invention will be described below with reference to FIG. FIG. 9 is a schematic diagram illustrating a driving device according to the fifth embodiment.

本実施形態は、屈曲変位部材5の配置方向と被駆動体2の移動方向が、実施形態1〜4とは異なる構成である。したがって、以下では、上記構成について中心に説明する。なお、実施の形態1〜4と同様の部材には同一の部材番号を用いることとする。   In the present embodiment, the arrangement direction of the bending displacement member 5 and the moving direction of the driven body 2 are different from those of the first to fourth embodiments. Therefore, in the following, the above configuration will be mainly described. The same member numbers are used for the same members as in the first to fourth embodiments.

本実施形態の駆動装置は、屈曲変位部材5の長さ方向と同じ向きに被駆動体2を移動させる構成である。そこで、図9に示すように、本実施形態では、静止状態のときにおける屈曲変位部材5の長手方向をY方向とし、屈曲変位部材5の厚み方向であり、かつY方向に垂直な方向をX方向とする。すなわち、被駆動体2の移動方向はY方向となる。   The drive device of the present embodiment is configured to move the driven body 2 in the same direction as the length direction of the bending displacement member 5. Therefore, as shown in FIG. 9, in this embodiment, the longitudinal direction of the bending displacement member 5 in the stationary state is the Y direction, the thickness direction of the bending displacement member 5 is the direction perpendicular to the Y direction, and The direction. That is, the moving direction of the driven body 2 is the Y direction.

本実施形態では、摩擦部材3は、中間部材4を介さずに屈曲変位部材5に接着固定されている。屈曲変位部材5は、屈曲変位方向に撓む面のうち一方の面において固定壁6aに固定されている。摩擦部材3において屈曲変位部材5に固定された面と、屈曲変位部材5において固定壁6aに固定された面とは、同一平面である。なお、固定壁6aは筐体(図示しない)に固定されている。   In this embodiment, the friction member 3 is bonded and fixed to the bending displacement member 5 without the intermediate member 4 being interposed. The bending displacement member 5 is fixed to the fixed wall 6a on one surface among the surfaces bent in the bending displacement direction. The surface fixed to the bending displacement member 5 in the friction member 3 and the surface fixed to the fixed wall 6a in the bending displacement member 5 are the same plane. The fixed wall 6a is fixed to a housing (not shown).

被駆動体2の移動方向における側面には、接触部材2dが接着固定されており、接触部材2dは、予圧機構(図示しない)によって摩擦部材3に付勢されている。被駆動体2は、主ガイド軸8aおよび副ガイド軸8bによってY方向にガイドされている。なお、副ガイド軸8bは被駆動体2の回転を防止する回転止めの役割も有している。   A contact member 2d is bonded and fixed to a side surface of the driven body 2 in the moving direction, and the contact member 2d is urged against the friction member 3 by a preload mechanism (not shown). The driven body 2 is guided in the Y direction by the main guide shaft 8a and the sub guide shaft 8b. The sub guide shaft 8b also has a role of a rotation stopper that prevents the driven body 2 from rotating.

屈曲変位部材5は、電圧印加によってXY平面に略平行な方向に屈曲変位する。被駆動体2は、摩擦部材3のY方向への変位に伴い、摩擦部材3との摩擦力によってY方向に変位する。駆動装置の駆動機構の説明は、実施形態1における説明と同様である。   The bending displacement member 5 is bent and displaced in a direction substantially parallel to the XY plane by voltage application. The driven body 2 is displaced in the Y direction by the frictional force with the friction member 3 as the friction member 3 is displaced in the Y direction. The description of the drive mechanism of the drive device is the same as that in the first embodiment.

