JP2010049731A - Magnetic recording medium and method of manufacturing the same - Google Patents

Magnetic recording medium and method of manufacturing the same Download PDF

Info

Publication number
JP2010049731A
JP2010049731A JP2008212231A JP2008212231A JP2010049731A JP 2010049731 A JP2010049731 A JP 2010049731A JP 2008212231 A JP2008212231 A JP 2008212231A JP 2008212231 A JP2008212231 A JP 2008212231A JP 2010049731 A JP2010049731 A JP 2010049731A
Authority
JP
Japan
Prior art keywords
layer
nonmagnetic
polyurethane resin
recording medium
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008212231A
Other languages
Japanese (ja)
Other versions
JP5195153B2 (en
Inventor
Hiroyuki Tanaka
田中  裕幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2008212231A priority Critical patent/JP5195153B2/en
Publication of JP2010049731A publication Critical patent/JP2010049731A/en
Application granted granted Critical
Publication of JP5195153B2 publication Critical patent/JP5195153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic recording medium which has an upper-layer magnetic layer having excellent surface smoothness and excellent electromagnetic conversion characteristics by improving the surface smoothness of a lower-layer nonmagnetic layer using fine nonmagnetic inorganic powder, and to provide a method of manufacturing the magnetic recording medium. <P>SOLUTION: The magnetic recording medium includes: a nonmagnetic supporter; the lower-layer nonmagnetic layer provided on one surface of the nonmagnetic supporter; and the upper-layer magnetic layer on the lower-layer nonmagnetic layer. The upper-layer magnetic layer contains ferromagnetic powder and a binder, and the lower-layer nonmagnetic layer contains carbon black, nonmagnetic inorganic powder other than the carbon black, and a binder. In the lower-layer nonmagnetic layer, a polyurethane resin is used as a binder, which includes a polar group selected from a sulfonic acid metal base and a sulphuric acid metal base in the range of 200-250 eq/t and which has a reduced viscosity of 0.42-0.55 measured in the following conditions: a measured solvent in which toluene/MEK/cyclohexanone=40/40/20 (ratio by weight); a measured solution concentration of 4g/L; and a measured temperature of 30°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁気記録媒体及びその製造方法に関し、より詳しくは、磁性層の表面平滑性及び電磁変換特性に優れる磁気記録媒体及びその製造方法に関する。   The present invention relates to a magnetic recording medium and a manufacturing method thereof, and more particularly to a magnetic recording medium excellent in surface smoothness and electromagnetic conversion characteristics of a magnetic layer and a manufacturing method thereof.

近年、記録データ量の増大に対応すべく、磁気記録媒体の高密度記録化が求められている。特に、コンピュータのデータ記録に用いられるLTOR (登録商標:Linear Tape Open)、DLTR (登録商標:Digital Linear Tape)と称される磁気テープ等の磁気記録媒体の高密度記録化が求められている。高密度記録化のために記録波長が短波長化され、磁性層が薄膜化されている。また、記録波長の短波長化に伴い、スペーシングロスの観点から、磁性層表面はより平滑であることが要求される。 In recent years, high-density recording of magnetic recording media has been demanded in order to cope with an increase in the amount of recording data. In particular, LTO R used for data recording of a computer (R: Linear Tape Open), DLT R ( R: Digital Linear Tape) and a recording density of a magnetic recording medium such as a magnetic tape called is determined Yes. For high density recording, the recording wavelength is shortened, and the magnetic layer is thinned. Further, as the recording wavelength is shortened, the surface of the magnetic layer is required to be smoother from the viewpoint of spacing loss.

磁性層が薄膜化されると、磁性層表面に支持体の表面粗さが反映して磁性層表面の平滑性が損なわれ、電磁変換特性が悪化する。このため、支持体表面に下塗り層としての非磁性層を設け、これを介して磁性層が設けられる。従って、非磁性層表面(磁性層と接する非磁性層表面)もより平滑であることが要求される。   When the magnetic layer is thinned, the surface roughness of the support is reflected on the surface of the magnetic layer, the smoothness of the surface of the magnetic layer is impaired, and the electromagnetic conversion characteristics deteriorate. For this reason, a nonmagnetic layer as an undercoat layer is provided on the surface of the support, and the magnetic layer is provided therebetween. Therefore, the surface of the nonmagnetic layer (the surface of the nonmagnetic layer in contact with the magnetic layer) is also required to be smoother.

特開2005−149623号公報には、平均粒子径80nm以下の非磁性無機粉末を下層非磁性層に用いた磁気記録媒体が開示されている(請求項1)。   Japanese Patent Application Laid-Open No. 2005-149623 discloses a magnetic recording medium using a nonmagnetic inorganic powder having an average particle diameter of 80 nm or less as a lower nonmagnetic layer (Claim 1).

特開2004−67941号公報には、ポリエステルポリオールの酸成分、グリコール成分のそれぞれの合計量を100モル%としたとき、その酸成分が脂肪族及び/又は脂環族二塩基酸50〜80モル%、スルホン酸金属塩基を有する芳香族二塩基酸20〜50モル%であり、かつ数平均分子量が300〜800であるポリエステルポリオール(A)と、芳香族系ポリイソシアナート(B)とを反応させて得られるポリウレタン樹脂であって、そのポリウレタン樹脂全体に対するスルホン酸金属塩基濃度が200〜500eq/tであるポリウレタン樹脂が開示されている(請求項1)。また、同号公報には、長軸長100nm以下の強磁性粉末を結合剤中に分散させた磁性塗料を用いて形成された磁気記録媒体において、結合剤成分として前記ポリウレタン樹脂を用いることが開示されている(請求項3)。   JP-A-2004-67941 discloses that when the total amount of each of the acid component and glycol component of the polyester polyol is 100 mol%, the acid component is 50 to 80 mol of an aliphatic and / or alicyclic dibasic acid. %, A polyester polyol (A) having an aromatic dibasic acid having a sulfonic acid metal base of 20 to 50 mol% and a number average molecular weight of 300 to 800 is reacted with an aromatic polyisocyanate (B). And a polyurethane resin having a sulfonic acid metal base concentration of 200 to 500 eq / t with respect to the entire polyurethane resin is disclosed (claim 1). The publication also discloses that the polyurethane resin is used as a binder component in a magnetic recording medium formed using a magnetic coating material in which a ferromagnetic powder having a major axis length of 100 nm or less is dispersed in a binder. (Claim 3).

特開2005−149623号公報JP 2005-149623 A 特開2004−67941号公報JP 2004-67941 A

特開2005−149623号公報によれば、平均粒子径80nm以下の非磁性無機粉末を非磁性層塗料成分として用いて最適の分散条件で処理することにより、良好な表面平滑性を有する下層非磁性層が得られ、その結果、上層磁性層の良好な表面平滑性が実現される。非磁性無機粉末の微細化は比表面積の増加を伴い、そのため、非磁性層塗料作製の際に適切な分散条件で処理しなければ、微細粒子の凝集や、塗料粘度の増加が起こり、すなわち非磁性層塗料の経時安定性は悪くなる。経時安定性の悪い非磁性層塗料を用いたのでは、下層非磁性層の良好な表面平滑性は得られにくく、上層磁性層の良好な表面平滑性は実現されない(同号公報の比較例4)。   According to Japanese Patent Application Laid-Open No. 2005-149623, a non-magnetic non-magnetic powder having an average particle size of 80 nm or less is used as a non-magnetic layer coating component, and is processed under optimum dispersion conditions, thereby providing a non-magnetic lower layer having good surface smoothness. As a result, good surface smoothness of the upper magnetic layer is realized. The refinement of non-magnetic inorganic powder is accompanied by an increase in specific surface area.Therefore, if the non-magnetic layer coating material is not treated under appropriate dispersion conditions, it causes aggregation of fine particles and an increase in coating viscosity. The temporal stability of the magnetic layer coating is deteriorated. If a nonmagnetic layer coating with poor temporal stability is used, it is difficult to obtain good surface smoothness of the lower nonmagnetic layer, and good surface smoothness of the upper magnetic layer cannot be realized (Comparative Example 4 in the same publication). ).

特開2004−67941号公報によれば、スルホン酸金属塩基濃度が200〜500eq/tである特定構造のポリウレタン樹脂を結合剤として用いることにより、長軸長100nm以下の超微粒子強磁性粉末を結合剤中に分散させることができることが開示されている(段落[0026]、[0035])。同号公報には、非磁性無機粉末の分散や、非磁性層については開示はない。   According to Japanese Patent Application Laid-Open No. 2004-67941, by using a polyurethane resin having a specific structure with a sulfonate metal base concentration of 200 to 500 eq / t as a binder, ultrafine ferromagnetic powder having a major axis length of 100 nm or less is bound. It is disclosed that it can be dispersed in an agent (paragraphs [0026], [0035]). The publication does not disclose the dispersion of nonmagnetic inorganic powder or the nonmagnetic layer.

スルホン酸金属塩基のような極性基の濃度を高めた結合剤樹脂を用いて微細化された非磁性無機粉末を分散すると、得られた非磁性塗料では、極性基間の相互作用や、表面エネルギーの大きい非磁性微細無機粉末間の相互作用により微細粒子が再凝集しやすく、塗料粘度の上昇が起こる。非磁性塗料の粘度が上昇すると、非磁性塗料を非磁性支持体上に塗布した際に塗料のレベリングが十分とはならず、平滑な非磁性層表面は得られない。そのため、上層磁性層の良好な表面平滑性は実現されない。さらに、非磁性塗料の粘度が上昇すると、非磁性塗料をフィルタリングする際にフィルターの目詰まりが発生しやすくなり、頻繁にフィルター交換が必要になり、フィルターコストが上昇したり、塗布ラインの稼働率低下を招く。フィルター交換中に停滞した塗料は、停滞により更に塗料粘度が上昇するという悪循環になる。   When the fine non-magnetic inorganic powder is dispersed using a binder resin with a high concentration of polar groups such as metal sulfonate, the resulting non-magnetic coating material has interactions between polar groups and surface energy. The fine particles tend to re-agglomerate due to the interaction between the large non-magnetic fine inorganic powders, and the viscosity of the paint increases. When the viscosity of the nonmagnetic paint increases, the leveling of the paint does not become sufficient when the nonmagnetic paint is applied onto the nonmagnetic support, and a smooth nonmagnetic layer surface cannot be obtained. Therefore, good surface smoothness of the upper magnetic layer is not realized. Furthermore, when the viscosity of non-magnetic paints increases, filter clogging tends to occur when filtering non-magnetic paints, requiring frequent filter replacement, increasing filter costs, and operating rate of the coating line. Incurs a decline. The paint stagnated during filter replacement becomes a vicious circle in which the paint viscosity further increases due to the stagnation.

本発明の目的は、微細な非磁性無機粉末を用いて下層非磁性層の表面平滑性を向上させ、上層磁性層の表面平滑性及び電磁変換特性に優れる磁気記録媒体、及びその製造方法を提供することにある。   An object of the present invention is to provide a magnetic recording medium that improves surface smoothness of a lower nonmagnetic layer using fine nonmagnetic inorganic powder and is excellent in surface smoothness and electromagnetic conversion characteristics of an upper magnetic layer, and a method for producing the same. There is to do.

本発明者は、下層非磁性層用の微細な非磁性無機粉末の分散性を向上させ、非磁性層塗料の安定性を向上させるために、非磁性層塗料の結合剤樹脂の極性基の量と、還元粘度に着目した。   In order to improve the dispersibility of the fine nonmagnetic inorganic powder for the lower nonmagnetic layer and to improve the stability of the nonmagnetic layer coating, the present inventor has determined the amount of polar groups in the binder resin of the nonmagnetic layer coating. Attention was paid to the reduced viscosity.

本発明には、以下の発明が含まれる。
(1) 非磁性支持体と、非磁性支持体の一方の面上の下層非磁性層と、下層非磁性層上の上層磁性層とを少なくとも有する磁気記録媒体であって、
前記上層磁性層は、強磁性粉末、及び結合剤を少なくとも含み、
前記下層非磁性層は、カーボンブラック、カーボンブラック以外の非磁性無機粉末、及び結合剤を少なくとも含み、
前記下層非磁性層に含まれる結合剤として、スルホン酸金属塩基及び硫酸金属塩基から選ばれる極性基を200eq/t以上250eq/t以下の範囲で有し、且つ、次の条件:
測定溶媒:トルエン/メチルエチルケトン/シクロヘキサノン=40/40/20(重量比)
測定溶液濃度:4g/L
測定温度:30℃
で測定された還元粘度が0.42以上0.55以下であるポリウレタン樹脂が用いられている磁気記録媒体。
The present invention includes the following inventions.
(1) A magnetic recording medium having at least a nonmagnetic support, a lower nonmagnetic layer on one surface of the nonmagnetic support, and an upper magnetic layer on the lower nonmagnetic layer,
The upper magnetic layer includes at least a ferromagnetic powder and a binder,
The lower nonmagnetic layer includes at least carbon black, nonmagnetic inorganic powder other than carbon black, and a binder,
The binder contained in the lower non-magnetic layer has a polar group selected from a sulfonate metal base and a sulfate metal base in a range of 200 eq / t to 250 eq / t, and the following conditions:
Measuring solvent: toluene / methyl ethyl ketone / cyclohexanone = 40/40/20 (weight ratio)
Measurement solution concentration: 4 g / L
Measurement temperature: 30 ° C
A magnetic recording medium in which a polyurethane resin having a reduced viscosity of 0.42 or more and 0.55 or less measured in (1) is used.

(2) 前記カーボンブラック以外の非磁性無機粉末は、平均長軸長が40nm以上95nm以下の酸化鉄、及び平均長軸長が40nm以上95nm以下のオキシ水酸化鉄の少なくとも一方を含んでいる、上記(1)に記載の磁気記録媒体。   (2) The nonmagnetic inorganic powder other than the carbon black contains at least one of iron oxide having an average major axis length of 40 nm to 95 nm and iron oxyhydroxide having an average major axis length of 40 nm to 95 nm. The magnetic recording medium according to (1) above.

(3) 前記酸化鉄は、BET法による比表面積が80m2 /g以上100m2 /g以下のものである、上記(2)に記載の磁気記録媒体。 (3) The iron oxide, BET specific surface area is of less 80 m 2 / g or more 100 m 2 / g, the magnetic recording medium according to (2).

(4) 前記オキシ水酸化鉄は、BET法による比表面積が80m2 /g以上100m2 /g以下のものである、上記(2)に記載の磁気記録媒体。 (4) The magnetic recording medium according to (2), wherein the iron oxyhydroxide has a specific surface area of 80 m 2 / g or more and 100 m 2 / g or less by a BET method.

(5) 前記ポリウレタン樹脂は、放射線官能基を有する、上記(1)〜(4)のうちのいずれかに記載の磁気記録媒体。   (5) The magnetic recording medium according to any one of (1) to (4), wherein the polyurethane resin has a radiation functional group.

(6) 前記上層磁性層は、0.30μm以下の厚さを有する、上記(1)〜(5)のうちのいずれかに記載の磁気記録媒体。   (6) The magnetic recording medium according to any one of (1) to (5), wherein the upper magnetic layer has a thickness of 0.30 μm or less.

(7) 前記下層非磁性層は、0.3μm以上1.3μm以下の厚さを有する、上記(1)〜(6)のうちのいずれかに記載の磁気記録媒体。   (7) The magnetic recording medium according to any one of (1) to (6), wherein the lower nonmagnetic layer has a thickness of 0.3 μm to 1.3 μm.

(8) 非磁性支持体と、非磁性支持体の一方の面上の下層非磁性層と、下層非磁性層上の上層磁性層とを少なくとも有する磁気記録媒体の製造方法であって、
カーボンブラック、カーボンブラック以外の非磁性無機粉末、及び結合剤として、スルホン酸金属塩基及び硫酸金属塩基から選ばれる極性基を200eq/t以上250eq/t以下の範囲で有し、且つ、次の条件:
測定溶媒:トルエン/メチルエチルケトン/シクロヘキサノン=40/40/20(重量比)
測定溶液濃度:4g/L
測定温度:30℃
で測定された還元粘度が0.42以上0.55以下であるポリウレタン樹脂を少なくとも含む非磁性層用塗料を調製する工程と、
非磁性支持体の一方の面上に、調製された非磁性層用塗料を塗布して下層非磁性層を形成する工程と、
前記下層非磁性層上に、強磁性粉末、及び結合剤を少なくとも含む磁性層用塗料を塗布、乾燥して上層磁性層を形成する工程と
を含む磁気記録媒体の製造方法。
(8) A method of manufacturing a magnetic recording medium having at least a nonmagnetic support, a lower nonmagnetic layer on one surface of the nonmagnetic support, and an upper magnetic layer on the lower nonmagnetic layer,
Carbon black, a nonmagnetic inorganic powder other than carbon black, and a binder having a polar group selected from sulfonate metal base and sulfate metal base in the range of 200 eq / t to 250 eq / t, and the following conditions :
Measuring solvent: toluene / methyl ethyl ketone / cyclohexanone = 40/40/20 (weight ratio)
Measurement solution concentration: 4 g / L
Measurement temperature: 30 ° C
A step of preparing a coating for a nonmagnetic layer containing at least a polyurethane resin having a reduced viscosity of 0.42 or more and 0.55 or less measured in
Applying a prepared nonmagnetic layer coating on one surface of the nonmagnetic support to form a lower nonmagnetic layer;
Applying a magnetic layer coating material containing at least a ferromagnetic powder and a binder on the lower nonmagnetic layer and drying to form an upper magnetic layer.

本発明によれば、上記のように、下層非磁性層用の結合剤として、スルホン酸金属塩基及び硫酸金属塩基から選ばれる極性基を200eq/t以上250eq/t以下の範囲で有し、且つ、上記の条件で測定された還元粘度が0.42以上0.55以下であるポリウレタン樹脂を用いる。このような特定範囲の数の極性基と特定範囲の還元粘度を有するポリウレタン樹脂を用いることにより、非磁性層塗料中において微細な非磁性無機粉末を良好に分散することができ、均一分散され安定性に優れた非磁性層塗料が作製される。そのため、下層非磁性層の良好な表面平滑性が得られ、上層磁性層の良好な表面平滑性が実現される。その結果、電磁変換特性に優れる磁気記録媒体が得られる。   According to the present invention, as described above, the binder for the lower non-magnetic layer has a polar group selected from metal sulfonate and metal sulfate in the range of 200 eq / t to 250 eq / t, and A polyurethane resin having a reduced viscosity of 0.42 or more and 0.55 or less measured under the above conditions is used. By using a polyurethane resin having a specific number of polar groups and a specific range of reduced viscosity, fine non-magnetic inorganic powders can be dispersed well in the non-magnetic layer coating material, and are uniformly dispersed and stable. A non-magnetic layer coating having excellent properties is produced. Therefore, good surface smoothness of the lower nonmagnetic layer is obtained, and good surface smoothness of the upper magnetic layer is realized. As a result, a magnetic recording medium having excellent electromagnetic conversion characteristics can be obtained.