実施形態1〜4における駆動装置は、撮像装置のAF機構に適した構成を有しているが、実施形態5における駆動装置は、撮像装置のズーム機構に適した構成を有しており、撮像装置の厚み(X方向)を薄型化することができるという特長を有している。   Although the driving device in the first to fourth embodiments has a configuration suitable for the AF mechanism of the imaging device, the driving device in the fifth embodiment has a configuration suitable for the zoom mechanism of the imaging device. It has the feature that the thickness (X direction) of the apparatus can be reduced.

〔本発明の他の構成〕
また、本発明に係る駆動装置の構成は、一端を固定し、屈曲変位が励起される屈曲変位部材と、前記屈曲変位部材の他端に配置され、前記屈曲変位部材の変位を伝達して被駆動体を駆動させる摩擦部材とを備え、前記屈曲変位部材の厚み方向に直交した面のいずれか一方に、屈曲変位部材の一端を固定し、かつ、摩擦部材を配置したことを特徴とする駆動装置としても、表現することができる。
[Other Configurations of the Present Invention]
Further, the configuration of the drive device according to the present invention includes a bending displacement member that is fixed at one end and excited by bending displacement, and is disposed at the other end of the bending displacement member, and transmits the displacement of the bending displacement member to be covered. And a friction member that drives the drive body, wherein one end of the bending displacement member is fixed to any one of the surfaces orthogonal to the thickness direction of the bending displacement member, and the friction member is disposed. It can also be expressed as a device.

摩擦部材3および接触部材2dに用いる材料を様々に組み合わせた駆動装置10を準備し、各組み合わせによる駆動装置10について、10万回の連続動作試験を行った。各組み合わせにおける使用材料および試験結果について、以下に記載する。   A driving device 10 in which the materials used for the friction member 3 and the contact member 2d were combined in various ways was prepared, and 100,000 continuous operation tests were performed on the driving device 10 in each combination. The materials used and test results in each combination are described below.

(組み合わせA)
摩擦部材3に炭素焼結材を用い、接触部材2dにはステンレス鋼(SUS304)にDLC皮膜を施したものを用いた。
(Combination A)
A carbon sintered material was used for the friction member 3, and a contact member 2d made of stainless steel (SUS304) with a DLC film was used.

10万回の連続動作試験の結果、摩擦部材3の磨耗量は3μm以下であり、動作速度の変化は5%以下であった。摩擦部材3および接触部材2dの表面にはキズが見られず、位置再現性の変化も生じない良好な結果であった。更に30万回の連続動作試験を行っても、動作速度の変化は5%以下を維持し、位置再現性の変化も見られなかった。   As a result of 100,000 continuous operation tests, the wear amount of the friction member 3 was 3 μm or less, and the change in the operation speed was 5% or less. The scratches were not observed on the surfaces of the friction member 3 and the contact member 2d, and no change in position reproducibility occurred. Further, even after 300,000 continuous operation tests, the change in the operation speed was maintained at 5% or less, and no change in the position reproducibility was observed.

(組み合わせB)
摩擦部材3に炭素焼結材を用い、接触部材2dにステンレス鋼(SUS304)を用いた。
(Combination B)
A carbon sintered material was used for the friction member 3, and stainless steel (SUS304) was used for the contact member 2d.

10万回の連続動作試験の結果、摩擦部材3が約30μm磨耗し、動作速度が45%低下と大きく変化した。   As a result of 100,000 continuous operation tests, the friction member 3 was worn about 30 μm, and the operation speed was greatly changed by 45%.

(組み合わせC)
摩擦部材3にSiCを用い、接触部材2dにステンレス鋼(SUS304)を用いた。
(Combination C)
SiC was used for the friction member 3, and stainless steel (SUS304) was used for the contact member 2d.

10万回の連続動作試験の結果、接触部材2dにキズが発生し、位置再現性が低下した。また、摩擦部材3にもキズが発生していた。   As a result of 100,000 continuous operation tests, the contact member 2d was scratched, and the position reproducibility was lowered. Further, the friction member 3 was also scratched.