本発明の磁気記録媒体は、非磁性支持体と、非磁性支持体の一方の面上の下層非磁性層と、下層非磁性層上の上層磁性層とを少なくとも有し、非磁性支持体の他方の面上のバックコート層を通常有する。下層非磁性層は例えば厚さ0.3〜2.5μmであり、好ましくは0.3〜1.3μmであり、上層磁性層は例えば厚さ0.30μm以下、好ましくは0.03〜0.30μmであり、バックコート層は例えば厚さ0.3〜0.8μmであり、磁気記録媒体の全厚さは好ましくは4.0〜10.0μmである。なお、上層磁性層上に潤滑剤塗膜や磁性層保護用の各種塗膜などが必要に応じて設けられてもよい。また、非磁性支持体の磁性層が設けられる前記一方の面には、下層非磁性層と非磁性支持体との接着性の向上等を目的として、下塗り層(易接着層)が設けられてもよい。その際、下塗り層の厚さは0.05〜0.30μmが好ましい。接着性向上等の効果が発現するために下塗り層の厚さは0.05μm以上が好ましく、0.05μm以上0.30μm以下の厚さで十分な効果が得られる。   The magnetic recording medium of the present invention has at least a nonmagnetic support, a lower nonmagnetic layer on one surface of the nonmagnetic support, and an upper magnetic layer on the lower nonmagnetic layer. Usually has a backcoat layer on the other side. The lower nonmagnetic layer has a thickness of, for example, 0.3 to 2.5 μm, and preferably 0.3 to 1.3 μm, and the upper magnetic layer has a thickness of, for example, 0.30 μm or less, preferably 0.03 to 0.3 μm. The thickness of the back coat layer is, for example, 0.3 to 0.8 μm, and the total thickness of the magnetic recording medium is preferably 4.0 to 10.0 μm. A lubricant coating or various coatings for protecting the magnetic layer may be provided on the upper magnetic layer as necessary. In addition, an undercoat layer (an easy adhesion layer) is provided on the one surface on which the magnetic layer of the nonmagnetic support is provided for the purpose of improving the adhesion between the lower nonmagnetic layer and the nonmagnetic support. Also good. At that time, the thickness of the undercoat layer is preferably 0.05 to 0.30 μm. The thickness of the undercoat layer is preferably 0.05 μm or more in order to exhibit effects such as improvement in adhesiveness, and a sufficient effect is obtained when the thickness is 0.05 μm or more and 0.30 μm or less.

[下層非磁性層]
下層非磁性層は、カーボンブラック、カーボンブラック以外の非磁性無機粉末、及び結合剤を少なくとも含む。
[Lower nonmagnetic layer]
The lower nonmagnetic layer includes at least carbon black, nonmagnetic inorganic powder other than carbon black, and a binder.

下層非磁性層に含まれるカーボンブラックとしては、ゴム用ファーネスブラック、ゴム用サーマルブラック、カラー用ブラック、アセチレンブラック等を用いることができる。比表面積は5〜600m2 /g、DBP吸油量は30〜400ml/100g、粒子径は10〜100nmが好ましい。使用できるカーボンブラックは具体的には「カーボンブラック便覧」、カーボンブラック協会編を参考にすることができる。 As carbon black contained in the lower nonmagnetic layer, furnace black for rubber, thermal black for rubber, black for color, acetylene black, and the like can be used. The specific surface area is preferably 5 to 600 m 2 / g, the DBP oil absorption is 30 to 400 ml / 100 g, and the particle diameter is preferably 10 to 100 nm. Specifically, the carbon black that can be used can be referred to “Carbon Black Handbook”, edited by the Carbon Black Association.

カーボンブラックの配合量は、下層非磁性層において5〜30質量%、好ましくは10〜25質量%である。   The compounding quantity of carbon black is 5-30 mass% in a lower nonmagnetic layer, Preferably it is 10-25 mass%.

下層非磁性層は、カーボンブラック以外の非磁性無機粉末として、酸化鉄、及びオキシ水酸化鉄の少なくとも一方を含んでいる。下層非磁性層に含まれる非磁性無機粉末として酸化鉄及び/又はオキシ水酸化鉄を用いることは、磁気記録媒体の走行耐久性の観点から重要である。   The lower nonmagnetic layer contains at least one of iron oxide and iron oxyhydroxide as a nonmagnetic inorganic powder other than carbon black. The use of iron oxide and / or iron oxyhydroxide as the nonmagnetic inorganic powder contained in the lower nonmagnetic layer is important from the viewpoint of running durability of the magnetic recording medium.

下層非磁性層に含まれる酸化鉄は、針状のα−Fe2 3 であり、平均長軸長が40〜95nm、BET法による比表面積が80〜100m2 /gであることが好ましい。 The iron oxide contained in the lower non-magnetic layer is acicular α-Fe 2 O 3 , the average major axis length is preferably 40 to 95 nm, and the specific surface area by the BET method is preferably 80 to 100 m 2 / g.

酸化鉄の平均長軸長が95nmを超えると、非磁性層塗料中における分散性は良くなるが、非磁性層表面の平滑性は低下しやすい。一方、平均長軸長が40nm未満では、微細すぎて分散性が悪く非磁性層塗料の安定性が低下しやすく、そのため、均一な塗膜形成が困難となり、やはり非磁性層表面の平滑性が低下する。酸化鉄が微細化されるほど一般にBET法による比表面積は大きくなるが、本発明においては、酸化鉄のBET法比表面積は80〜100m2 /gの範囲が好ましい。平均長軸長が40nmの酸化鉄の場合、そのBET法比表面積は100m2 /g程度が適切であり、100m2 /gを超えると、粉末の表面に凹凸が多く存在する形状となり、塗料中における分散性が悪くなる傾向にある。一方、平均長軸長が95nmの酸化鉄の場合、そのBET法比表面積は80m2 /g程度が適切であり、80m2 /g未満では、粉末の凝集が起こりやすく、やはり塗料中における分散性が悪くなる傾向にある。 When the average major axis length of iron oxide exceeds 95 nm, the dispersibility in the nonmagnetic layer coating is improved, but the smoothness of the surface of the nonmagnetic layer tends to be lowered. On the other hand, if the average major axis length is less than 40 nm, it is too fine and the dispersibility is poor, and the stability of the nonmagnetic layer coating tends to be lowered. descend. Although the iron oxide increases the specific surface area by the BET method generally enough to be miniaturized, in the present invention, the BET method specific surface area of the iron oxide is preferably in the range of 80~100m 2 / g. In the case of iron oxide having an average major axis length of 40 nm, a BET specific surface area of about 100 m 2 / g is appropriate. When the average major axis length exceeds 100 m 2 / g, the powder surface has many irregularities, Dispersibility tends to be poor. On the other hand, when the average major axis length of the iron oxide of 95 nm, the BET specific surface area is suitably about 80 m 2 / g, is less than 80 m 2 / g, powder agglomeration easily occurs again dispersibility in paint Tend to get worse.

酸化鉄の平均長軸長は、さらに好ましくは45〜80nmの範囲、より好ましくは45〜70nmの範囲である。また、酸化鉄のBET法比表面積は、さらに好ましくは80〜90m2 /gの範囲である。 The average major axis length of iron oxide is more preferably in the range of 45 to 80 nm, and more preferably in the range of 45 to 70 nm. The BET specific surface area of iron oxide is more preferably in the range of 80 to 90 m 2 / g.

下層非磁性層に含まれるオキシ水酸化鉄は、針状のα−FeO(OH)であり、平均長軸長が40〜95nm、BET法による比表面積が80〜100m2 /gであることが好ましい。 The iron oxyhydroxide contained in the lower nonmagnetic layer is acicular α-FeO (OH), the average major axis length is 40 to 95 nm, and the specific surface area by the BET method is 80 to 100 m 2 / g. preferable.

オキシ水酸化鉄の平均長軸長が95nmを超えると、非磁性層塗料中における分散性は良くなるが、非磁性層表面の平滑性は低下しやすい。一方、平均長軸長が40nm未満では、微細すぎて分散性が悪く非磁性層塗料の安定性が低下しやすく、そのため、均一な塗膜形成が困難となり、やはり非磁性層表面の平滑性が低下する。オキシ水酸化鉄が微細化されるほど一般にBET法による比表面積は大きくなるが、本発明においては、オキシ水酸化鉄のBET法比表面積は80〜100m2 /gの範囲が好ましい。平均長軸長が40nmのオキシ水酸化鉄の場合、そのBET法比表面積は100m2 /g程度が適切であり、100m2 /gを超えると、粉末の表面に凹凸が多く存在する形状となり、塗料中における分散性が悪くなる傾向にある。一方、平均長軸長が95nmのオキシ水酸化鉄の場合、そのBET法比表面積は80m2 /g程度が適切であり、80m2 /g未満では、粉末の凝集が起こりやすく、やはり塗料中における分散性が悪くなる傾向にある。 When the average major axis length of the iron oxyhydroxide exceeds 95 nm, the dispersibility in the nonmagnetic layer coating is improved, but the smoothness of the surface of the nonmagnetic layer is likely to be lowered. On the other hand, if the average major axis length is less than 40 nm, it is too fine and the dispersibility is poor, and the stability of the nonmagnetic layer coating tends to be lowered. descend. As the iron oxyhydroxide becomes finer, the specific surface area by the BET method generally increases. However, in the present invention, the BET method specific surface area of iron oxyhydroxide is preferably in the range of 80 to 100 m 2 / g. When the average major axis length of 40nm iron oxyhydroxide, the BET specific surface area is suitably about 100 m 2 / g, when it exceeds 100 m 2 / g, a shape that there are many irregularities on the surface of the powder, Dispersibility in paint tends to be poor. On the other hand, when the average major axis length of the iron oxyhydroxide of 95 nm, the BET specific surface area is suitably about 80 m 2 / g, is less than 80 m 2 / g, powder agglomeration easily occurs, in also the paint Dispersibility tends to deteriorate.

オキシ水酸化鉄の平均長軸長は、さらに好ましくは45〜80nmの範囲、より好ましくは45〜70nmの範囲である。また、オキシ水酸化鉄のBET法比表面積は、さらに好ましくは80〜90m2 /gの範囲である。 The average major axis length of iron oxyhydroxide is more preferably in the range of 45 to 80 nm, and more preferably in the range of 45 to 70 nm. Further, the BET specific surface area of iron oxyhydroxide is more preferably in the range of 80 to 90 m 2 / g.

針状の酸化鉄α−Fe2 3 は、針状のオキシ水酸化鉄α−FeOOHを高温で脱水処理することにより生成される。 Acicular iron oxide α-Fe 2 O 3 is produced by dehydrating acicular iron oxyhydroxide α-FeOOH at a high temperature.

前記酸化鉄及び/又はオキシ水酸化鉄の配合量は、それらの合計量として、下層非磁性層において50〜80質量%、好ましくは50〜70質量%である。   The compounding quantity of the said iron oxide and / or iron oxyhydroxide is 50-80 mass% in a lower layer nonmagnetic layer as a total amount, Preferably it is 50-70 mass%.

下層非磁性層には、カーボンブラック、前記酸化鉄及び前記オキシ水酸化鉄以外の非磁性無機粉末、例えば、CaCO3 、酸化チタン、硫酸バリウム、α−Al2 3 等の無機粉末が含まれていてもよい。 The lower nonmagnetic layer includes nonmagnetic inorganic powders other than carbon black, the iron oxide, and the iron oxyhydroxide, for example, inorganic powders such as CaCO 3 , titanium oxide, barium sulfate, and α-Al 2 O 3. It may be.

カーボンブラックと、カーボンブラック以外の非磁性無機粉末(前記酸化鉄+前記オキシ水酸化鉄+前記それら以外の非磁性無機粉末の合計)の配合比率は、質量比(カーボンブラック/カーボンブラック以外の非磁性無機粉末)で95/5〜5/95が好ましい。カーボンブラックの配合比率が5質量部を下回ると、表面電気抵抗に問題が生じることがある。カーボンブラック以外の非磁性無機粉末の配合比率が5質量部を下回ると、下層非磁性層の表面平滑性の悪化及び機械的強度の低下の可能性がある。下層非磁性層の表面平滑性の悪化は、上層磁性層の表面平滑性の悪化の原因となる。   The blending ratio of carbon black and nonmagnetic inorganic powder other than carbon black (the total of the iron oxide + the iron oxyhydroxide + the other nonmagnetic inorganic powder) is the mass ratio (non-carbon black / carbon black other than carbon black). The magnetic inorganic powder is preferably 95/5 to 5/95. When the blending ratio of carbon black is less than 5 parts by mass, a problem may occur in the surface electrical resistance. If the blending ratio of the nonmagnetic inorganic powder other than carbon black is less than 5 parts by mass, the surface smoothness of the lower nonmagnetic layer may be deteriorated and the mechanical strength may be decreased. The deterioration of the surface smoothness of the lower nonmagnetic layer causes the deterioration of the surface smoothness of the upper magnetic layer.

下層非磁性層の結合剤として、特定範囲の数の極性基と特定範囲の還元粘度を有するポリウレタン樹脂を用いる。すなわち、ポリウレタン樹脂は、スルホン酸金属塩基及び硫酸金属塩基から選ばれるS含有極性基を、該ポリウレタン樹脂の質量を基準として200eq/t以上250eq/t以下の範囲で有し、且つ、次の条件:
測定溶媒:トルエン/メチルエチルケトン/シクロヘキサノン=40/40/20(重量比)
測定溶液濃度:4g/L
測定温度:30℃
で測定された還元粘度が0.42以上0.55以下である。
A polyurethane resin having a specific number of polar groups and a specific range of reduced viscosity is used as a binder for the lower nonmagnetic layer. That is, the polyurethane resin has an S-containing polar group selected from a sulfonic acid metal base and a sulfate metal base in a range of 200 eq / t to 250 eq / t based on the mass of the polyurethane resin, and the following conditions: :
Measuring solvent: toluene / methyl ethyl ketone / cyclohexanone = 40/40/20 (weight ratio)
Measurement solution concentration: 4 g / L
Measurement temperature: 30 ° C
The reduced viscosity measured at is from 0.42 to 0.55.

ポリウレタン樹脂とは、ポリエステルポリオール及び/又はポリエーテルポリオール等のヒドロキシ基含有樹脂とポリイソシアナート含有化合物との反応により得られる樹脂である。通常、数平均分子量5,000 〜200,000 程度で、Q値(質量平均分子量/数平均分子量)1.5〜4程度のものである。   The polyurethane resin is a resin obtained by a reaction between a hydroxy group-containing resin such as polyester polyol and / or polyether polyol and a polyisocyanate-containing compound. Usually, the number average molecular weight is about 5,000 to 200,000 and the Q value (mass average molecular weight / number average molecular weight) is about 1.5 to 4.

ポリウレタン樹脂における極性基は、スルホン酸金属塩基(−SO3 M)及び硫酸金属塩基(−OSO3 M)から選ばれる。ここで、Mは、Li、Na、K等のアルカリ金属を示す。前記S含有極性基は非磁性無機粉末の表面と親和性を有するために、非磁性無機粉末の分散性向上に寄与する。ポリウレタン樹脂は、前記S含有極性基のうちいずれか一方のみを含有していてもよく、両者を含有していてもよく、両者を含むときにはその含有比は任意である。前記S含有極性基は、該極性基を有しているポリウレタン樹脂の質量を基準として、200〜250eq/tの割合で含まれている。1t=1000kg。これら極性基は骨格樹脂の主鎖中に存在しても、分枝中に存在してもよい。 The polar group in the polyurethane resin is selected from a sulfonic acid metal base (—SO 3 M) and a sulfate metal base (—OSO 3 M). Here, M represents an alkali metal such as Li, Na, or K. Since the S-containing polar group has an affinity for the surface of the nonmagnetic inorganic powder, it contributes to improving the dispersibility of the nonmagnetic inorganic powder. The polyurethane resin may contain only one of the S-containing polar groups or may contain both, and when both are contained, the content ratio is arbitrary. The S-containing polar group is contained at a rate of 200 to 250 eq / t based on the mass of the polyurethane resin having the polar group. 1t = 1000 kg. These polar groups may be present in the main chain of the skeleton resin or in the branches.

このようなポリウレタン樹脂は公知の方法により、特定の極性基含有化合物及び/又は特定の極性基含有化合物と反応させた原料樹脂等を含む原料を、溶剤中又は無溶剤中で反応させることにより得られる。ポリウレタン樹脂を合成するに際して、極性基含有化合物の使用割合を調整することによって、ポリウレタン樹脂に含まれる極性基の割合を適宜変化させることができる。   Such a polyurethane resin is obtained by a known method by reacting a raw material containing a specific polar group-containing compound and / or a raw material resin reacted with a specific polar group-containing compound in a solvent or without a solvent. It is done. In synthesizing the polyurethane resin, the proportion of the polar group contained in the polyurethane resin can be appropriately changed by adjusting the proportion of the polar group-containing compound used.

ポリウレタン樹脂中に含まれる前記S含有極性基の数(濃度)が200〜250eq/tであると、前記極性基と非磁性無機粉末の表面との親和性のために、非磁性無機粉末が良好に分散される。前記S含有極性基の数(濃度)が200eq/t未満であると、非磁性無機粉末の分散が不十分となる。一方、前記S含有極性基の数(濃度)が250eq/tを超えると、過剰な極性基同士の相互作用によってポリウレタン樹脂が凝集しやすく、非磁性無機粉末の分散に供される極性基の数が減少し、非磁性無機粉末の分散が不十分となり、非磁性無機粉末が凝集する。   When the number (concentration) of the S-containing polar groups contained in the polyurethane resin is 200 to 250 eq / t, the nonmagnetic inorganic powder is good because of the affinity between the polar groups and the surface of the nonmagnetic inorganic powder. To be distributed. When the number (concentration) of the S-containing polar group is less than 200 eq / t, the dispersion of the nonmagnetic inorganic powder becomes insufficient. On the other hand, when the number (concentration) of the S-containing polar groups exceeds 250 eq / t, the polyurethane resin tends to aggregate due to the interaction between the excess polar groups, and the number of polar groups used for dispersion of the nonmagnetic inorganic powder. Decreases, the dispersion of the nonmagnetic inorganic powder becomes insufficient, and the nonmagnetic inorganic powder aggregates.

ポリウレタン樹脂は、上記の条件で測定された還元粘度が0.42以上0.55以下である。還元粘度は、単位濃度の溶質の粘度増加に対する貢献度を表す量であり、すなわち、還元粘度が大きいほど、その溶液の粘度増加も大きい。還元粘度が大きいほど、非磁性塗料中で該ポリウレタン樹脂が十分溶媒和されており、分子サイズが拡張された状態になると考えられる。   The polyurethane resin has a reduced viscosity measured under the above conditions of 0.42 or more and 0.55 or less. The reduced viscosity is an amount representing the contribution of the unit concentration to the viscosity increase of the solute, that is, the greater the reduced viscosity, the greater the viscosity increase of the solution. It is considered that as the reduced viscosity is larger, the polyurethane resin is sufficiently solvated in the nonmagnetic coating material and the molecular size is expanded.

一般的に、ポリマー溶液の還元粘度は、測定溶媒中でのポリマー分子のサイズを示しており、数値が大きいほど分子サイズが大きいことを意味する。還元粘度は [ηsp/c] であり、無限大希釈における還元粘度が固有粘度 [η] であり、下記のHouwink−Mark−櫻田式として表される。   Generally, the reduced viscosity of the polymer solution indicates the size of the polymer molecule in the measurement solvent, and the larger the value, the larger the molecular size. The reduced viscosity is [ηsp / c], the reduced viscosity at infinite dilution is the intrinsic viscosity [η], and is expressed as the following Houwink-Mark-Iwata equation.

Figure 2010049731
Figure 2010049731

c:濃度(g/cm3
ηsp=(η−η0 )/η0
ηsp:比粘度
η0 :溶媒の粘性率
η:溶液の粘性率
K:比例定数
M:分子量
a: ポリマーの種類、重合度、溶媒によって変化するパラメータ
c: Concentration (g / cm 3 )
ηsp = (η−η 0 ) / η 0
ηsp: Specific viscosity η 0 : Viscosity of solvent η: Viscosity of solution K: Proportional constant M: Molecular weight a: Parameter that varies depending on polymer type, degree of polymerization, and solvent

ポリマー溶液において、還元粘度、及び無限大希釈における還元粘度である固有粘度に生じる差は、ポリマーのM(分子量)だけではなく、a値(ポリマーの種類、重合度、溶媒によって変化するパラメータ)にも依存している。例えば、無限大希釈状態で、すなわち分子鎖1本のみが存在する理想状態で固有粘度に生じる差には、例えば、ポリマー中の極性基濃度、ポリマー骨格中の脂肪族セグメント(フレキシブルなセグメント)/芳香族セグメント(リジッドなセグメント)の比率、ポリマー側鎖の種類等の要素が影響している。極性基濃度が高い程、骨格中の脂肪族セグメントの比率が高い程、側鎖が屈曲性で極性基を有している程、固有粘度は大きくなる。同様に、還元粘度も大きくなる。   In the polymer solution, the difference that occurs in the reduced viscosity and the intrinsic viscosity, which is the reduced viscosity at infinite dilution, is not only the M (molecular weight) of the polymer but also the a value (a parameter that varies depending on the type of polymer, degree of polymerization, and solvent) Also depends. For example, the difference that occurs in the intrinsic viscosity in an infinite dilution state, that is, in an ideal state where only one molecular chain exists, includes, for example, polar group concentration in the polymer, aliphatic segment (flexible segment) / Factors such as the ratio of aromatic segments (rigid segments) and the type of polymer side chains have an effect. The higher the polar group concentration, the higher the proportion of the aliphatic segment in the skeleton, and the more the side chain is flexible and has a polar group, the greater the intrinsic viscosity. Similarly, the reduced viscosity increases.

このように、還元粘度は分子量以外にa値にも依存しており、本発明においては、還元粘度の重要性に着目した。   Thus, the reduced viscosity depends not only on the molecular weight but also on the a value, and in the present invention, attention was paid to the importance of the reduced viscosity.

本発明においては、上述のように、非磁性無機粉末を良好に分散させるために、ポリウレタン樹脂中に含まれる前記S含有極性基の数(濃度)は200〜250eq/tと高く設定される。このように極性基濃度が高いと、極性基同士が相互作用してポリウレタン樹脂が凝集しやすい状態になる。そこで、200〜250eq/tと高い極性基濃度を有するポリウレタン樹脂について、還元粘度を0.42以上0.55以下の範囲の小さい値とすることで、ポリウレタン樹脂同士の相互作用を抑制することができる。さらに、200〜250eq/tという範囲内において、前記S含有極性基濃度の高いポリウレタン樹脂ほど、非磁性塗料中の固形分濃度が高い状態でも非磁性無機粉末の分散が良好に進行する。前記S含有極性基濃度の特定範囲と還元粘度の特定範囲とを組み合わせることで、例えば平均長軸長40nm以上95nm以下の微粒子化された酸化鉄及び/又はオキシ水酸化鉄を分散した非磁性塗料の経時安定性を著しく向上させることができる。例えば、本発明に用いる非磁性塗料は、1週間停滞しても粘度上昇が少なく、平滑な表面性を有する非磁性層を形成することができる。   In the present invention, as described above, in order to disperse the nonmagnetic inorganic powder well, the number (concentration) of the S-containing polar groups contained in the polyurethane resin is set as high as 200 to 250 eq / t. When the polar group concentration is high in this way, the polar groups interact with each other and the polyurethane resin tends to aggregate. Then, about the polyurethane resin which has a high polar group density | concentration as 200-250 eq / t, the interaction between polyurethane resins can be suppressed by making reduced viscosity into the small value of the range of 0.42 or more and 0.55 or less. it can. Furthermore, within the range of 200 to 250 eq / t, the higher the concentration of the S-containing polar group, the better the dispersion of the nonmagnetic inorganic powder proceeds even when the solid content concentration in the nonmagnetic coating is high. By combining the specific range of the S-containing polar group concentration and the specific range of the reduced viscosity, for example, a nonmagnetic coating material in which fine iron oxide and / or iron oxyhydroxide having an average major axis length of 40 nm to 95 nm is dispersed. The stability over time can be remarkably improved. For example, the nonmagnetic coating material used in the present invention can form a nonmagnetic layer having a smooth surface property with little increase in viscosity even if it stays for one week.

ポリウレタン樹脂の還元粘度が0.42未満であると、ポリウレタン樹脂の溶媒和が小さすぎ、非磁性塗料中の非磁性無機粉末が沈降しやすい。一方、還元粘度が0.55を超えると、ポリウレタン樹脂の溶媒和が大きすぎ、ポリウレタン樹脂が凝集しやすく、その結果、分散がうまくいかず、非磁性無機粉末も凝集する。   When the reduced viscosity of the polyurethane resin is less than 0.42, the solvation of the polyurethane resin is too small, and the nonmagnetic inorganic powder in the nonmagnetic paint tends to settle. On the other hand, when the reduced viscosity exceeds 0.55, the solvation of the polyurethane resin is too large, and the polyurethane resin tends to aggregate. As a result, the dispersion is not successful and the nonmagnetic inorganic powder also aggregates.

ポリウレタン樹脂の前記S含有極性基の数は200〜250eq/tの範囲内とするが、この範囲内において前記S含有極性基の数が大きくなるほど、還元粘度を0.42以上0.55以下の範囲内で小さくすることが好ましい。例えば、ポリウレタン樹脂の前記S含有極性基の数が200eq/tであれば、還元粘度を0.45以上0.55以下の範囲とすることがよく、ポリウレタン樹脂の前記S含有極性基の数が250eq/tであれば、還元粘度を0.42以上0.50以下の範囲とすることがよい。   The number of the S-containing polar groups in the polyurethane resin is in the range of 200 to 250 eq / t. The larger the number of S-containing polar groups in this range, the reduced viscosity is 0.42 or more and 0.55 or less. It is preferable to make it smaller within the range. For example, if the number of the S-containing polar groups in the polyurethane resin is 200 eq / t, the reduced viscosity may be in the range of 0.45 to 0.55, and the number of the S-containing polar groups in the polyurethane resin is If it is 250 eq / t, the reduced viscosity is preferably in the range of 0.42 to 0.50.

ポリウレタン樹脂の還元粘度の調整は、例えば、ポリウレタン樹脂の合成成分のポリイソシアナート含有化合物の使用割合の変更によって行うことができる。   Adjustment of the reduced viscosity of the polyurethane resin can be performed, for example, by changing the proportion of the polyisocyanate-containing compound that is a synthetic component of the polyurethane resin.

下層非磁性層用のポリウレタン樹脂の例についてさらに説明する。
下層非磁性層用のポリウレタン樹脂の例は、
ポリエステルポリオール(A)と、
芳香族ポリイソシアナート化合物(B)と、
を反応させて得られるものであり、前記S含有極性基を200eq/t以上250eq/t以下の範囲で有し、且つ、前記条件での還元粘度が0.42以上0.55以下であるものである。
An example of the polyurethane resin for the lower nonmagnetic layer will be further described.
Examples of polyurethane resin for the lower non-magnetic layer are:
Polyester polyol (A);
An aromatic polyisocyanate compound (B);
In which the S-containing polar group is in the range of 200 eq / t to 250 eq / t, and the reduced viscosity under the above conditions is 0.42 to 0.55. It is.

前記ポリエステルポリオール(A)は、ジカルボン酸成分とグリコール成分とを重縮合して得られるものであり、酸成分として脂肪族ジカルボン酸を90〜100モル%含むポリエステルポリオールが好ましい。   The polyester polyol (A) is obtained by polycondensation of a dicarboxylic acid component and a glycol component, and a polyester polyol containing 90 to 100 mol% of an aliphatic dicarboxylic acid as an acid component is preferable.

ポリエステルポリオール(A)に用いられる脂肪族ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、ドデシニルコハク酸、フマル酸、マレイン酸、イタコン酸、3−ヘキセンジカルボン酸が挙げられる。これらの中で、アジピン酸、セバシン酸、ドデシニルコハク酸、イタコン酸が非磁性無機粉末の分散性の点で好ましい。また酸成分として、5−ナトリウムスルホイソフタル酸、5−カリウムスルホイソフタル酸、ナトリウムスルホテレフタル酸等のスルホン酸金属塩含有芳香族ジカルボン酸を共重合してもよい。   Examples of the aliphatic dicarboxylic acid used in the polyester polyol (A) include succinic acid, adipic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, dodecinyl succinic acid, fumaric acid, maleic acid, itaconic acid, and 3-hexenedicarboxylic acid. It is done. Among these, adipic acid, sebacic acid, dodecinyl succinic acid, and itaconic acid are preferable from the viewpoint of dispersibility of the nonmagnetic inorganic powder. Moreover, you may copolymerize sulfonic-acid metal salt containing aromatic dicarboxylic acid, such as 5-sodium sulfo isophthalic acid, 5-potassium sulfo isophthalic acid, and sodium sulfo terephthalic acid, as an acid component.

ポリエステルポリオール(A)に用いられるグリコール成分としては、エチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブチレングリコール、2,3−ブチレングリコール、2,2−ジメチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、2,2−ジメチル−3−ヒドロキシプロピル−2’,2’−ジメチル−3−ヒドロキシプロパネート、2,2−ジエチル−1,3−プロパンジオール等の脂肪族系グリコール;
1,3−ビス(ヒドロキシメチル)シクロヘキサン、1,4−ビス(ヒドロキシメチル)シクロヘキサン、1,4−ビス(ヒドロキシエチル)シクロヘキサン、1,4−ビス(ヒドロキシプロピル)シクロヘキサン、1,4−ビス(ヒドロキシメトキシ)シクロヘキサン、1,4−ビス(ヒドロキシエトキシ)シクロヘキサン、2,2ビス(4−ヒドロキシメトキシシクロヘキシル)プロパン、2,2−ビス(4−ヒドロキシエトキシシクロヘキシル)プロパンビス(4−ヒドロキシシクロヘキシル)メタン、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパン、3(4),8(9)−トリシクロ[5.2.1.02,6 ]デカンジメタノール等の脂環族系グリコールが挙げられる。
Examples of the glycol component used in the polyester polyol (A) include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,2 -Propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 2,2-dimethyl-1,3-propanediol, 3-methyl-1,5-pentanediol, 2 Aliphatic glycols such as 2,2-dimethyl-3-hydroxypropyl-2 ′, 2′-dimethyl-3-hydroxypropanoate, 2,2-diethyl-1,3-propanediol;
1,3-bis (hydroxymethyl) cyclohexane, 1,4-bis (hydroxymethyl) cyclohexane, 1,4-bis (hydroxyethyl) cyclohexane, 1,4-bis (hydroxypropyl) cyclohexane, 1,4-bis ( Hydroxymethoxy) cyclohexane, 1,4-bis (hydroxyethoxy) cyclohexane, 2,2bis (4-hydroxymethoxycyclohexyl) propane, 2,2-bis (4-hydroxyethoxycyclohexyl) propanebis (4-hydroxycyclohexyl) methane And alicyclic glycols such as 2,2-bis (4-hydroxycyclohexyl) propane, 3 (4), 8 (9) -tricyclo [5.2.1.0 2,6 ] decanedimethanol. .

これらの中では特に、2,2−ジメチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオール、2,2−ジメチル−3−ヒドロキシプロピル−2’,2’−ジメチル−3−ヒドロキシプロパネート、1,6−ヘキサンジオール、1,4−ビス(ヒドロキシメチル)シクロヘキサンが好ましい。   Among these, in particular, 2,2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2,2-dimethyl-3-hydroxypropyl-2 ′, 2′-dimethyl -3-Hydroxypropanate, 1,6-hexanediol and 1,4-bis (hydroxymethyl) cyclohexane are preferred.

また、ポリエステルポリオール(A)の原料の一部として、無水トリメリット酸、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の三官能以上の化合物をポリエステル樹脂の有機溶剤溶解性、塗布作業性等の特性を損なわない範囲で使用してもよい。   In addition, as a part of the raw material of the polyester polyol (A), trifunctional or higher functional compounds such as trimellitic anhydride, glycerin, trimethylolpropane, pentaerythritol, etc. have characteristics such as organic solvent solubility and application workability of the polyester resin. You may use in the range which does not impair.

前記芳香族ポリイソシアナート化合物(B)としては、2,4−トリレンジイソシアナート、2,6−トリレンジイソシアナート、p−フェニレンジイソシアナート、4,4’−ジフェニルメタンジイソシアナート、m−フェニレンジイソシアナート、3,3’−ジメトキシ−4,4’−ビフェニレンジイソシアナート、2,6−ナフタレンジイソシアナート、3,3’−ジメチル−4,4’−ビフェニレンジイソシアナート、4,4’−ジフェニレンジイソシアナート、4,4’−ジイソシアナートジフェニルエーテル、1,5−ナフタレンジイソシアナート、m−キシレンジイソシアナート等が挙げられる。これらのうち、4,4’−ジフェニルメタンジイソシアナートが特に好ましい。   Examples of the aromatic polyisocyanate compound (B) include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, p-phenylene diisocyanate, 4,4′-diphenylmethane diisocyanate, m- Phenylene diisocyanate, 3,3′-dimethoxy-4,4′-biphenylene diisocyanate, 2,6-naphthalene diisocyanate, 3,3′-dimethyl-4,4′-biphenylene diisocyanate, 4, Examples include 4'-diphenylene diisocyanate, 4,4'-diisocyanate diphenyl ether, 1,5-naphthalene diisocyanate, m-xylene diisocyanate, and the like. Of these, 4,4'-diphenylmethane diisocyanate is particularly preferred.

前記芳香族ポリイソシアナート化合物(B)の使用割合の変更によって、ポリウレタン樹脂の還元粘度の調整を行うことができる。すなわち、前記化合物(B)の使用割合を多くすると、ポリウレタン樹脂の還元粘度は大きくなる。   The reduced viscosity of the polyurethane resin can be adjusted by changing the use ratio of the aromatic polyisocyanate compound (B). That is, when the use ratio of the compound (B) is increased, the reduced viscosity of the polyurethane resin is increased.

ポリウレタン樹脂を放射線硬化性とする場合には、ポリウレタン樹脂の合成成分として、さらに、放射線官能性の不飽和結合とイソシアナートと反応する官能基とを有する化合物(C)を用いるとよい。   When the polyurethane resin is made radiation curable, a compound (C) having a radiation functional unsaturated bond and a functional group capable of reacting with an isocyanate may be used as a synthetic component of the polyurethane resin.

前記化合物(C)としては、ヒドロキシル基を有する(メタ)アクリレート化合物が挙げられる。例えば、グリセリンモノメタクリレート、グリセリンモノアクリレート等が挙げられる。あるいはヒドロキシル基を1個有する化合物として、2−ヒドロキシエチルアクリレート、2−ヒドロキシメチルメタクリレート、2−ヒドロキシプロピルアクリレート、ヒドロキシエチレングリコールメタクリレート、ブトキシヒドロキシプロピルアクリレート、フェノキシヒドロキシプロピルアクリレート、ヒドロキシプロピルアクリレート、2−ヒドロキシプロピル−1,3−ジメタクリレート、グリセロールジメタクリレート、モノヒドロキシペンタエリスリトールトリアクリレート等が挙げられる。これらの中で、優れた電子線硬化性を発揮する点で、モノヒドロキシペンタエリスリトールトリアクリレートを用いることが好ましい。前記化合物(C)は、分子量500以下のものであることが好ましい。前記化合物(C)の分子量が500を超えると、ポリウレタン樹脂のガラス転移温度が下がり、下層非磁性層の塗膜強度が低下しやすく、また、極性基を含有しない巨大な側鎖又は末端部が存在することになり、非磁性無機粉末の分散性が低下しやすい。下層非磁性層の塗膜強度の低下は、磁気記録媒体の耐久性の低下につながる。   As said compound (C), the (meth) acrylate compound which has a hydroxyl group is mentioned. For example, glycerol monomethacrylate, glycerol monoacrylate, etc. are mentioned. Alternatively, as a compound having one hydroxyl group, 2-hydroxyethyl acrylate, 2-hydroxymethyl methacrylate, 2-hydroxypropyl acrylate, hydroxyethylene glycol methacrylate, butoxyhydroxypropyl acrylate, phenoxyhydroxypropyl acrylate, hydroxypropyl acrylate, 2-hydroxy Examples include propyl-1,3-dimethacrylate, glycerol dimethacrylate, and monohydroxypentaerythritol triacrylate. Among these, it is preferable to use monohydroxypentaerythritol triacrylate because it exhibits excellent electron beam curability. The compound (C) preferably has a molecular weight of 500 or less. When the molecular weight of the compound (C) exceeds 500, the glass transition temperature of the polyurethane resin is lowered, the coating strength of the lower nonmagnetic layer is likely to be lowered, and a huge side chain or terminal portion containing no polar group is present. As a result, the dispersibility of the non-magnetic inorganic powder tends to decrease. A decrease in the coating strength of the lower nonmagnetic layer leads to a decrease in the durability of the magnetic recording medium.

さらに、ポリウレタン樹脂の合成成分として、下記一般式(1)で表される分岐状化合物(D)を用いてもよい。   Furthermore, you may use the branched compound (D) represented by following General formula (1) as a synthetic component of a polyurethane resin.

Figure 2010049731
Figure 2010049731

一般式(1)において、R1 、R2 、R3 は、同一又は異なっていてもよく、エチレン基、又は1,2−プロピレン基を表し、m、n、oは繰り返し単位数を表し、m、n、及びoの総和は、2≦m+n+o≦8である。m+n+oが2未満であると、前記化合物(C)を用いた場合の放射線硬化性を低下させる傾向がある。一方、m+n+oが8を超えると、ポリウレタン樹脂のガラス転移温度が下がり、下層非磁性層の塗膜強度が低下しやすく、また、Q値(質量平均分子量/数平均分子量)が4よりも大きくなり、非磁性無機粉末の分散性が低下しやすい。具体的な化合物としては、グリセリンへのエチレンオキサイド付加物、プロピレンオキシド付加物が挙げられる。 In the general formula (1), R 1 , R 2 and R 3 may be the same or different and each represents an ethylene group or a 1,2-propylene group, m, n and o represent the number of repeating units; The sum of m, n, and o is 2 ≦ m + n + o ≦ 8. When m + n + o is less than 2, there is a tendency to reduce the radiation curability when the compound (C) is used. On the other hand, when m + n + o exceeds 8, the glass transition temperature of the polyurethane resin decreases, the coating strength of the lower nonmagnetic layer tends to decrease, and the Q value (mass average molecular weight / number average molecular weight) becomes larger than 4. The dispersibility of the nonmagnetic inorganic powder tends to decrease. Specific examples of the compound include an ethylene oxide adduct and a propylene oxide adduct to glycerin.