(組み合わせD)
摩擦部材3と接触部材2dの両者には、ステンレス鋼(SUS304)にDLC皮膜を施したものを用いた。
(Combination D)
For both the friction member 3 and the contact member 2d, stainless steel (SUS304) provided with a DLC film was used.

10万回の連続動作試験の結果、DLC皮膜の一部に剥離(亀裂)が生じ、位置再現性が低下した。   As a result of 100,000 continuous operation tests, peeling (cracking) occurred in a part of the DLC film, and the position reproducibility was lowered.

(組み合わせE)
摩擦部材3に炭素焼結材を用い、接触部材2dにステンレス鋼(SUS304)を用いた。接触部材2dには、さらに、フッ素系の潤滑剤(株式会社ハーベス:ドライサーフMZ-7000EL)を塗布した。
(Combination E)
A carbon sintered material was used for the friction member 3, and stainless steel (SUS304) was used for the contact member 2d. Further, a fluorine-based lubricant (Harves Co., Ltd .: Dry Surf MZ-7000EL) was applied to the contact member 2d.

10万回の連続動作試験の結果、摩擦部材3の磨耗量は3μm以下であり、耐久性は問題ないが、連続動作時と一時停止後の動作時で速度差が約20%見られた。   As a result of 100,000 continuous operation tests, the wear amount of the friction member 3 was 3 μm or less, and there was no problem in durability, but a speed difference of about 20% was observed between the continuous operation and the operation after the temporary stop.

以上の組み合わせにおける炭素焼結材としては、黒鉛が40%、炭素が60%含まれるものを使用した。また、以上の組み合わせにおけるDLC皮膜としては、SUS304に、中間層としてTi層とSi層を介して、膜厚約1μmで成膜したものを使用した。使用したSUS304の表面粗さはRa0.1μmであり、DLC皮膜後も略同等の表面粗さであった。   As the carbon sintered material in the above combination, a material containing 40% graphite and 60% carbon was used. In addition, as the DLC film in the above combination, a SUS304 film having a film thickness of about 1 μm was used as an intermediate layer through a Ti layer and a Si layer. The surface roughness of SUS304 used was Ra 0.1 μm, and the surface roughness was substantially equivalent even after the DLC coating.

なお、上記した以外の組み合わせとして、炭素焼結材同士や、炭素焼結材とガラスとの組み合わせ等を検討したが、初期の動作特性が優れない等、耐久性以外の課題が発生した。   In addition, as combinations other than those described above, carbon sintered materials, or a combination of a carbon sintered material and glass were examined, but problems other than durability occurred such as poor initial operating characteristics.

上記結果によれば、摩擦部材3と接触部材2dを炭素焼結材とDLC皮膜付材料とすることにより、磨耗量の低減とキズ発生防止の両者を満足することができることが分かった(組み合わせA)。   According to the above results, it was found that by using the sintered carbon material and the DLC film-coated material as the friction member 3 and the contact member 2d, it is possible to satisfy both the reduction of wear and the prevention of scratches (combination A). ).

一方、炭素焼結材を硬度の高い材料と組み合わせると、炭素焼結材料は相手材料にキズを生じさせにくいが、自らが磨耗して、動作速度に悪影響を与えることが分かった(組み合わせB)。   On the other hand, when carbon sintered material was combined with a material with high hardness, it was found that the carbon sintered material hardly scratches the other material, but it wears itself and adversely affects the operation speed (Combination B). .

また、硬度の高い材料同士の組み合わせ(組み合わせC、D)では、摩擦面に微少なキズが発生することによる位置再現性が低下することが分かった。このキズは致命的な問題であるため、確実に防止することが重要であり、したがって、一方を炭素焼結材料とすることが好ましいことが分かった。   Further, it was found that the position reproducibility due to the generation of minute scratches on the friction surface is reduced in the combination of the materials having high hardness (combinations C and D). Since this scratch is a fatal problem, it is important to reliably prevent it, and therefore it has been found preferable to use one of the sintered carbon materials.