さらに、ポリウレタン樹脂の合成成分として、イソシアナート基と反応する官能基を2個以上有する分子量800以下の化合物(E)を用いてもよい。   Furthermore, a compound (E) having a molecular weight of 800 or less and having two or more functional groups that react with isocyanate groups may be used as a synthetic component of the polyurethane resin.

前記化合物(E)としては、例えば、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブチレングリコール、2,3−ブチレングリコール、2,2−ジメチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、2−エチル−1,3−ヘキサンジオール、2,2−ジメチル−3−ヒドロキシプロピル−2’,2’−ジメチル−3−ヒドロキシプロパネート、2−ノルマルブチル−2−エチル−1,3−プロパンジオール、3−エチル−1,5−ペンタンジオール、3−プロピル−1,5−ペンタンジオール、2,2−ジエチル−1,3−プロパンジオール、3−オクチル−1,5−ペンタンジオール、3−フェニル−1,5−ペンタンジオール、2,5−ジメチル−3−ナトリウムスルホ−2,5−ヘキサンジオール等が挙げられる。これらの中で、2,2−ジメチル−1,3−プロパンジオール、2,2−ジメチル−3−ヒドロキシプロピル−2’,2’−ジメチル−3−ヒドロキシプロパネート、2−ノルマルブチル−2−エチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオールが非磁性無機粉末の分散性の点で特に好ましい。前記化合物(E)の分子量が800を超えると、ポリウレタン樹脂中のウレタン基濃度が低下し、ポリウレタン樹脂の力学的特性が低下し、下層非磁性層の塗膜強度が低下しやすい。下層非磁性層の塗膜強度の低下は、テープ媒体の耐久性の低下につながる。また、分子量800以下であればポリエステルポリオール、ポリプロピレングリコール等でも良い。   Examples of the compound (E) include 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, and 2,2-dimethyl-1,3-propanediol. 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,2-dimethyl-3-hydroxypropyl-2 ', 2'-dimethyl-3-hydroxypropanate, 2-normalbutyl-2-ethyl-1,3-propanediol, 3-ethyl-1,5-pentanediol, 3-propyl-1,5-pentanediol 2,2-diethyl-1,3-propanediol, 3-octyl-1,5-pentanediol, 3-phenyl-1,5-pentanedio Le, 2,5-dimethyl-3-sodium sulfo-2,5-hexanediol, and the like. Among these, 2,2-dimethyl-1,3-propanediol, 2,2-dimethyl-3-hydroxypropyl-2 ′, 2′-dimethyl-3-hydroxypropanoate, 2-normalbutyl-2- Ethyl-1,3-propanediol and 2,2-diethyl-1,3-propanediol are particularly preferred from the viewpoint of dispersibility of the nonmagnetic inorganic powder. When the molecular weight of the compound (E) exceeds 800, the urethane group concentration in the polyurethane resin decreases, the mechanical properties of the polyurethane resin decrease, and the coating strength of the lower nonmagnetic layer tends to decrease. A decrease in the coating strength of the lower nonmagnetic layer leads to a decrease in the durability of the tape medium. Further, polyester polyol, polypropylene glycol or the like may be used as long as the molecular weight is 800 or less.

化合物(E)の中でも、2,2−ジメチル−1,3−プロパンジオール、2,2−ジメチル−3−ヒドロキシプロピル−2’,2’−ジメチル−3−ヒドロキシプロパネート、2−ノルマルブチル−2−エチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオール等の側鎖を有する化合物は、ポリウレタン樹脂の溶解性向上に寄与し、前記ポリエステルポリオール(A)及び前記芳香族ポリイソシアナート(B)の組み合わせに対して高い比率で共重合することが可能である。化合物(E)成分の共重合比率の増加はウレタン結合基濃度の増加につながり、ウレタン樹脂をより強靱なものにする。すなわち、これらの量比を調節することにより、汎用溶剤に対する高い溶解性と強靱な力学物性を合わせ持ったポリウレタン樹脂が得られる。これらウレタン樹脂としての特性は、磁気テープ用バインダー樹脂としての高い分散能力とテープ耐久性の向上に寄与するものである。   Among the compounds (E), 2,2-dimethyl-1,3-propanediol, 2,2-dimethyl-3-hydroxypropyl-2 ′, 2′-dimethyl-3-hydroxypropanoate, 2-normalbutyl- Compounds having side chains such as 2-ethyl-1,3-propanediol and 2,2-diethyl-1,3-propanediol contribute to improving the solubility of the polyurethane resin, and the polyester polyol (A) and the above-mentioned It is possible to copolymerize at a high ratio with respect to the combination of the aromatic polyisocyanate (B). An increase in the copolymerization ratio of the compound (E) component leads to an increase in the urethane bond group concentration, making the urethane resin tougher. That is, by adjusting these quantitative ratios, a polyurethane resin having both high solubility in general-purpose solvents and strong mechanical properties can be obtained. These characteristics as a urethane resin contribute to the improvement of the high dispersibility and tape durability as a binder resin for magnetic tapes.

前記ポリウレタン樹脂は公知の方法により、各成分を共重合反応させることにより得られる。反応触媒として、オクチル酸第一錫、ジブチル錫ジラウリレート、トリエチルアミン等を用いてもよい。また、紫外線吸収剤、加水分解防止剤、酸化防止剤などをポリウレタン樹脂の製造前、製造中あるいは製造後に添加してもよい。   The polyurethane resin can be obtained by copolymerizing each component by a known method. As the reaction catalyst, stannous octylate, dibutyltin dilaurate, triethylamine or the like may be used. Moreover, you may add a ultraviolet absorber, a hydrolysis inhibitor, antioxidant, etc. before manufacture of a polyurethane resin, during manufacture, or after manufacture.

ポリウレタン樹脂の数平均分子量は10,000〜80,000程度の範囲が好ましく、また、ガラス転移温度Tgは−20℃≦Tg≦80℃の範囲が好ましい。ポリウレタン樹脂のガラス転移温度が下がると、ポリウレタン樹脂の力学的特性が低下し、その結果、下層非磁性層の塗膜強度が低下しやすい。   The number average molecular weight of the polyurethane resin is preferably in the range of about 10,000 to 80,000, and the glass transition temperature Tg is preferably in the range of −20 ° C. ≦ Tg ≦ 80 ° C. When the glass transition temperature of the polyurethane resin is lowered, the mechanical properties of the polyurethane resin are lowered, and as a result, the coating strength of the lower nonmagnetic layer is likely to be lowered.

本発明において、下層非磁性層用の結合剤の全量を基準として、上記ポリウレタン樹脂を30質量%以上70質量%以下の量で用いることが好ましく、40質量%以上60質量%以下の量で用いることがより好ましい。上記ポリウレタン樹脂と併用する結合剤としては、剛性を保つために塩化ビニル系共重合体が好ましい。上記ポリウレタン樹脂が熱硬化性の場合には、熱硬化性塩化ビニル系共重合体を用い、上記ポリウレタン樹脂が放射線(電子線又は紫外線)硬化性の場合には、放射線硬化性塩化ビニル系共重合体を用いる。   In the present invention, the polyurethane resin is preferably used in an amount of 30% by mass or more and 70% by mass or less, and 40% by mass or more and 60% by mass or less, based on the total amount of the binder for the lower nonmagnetic layer. It is more preferable. The binder used in combination with the polyurethane resin is preferably a vinyl chloride copolymer in order to maintain rigidity. When the polyurethane resin is thermosetting, a thermosetting vinyl chloride copolymer is used. When the polyurethane resin is radiation (electron beam or ultraviolet ray) curable, radiation curable vinyl chloride copolymer is used. Use coalescence.

このような範囲で前記ポリウレタン樹脂を用いることにより、前記ポリウレタン樹脂による微細な非磁性無機粉末の分散性向上効果、及び非磁性層塗料の安定性向上効果が得られる。ポリウレタン樹脂の量が30質量%未満であると、非磁性塗膜が硬く脆くなりやすい。非磁性層が硬く脆くなると、磁気テープの幅に切断(スリット)する際に、そのエッジ部分が盛り上がりやすく、いわゆるハイエッジになりやすい。一方、ポリウレタン樹脂の量が70質量%を超えると、非磁性塗膜の剛性が低下し、磁気テープの耐久性が低下しやすい。   By using the polyurethane resin in such a range, the effect of improving the dispersibility of fine nonmagnetic inorganic powder and the stability of the nonmagnetic layer coating can be obtained. When the amount of the polyurethane resin is less than 30% by mass, the nonmagnetic coating film tends to be hard and brittle. If the non-magnetic layer becomes hard and brittle, the edge portion tends to rise when it is cut (slit) into the width of the magnetic tape, so that it becomes a so-called high edge. On the other hand, when the amount of the polyurethane resin exceeds 70% by mass, the rigidity of the nonmagnetic coating film is lowered and the durability of the magnetic tape is likely to be lowered.

塩化ビニル系共重合体としては、塩化ビニル含有量50〜95質量%、特に55〜90質量%のものが好ましく、その平均重合度は100〜500程度であることが好ましい。特に塩化ビニルとエポキシ(グリシジル)基を含有する単量体との共重合体が好ましい。塩化ビニル系共重合体は、公知の手法により(メタ)アクリル系二重結合等を導入して電子線感応変性を行うことができる。   The vinyl chloride copolymer preferably has a vinyl chloride content of 50 to 95% by mass, particularly 55 to 90% by mass, and the average degree of polymerization is preferably about 100 to 500%. Particularly preferred is a copolymer of vinyl chloride and a monomer containing an epoxy (glycidyl) group. The vinyl chloride copolymer can be subjected to electron beam sensitive modification by introducing a (meth) acrylic double bond or the like by a known method.

塩化ビニル系共重合体において、前記非磁性無機粉末の分散性向上のために、極性基が含まれていることが好ましい。極性基としては、−OSO3 M、−SO3 M、−SR等のS含有極性基、−POM、−PO2 M、−PO3 M等のP含有極性基、−COOM(Mは水素又はアルカリ金属)、−NR2 、−N+ 3 - (Rは水素又は炭化水素基、Xはハロゲン原子)、ホスホベタイン、スルホベタイン、ホスファミン、スルファミン等が挙げられる。 The vinyl chloride copolymer preferably contains a polar group in order to improve the dispersibility of the nonmagnetic inorganic powder. Examples of the polar group include S-containing polar groups such as -OSO 3 M, -SO 3 M, and -SR, P-containing polar groups such as -POM, -PO 2 M, and -PO 3 M, -COOM (M is hydrogen or alkali metal), - NR 2, -N + R 3 X - (R is hydrogen or a hydrocarbon group, X is a halogen atom), phosphobetaine, sulfobetaine, phosphamine, sulfamic, and the like.

上記ポリウレタン樹脂及び塩化ビニル系共重合体が熱硬化性の場合には、これらの結合剤を硬化させる架橋剤を用いる。架橋剤としては、各種ポリイソシアナート、特にジイソシアナートを用いることができ、特に、トリレンジイソシアナート、ヘキサメチレンジイソシアナート、メチレンジイソシアナートの1種以上を用いることが好ましい。これらの架橋剤は、トリメチロールプロパン等の水酸基を複数有するもので変性した架橋剤又はジイソシアネート化合物3分子が結合したイソシアヌレート型の架橋剤として用いることが特に好ましく、結合剤樹脂に含有される官能基等と結合して樹脂を架橋する。架橋剤の含有量は、結合剤樹脂100質量部に対し、10〜30質量部とすることが好ましい。このような熱硬化性樹脂を硬化するには、一般に加熱オーブン中で50〜70℃にて12〜48時間加熱すればよい。   When the polyurethane resin and the vinyl chloride copolymer are thermosetting, a crosslinking agent that cures these binders is used. As the crosslinking agent, various polyisocyanates, particularly diisocyanates can be used, and it is particularly preferable to use one or more of tolylene diisocyanate, hexamethylene diisocyanate, and methylene diisocyanate. These cross-linking agents are particularly preferably used as cross-linking agents modified with one having a plurality of hydroxyl groups such as trimethylolpropane or isocyanurate-type cross-linking agents in which three molecules of a diisocyanate compound are bonded, and the functionalities contained in the binder resin. Bonding with a group or the like crosslinks the resin. It is preferable that content of a crosslinking agent shall be 10-30 mass parts with respect to 100 mass parts of binder resin. In order to cure such a thermosetting resin, it may be generally heated at 50 to 70 ° C. for 12 to 48 hours in a heating oven.

塩化ビニル系共重合体及びポリウレタン樹脂に加えて、非磁性層において全結合剤の20質量%以下の範囲で、公知の各種樹脂が含有されてもよい。   In addition to the vinyl chloride copolymer and the polyurethane resin, various known resins may be contained in the nonmagnetic layer in the range of 20% by mass or less of the total binder.

下層非磁性層に用いる結合剤樹脂の含有量は、下層非磁性層中のカーボンブラックとカーボンブラック以外の前記非磁性無機粉末の合計100質量部に対し、好ましくは10〜100質量部、より好ましくは12〜30質量部である。結合剤の含有量が少なすぎると、下層非磁性層における結合剤樹脂の比率が低下し、十分な塗膜強度が得られない。結合剤の含有量が多すぎると、テープ媒体の場合にテープ幅方向の湾曲が強く起きやすく、ヘッドとの接触が悪くなる傾向にある。   The content of the binder resin used for the lower nonmagnetic layer is preferably 10 to 100 parts by weight, more preferably 100 parts by weight, based on the total of 100 parts by weight of the nonmagnetic inorganic powder other than carbon black and carbon black in the lower nonmagnetic layer. Is 12-30 parts by mass. If the content of the binder is too small, the ratio of the binder resin in the lower nonmagnetic layer is lowered, and sufficient coating strength cannot be obtained. When the content of the binder is too large, the tape medium tends to be strongly curved in the tape width direction, and the contact with the head tends to be poor.

下層非磁性層には必要に応じて潤滑剤を含有することが好ましい。潤滑剤としては、飽和、不飽和に関わらず、ステアリン酸、ミリスチン酸等の脂肪酸、ブチルステアレート、ブチルパルミテート等の脂肪酸エステル、糖類など公知のものを、単独であるいは2種以上混合して用いることができ、融点の異なる脂肪酸を2種以上混合し用いることや、融点の異なる脂肪酸エステルを2種以上混合し用いることも好ましい。これは、磁気記録媒体の使用される、あらゆる温度環境に応じた潤滑剤を、媒体表面に持続して供給する必要があるからである。   The lower nonmagnetic layer preferably contains a lubricant as necessary. As the lubricant, regardless of whether it is saturated or unsaturated, fatty acids such as stearic acid and myristic acid, fatty acid esters such as butyl stearate and butyl palmitate, and sugars such as saccharides may be used alone or in combination of two or more. It is also possible to use a mixture of two or more fatty acids having different melting points, or a mixture of two or more fatty acid esters having different melting points. This is because it is necessary to continuously supply a lubricant corresponding to any temperature environment used for the magnetic recording medium to the surface of the medium.

下層非磁性層の潤滑剤の含有量は、目的に応じ適宜調整すればよいが、下層非磁性層中のカーボンブラックとカーボンブラック以外の前記非磁性無機粉末の合計質量に対し、1〜20質量%が好ましい。   The content of the lubricant in the lower nonmagnetic layer may be adjusted as appropriate according to the purpose, but is 1 to 20 mass relative to the total mass of the nonmagnetic inorganic powder other than carbon black and carbon black in the lower nonmagnetic layer. % Is preferred.

下層非磁性層形成用の塗料は、公知の方法で、上記各成分に有機溶剤を加えて、混合、攪拌、混練、分散等を行い調製する。用いる有機溶剤は特に制限はなく、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶剤や、トルエン等の芳香族系溶剤などの各種溶媒の1種又は2種以上を、適宜選択して用いればよい。有機溶剤の添加量は、カーボンブラック、カーボンブラック以外の各種無機粉末等、及び結合剤樹脂の合計量100質量部に対し100〜900質量部程度とすればよい。   The coating material for forming the lower nonmagnetic layer is prepared by adding an organic solvent to each of the above components and mixing, stirring, kneading, dispersing, and the like by a known method. The organic solvent to be used is not particularly limited, and one or more of various solvents such as ketone solvents such as methyl ethyl ketone (MEK), methyl isobutyl ketone and cyclohexanone, and aromatic solvents such as toluene are appropriately selected. Use it. The addition amount of the organic solvent may be about 100 to 900 parts by mass with respect to 100 parts by mass of the total amount of carbon black, various inorganic powders other than carbon black, and the binder resin.

本発明においては、前記特定のポリウレタン樹脂を用いているので、塗料調製の際に酸化鉄粉末及び/又はオキシ水酸化鉄粉末の凝集の発生が起こらず、塗料の粘度の増加も起こらない。均一分散され安定性に優れた非磁性層塗料が調製される。   In the present invention, since the specific polyurethane resin is used, no aggregation of the iron oxide powder and / or iron oxyhydroxide powder occurs during the preparation of the coating, and no increase in the viscosity of the coating occurs. A nonmagnetic layer coating material that is uniformly dispersed and excellent in stability is prepared.

下層非磁性層の厚さは、通常0.3〜2.5μm、好ましくは0.3〜2.0μm、より好ましくは0.3〜1.3μmである。非磁性層が薄すぎると、非磁性支持体の表面粗さの影響を受けやすくなり、その結果、非磁性層の表面平滑性が悪化して磁性層の表面平滑性も悪化しやすくなり、電磁変換特性が低下する傾向にある。また、光透過率が高くなるので、媒体端を光透過率の変化により検出する場合に問題となる。一方、非磁性層をある程度以上厚くしても性能は向上しない。   The thickness of the lower nonmagnetic layer is usually 0.3 to 2.5 μm, preferably 0.3 to 2.0 μm, more preferably 0.3 to 1.3 μm. If the nonmagnetic layer is too thin, it is easily affected by the surface roughness of the nonmagnetic support. As a result, the surface smoothness of the nonmagnetic layer is deteriorated and the surface smoothness of the magnetic layer is also easily deteriorated. The conversion characteristics tend to be reduced. Further, since the light transmittance becomes high, it becomes a problem when the edge of the medium is detected by a change in the light transmittance. On the other hand, even if the nonmagnetic layer is thickened to some extent, the performance is not improved.

[上層磁性層]
上層磁性層は、少なくとも強磁性粉末、及び結合剤を含有する。
[Upper magnetic layer]
The upper magnetic layer contains at least a ferromagnetic powder and a binder.