さらに、炭素焼結材と、潤滑剤を塗布した材料との組み合わせ(組み合わせE)では、磨耗やキズ発生という問題は生じなかったが、停止後の初期動作と連続動作とで速度が異なる結果となった。これは、連続動作時に潤滑剤が接触面から移動することによって、摩擦状態が変化することが原因と考えられる。また、潤滑剤の塗布量による動作特性の変化が見られることから、本組み合わせは好ましくないと考えられる。   Furthermore, in the combination of the sintered carbon material and the material coated with the lubricant (combination E), there was no problem of wear or scratches, but the speed was different between the initial operation after the stop and the continuous operation. became. This is considered to be because the frictional state changes due to the lubricant moving from the contact surface during continuous operation. In addition, this combination is considered to be unfavorable because a change in operating characteristics depending on the amount of lubricant applied is observed.

以上のことを考慮すると、摩擦部材3および接触部材2dの材料は、炭素焼結材とDLC皮膜面を有する材料との組み合わせが最も好ましいことが明らかである。これは、炭素焼結材が摩擦する相手としてDLC皮膜面を用いると、DLC皮膜の特長である表面の潤滑性によって、炭素焼結材の磨耗量が低減されるためと考えられる。   Considering the above, it is clear that the material of the friction member 3 and the contact member 2d is most preferably a combination of a sintered carbon material and a material having a DLC film surface. This is considered to be because when the DLC film surface is used as a counterpart against which the carbon sintered material rubs, the wear amount of the carbon sintered material is reduced by the lubricity of the surface, which is a feature of the DLC film.

なお、DLC皮膜以外であっても、固体で潤滑性の高い材料(固体潤滑材料)を用いることにより同様の効果が得られる。固体潤滑材料としては、DLC皮膜以外に、例えば、フッ素樹脂(PTFE:ポリテトラフルオロエチレン)、TiN皮膜、およびCrN皮膜等を挙げることができる。ただし、高硬度と潤滑性を両立できることからDLC皮膜を用いることが最も好ましい。   In addition, even if it is other than a DLC film, the same effect can be obtained by using a solid and highly lubricous material (solid lubricating material). Examples of the solid lubricating material include a fluororesin (PTFE: polytetrafluoroethylene), a TiN film, and a CrN film, in addition to the DLC film. However, it is most preferable to use a DLC film because both high hardness and lubricity can be achieved.

また、磨耗量に関しては予圧の大きさによっても変化する。上記連続動作試験では、予圧を12gfに設定していた。予圧を低減させることで磨耗量を減少させることもできるが、予圧は被駆動体2と摩擦部材3とを安定して当接させるとともに、摩擦力を高める働きがあり、駆動推力や駆動安定性の低下が生じるため好ましくない。予圧は被駆動体2の重量により最適値が異なるが、例えば、カメラモジュールのレンズ駆動に使用する場合は、約5gfから50gfの間に設定することが好ましい。   Further, the amount of wear varies depending on the magnitude of the preload. In the continuous operation test, the preload was set to 12 gf. Although the amount of wear can be reduced by reducing the preload, the preload has a function of bringing the driven body 2 and the friction member 3 into stable contact with each other and increasing the frictional force, and driving thrust and driving stability. This is not preferable because of a decrease in the thickness. Although the optimum value of the preload varies depending on the weight of the driven body 2, for example, when used for driving a lens of a camera module, it is preferable to set the preload between about 5 gf and 50 gf.