本発明において、強磁性粉末としては、金属磁性粉末又は六方晶形板状微粉末を用いることが好ましい。金属磁性粉末としては、保磁力Hcが118.5〜278.5kA/m(1500〜3500Oe)、飽和磁化σsが70〜160Am2/kg(emu/g)、平均長軸長が0.02〜0.1μm、平均短軸長が5〜20nm、アスペクト比が1.2〜20であることが好ましい。また、金属磁性粉末を用いて作製した媒体のHcは118.5〜278.5kA/m(1500〜3500Oe)が好ましい。六方晶形板状微粉末としては、保磁力Hcが79.6〜278.5kA/m(1000〜3500Oe)、飽和磁化σsが40〜70Am2/kg(emu/g)、平均板粒径が15〜80nm、板比が2〜7であることが好ましい。また、六方晶形板状微粉末を用いて作製した媒体のHcは94.8〜318.3kA/m(1200〜4000Oe)が好ましい。 In the present invention, it is preferable to use metallic magnetic powder or hexagonal plate-like fine powder as the ferromagnetic powder. As the metal magnetic powder, the coercive force Hc is 118.5 to 278.5 kA / m (1500 to 3500 Oe), the saturation magnetization σs is 70 to 160 Am 2 / kg (emu / g), and the average major axis length is 0.02 to 0.02. It is preferable that the average minor axis length is 0.1 to 20 μm, the aspect ratio is 1.2 to 20. Moreover, Hc of the medium produced using metal magnetic powder is preferably 118.5 to 278.5 kA / m (1500 to 3500 Oe). The hexagonal plate-like fine powder has a coercive force Hc of 79.6 to 278.5 kA / m (1000 to 3500 Oe), a saturation magnetization σs of 40 to 70 Am 2 / kg (emu / g), and an average plate particle size of 15 It is preferable that it is -80nm and a plate ratio is 2-7. The Hc of the medium produced using the hexagonal plate-like fine powder is preferably 94.8 to 318.3 kA / m (1200 to 4000 Oe).

強磁性粉末は、磁性層を基準として70〜90質量%程度含まれていればよい。強磁性粉末の含有量が多すぎると、結合剤の含有量が減少するためカレンダー加工による表面平滑性が悪化しやすくなり、一方、強磁性粉末の含有量が少なすぎると、高い再生出力を得られない。   The ferromagnetic powder may be contained in an amount of about 70 to 90% by mass based on the magnetic layer. If the content of the ferromagnetic powder is too large, the content of the binder is decreased, so that the surface smoothness due to calendering tends to deteriorate. On the other hand, if the content of the ferromagnetic powder is too small, a high reproduction output is obtained. I can't.

上層磁性層の結合剤樹脂材料として、特に制限なく、熱可塑性樹脂、熱硬化性ないし反応型樹脂、放射線(電子線又は紫外線)硬化性樹脂等が、媒体の特性、工程条件に合わせて適宜組み合わせて選択されて使用される。   The binder resin material for the upper magnetic layer is not particularly limited, and a thermoplastic resin, a thermosetting or reactive resin, a radiation (electron beam or ultraviolet ray) curable resin, and the like are appropriately combined in accordance with the characteristics of the medium and process conditions. Selected and used.

上層磁性層に用いる結合剤樹脂の含有量は、強磁性粉末100質量部に対し、好ましくは5〜40質量部、特に好ましくは10〜30質量部である。結合剤の含有量が少なすぎると、磁性層の強度が低下し、走行耐久性が悪化しやすくなる。一方、結合剤の含有量が多すぎると、強磁性粉末の含有量が低下するため、電磁変換特性が低下する傾向にある。   The content of the binder resin used in the upper magnetic layer is preferably 5 to 40 parts by mass, particularly preferably 10 to 30 parts by mass with respect to 100 parts by mass of the ferromagnetic powder. When the content of the binder is too small, the strength of the magnetic layer is lowered, and the running durability tends to be deteriorated. On the other hand, when the content of the binder is too large, the content of the ferromagnetic powder is lowered, so that the electromagnetic conversion characteristics tend to be lowered.

さらに上層磁性層中には、磁性層の機械的強度を高めるためと、磁気ヘッドの目詰まりを防ぐために、例えばα−アルミナ(モース硬度9)等のモース硬度6以上の研磨材を含有させる。このような研磨材は通常、不定形状であり、磁気ヘッドの目詰まりを防ぎ、塗膜の強度を向上させる。   Further, in order to increase the mechanical strength of the magnetic layer and to prevent clogging of the magnetic head, the upper magnetic layer contains an abrasive having a Mohs hardness of 6 or more such as α-alumina (Mohs hardness 9). Such an abrasive is usually indefinite shape, prevents clogging of the magnetic head, and improves the strength of the coating film.

研磨材の平均粒径は、例えば0.01〜0.2μmであり、0.05〜0.2μmであることが好ましい。平均粒径が大きすぎると、磁性層表面からの突出量が大きくなって、電磁変換特性の低下、ドロップアウトの増加、ヘッド摩耗量の増大等を招く。平均粒径が小さすぎると、磁性層表面からの突出量が小さくなって、ヘッド目詰まりの防止効果が不十分となる。   The average particle diameter of the abrasive is, for example, 0.01 to 0.2 μm, and preferably 0.05 to 0.2 μm. If the average particle size is too large, the amount of protrusion from the surface of the magnetic layer becomes large, leading to a decrease in electromagnetic conversion characteristics, an increase in dropout, an increase in head wear, and the like. If the average particle size is too small, the amount of protrusion from the surface of the magnetic layer becomes small, and the effect of preventing head clogging becomes insufficient.

平均粒径は、通常、透過型電子顕微鏡により測定する。研磨材の含有量は、強磁性粉末100質量部に対し、3〜25質量部、好ましくは5〜20質量部含有すればよい。
また、磁性層中には、必要に応じ、界面活性剤等の分散剤、高級脂肪酸、脂肪酸エステル、シリコンオイル等の潤滑剤、その他の各種添加物を添加してもよい。
The average particle size is usually measured with a transmission electron microscope. The content of the abrasive is 3 to 25 parts by mass, preferably 5 to 20 parts by mass with respect to 100 parts by mass of the ferromagnetic powder.
Further, in the magnetic layer, a dispersant such as a surfactant, a lubricant such as a higher fatty acid, a fatty acid ester, silicon oil, and other various additives may be added as necessary.

上層磁性層形成用の塗料は、公知の方法で、上記各成分に有機溶剤を加えて、混合、攪拌、混練、分散等を行い調製する。用いる有機溶剤は特に制限はなく、下層非磁性層に使用するものと同様のものが使用可能である。   The coating material for forming the upper magnetic layer is prepared by adding an organic solvent to each of the above components and mixing, stirring, kneading, dispersing and the like by a known method. The organic solvent to be used is not particularly limited, and those similar to those used for the lower nonmagnetic layer can be used.

上層磁性層の厚さは0.03〜0.30μm、更に好ましくは0.05〜0.25μmとする。磁性層が厚すぎると、自己減磁損失や厚み損失が大きくなる。   The thickness of the upper magnetic layer is 0.03 to 0.30 μm, more preferably 0.05 to 0.25 μm. If the magnetic layer is too thick, self-demagnetization loss and thickness loss increase.

上層磁性層表面の中心線平均粗さ(Ra)は、好ましくは1.0〜5.0nm、より好ましくは1.0〜4.0nmとする。Raが1.0nm未満では表面が平滑すぎて、走行安定性が悪化して走行中のトラブルが生じやすくなる。一方、5.0nmを越えると、磁性層表面が粗くなり、MR型ヘッドを用いた再生システムでは、再生出力等の電磁変換特性が劣化する。   The centerline average roughness (Ra) of the upper magnetic layer surface is preferably 1.0 to 5.0 nm, more preferably 1.0 to 4.0 nm. If the Ra is less than 1.0 nm, the surface is too smooth, the running stability is deteriorated, and trouble during running tends to occur. On the other hand, when the thickness exceeds 5.0 nm, the surface of the magnetic layer becomes rough, and in a reproduction system using an MR type head, electromagnetic conversion characteristics such as reproduction output deteriorate.

[バックコート層]
バックコート層は、走行安定性の改善や磁性層の帯電防止等のために必要に応じて設けられ、特に構造や組成は限定されないが、例えば、カーボンブラック、カーボンブラック以外の非磁性無機粉末、及び結合剤樹脂を含むものを用いることができる。
[Back coat layer]
The backcoat layer is provided as necessary for improving running stability and antistatic of the magnetic layer, and the structure and composition are not particularly limited.For example, carbon black, nonmagnetic inorganic powder other than carbon black, And those containing a binder resin.

バックコート層は、バックコート層を基準として30〜80重量%のカーボンブラックを含有することが好ましい。   The backcoat layer preferably contains 30 to 80% by weight of carbon black based on the backcoat layer.

バックコート層には、前記カーボンブラック以外に、機械的強度をコントロールするために、各種非磁性無機粉末を用いることができ、無機粉末として例えば、α−Fe2 3 、CaCO3 、酸化チタン、硫酸バリウム、α−Al2 3 等を挙げることができる。 In addition to the carbon black, various nonmagnetic inorganic powders can be used for the backcoat layer in order to control the mechanical strength. Examples of the inorganic powder include α-Fe 2 O 3 , CaCO 3 , titanium oxide, Examples thereof include barium sulfate and α-Al 2 O 3 .

バックコート層形成用の塗料は、公知の方法で、上記各成分に有機溶剤を加えて、混合、攪拌、混練、分散等を行い調製する。用いる有機溶剤は特に制限はなく、上層磁性層や下層非磁性層に使用するものと同様のものが使用可能である。   The coating material for forming the backcoat layer is prepared by adding an organic solvent to each of the above components and mixing, stirring, kneading, dispersing and the like by a known method. The organic solvent to be used is not particularly limited, and those similar to those used for the upper magnetic layer and the lower nonmagnetic layer can be used.

バックコート層の厚さ(カレンダー加工後)は、1.0μm以下、好ましくは0.1〜1.0μm、より好ましくは0.2〜0.8μmである。   The thickness of the back coat layer (after calendering) is 1.0 μm or less, preferably 0.1 to 1.0 μm, more preferably 0.2 to 0.8 μm.

[非磁性支持体]
非磁性支持体として用いる材料には特に制限はなく、目的に応じて各種可撓性材料、各種剛性材料から選択し、各種規格に応じてテープ状、シート状、カード状、ディスク状などの所定形状及び寸法とすればよい。例えば、可撓性材料としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル類、ポリプロピレン等のポリオレフィン類、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリカーボネートなどの各種樹脂が挙げられる。非磁性支持体として、PEN、PA、PI、及びPAIから選ばれる樹脂製のフィルムが好ましい。非磁性支持体の厚さは、例えば3.0〜15.0μmであり、2.0〜6.0μmであることが好ましい。
[Non-magnetic support]
The material used as the non-magnetic support is not particularly limited, and is selected from various flexible materials and various rigid materials according to the purpose. What is necessary is just to set it as a shape and a dimension. Examples of flexible materials include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefins such as polypropylene, polyamide (PA), polyimide (PI), polyamideimide (PAI), polycarbonate, and the like. These resins can be mentioned. As the nonmagnetic support, a resin film selected from PEN, PA, PI, and PAI is preferable. The thickness of the nonmagnetic support is, for example, 3.0 to 15.0 μm, and preferably 2.0 to 6.0 μm.

[磁気記録媒体の製造]
本発明において、調製された各非磁性層形成用塗料、磁性層形成用塗料、バックコート層形成用塗料を用いて、塗布、乾燥、カレンダー、硬化等により、それぞれの塗膜(塗層)を形成し、磁気記録媒体を製造する。
[Manufacture of magnetic recording media]
In the present invention, each coating film (coating layer) is prepared by coating, drying, calendering, curing, etc., using each of the prepared non-magnetic layer forming coating material, magnetic layer forming coating material, and backcoat layer forming coating material. And forming a magnetic recording medium.

本発明において、下層非磁性層及び上層磁性層は、いわゆるウェット・オン・ドライ塗布方式によって形成することが好ましい。しかしながら、ウェット・オン・ウェット塗布方式によって形成してもよい。ウェット・オン・ドライ塗布方式の場合には、まず、非磁性支持体の一方の面上に、非磁性層用塗料を塗布、乾燥し、必要に応じてカレンダー処理を行い、未硬化の下層非磁性層を得る。その後、未硬化の下層非磁性層を硬化させる。下層非磁性層の結合剤樹脂として放射線(電子線)硬化性樹脂を用いた場合には、放射線(電子線)照射を行い下層非磁性層を硬化させる。次に、硬化された下層非磁性層上に磁性層用塗料を塗布、配向、乾燥して、上層磁性層を形成する。バックコート層の形成の順序は任意であり、すなわち、下層非磁性層の形成前、下層非磁性層の形成後であり上層磁性層の形成前、上層磁性層の形成後のいずれであってもよい。   In the present invention, the lower nonmagnetic layer and the upper magnetic layer are preferably formed by a so-called wet-on-dry coating method. However, it may be formed by a wet-on-wet coating method. In the case of the wet-on-dry coating method, first, the coating for the non-magnetic layer is applied on one surface of the non-magnetic support, dried, and calendered as necessary, so that the uncured lower layer is not coated. A magnetic layer is obtained. Thereafter, the uncured lower nonmagnetic layer is cured. When a radiation (electron beam) curable resin is used as the binder resin for the lower nonmagnetic layer, radiation (electron beam) irradiation is performed to cure the lower nonmagnetic layer. Next, the magnetic layer coating material is applied, oriented and dried on the cured lower nonmagnetic layer to form an upper magnetic layer. The order of forming the backcoat layer is arbitrary, that is, before the formation of the lower nonmagnetic layer, after the formation of the lower nonmagnetic layer, before the formation of the upper magnetic layer, and after the formation of the upper magnetic layer. Good.

磁気記録媒体において、前記下層非磁性層に含まれる結合剤、及び前記上層磁性層に含まれる結合剤は共に硬化させられている。   In the magnetic recording medium, the binder contained in the lower nonmagnetic layer and the binder contained in the upper magnetic layer are both cured.

塗布方法としては、グラビアコート、リバースロールコート、ダイノズルコート、バーコート等の公知の種々の塗布手段を用いることができる。   As a coating method, various known coating means such as gravure coating, reverse roll coating, die nozzle coating, and bar coating can be used.

以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

[粉体特性の測定方法]
(平均長軸長の測定)
測定対象の粉体の100,000倍の透過型電子顕微鏡(TEM; Transmission Electron Microscope) 写真を撮影し、写真から不作為に抽出した100個の粒子について、長軸長を測定した。これらの値の平均値を平均長軸長とした。
[Measurement method of powder characteristics]
(Measurement of average long axis length)
A 100,000 times transmission electron microscope (TEM) photograph of the powder to be measured was taken, and the long axis length was measured for 100 particles randomly extracted from the photograph. The average value of these values was taken as the average major axis length.

(BET法比表面積の測定)
Quantachrome社製 NOVA2000seriesを使用し、BET法により比表面積を求めた。BET測定は、例えば、試料粉体を脱気し、吸着占有面積の判っている分子を吸着させ、その後の脱離量から、試料の比表面積を求める方法である。
(Measurement of BET specific surface area)
The specific surface area was determined by the BET method using NOVA2000 series manufactured by Quantachrome. BET measurement is, for example, a method of degassing sample powder, adsorbing molecules whose adsorption occupation area is known, and determining the specific surface area of the sample from the subsequent desorption amount.

[樹脂特性の測定方法]
(数平均分子量)
ウォーターズ社製ゲル浸透クロマトグラフィ(GPC)により、ポリスチレンを標準物質とし、テトラヒドロフランを溶媒として測定した。なお、数平均分子量300未満の低分子のピークは分析時には削除し、300以上の高分子のピークをデータ処理して、数平均分子量Mnとした。
[Measurement method of resin properties]
(Number average molecular weight)
It was measured by water permeation gel permeation chromatography (GPC) using polystyrene as a standard substance and tetrahydrofuran as a solvent. The low-molecular peak having a number average molecular weight of less than 300 was deleted during analysis, and the peak of a polymer having a molecular weight of 300 or more was subjected to data processing to obtain a number average molecular weight Mn.

(ポリウレタン樹脂の組成分析)
ヴァリアン社製核磁気共鳴分析計(NMR)ジェミニ−200を用いて、重クロロホルム溶媒中で 1H−NMR分析を行って、その積分比より決定した。
(Composition analysis of polyurethane resin)
Using a nuclear magnetic resonance analyzer (NMR) Gemini-200 manufactured by Varian, 1 H-NMR analysis was performed in a deuterated chloroform solvent, and the integral ratio was determined.

(スルホン酸ナトリウム塩基濃度)
試料0.1gを炭化し、酸に溶解した後、原子吸光分析により求めた。下記式により極性基(スルホン酸ナトリウム塩基)濃度とした。Na原子量を23とした。
極性基濃度(eq/t)=Na濃度(重量ppm)/23
(Sodium sulfonate concentration)
A 0.1 g sample was carbonized and dissolved in an acid, and then determined by atomic absorption analysis. The polar group (sodium sulfonate base) concentration was determined by the following formula. The Na atomic weight was 23.
Polar group concentration (eq / t) = Na concentration (weight ppm) / 23

(還元粘度測定方法)
還元粘度は、Ubbelohde(ウベローテ)粘度計を使用して溶液粘度測定法によって測定した。
測定条件は以下のとおりとした。
測定溶媒:トルエン/メチルエチルケトン/シクロヘキサノン=40/40/20(重量比)
測定溶液濃度:4g/L
測定温度:30℃
(Reduced viscosity measurement method)
Reduced viscosity was measured by solution viscosity measurement using an Ubbelode viscometer.
The measurement conditions were as follows.
Measuring solvent: toluene / methyl ethyl ketone / cyclohexanone = 40/40/20 (weight ratio)
Measurement solution concentration: 4 g / L
Measurement temperature: 30 ° C

還元粘度は以下の計算値で求めた。
還元粘度(dl/g)=((t1/t2)−1)/0.4
ここで、
t1:測定溶液の平均流下時間(sec)
t2:溶媒の流下時間(sec)
である。
The reduced viscosity was determined by the following calculated value.
Reduced viscosity (dl / g) = ((t1 / t2) -1) /0.4
here,
t1: Average flow time of measurement solution (sec)
t2: Solvent flow time (sec)
It is.

[粘度測定方法]
非磁性層用塗料の粘度(単位cp;センチポイズ)は、東京計器製B型粘度計にて、2号あるいは4号を使用して20rpmで測定した。
塗料の粘度が1000cp以下の場合には2号ローターを使用し、1000cpよりも大きい場合には4号ローターを使用した。
[Viscosity measurement method]
The viscosity (unit cp; centipoise) of the coating for the nonmagnetic layer was measured at 20 rpm using No. 2 or No. 4 with a B-type viscometer manufactured by Tokyo Keiki.
When the viscosity of the paint was 1000 cp or less, No. 2 rotor was used, and when it was higher than 1000 cp, No. 4 rotor was used.

実施例で用いる略号は以下のとおりである。
AA:アジピン酸
SA:セバシン酸
IA:イタコン酸
DMS:5−ナトリウムスルホイソフタル酸ジメチルエステル
EG:エチレングリコール
HD:1,6−ヘキサンジオール
DMH:2−ブチル−2−エチル−1,3−プロパンジオール
NPG:2,2−ジメチル−1,3−プロパンジオール
HPN:2,2−ジメチル−3−ヒドロキシプロピル−2’,2’−ジメチル−3−ヒドロキシプロパネート
GP−400:グリセリンのプロピレンオキサイド付加物(三洋化成(株)製、分子量400)
MDI:4,4’−ジフェニルメタンジイソシアナート
PETA:モノヒドロキシペンタエリスリトールトリアクリレート(1分子中の二重結合3個)
701A:2−ヒドロキシ−3−アクリロイロキジプロピルメタクリレート(新中村化学(株)製、1分子中の二重結合2個)
MR110:塩化ビニル系共重合体(日本ゼオン(株)製)
Abbreviations used in the examples are as follows.
AA: Adipic acid
SA: sebacic acid IA: itaconic acid DMS: 5-sodium sulfoisophthalic acid dimethyl ester EG: ethylene glycol HD: 1,6-hexanediol DMH: 2-butyl-2-ethyl-1,3-propanediol NPG: 2, 2-dimethyl-1,3-propanediol HPN: 2,2-dimethyl-3-hydroxypropyl-2 ′, 2′-dimethyl-3-hydroxypropanate GP-400: propylene oxide adduct of glycerin (Sanyo Chemical ( Co., Ltd., molecular weight 400)
MDI: 4,4′-diphenylmethane diisocyanate PETA: monohydroxypentaerythritol triacrylate (three double bonds in one molecule)
701A: 2-hydroxy-3-acryloyloxydipropyl methacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., two double bonds in one molecule)
MR110: Vinyl chloride copolymer (manufactured by Zeon Corporation)

まず、ポリウレタン樹脂(I)〜(XI)の製造例を示す。ポリウレタン樹脂(I)〜(XI)は電子線硬化性である。なお、実施例において、特に断りがなければ、「部」とは「質量部」を示す。   First, production examples of polyurethane resins (I) to (XI) are shown. The polyurethane resins (I) to (XI) are electron beam curable. In Examples, “parts” means “parts by mass” unless otherwise specified.

ポリウレタン樹脂(I)〜(XI)の製造に用いたスルホン酸金属塩基含有ポリエステルポリオール(a)〜(d)の構成成分を表1に示す。   Table 1 shows the constituent components of the sulfonic acid metal base-containing polyester polyols (a) to (d) used in the production of the polyurethane resins (I) to (XI).

Figure 2010049731
Figure 2010049731

[製造例1:実施例1のポリウレタン樹脂(III) の製造例]
(ポリエステルポリオール(b)の合成)
温度計、攪拌機、リービッヒ冷却器を具備した反応容器に、アジピン酸117部、5−ナトリウムスルホイソフタル酸ジメチルエステル58部、1,6−ヘキサンジオール71部、2,2−ジメチル−1,3−プロパンジオール94部、及びテトラブチルチタネート0.2部を仕込み、180〜220℃で180分間加熱し、エステル化反応を行った。その後、反応系を20分で5mmHgまで減圧し、この間に240℃まで昇温した。さらに、反応系内を徐々に減圧し、10分後に0.3mmHg以下とし、240℃で30分間重縮合反応を行った。このようにして、ポリエステルポリオール(b)を合成した。
[Production Example 1: Production Example of Polyurethane Resin (III) of Example 1]
(Synthesis of polyester polyol (b))
In a reaction vessel equipped with a thermometer, stirrer and Liebig condenser, 117 parts of adipic acid, 58 parts of dimethyl ester of 5-sodium sulfoisophthalic acid, 71 parts of 1,6-hexanediol, 2,2-dimethyl-1,3- 94 parts of propanediol and 0.2 part of tetrabutyl titanate were charged and heated at 180 to 220 ° C. for 180 minutes to carry out an esterification reaction. Thereafter, the reaction system was depressurized to 5 mmHg in 20 minutes, and the temperature was raised to 240 ° C. during this time. Furthermore, the pressure in the reaction system was gradually reduced, and after 10 minutes, the pressure was reduced to 0.3 mmHg or less, and a polycondensation reaction was performed at 240 ° C. for 30 minutes. In this way, a polyester polyol (b) was synthesized.

(ポリウレタン樹脂(III) の合成)
温度計、攪拌機、リービッヒ冷却器を具備した反応容器に、上記ポリエステルポリオール(b)100部、2−ブチル−2−エチル−1,3−プロパンジオール20部、及びモノヒドロキシペンタエリスリトールトリアクリレート30部を仕込み、これにメチルエチルケトン73部、及びトルエン73部を加え、溶解した。フェノチアジン0.05部を加え、攪拌後、4,4’−ジフェニルメタンジイソシアナート45部を加え、触媒としてジブチルチンジラウレート0.05部を添加し、80℃で2時間反応させ、その後、メチルエチルケトン272部、トルエン272部、GP−400 13部を加え、さらに80℃で4時間反応させてポリウレタン樹脂(III) を得た。
(Synthesis of polyurethane resin (III))
In a reaction vessel equipped with a thermometer, a stirrer, and a Liebig condenser, 100 parts of the polyester polyol (b), 20 parts of 2-butyl-2-ethyl-1,3-propanediol, and 30 parts of monohydroxypentaerythritol triacrylate. In this, 73 parts of methyl ethyl ketone and 73 parts of toluene were added and dissolved. 0.05 part of phenothiazine was added, and after stirring, 45 parts of 4,4′-diphenylmethane diisocyanate was added, 0.05 part of dibutyltin dilaurate was added as a catalyst and reacted at 80 ° C. for 2 hours, and then methyl ethyl ketone 272 Part, 272 parts of toluene, and 13 parts of GP-400 were further reacted at 80 ° C. for 4 hours to obtain polyurethane resin (III).

[製造例2:実施例2のポリウレタン樹脂(IV)の製造例]
上記ポリエステルポリオール(b)を用いて、製造例1と同様の方法によりポリウレタン樹脂(IV)を得た。
[Production Example 2: Production Example of Polyurethane Resin (IV) of Example 2]
Using the polyester polyol (b), a polyurethane resin (IV) was obtained in the same manner as in Production Example 1.

[製造例3:実施例3のポリウレタン樹脂(V)の製造例]
(ポリエステルポリオール(c)の合成)
温度計、攪拌機、リービッヒ冷却器を具備した反応容器に、セバシン酸160部、イタコン酸7部、5−ナトリウムスルホイソフタル酸ジメチルエステル47部、エチレングリコール4部、2,2−ジメチル−1,3−プロパンジオール47部、2,2−ジメチル−3−ヒドロキシプロピル−2’,2’−ジメチル−3−ヒドロキシプロパナート105部、及びテトラブチルチタネート0.2部を仕込み、180〜220℃で180分間加熱し、エステル化反応を行った。その後、反応系を20分で5mmHgまで減圧し、この間に240℃まで昇温した。さらに、反応系内を徐々に減圧し、10分後に0.3mmHg以下とし、240℃で30分間重縮合反応を行った。このようにして、ポリエステルポリオール(c)を合成した。
[Production Example 3: Production Example of Polyurethane Resin (V) of Example 3]
(Synthesis of polyester polyol (c))
In a reaction vessel equipped with a thermometer, stirrer and Liebig condenser, 160 parts sebacic acid, 7 parts itaconic acid, 47 parts dimethyl ester of 5-sodium sulfoisophthalic acid, 4 parts ethylene glycol, 2,2-dimethyl-1,3 -47 parts of propanediol, 105 parts of 2,2-dimethyl-3-hydroxypropyl-2 ', 2'-dimethyl-3-hydroxypropanate, and 0.2 part of tetrabutyl titanate are charged at 180-220 ° C. The mixture was heated for 5 minutes to conduct esterification reaction. Thereafter, the reaction system was depressurized to 5 mmHg in 20 minutes, and the temperature was raised to 240 ° C. during this time. Furthermore, the pressure in the reaction system was gradually reduced, and after 10 minutes, the pressure was reduced to 0.3 mmHg or less, and a polycondensation reaction was performed at 240 ° C. for 30 minutes. In this way, a polyester polyol (c) was synthesized.

(ポリウレタン樹脂(V)の合成)
温度計、攪拌機、リービッヒ冷却器を具備した反応容器に、ポリエステルポリオール(c)100部、2,2−ジメチル−3−ヒドロキシプロピル−2’,2’−ジメチル−3−ヒドロキシプロパナート14部、及び2−ヒドロキシ−3−アクリロイロキジプロピルメタクリレート27部を仕込み、これにメチルエチルケトン73部、及びトルエン73部を加え、溶解した。フェノチアジン0.05部を加え、攪拌後、4,4’−ジフェニルメタンジイソシアナート45部を加え、触媒としてジブチルチンジラウレート0.05部を添加し、80℃で2時間反応させ、その後、メチルエチルケトン272部、トルエン272部、GP−400 11部を加え、さらに80℃で4時間反応させてポリウレタン樹脂(V)を得た。
(Synthesis of polyurethane resin (V))
In a reaction vessel equipped with a thermometer, stirrer and Liebig condenser, 100 parts of polyester polyol (c), 14 parts of 2,2-dimethyl-3-hydroxypropyl-2 ′, 2′-dimethyl-3-hydroxypropanate, And 27 parts of 2-hydroxy-3-acryloyloxydipropyl methacrylate were added, and 73 parts of methyl ethyl ketone and 73 parts of toluene were added and dissolved. 0.05 part of phenothiazine was added, and after stirring, 45 parts of 4,4′-diphenylmethane diisocyanate was added, 0.05 part of dibutyltin dilaurate was added as a catalyst and reacted at 80 ° C. for 2 hours, and then methyl ethyl ketone 272 Part, 272 parts of toluene and 11 parts of GP-400 were further added and reacted at 80 ° C. for 4 hours to obtain a polyurethane resin (V).

[製造例4:実施例4のポリウレタン樹脂(VIII)の製造例]
(ポリエステルポリオール(d)の合成)
温度計、攪拌機、リービッヒ冷却器を具備した反応容器に、アジピン酸102部、5−ナトリウムスルホイソフタル酸ジメチルエステル89部、2,2−ジメチル−1,3−プロパンジオールを156部、及びテトラブチルチタネート0.2部を仕込み、180〜220℃で180分間加熱し、エステル化反応を行った。その後、反応系を20分で5mmHgまで減圧し、この間に240℃まで昇温した。さらに、反応系内を徐々に減圧し、10分後に0.3mmHg以下とし、240℃で重縮合反応を30分行った。このようにして、ポリエステルポリオール(d)を合成した。
[Production Example 4: Production Example of Polyurethane Resin (VIII) of Example 4]
(Synthesis of polyester polyol (d))
In a reaction vessel equipped with a thermometer, stirrer, Liebig condenser, 102 parts of adipic acid, 89 parts of 5-sodium sulfoisophthalic acid dimethyl ester, 156 parts of 2,2-dimethyl-1,3-propanediol, and tetrabutyl 0.2 part of titanate was charged and heated at 180 to 220 ° C. for 180 minutes to carry out an esterification reaction. Thereafter, the reaction system was depressurized to 5 mmHg in 20 minutes, and the temperature was raised to 240 ° C. during this time. Further, the pressure in the reaction system was gradually reduced, and after 10 minutes, the pressure was reduced to 0.3 mmHg or less, and a polycondensation reaction was performed at 240 ° C. for 30 minutes. In this way, a polyester polyol (d) was synthesized.

(ポリウレタン樹脂(VIII)の合成)
温度計、攪拌機、リービッヒ冷却器を具備した反応容器に、ポリエステルポリオール(d)100部、2−ブチル−2−エチル−1,3−プロパンジオール20部、及びモノヒドロキシペンタエリスリトールトリアクリレート30部を仕込み、これにメチルエチルケトン73部、及びトルエン73部を加え、溶解した。フェノチアジン0.05部を加え、攪拌後、4,4’−ジフェニルメタンジイソシアナート38部を加え、触媒としてジブチルチンジラウレート0.05部を添加し、80℃で2時間反応させ、その後、メチルエチルケトン272部、トルエン272部、GP−400 13部を加え、さらに80℃で4時間反応させてポリウレタン樹脂(VIII)を得た。
(Synthesis of polyurethane resin (VIII))
In a reaction vessel equipped with a thermometer, a stirrer, and a Liebig condenser, 100 parts of polyester polyol (d), 20 parts of 2-butyl-2-ethyl-1,3-propanediol, and 30 parts of monohydroxypentaerythritol triacrylate. To this, 73 parts of methyl ethyl ketone and 73 parts of toluene were added and dissolved. 0.05 part of phenothiazine was added, and after stirring, 38 parts of 4,4′-diphenylmethane diisocyanate was added, 0.05 part of dibutyltin dilaurate was added as a catalyst and reacted at 80 ° C. for 2 hours, and then methyl ethyl ketone 272 Part, 272 parts of toluene, and 13 parts of GP-400 were further reacted at 80 ° C. for 4 hours to obtain polyurethane resin (VIII).

[製造例5:実施例5のポリウレタン樹脂(IX)の製造例]
上記ポリエステルポリオール(d)を用いて、製造例4と同様の方法によりポリウレタン樹脂(IX)を得た。
[Production Example 5: Production Example of Polyurethane Resin (IX) of Example 5]
Using the polyester polyol (d), a polyurethane resin (IX) was obtained in the same manner as in Production Example 4.

[製造例6:実施例6のポリウレタン樹脂(X)の製造例]
(ポリエステルジオール(e)の合成)
温度計、攪拌機、リービッヒ冷却器を具備した反応容器に、5−ナトリウムスルホイソフタル酸ジメチルエステル888部、2,2−ジメチル−3−ヒドロキシプロピル−2’,2’−ジメチル−3−ヒドロキシプロパネート1836部、及びテトラブトキシチタン0.2部を仕込み、240℃で5時間エステル交換した。温度を100℃まで低下させ、トルエン633部で希釈し、ポリエステルジオール(e)溶液(固形分濃度80重量%)を得た。
[Production Example 6: Production Example of Polyurethane Resin (X) of Example 6]
(Synthesis of polyester diol (e))
In a reaction vessel equipped with a thermometer, stirrer and Liebig condenser, 888 parts of 5-sodium sulfoisophthalic acid dimethyl ester, 2,2-dimethyl-3-hydroxypropyl-2 ′, 2′-dimethyl-3-hydroxypropanate 1836 parts and 0.2 part of tetrabutoxytitanium were charged and transesterified at 240 ° C. for 5 hours. The temperature was lowered to 100 ° C. and diluted with 633 parts of toluene to obtain a polyester diol (e) solution (solid content concentration 80% by weight).

(ポリウレタン樹脂(X)の合成)
温度計、攪拌機、リービッヒ冷却器を具備した反応容器に、上記ポリエステルポリオール(b)100部、2−ブチル−2−エチル−1,3−プロパンジオール20部、上記ポリエステルポリオール(e)10部(固形分として)、及び2−ヒドロキシ−3−アクリロイロキジプロピルメタクリレート27部を添加し、これにメチルエチルケトン73部、及びトルエン73部を加え、溶解した。フェノチアジン0.05部を加え、攪拌後、4,4’−ジフェニルメタンジイソシアナート38部を加え、触媒としてジブチルチンジラウレート0.05部を添加し、80℃で2時間反応させ、その後、メチルエチルケトン272部、トルエン272部、GP−400 13部を加え、さらに80℃で4時間反応させてポリウレタン樹脂(X)を得た。
(Synthesis of polyurethane resin (X))
In a reaction vessel equipped with a thermometer, a stirrer, and a Liebig condenser, 100 parts of the polyester polyol (b), 20 parts of 2-butyl-2-ethyl-1,3-propanediol, 10 parts of the polyester polyol (e) ( As a solid content) and 27 parts of 2-hydroxy-3-acryloyloxydipropyl methacrylate were added, and 73 parts of methyl ethyl ketone and 73 parts of toluene were added and dissolved. 0.05 part of phenothiazine was added, and after stirring, 38 parts of 4,4′-diphenylmethane diisocyanate was added, 0.05 part of dibutyltin dilaurate was added as a catalyst and reacted at 80 ° C. for 2 hours, and then methyl ethyl ketone 272 Part, 272 parts of toluene and 13 parts of GP-400 were further reacted at 80 ° C. for 4 hours to obtain a polyurethane resin (X).

各比較例で用いるポリウレタン樹脂を表2に示す樹脂組成でそれぞれ同様の方法により合成した。
比較例1のポリウレタン樹脂(I)
比較例2のポリウレタン樹脂(II)
比較例3のポリウレタン樹脂(VI)
比較例4のポリウレタン樹脂 (VII)
比較例5のポリウレタン樹脂(XI)
The polyurethane resin used in each comparative example was synthesized by the same method with the resin composition shown in Table 2.
Polyurethane resin (I) of Comparative Example 1
Polyurethane resin (II) of Comparative Example 2
Polyurethane resin (VI) of Comparative Example 3
Polyurethane resin of comparative example 4 (VII)
Polyurethane resin (XI) of Comparative Example 5

ポリウレタン樹脂(I)〜(XI)の樹脂組成、数平均分子量、極性基濃度(スルホン酸ナトリウム塩基の濃度)、及び還元粘度を表2に示す。   Table 2 shows the resin composition, number average molecular weight, polar group concentration (concentration of sodium sulfonate base), and reduced viscosity of the polyurethane resins (I) to (XI).

Figure 2010049731
Figure 2010049731

次に、ポリウレタン樹脂(i)〜(xi)の製造例を示す。ポリウレタン樹脂(i)〜(xi)は熱硬化性である。   Next, production examples of polyurethane resins (i) to (xi) are shown. The polyurethane resins (i) to (xi) are thermosetting.

[製造例7:実施例7のポリウレタン樹脂(iii) の製造例]
製造例1のポリウレタン樹脂(III) の合成において、モノヒドロキシペンタエリスリトールトリアクリレートを添加せず、4,4’−ジフェニルメタンジイソシアナートの添加量を38部とした以外は製造例1と同様の方法により、ポリウレタン樹脂(iii) を合成した。
[Production Example 7: Production Example of Polyurethane Resin (iii) of Example 7]
In the synthesis of polyurethane resin (III) in Production Example 1, the same method as in Production Example 1 except that monohydroxypentaerythritol triacrylate was not added and the amount of 4,4′-diphenylmethane diisocyanate added was 38 parts. Thus, a polyurethane resin (iii) was synthesized.

[製造例8:実施例8のポリウレタン樹脂(iv)の製造例]
製造例2のポリウレタン樹脂(IV)の合成において、モノヒドロキシペンタエリスリトールトリアクリレートを添加せず、4,4’−ジフェニルメタンジイソシアナートの添加量を46部とした以外は製造例2と同様の方法により、ポリウレタン樹脂(iv)を得た。
[Production Example 8: Production Example of Polyurethane Resin (iv) of Example 8]
In the synthesis of polyurethane resin (IV) in Production Example 2, the same method as in Production Example 2 except that monohydroxypentaerythritol triacrylate was not added and the amount of 4,4′-diphenylmethane diisocyanate was changed to 46 parts. As a result, a polyurethane resin (iv) was obtained.