また、上記連続動作試験では、摩擦部材3を炭素焼結材とし、接触部材2dにDLC皮膜を施したが、これに限られず、接触部材2dを炭素焼結材とし、摩擦部材3にDLC皮膜を施してもよい。また、DLCコートを行う下地材料はSUS304に限定されるものではなく、他のステンレス鋼やアルミニウム、シリコン等の他の材料を使用してもよい。   In the continuous operation test, the friction member 3 is made of a carbon sintered material, and the contact member 2d is coated with the DLC film. However, the invention is not limited to this. May be applied. Further, the base material on which DLC coating is performed is not limited to SUS304, and other materials such as other stainless steel, aluminum, and silicon may be used.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明に係る駆動装置は、例えばカメラモジュールなどの撮像装置に好適に利用できる。   The drive device according to the present invention can be suitably used for an imaging device such as a camera module.

1 予圧部材
2 被駆動体
2d 接触部材
3 摩擦部材
4 中間部材
5 屈曲変位部材
5a シム部材
5b 積層圧電素子
5c 固定面
5d シム延設部
6 筐体
8 ガイド軸
10 駆動装置
DESCRIPTION OF SYMBOLS 1 Preload member 2 Driven body 2d Contact member 3 Friction member 4 Intermediate member 5 Bending displacement member 5a Shim member 5b Multilayer piezoelectric element 5c Fixed surface 5d Shim extension part 6 Case 8 Guide shaft 10 Drive device

Claims (17)