[製造例9:実施例9のポリウレタン樹脂(v)の製造例]
製造例3のポリウレタン樹脂(V)の合成において、モノヒドロキシペンタエリスリトールトリアクリレートを添加せず、4,4’−ジフェニルメタンジイソシアナートの添加量を38部とした以外は製造例3と同様の方法により、ポリウレタン樹脂(v)を得た。
[Production Example 9: Production Example of Polyurethane Resin (v) of Example 9]
In the synthesis of polyurethane resin (V) in Production Example 3, the same method as in Production Example 3 except that monohydroxypentaerythritol triacrylate was not added and the amount of 4,4′-diphenylmethane diisocyanate added was 38 parts. As a result, a polyurethane resin (v) was obtained.

[製造例10:実施例10のポリウレタン樹脂(viii)の製造例]
製造例4のポリウレタン樹脂(VIII)の合成において、モノヒドロキシペンタエリスリトールトリアクリレートを添加せず、4,4’−ジフェニルメタンジイソシアナートの添加量を32部とした以外は製造例4と同様の方法により、ポリウレタン樹脂(viii)を合成した。
[Production Example 10: Production Example of Polyurethane Resin (viii) of Example 10]
In the synthesis of polyurethane resin (VIII) in Production Example 4, the same method as in Production Example 4 except that monohydroxypentaerythritol triacrylate was not added and the addition amount of 4,4′-diphenylmethane diisocyanate was 32 parts. Thus, a polyurethane resin (viii) was synthesized.

[製造例11:実施例11のポリウレタン樹脂(ix)の製造例]
製造例5のポリウレタン樹脂(IX)の合成において、モノヒドロキシペンタエリスリトールトリアクリレートを添加せず、4,4’−ジフェニルメタンジイソシアナートの添加量を38部とした以外は製造例5と同様の方法により、ポリウレタン樹脂(ix)を得た。
[Production Example 11: Production Example of Polyurethane Resin (ix) of Example 11]
In the synthesis of polyurethane resin (IX) in Production Example 5, the same method as in Production Example 5 except that monohydroxypentaerythritol triacrylate was not added and the amount of 4,4′-diphenylmethane diisocyanate added was 38 parts. As a result, a polyurethane resin (ix) was obtained.

[製造例12:実施例12のポリウレタン樹脂(x)の製造例]
製造例6のポリウレタン樹脂(X)の合成において、モノヒドロキシペンタエリスリトールトリアクリレートを添加せず、4,4’−ジフェニルメタンジイソシアナートの添加量を32部とした以外は製造例6と同様の方法により、ポリウレタン樹脂(x)を得た。
[Production Example 12: Production Example of Polyurethane Resin (x) of Example 12]
In the synthesis of polyurethane resin (X) in Production Example 6, the same method as in Production Example 6 except that monohydroxypentaerythritol triacrylate was not added and the amount of 4,4′-diphenylmethane diisocyanate added was 32 parts. As a result, a polyurethane resin (x) was obtained.

各比較例で用いるポリウレタン樹脂を表3に示す樹脂組成でそれぞれ同様の方法により合成した。
比較例6のポリウレタン樹脂(i)
比較例7のポリウレタン樹脂(ii)
比較例8のポリウレタン樹脂(vi)
比較例9のポリウレタン樹脂 (vii)
比較例10のポリウレタン樹脂(xi)
The polyurethane resin used in each comparative example was synthesized by the same method with the resin composition shown in Table 3.
Polyurethane resin (i) of Comparative Example 6
Polyurethane resin (ii) of Comparative Example 7
Polyurethane resin (vi) of Comparative Example 8
Polyurethane resin of comparative example 9 (vii)
Polyurethane resin (xi) of Comparative Example 10

ポリウレタン樹脂(i)〜(xi)の樹脂組成、数平均分子量、極性基濃度(スルホン酸ナトリウム塩基の濃度)、及び還元粘度を表3に示す。   Table 3 shows the resin composition, number average molecular weight, polar group concentration (concentration of sodium sulfonate base), and reduced viscosity of the polyurethane resins (i) to (xi).

Figure 2010049731
Figure 2010049731

[電子線(EB)硬化型塩化ビニル樹脂の合成例]
温度計、攪拌機、コンデンサーを具備した反応容器に、塩化ビニル樹脂MR110(日本ゼオン(株)製、極性基濃度63eq/t)100部を仕込み、メチルエチルケトン245部に溶解させた。次いで、フェノチアジン、ハイドロキノンをそれぞれ下記アクリル化合物(MOI)に対して200ppm(質量)混合した。その後、2−イソシアナートエチルメタクリレート(MOI)5部、及びウレタン化触媒のジ−n−ブチルチンジラウレートを上記イソシアナート化合物(MOI)に対して1000ppm(質量)混合し、反応温度60℃で8時間攪拌を行った。このようにして、EB硬化型塩化ビニル樹脂を得た。得られたEB硬化型塩化ビニル樹脂の分子量、ガラス転移温度を測定したところ、数平均分子量:25000、ガラス転移温度:60℃であった。
[Synthesis Example of Electron Beam (EB) Curing Type Vinyl Chloride Resin]
A reaction vessel equipped with a thermometer, a stirrer, and a condenser was charged with 100 parts of vinyl chloride resin MR110 (manufactured by Nippon Zeon Co., Ltd., polar group concentration 63 eq / t) and dissolved in 245 parts of methyl ethyl ketone. Subsequently, 200 ppm (mass) of phenothiazine and hydroquinone were mixed with respect to the following acrylic compound (MOI). Thereafter, 5 parts of 2-isocyanatoethyl methacrylate (MOI) and diuretization catalyst di-n-butyltin dilaurate were mixed at 1000 ppm (mass) with respect to the isocyanate compound (MOI), and the reaction temperature was 8O 0 C at 8 ° C. Stir for hours. In this way, an EB curable vinyl chloride resin was obtained. When the molecular weight and glass transition temperature of the obtained EB curable vinyl chloride resin were measured, the number average molecular weight was 25000 and the glass transition temperature was 60 ° C.

[実施例1〜6、比較例1〜5]
(非磁性層用塗料の調製)
針状α−酸化鉄 80.0質量部
(平均粒径:65nm、BET比表面積:85m2 /g)
カーボンブラック 20.0質量部
(三菱化学(株)製 商品名:#950B、平均粒径:17nm、BET比表面積:250m2 /g、DBP吸油量:70ml/100g、pH:8)
結合剤 電子線硬化性塩化ビニル樹脂 12.0質量部
(上記で合成したもの、MR110のMOI変性品)
結合剤 表4に示す各電子線硬化性ポリウレタン樹脂 10.0質量部
(上記で合成したもの)
分散剤 リン酸系界面活性剤 3.2質量部
(東邦化学工業(株)製 商品名:RE−610)
研磨材 α−アルミナ 5.0質量部
(住友化学(株)製 商品名:HIT60A、平均粒径:0.18μm)
NV(固形分濃度)=70%(質量百分率)
溶剤比率 MEK/トルエン/シクロヘキサノン=2/2/1(質量比)
[Examples 1-6, Comparative Examples 1-5]
(Preparation of coating for nonmagnetic layer)
Acicular α-iron oxide 80.0 parts by mass (average particle size: 65 nm, BET specific surface area: 85 m 2 / g)
20.0 parts by mass of carbon black (trade name: # 950B, manufactured by Mitsubishi Chemical Corporation, average particle size: 17 nm, BET specific surface area: 250 m 2 / g, DBP oil absorption: 70 ml / 100 g, pH: 8)
Binder Electron beam curable vinyl chloride resin 12.0 parts by mass (synthesized above, MOI modified product of MR110)
Binders Each electron beam curable polyurethane resin shown in Table 4 10.0 parts by mass (synthesized above)
Dispersant Phosphate-based surfactant 3.2 parts by mass (trade name: RE-610, manufactured by Toho Chemical Industry Co., Ltd.)
Abrasive material α-alumina 5.0 parts by mass (product name: HIT60A, average particle size: 0.18 μm, manufactured by Sumitomo Chemical Co., Ltd.)
NV (solid content concentration) = 70% (mass percentage)
Solvent ratio MEK / toluene / cyclohexanone = 2/2/1 (mass ratio)

上記の材料をニーダーで混練した後、混練物をNV(固形分濃度)=30重量%又は35重量%(表4に「分散前NV [%] 」として示す)になるように、上記と同じ混合比率の溶剤を用いて希釈し、希釈物を得た。この希釈物の粘度を測定し、「分散前粘度 [cp] 」として表4に示す。   After kneading the above materials with a kneader, the kneaded product is NV (solid content concentration) = 30 wt% or 35 wt% (shown as “NV [%] before dispersion” in Table 4) as above. Dilution was performed using a solvent having a mixing ratio to obtain a diluted product. The viscosity of this diluted product was measured and shown in Table 4 as “viscosity before dispersion [cp]”.

この希釈物を0.8mmのジルコニアビーズを充填率80%(空隙率50vol%)で充填した横型のピンミルによって滞留時間60分にて分散した。分散途中においてサンプリングを行い、適宜、粘度を測定した。測定した粘度のうち最も高い粘度の値を「分散中粘度 [cp] 」として表4に示す。   The diluted product was dispersed in a residence time of 60 minutes by a horizontal pin mill filled with 0.8 mm zirconia beads at a filling rate of 80% (porosity: 50 vol%). Sampling was performed during the dispersion, and the viscosity was measured appropriately. The highest viscosity value among the measured viscosities is shown in Table 4 as “viscosity during dispersion [cp]”.

その後、さらに、下記潤滑剤材料:
潤滑剤 脂肪酸 0.5質量部
(日本油脂(株)製 商品名:NAA180)
潤滑剤 脂肪酸アマイド 0.5質量部
(花王(株)製 商品名:脂肪酸アマイドS)
潤滑剤 脂肪酸エステル 1.0質量部
(日光ケミカルズ(株)製 商品名:NIKKOLBS)
を添加して、
NV(固形分濃度)=24%(質量百分率)
溶剤比率 MEK/トルエン/シクロヘキサノン=2/2/1(質量比)
となるように希釈した後、分散を行いタンクに出筒した。出筒時点における塗料の粘度を測定した。この粘度を「分散後希釈後粘度 [cp] 」として表4に示す。
Then further lubricant materials:
Lubricant Fatty acid 0.5 part by mass (Nippon Yushi Co., Ltd. product name: NAA180)
Lubricant Fatty Acid Amide 0.5 part by mass (trade name: Fatty Acid Amide S, manufactured by Kao Corporation)
Lubricant Fatty acid ester 1.0 part by mass (trade name: NIKKOLBS manufactured by Nikko Chemicals Co., Ltd.)
Add
NV (solid content concentration) = 24% (mass percentage)
Solvent ratio MEK / toluene / cyclohexanone = 2/2/1 (mass ratio)
After diluting so as to become dispersed, it was dispersed and put into a tank. The viscosity of the paint at the time of delivery was measured. This viscosity is shown in Table 4 as “viscosity after dilution after dispersion [cp]”.

続いて、得られた塗料をさらに絶対濾過精度1.0μmのフィルターで濾過して、各非磁性塗料を作製した。これを磁気テープの製造に供した。   Subsequently, the obtained coating material was further filtered through a filter having an absolute filtration accuracy of 1.0 μm to prepare each nonmagnetic coating material. This was used for the production of magnetic tape.

さらに、塗料の安定性を評価するために、得られた塗料をタンク内に1週間静置し、1週間静置時点における塗料の粘度を測定した。この粘度の値を「1週間後粘度 [cp] 」として表4に示す。   Furthermore, in order to evaluate the stability of the paint, the obtained paint was allowed to stand in a tank for 1 week, and the viscosity of the paint at the time of standing for 1 week was measured. The viscosity value is shown in Table 4 as “viscosity after 1 week [cp]”.

また、塗料の安定性を評価するために、得られた塗料をタンク内に1日間静置したときに、塗料中に沈殿が生じているか否かを目視にて観察した。この結果を表4に示す。   Further, in order to evaluate the stability of the paint, when the obtained paint was left in a tank for 1 day, it was visually observed whether or not precipitation occurred in the paint. The results are shown in Table 4.

(磁性層用塗料の調製)
強磁性粉末 Fe系針状強磁性粉末 100.0質量部
(Fe/Co/Al/Y=100/24/5/12(原子比)、Hc:188kA/m、σs:140Am2 /kg、BET比表面積値:60m2 /g、平均長軸長:0.45μm)
熱硬化型塩化ビニル樹脂 塩化ビニル共重合体 10.0質量部
(日本ゼオン(株)製 商品名:MR110)
熱硬化型ポリウレタン樹脂 ポリエステルポリウレタン 6.0質量部
(東洋紡績(株)製 商品名:UR8300)
分散剤 リン酸系界面活性剤 3.0質量部
(東邦化学工業(株)製、商品名:RE610)
研磨材 α−アルミナ 10.0質量部
(住友化学(株)製 商品名:HIT60A、平均粒径:0.18μm)
NV(固形分濃度)=70%(質量百分率)
溶剤比率 MEK/トルエン/シクロヘキサノン=4/4/2(質量比)
(Preparation of coating for magnetic layer)
Ferromagnetic powder Fe-based acicular ferromagnetic powder 100.0 parts by mass (Fe / Co / Al / Y = 100/24/5/12 ( atomic ratio), Hc: 188kA / m, σs: 140Am 2 / kg, BET (Specific surface area value: 60 m 2 / g, average major axis length: 0.45 μm)
Thermosetting type vinyl chloride resin Vinyl chloride copolymer 10.0 parts by mass (trade name: MR110, manufactured by Nippon Zeon Co., Ltd.)
Thermosetting polyurethane resin Polyester polyurethane 6.0 parts by mass (trade name: UR8300, manufactured by Toyobo Co., Ltd.)
Dispersant Phosphoric acid surfactant 3.0 parts by mass (manufactured by Toho Chemical Co., Ltd., trade name: RE610)
Abrasive material α-alumina 10.0 parts by mass (trade name: HIT60A, average particle size: 0.18 μm, manufactured by Sumitomo Chemical Co., Ltd.)
NV (solid content concentration) = 70% (mass percentage)
Solvent ratio MEK / toluene / cyclohexanone = 4/4/2 (mass ratio)

上記の材料をニーダーで混練した後、混練物をNV(固形分濃度)=30%になるように上記と同じ混合比率の溶剤を用いて希釈し、この希釈物を前分散として、0.8mmのジルコニアビーズを充填率80%(空隙率50vol%)で充填した横型のピンミルによって分散した。   After kneading the above materials with a kneader, the kneaded product is diluted with a solvent having the same mixing ratio as described above so that NV (solid content concentration) = 30%. Of zirconia beads were dispersed by a horizontal pin mill filled with 80% filling rate (50 vol% porosity).

その後、さらに、前分散された塗料を、
NV(固形分濃度)=15%(質量百分率)
溶剤比率 MEK/トルエン/シクロヘキサノン=22.5/22.5/55(質量比)
となるように希釈してから、仕上げ分散を行った。続いて、得られた塗料に熱硬化剤(日本ポリウレタン工業(株)製 コロネートL)4質量部を添加混合した後、さらに絶対濾過精度0.5μmのフィルターで濾過して、磁性層用塗料を作製した。
Then, further, the pre-dispersed paint
NV (solid content concentration) = 15% (mass percentage)
Solvent ratio MEK / toluene / cyclohexanone = 22.5 / 22.5 / 55 (mass ratio)
After diluting so that it becomes, finish dispersion was performed. Subsequently, 4 parts by mass of a thermosetting agent (Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to and mixed with the obtained paint, and then filtered with a filter having an absolute filtration accuracy of 0.5 μm. Produced.

(バックコート層用塗料の調製)
カーボンブラック 75.0質量部
(キャボット社製 商品名:BP−800、平均粒径17nm、DBP吸油量68ml/100g、BET比表面積210m2 /g)
カーボンブラック 15.0質量部
(キャボット社製 商品名:BP−130、平均粒径75nm、DBP吸油量69ml/100g、BET比表面積25m2 /g)
炭酸カルシウム
(白石工業(株)製 商品名:白艶華0、平均粒径30nm) 10.0質量部
ニトロセルロース 65.0質量部
(旭化成工業(株)製 商品名:BTH1/2)
ポリウレタン樹脂 35.0質量部
(脂肪族ポリエステルジオール/芳香族ポリエステルジオール=43/57)
NV(固形分濃度)=30%(質量百分率)
溶剤比率 MEK/トルエン/シクロヘキサノン=1/1/1(質量比)
(Preparation of paint for back coat layer)
75.0 parts by mass of carbon black (trade name: BP-800, average particle size 17 nm, DBP oil absorption 68 ml / 100 g, BET specific surface area 210 m 2 / g, manufactured by Cabot)
15.0 parts by mass of carbon black (trade name: BP-130, average particle size 75 nm, DBP oil absorption 69 ml / 100 g, BET specific surface area 25 m 2 / g, manufactured by Cabot)
Calcium carbonate (Shiraishi Kogyo Co., Ltd., trade name: white luster 0, average particle size 30 nm) 10.0 parts by mass Nitrocellulose 65.0 parts by mass (Asahi Kasei Kogyo Co., Ltd. trade name: BTH1 / 2)
35.0 parts by mass of polyurethane resin (aliphatic polyester diol / aromatic polyester diol = 43/57)
NV (solid content concentration) = 30% (mass percentage)
Solvent ratio MEK / toluene / cyclohexanone = 1/1/1 (mass ratio)

上記の材料のうち有機溶剤の一部を除いた状態で、上記材料をニーダーにて高粘度状態で十分に混練処理した。次いで、混練処理された材料に除いておいた有機溶剤を添加して、ディゾルバにて十分に攪拌し、その後、上記材料をニーダーにて混練処理した。その後、前分散として、0.8mmのジルコニアビーズを充填率80%(空隙率50vol%)で充填した横型のピンミルによって分散した。   The material was sufficiently kneaded in a high-viscosity state with a kneader in a state where a part of the organic solvent was removed from the material. Next, the organic solvent removed from the kneaded material was added, and the mixture was sufficiently stirred with a dissolver, and then the material was kneaded with a kneader. Thereafter, as a pre-dispersion, dispersion was performed by a horizontal pin mill filled with 0.8 mm zirconia beads at a filling rate of 80% (porosity: 50 vol%).

その後、さらに、前分散された材料を、
NV(固形分濃度)=10%(質量百分率)
溶剤比率 MEK/トルエン/シクロヘキサノン=50.0/40.0/10.0(質量比)となるように希釈してから、仕上げ分散を行った。続いて、得られた塗料に熱硬化剤(日本ポリウレタン工業(株)製 コロネートL)10質量部を添加混合した後、さらに絶対濾過精度0.5μmのフィルターで濾過して、バックコート層用塗料を作製した。
Then further pre-dispersed material,
NV (solid content concentration) = 10% (mass percentage)
The solvent ratio was diluted so that MEK / toluene / cyclohexanone = 50.0 / 40.0 / 10.0 (mass ratio), and then final dispersion was performed. Subsequently, 10 parts by mass of a thermosetting agent (Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to and mixed with the obtained coating material, followed by filtration with a filter having an absolute filtration accuracy of 0.5 μm, and the coating material for the back coat layer. Was made.