被駆動体を駆動する駆動装置であって、
一端を固定された、屈曲変位が励起される屈曲変位部材と、
上記屈曲変位部材の屈曲変位方向に撓む面のいずれか一方の面において、当該屈曲変位部材の自由端に連結された、上記被駆動体と摩擦接触する摩擦部材と、を備えていることを特徴とする駆動装置。
A driving device for driving a driven body,
A bending displacement member having one end fixed and bending displacement excited;
A friction member that is connected to a free end of the bending displacement member and is in frictional contact with the driven body on any one surface of the bending displacement member that is bent in the bending displacement direction. The drive device characterized.
上記屈曲変位部材の固定された一端は、当該屈曲変位部材において屈曲変位方向に撓む面のいずれか一方の面において固定されており、
上記屈曲変位部材の固定された面を固定面とするとき、上記摩擦部材は、上記屈曲変位部材において上記固定面と同一平面上に設けられていることを特徴とする請求項1に記載の駆動装置。
One fixed end of the bending displacement member is fixed on one of the surfaces of the bending displacement member that bends in the bending displacement direction.
2. The drive according to claim 1, wherein when the fixed surface of the bending displacement member is a fixed surface, the friction member is provided on the same plane as the fixed surface in the bending displacement member. apparatus.
上記屈曲変位部材の自由端に設けられ、かつ上記屈曲変位部材と異なる方向に屈曲変位する中間部材を備えており、
上記摩擦部材は上記中間部材の自由端に設けられており、
上記摩擦部材と上記屈曲変位部材の自由端との連結は上記中間部材を介して行われていることを特徴とする請求項1に記載の駆動装置。
An intermediate member that is provided at a free end of the bending displacement member and is bent and displaced in a direction different from the bending displacement member;
The friction member is provided at a free end of the intermediate member;
The drive device according to claim 1, wherein the friction member and the free end of the bending displacement member are connected via the intermediate member.
上記屈曲変位部材の固定された一端は、当該屈曲変位部材において屈曲変位方向に撓む面のいずれか一方の面において固定されており、
上記屈曲変位部材の固定された上記面を固定面とするとき、上記中間部材において上記摩擦部材が設けられた面は、上記固定面と同一平面上にあることを特徴とする請求項3に記載の駆動装置。
One fixed end of the bending displacement member is fixed on one of the surfaces of the bending displacement member that bends in the bending displacement direction.
The surface of the intermediate member on which the friction member is provided is flush with the fixed surface when the fixed surface of the bending displacement member is a fixed surface. Drive device.
上記屈曲変位部材は、電圧を印加することにより形状変位が励起される変位部材と、上記変位部材に積層されたシム部材とから形成されており、
上記シム部材は、上記屈曲変位部材の自由端側に延設されたシム延設部を有しており、
上記摩擦部材は、上記シム延設部に設けられていることを特徴とする請求項1または2に記載の駆動装置。
The bending displacement member is formed of a displacement member whose shape displacement is excited by applying a voltage, and a shim member laminated on the displacement member,
The shim member has a shim extending portion that extends to the free end side of the bending displacement member,
The drive device according to claim 1, wherein the friction member is provided in the shim extension portion.
上記屈曲変位部材の固定された一端は、上記シム部材上にあることを特徴とする請求項5に記載の駆動装置。   6. The driving apparatus according to claim 5, wherein one end of the bending displacement member fixed is on the shim member. 上記シム延設部には切り欠き部が形成されており、
上記シム延設部は、上記屈曲変位部材の屈曲変位方向と異なる方向に屈曲変位することを特徴とする請求項5または6に記載の駆動装置。
The shim extension is formed with a notch,
The drive device according to claim 5 or 6, wherein the shim extension portion is bent and displaced in a direction different from a bending displacement direction of the bending displacement member.
上記中間部材または上記シム延設部の屈曲変位方向に対して略平行な平面は、上記屈曲変位部材の屈曲変位方向に対して略平行な平面と直交することを特徴とする請求項3から7までのいずれか1項に記載の駆動装置。   The plane substantially parallel to the bending displacement direction of the intermediate member or the shim extending portion is orthogonal to the plane substantially parallel to the bending displacement direction of the bending displacement member. The driving device according to any one of the above. 上記摩擦部材が、上記被駆動体に直接接触することを特徴とする請求項1から8までのいずれか1項に記載の駆動装置。   9. The driving apparatus according to claim 1, wherein the friction member directly contacts the driven body. 上記被駆動体の移動方向と、上記屈曲変位部材において屈曲変位方向に撓む面とが略平行であることを特徴とする請求項1から9までのいずれか1項に記載の駆動装置。   10. The driving apparatus according to claim 1, wherein a moving direction of the driven body and a surface of the bending displacement member that is bent in the bending displacement direction are substantially parallel to each other. 上記被駆動体と上記屈曲変位部材との間に配置された固定部を備えており、
上記屈曲変位部材の固定された一端は、上記固定部に固定されていることを特徴とする請求項1から10までのいずれか1項に記載の駆動装置。
A fixed portion disposed between the driven body and the bending displacement member;
11. The driving device according to claim 1, wherein one end of the bending displacement member is fixed to the fixing portion.
上記被駆動体を上記摩擦部材に付勢する予圧機構を備えていることを特徴とする請求項1から11までのいずれか1項に記載の駆動装置。   The drive device according to any one of claims 1 to 11, further comprising a preload mechanism that biases the driven body toward the friction member. 上記被駆動体には、当該被駆動体と一体的に移動し、かつ上記摩擦部材と摩擦接触する接触部材が設けられており、
上記摩擦部材および上記接触部材のうち、一方には固体潤滑材料による皮膜が形成されており、他方は炭素焼結材から形成されていることを特徴とする請求項1に記載の駆動装置。
The driven body is provided with a contact member that moves integrally with the driven body and that makes frictional contact with the friction member,
2. The drive device according to claim 1, wherein one of the friction member and the contact member is formed with a film made of a solid lubricating material, and the other is formed of a carbon sintered material.
上記固体潤滑材料による皮膜は、ダイヤモンド状炭素膜であることを特徴とする請求項13記載の駆動装置。   14. The driving apparatus according to claim 13, wherein the film made of the solid lubricating material is a diamond-like carbon film. 請求項1から14までのいずれか1項に記載の駆動装置と、
撮像対象となる物体を結像する光学系と、
上記光学系により結像された像を電気信号に変換する撮像素子と、を備えており、
上記被駆動体は、上記光学系を保持していることを特徴とする撮像装置。
The drive device according to any one of claims 1 to 14,
An optical system for imaging an object to be imaged;
An image sensor that converts an image formed by the optical system into an electrical signal, and
The image pickup apparatus, wherein the driven body holds the optical system.
上記被駆動体の駆動を支持する駆動軸を備えており、
上記光学系の光軸と上記駆動軸との間の最短距離は、上記摩擦部材における上記被駆動体との接触点と上記駆動軸との間の最短距離よりも短いことを特徴とする請求項15に記載の撮像装置。
A driving shaft for supporting the driving of the driven body;
The shortest distance between the optical axis of the optical system and the drive shaft is shorter than the shortest distance between a contact point of the friction member with the driven body and the drive shaft. 15. The imaging device according to 15.
請求項1から14までのいずれか1項に記載の駆動装置、または請求項15もしくは16に記載の撮像装置を備えることを特徴とする電子機器。   An electronic apparatus comprising the drive device according to any one of claims 1 to 14 or the imaging device according to claim 15 or 16.
JP2009175374A 2008-08-06 2009-07-28 Driving device, image sensing device with the same, and electronic equipment Pending JP2010063349A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009175374A JP2010063349A (en) 2008-08-06 2009-07-28 Driving device, image sensing device with the same, and electronic equipment
PCT/JP2009/063950 WO2010016548A1 (en) 2008-08-06 2009-08-06 Drive device, and imaging device and electronic device equipped with same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008203545 2008-08-06
JP2009175374A JP2010063349A (en) 2008-08-06 2009-07-28 Driving device, image sensing device with the same, and electronic equipment

Publications (1)

Publication Number Publication Date
JP2010063349A true JP2010063349A (en) 2010-03-18

Family

ID=41663761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009175374A Pending JP2010063349A (en) 2008-08-06 2009-07-28 Driving device, image sensing device with the same, and electronic equipment

Country Status (2)

Country Link
JP (1) JP2010063349A (en)
WO (1) WO2010016548A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063823A1 (en) * 2010-11-10 2012-05-18 Negishi Hirokazu Oscillatory wave motor and sound generation device using oscillatory wave motor as drive source
JP2012212102A (en) * 2011-03-18 2012-11-01 Tdk Corp Lens drive device
JP2013068828A (en) * 2011-09-22 2013-04-18 Tdk Corp Lens drive device
JP2017055554A (en) * 2015-09-09 2017-03-16 株式会社ニコン Vibration actuator, lens unit, and imaging device
WO2022113510A1 (en) * 2020-11-24 2022-06-02 ミツミ電機株式会社 Optical element driving device, camera module, and camera-equipped device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321875A (en) * 1988-06-23 1989-12-27 Toshiba Corp Ultrasonic actuator and control thereof
JPH05219764A (en) * 1991-10-05 1993-08-27 Philips Gloeilampenfab:Nv Rotary or linear motor, in which armature is driven by ultrasonic vibration
JPH07309662A (en) * 1994-05-12 1995-11-28 Sumitomo Osaka Cement Co Ltd Sliding member
JP2000022231A (en) * 1998-07-06 2000-01-21 Murata Mfg Co Ltd Piezoelectric device
JP2002218771A (en) * 2001-01-24 2002-08-02 Matsushita Electric Ind Co Ltd Actuator and manufacture of the same
JP2002354853A (en) * 1997-08-04 2002-12-06 Seiko Epson Corp Actuator, watch and informing device using the same
JP2006002221A (en) * 2004-06-18 2006-01-05 Nachi Fujikoshi Corp Chromium-containing diamond-like carbon film and sliding member
JP2006002928A (en) * 2004-06-14 2006-01-05 Kazumasa Onishi Sliding device
JP2007226234A (en) * 2006-02-20 2007-09-06 Samsung Electro-Mechanics Co Ltd Lens driving device
JP2007252103A (en) * 2006-03-16 2007-09-27 Taiheiyo Cement Corp Drive unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321875A (en) * 1988-06-23 1989-12-27 Toshiba Corp Ultrasonic actuator and control thereof
JPH05219764A (en) * 1991-10-05 1993-08-27 Philips Gloeilampenfab:Nv Rotary or linear motor, in which armature is driven by ultrasonic vibration
JPH07309662A (en) * 1994-05-12 1995-11-28 Sumitomo Osaka Cement Co Ltd Sliding member
JP2002354853A (en) * 1997-08-04 2002-12-06 Seiko Epson Corp Actuator, watch and informing device using the same
JP2000022231A (en) * 1998-07-06 2000-01-21 Murata Mfg Co Ltd Piezoelectric device
JP2002218771A (en) * 2001-01-24 2002-08-02 Matsushita Electric Ind Co Ltd Actuator and manufacture of the same
JP2006002928A (en) * 2004-06-14 2006-01-05 Kazumasa Onishi Sliding device
JP2006002221A (en) * 2004-06-18 2006-01-05 Nachi Fujikoshi Corp Chromium-containing diamond-like carbon film and sliding member
JP2007226234A (en) * 2006-02-20 2007-09-06 Samsung Electro-Mechanics Co Ltd Lens driving device
JP2007252103A (en) * 2006-03-16 2007-09-27 Taiheiyo Cement Corp Drive unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063823A1 (en) * 2010-11-10 2012-05-18 Negishi Hirokazu Oscillatory wave motor and sound generation device using oscillatory wave motor as drive source
JPWO2012063823A1 (en) * 2010-11-10 2014-05-12 ニッコー株式会社 Vibration wave motor and sound generator using the motor as a drive source
JP5873802B2 (en) * 2010-11-10 2016-03-01 ニッコー株式会社 Vibration wave motor and sound generator using the motor as a drive source
JP2012212102A (en) * 2011-03-18 2012-11-01 Tdk Corp Lens drive device
JP2013068828A (en) * 2011-09-22 2013-04-18 Tdk Corp Lens drive device
JP2017055554A (en) * 2015-09-09 2017-03-16 株式会社ニコン Vibration actuator, lens unit, and imaging device
WO2022113510A1 (en) * 2020-11-24 2022-06-02 ミツミ電機株式会社 Optical element driving device, camera module, and camera-equipped device
JPWO2022113510A1 (en) * 2020-11-24 2022-06-02

Also Published As

Publication number Publication date
WO2010016548A1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
JP5929138B2 (en) Piezoelectric motors and robots
US7595947B2 (en) Lens driving device
JP2013513821A (en) Lens actuator module
WO2010016548A1 (en) Drive device, and imaging device and electronic device equipped with same
US7268465B2 (en) Driving device and optical device using the same
JP2007049878A (en) Actuator
US8159212B2 (en) Magnetic encoder
JP2009151273A (en) Lens module
JP4795083B2 (en) Piezoelectric driving device, imaging device, and portable terminal device
JP4558071B2 (en) Drive device, imaging device including the same, and electronic apparatus
JP2007252103A (en) Drive unit
JP2005069430A (en) Linear movement device
JP5117206B2 (en) Sliding member consisting of a combined structure of bolt shaft and nut
JP4702636B2 (en) Magnetic encoder and sensor holding mechanism
CN117501176A (en) Camera module
JP4879641B2 (en) Piezoelectric driving device, imaging device, and portable terminal device
JP5031621B2 (en) Actuator, image sensor and electronic device
US7813063B2 (en) Driving unit and optical pick-up device including the same
JP2016027780A (en) Vibration type actuator, lens barrel, imaging device, and automatic stage
JP2009134022A (en) Actuator, imaging apparatus and electronic device
JP4554261B2 (en) Drive device
JP2010004718A (en) Drive unit, image pickup unit and electronic apparatus equipped with them
JP4702637B2 (en) Magnetic encoder
JP2011091958A (en) Driver and electronic apparatus equipped with driver
JP2010183674A (en) Drive device, image capturing apparatus with the same, and electronic apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720