(非磁性層形成工程)
厚さ5.0μmのベースフィルム(ポリエチレンナフタレートフィルム)の一方の面上に、カレンダー加工後の厚さが1.1μmになるように、上記の非磁性層用塗料をノズルにより押し出し塗布法で塗布して、乾燥した。その後、プラスチックロールと金属ロールとを組み合わせたカレンダーによって、ニップ数4回、加工温度100℃、線圧3500N/cmで加工を行い、さらに、照射量4.0Mrad、加速電圧200kVにて電子線照射を行い、下層非磁性層を形成した。
(Non-magnetic layer forming process)
On one side of a 5.0 μm-thick base film (polyethylene naphthalate film), the above-mentioned non-magnetic layer coating material is extruded by a nozzle so that the thickness after calendering becomes 1.1 μm. Applied and dried. After that, a calendar combining a plastic roll and a metal roll is used to perform processing at a nip number of 4 times, a processing temperature of 100 ° C., a linear pressure of 3500 N / cm, and further irradiation with an electron beam at an irradiation dose of 4.0 Mrad and an acceleration voltage of 200 kV. To form a lower non-magnetic layer.

(磁性層形成工程)
上記のようにして形成した下層非磁性層上に、上記の磁性層用塗料を、加工後の厚さが0.1μmになるようにノズルにより押し出し塗布法で塗布して、配向を行い、乾燥した。その後、プラスチックロールと金属ロールとを組み合わせたカレンダーによって、ニップ数4回、加工温度100℃、線圧3500N/cmで加工を行い、上層磁性層を形成した。
(Magnetic layer forming process)
On the lower non-magnetic layer formed as described above, the magnetic layer coating material is applied by an extrusion coating method with a nozzle so that the thickness after processing becomes 0.1 μm, oriented, and dried. did. Thereafter, a calender combining a plastic roll and a metal roll was used to perform processing at a nip number of 4 times, a processing temperature of 100 ° C., and a linear pressure of 3500 N / cm to form an upper magnetic layer.

(バックコート形成工程)
ベースフィルムの他方の面上に、上記のバックコート層用塗料を、加工後の厚さが0.4μmになるようにノズルにより押し出し塗布法で塗布して、乾燥した。その後、プラスチックロールと金属ロールとを組み合わせたカレンダーによって、ニップ数4回、加工温度100℃、線圧3500N/cmで加工を行い、バックコート層を形成した。
(Back coat forming process)
On the other surface of the base film, the above-mentioned coating material for the backcoat layer was applied by an extrusion coating method with a nozzle so that the thickness after processing was 0.4 μm, and dried. Thereafter, a back coat layer was formed by calendering a combination of a plastic roll and a metal roll at a nip number of 4 times, a processing temperature of 100 ° C., and a linear pressure of 3500 N / cm.

以上のようにして得られた磁気記録テープ原反を、60℃で48時間熱硬化させて、次いで、1/2inch(=12.650mm)幅にスリット(裁断)し、実施例1〜6、及び比較例1〜5の磁気記録テープサンプルとしてのデータ用テープをそれぞれ作製した。   The magnetic recording tape original fabric obtained as described above was thermally cured at 60 ° C. for 48 hours, and then slit (cut) to a width of 1/2 inch (= 12.650 mm). And the tape for data as a magnetic recording tape sample of Comparative Examples 1-5 was produced, respectively.

[磁気テープの評価]
各磁気記録テープサンプルについて、次の評価を行った。
[Evaluation of magnetic tape]
The following evaluation was performed for each magnetic recording tape sample.

(表面粗さ(中心線平均粗さ:Ra))
「TALYSTEPシステム」(テーラーホブソン社製)を用い、JIS B0601−1982に基づいて、テープの磁性層表面の中心線平均粗さRaの測定を行った。
測定の条件は、フィルター0.18〜9Hz、触針0.1×2.5μmスタイラス、触針圧2mg、測定スピード0.03mm/sec、測定長さ500μmとした。なお、磁性層表面のRaの測定は、最終的なカレンダー処理及び硬化処理後に行った。
(Surface roughness (centerline average roughness: Ra))
Using the “TALYSTEP system” (made by Taylor Hobson), the center line average roughness Ra of the magnetic layer surface of the tape was measured based on JIS B0601-1982.
The measurement conditions were a filter of 0.18 to 9 Hz, a stylus 0.1 × 2.5 μm stylus, a stylus pressure of 2 mg, a measurement speed of 0.03 mm / sec, and a measurement length of 500 μm. In addition, the measurement of Ra on the surface of the magnetic layer was performed after the final calendar process and the curing process.

(ビットエラーレートb−ERTの測定)
カートリッジに組み込んだ各磁気テープサンプルについて、磁気記録ヘッドで記録波長0.25μmの単一記録波長を記録し、信号のP−P値(振幅)に対して50%以下のP−P値(振幅)の信号をミッシングパルスとし、4個以上連続したミッシングパルスを欠陥Long Defectとして検出した。基準テープとしての比較例1の磁気テープサンプルの1m当たりのLong Defectの個数をNとし、各磁気テープサンプルの1m当たりのLong Defectの個数をXとし、各磁気テープサンプルについてLog10(X/N)をビットエラーレートとしてそれぞれ算出した。算出した各ビットエラーレートの比較を行った。なお、再生ヘッドとしては、磁気抵抗効果型磁気ヘッド(MRヘッド)を用いた。
(Measurement of bit error rate b-ERT)
For each magnetic tape sample incorporated in the cartridge, a single recording wavelength of 0.25 μm is recorded with a magnetic recording head, and a P-P value (amplitude) of 50% or less with respect to the P-P value (amplitude) of the signal ) Signal was a missing pulse, and four or more consecutive missing pulses were detected as a defect Long Defect. The number of Long Defects per meter of the magnetic tape sample of Comparative Example 1 as a reference tape is N, the number of Long Defects per meter of each magnetic tape sample is X, and Log 10 (X / N) for each magnetic tape sample. ) As a bit error rate. The calculated bit error rates were compared. A magnetoresistive head (MR head) was used as the reproducing head.

以上の結果を表4に示す。   The results are shown in Table 4.

表4から分かるように、実施例1〜6において、下層非磁性層の結合剤として、スルホン酸金属塩基を200eq/t以上250eq/t以下の範囲で有し、且つ、前記条件で測定された還元粘度が0.42以上0.55以下であるポリウレタン樹脂を用いると、非磁性層塗料中において微細な非磁性無機粉末の分散性が向上し、粘度上昇が見られず安定性に優れた非磁性層塗料が作製された。これら非磁性層塗料を用いると、塗布した際のレベリングが良好であり、平滑な非磁性層を形成することができ、そのため、表面平滑性に優れた上層磁性層が得られた。その結果、実施例1〜6の磁気記録媒体はいずれも、電磁変換特性に優れていた。   As can be seen from Table 4, in Examples 1 to 6, as a binder for the lower non-magnetic layer, a metal sulfonate group was in the range of 200 eq / t to 250 eq / t and measured under the above conditions. When a polyurethane resin having a reduced viscosity of 0.42 or more and 0.55 or less is used, the dispersibility of the fine nonmagnetic inorganic powder in the nonmagnetic layer coating is improved, and no increase in viscosity is observed and the stability is excellent. A magnetic layer paint was produced. When these nonmagnetic coating materials were used, the leveling when applied was good, and a smooth nonmagnetic layer could be formed. Therefore, an upper magnetic layer excellent in surface smoothness was obtained. As a result, all of the magnetic recording media of Examples 1 to 6 were excellent in electromagnetic conversion characteristics.

実施例1〜6において、非磁性層塗料は、粘度上昇が見られず安定性に優れており、非磁性層塗料をフィルタリングする際のフィルターの目詰まりの発生もなかった。このように、製造工程上においても利点があった。   In Examples 1 to 6, the nonmagnetic layer coating material was excellent in stability with no increase in viscosity, and there was no clogging of the filter when filtering the nonmagnetic layer coating material. Thus, there was also an advantage in the manufacturing process.

Figure 2010049731
Figure 2010049731

[実施例7〜12、比較例6〜10]
(非磁性層用塗料の調製)
針状α−酸化鉄 80.0質量部
(平均粒径:65nm、BET比表面積:85m2 /g)
カーボンブラック 20.0質量部
(三菱化学(株)製 商品名:#950B、平均粒径:17nm、BET比表面積:250m2 /g、DBP吸油量:70ml/100g、pH:8)
結合剤 熱硬化性塩化ビニル樹脂 12.0質量部
(MR110)
結合剤 表5に示す各熱硬化性ポリウレタン樹脂 10.0質量部
(上記で合成したもの)
分散剤 リン酸系界面活性剤 3.2質量部
(東邦化学工業(株)製 商品名:RE−610)
研磨材 α−アルミナ 5.0質量部
(住友化学(株)製 商品名:HIT60A、平均粒径:0.18μm)
NV(固形分濃度)=70%(質量百分率)
溶剤比率 MEK/トルエン/シクロヘキサノン=2/2/1(質量比)
[Examples 7 to 12, Comparative Examples 6 to 10]
(Preparation of coating for nonmagnetic layer)
Acicular α-iron oxide 80.0 parts by mass (average particle size: 65 nm, BET specific surface area: 85 m 2 / g)
20.0 parts by mass of carbon black (trade name: # 950B, manufactured by Mitsubishi Chemical Corporation, average particle size: 17 nm, BET specific surface area: 250 m 2 / g, DBP oil absorption: 70 ml / 100 g, pH: 8)
Binder Thermosetting vinyl chloride resin 12.0 parts by mass (MR110)
Binder Each thermosetting polyurethane resin shown in Table 5 10.0 parts by mass (synthesized above)
Dispersant Phosphate-based surfactant 3.2 parts by mass (trade name: RE-610, manufactured by Toho Chemical Industry Co., Ltd.)
Abrasive material α-alumina 5.0 parts by mass (product name: HIT60A, average particle size: 0.18 μm, manufactured by Sumitomo Chemical Co., Ltd.)
NV (solid content concentration) = 70% (mass percentage)
Solvent ratio MEK / toluene / cyclohexanone = 2/2/1 (mass ratio)

上記の材料をニーダーで混練した後、混練物をNV(固形分濃度)=30重量%又は35重量%(表5に「分散前NV [%] 」として示す)になるように、上記と同じ混合比率の溶剤を用いて希釈し、希釈物を得た。この希釈物の粘度を測定し、「分散前粘度 [cp] 」として表5に示す。   After kneading the above materials with a kneader, the kneaded product is NV (solid content concentration) = 30 wt% or 35 wt% (shown as “NV [%] before dispersion” in Table 5) as above. Dilution was performed using a solvent having a mixing ratio to obtain a diluted product. The viscosity of this diluted product was measured and shown in Table 5 as “viscosity before dispersion [cp]”.

この希釈物を0.8mmのジルコニアビーズを充填率80%(空隙率50vol%)で充填した横型のピンミルによって滞留時間60分にて分散した。分散途中においてサンプリングを行い、適宜、粘度を測定した。測定した粘度のうち最も高い粘度の値を「分散中粘度 [cp] 」として表5に示す。   The diluted product was dispersed in a residence time of 60 minutes by a horizontal pin mill filled with 0.8 mm zirconia beads at a filling rate of 80% (porosity: 50 vol%). Sampling was performed during the dispersion, and the viscosity was measured appropriately. The highest viscosity value among the measured viscosities is shown in Table 5 as “viscosity during dispersion [cp]”.

その後、さらに、下記潤滑剤材料:
潤滑剤 脂肪酸 0.5質量部
(日本油脂(株)製 商品名:NAA180)
潤滑剤 脂肪酸アマイド 0.5質量部
(花王(株)製 商品名:脂肪酸アマイドS)
潤滑剤 脂肪酸エステル 1.0質量部
(日光ケミカルズ(株)製 商品名:NIKKOLBS)
を添加して、
NV(固形分濃度)=24%(質量百分率)
溶剤比率 MEK/トルエン/シクロヘキサノン=2/2/1(質量比)
となるように希釈した後、分散を行いタンクに出筒した。出筒時点における塗料の粘度を測定した。この粘度を「分散後希釈後粘度 [cp] 」として表5に示す。
Then further lubricant materials:
Lubricant Fatty acid 0.5 part by mass (Nippon Yushi Co., Ltd. product name: NAA180)
Lubricant Fatty Acid Amide 0.5 part by mass (trade name: Fatty Acid Amide S, manufactured by Kao Corporation)
Lubricant Fatty acid ester 1.0 part by mass (trade name: NIKKOLBS manufactured by Nikko Chemicals Co., Ltd.)
Add
NV (solid content concentration) = 24% (mass percentage)
Solvent ratio MEK / toluene / cyclohexanone = 2/2/1 (mass ratio)
After diluting so as to become dispersed, it was dispersed and put into a tank. The viscosity of the paint at the time of delivery was measured. This viscosity is shown in Table 5 as “viscosity after dilution after dispersion [cp]”.

続いて、得られた塗料に熱硬化剤(日本ポリウレタン工業(株)製 コロネートL)4質量部を添加混合した後、さらに絶対濾過精度1.0μmのフィルターで濾過して、各非磁性塗料を作製した。これを磁気テープの製造に供した。   Subsequently, 4 parts by mass of a thermosetting agent (Coronate L, manufactured by Nippon Polyurethane Industry Co., Ltd.) was added to and mixed with the obtained coating material, and then filtered through a filter having an absolute filtration accuracy of 1.0 μm. Produced. This was used for the production of magnetic tape.

さらに、塗料の安定性を評価するために、得られた塗料をタンク内に1週間静置し、1週間静置時点における塗料の粘度を測定した。この粘度の値を「1週間後粘度 [cp] 」として表5に示す。   Furthermore, in order to evaluate the stability of the paint, the obtained paint was allowed to stand in a tank for 1 week, and the viscosity of the paint at the time of standing for 1 week was measured. This viscosity value is shown in Table 5 as “viscosity after 1 week [cp]”.

また、塗料の安定性を評価するために、得られた塗料をタンク内に1日間静置したときに、塗料中に沈殿が生じているか否かを目視にて観察した。この結果を表5に示す。   Further, in order to evaluate the stability of the paint, when the obtained paint was left in a tank for 1 day, it was visually observed whether or not precipitation occurred in the paint. The results are shown in Table 5.

(磁性層用塗料の調製)
実施例1と全く同様にして磁性層用塗料を作製した。
(Preparation of coating for magnetic layer)
A magnetic layer coating was prepared in exactly the same manner as in Example 1.

(バックコート層用塗料の調製)
実施例1と全く同様にしてバックコート層用塗料を作製した。
(Preparation of paint for back coat layer)
A paint for the backcoat layer was prepared in exactly the same manner as in Example 1.

(非磁性層形成工程)
厚さ5.0μmのベースフィルム(ポリエチレンナフタレートフィルム)の一方の面上に、カレンダー加工後の厚さが1.1μmになるように、上記の非磁性層用塗料をノズルにより押し出し塗布法で塗布して、乾燥した。その後、プラスチックロールと金属ロールとを組み合わせたカレンダーによって、ニップ数4回、加工温度100℃、線圧3500N/cmで加工を行い、さらに、60℃、24時間の熱硬化を行い、下層非磁性層を形成した。
(Non-magnetic layer forming process)
On one side of a 5.0 μm-thick base film (polyethylene naphthalate film), the above-mentioned non-magnetic layer coating material is extruded by a nozzle so that the thickness after calendering becomes 1.1 μm. Applied and dried. After that, with a calender combining a plastic roll and a metal roll, the nip number is 4 times, the processing temperature is 100 ° C., the linear pressure is 3500 N / cm, and the thermosetting is further performed at 60 ° C. for 24 hours. A layer was formed.

(磁性層形成工程)
上記のようにして形成した下層非磁性層上に、上記の磁性層用塗料を、加工後の厚さが0.1μmになるようにノズルにより押し出し塗布法で塗布して、配向を行い、乾燥した。その後、プラスチックロールと金属ロールとを組み合わせたカレンダーによって、ニップ数4回、加工温度100℃、線圧3500N/cmで加工を行い、上層磁性層を形成した。
(Magnetic layer forming process)
On the lower non-magnetic layer formed as described above, the magnetic layer coating material is applied by an extrusion coating method with a nozzle so that the thickness after processing becomes 0.1 μm, oriented, and dried. did. Thereafter, a calender combining a plastic roll and a metal roll was used to perform processing at a nip number of 4 times, a processing temperature of 100 ° C., and a linear pressure of 3500 N / cm to form an upper magnetic layer.

(バックコート形成工程)
ベースフィルムの他方の面上に、上記のバックコート層用塗料を、加工後の厚さが0.4μmになるようにノズルにより押し出し塗布法で塗布して、乾燥した。その後、プラスチックロールと金属ロールとを組み合わせたカレンダーによって、ニップ数4回、加工温度100℃、線圧3500N/cmで加工を行い、バックコート層を形成した。
(Back coat forming process)
On the other surface of the base film, the above-mentioned coating material for the backcoat layer was applied by an extrusion coating method with a nozzle so that the thickness after processing was 0.4 μm, and dried. Thereafter, a back coat layer was formed by calendering a combination of a plastic roll and a metal roll at a nip number of 4 times, a processing temperature of 100 ° C., and a linear pressure of 3500 N / cm.

以上のようにして得られた磁気記録テープ原反を、60℃で48時間熱硬化させて、次いで、1/2inch(=12.650mm)幅にスリット(裁断)し、実施例7〜12、及び比較例6〜10の磁気記録テープサンプルとしてのデータ用テープをそれぞれ作製した。   The magnetic recording tape original fabric obtained as described above was thermally cured at 60 ° C. for 48 hours, and then slit (cut) to a width of 1/2 inch (= 12.650 mm). Examples 7 to 12, And the tape for data as a magnetic recording tape sample of Comparative Examples 6-10 was produced, respectively.

[磁気テープの評価]
各磁気記録テープサンプルについて、実施例1におけるのと同様の評価を行った。ビットエラーレートb−ERTの測定においては、比較例6の磁気テープサンプルを基準テープとした。
[Evaluation of magnetic tape]
Each magnetic recording tape sample was evaluated in the same manner as in Example 1. In the measurement of the bit error rate b-ERT, the magnetic tape sample of Comparative Example 6 was used as a reference tape.

以上の結果を表5に示す。   The results are shown in Table 5.

表5から分かるように、実施例7〜12において、下層非磁性層の結合剤として、スルホン酸金属塩基を200eq/t以上250eq/t以下の範囲で有し、且つ、前記条件で測定された還元粘度が0.42以上0.55以下であるポリウレタン樹脂を用いると、非磁性層塗料中において微細な非磁性無機粉末の分散性が向上し、粘度上昇が見られず安定性に優れた非磁性層塗料が作製された。これら非磁性層塗料を用いると、塗布した際のレベリングが良好であり、平滑な非磁性層を形成することができ、そのため、表面平滑性に優れた上層磁性層が得られた。その結果、実施例7〜12の磁気記録媒体はいずれも、電磁変換特性に優れていた。   As can be seen from Table 5, in Examples 7-12, the binder of the lower nonmagnetic layer had a sulfonic acid metal base in the range of 200 eq / t to 250 eq / t, and was measured under the above conditions. When a polyurethane resin having a reduced viscosity of 0.42 or more and 0.55 or less is used, the dispersibility of the fine nonmagnetic inorganic powder in the nonmagnetic layer coating is improved, and no increase in viscosity is observed and the stability is excellent. A magnetic layer paint was produced. When these nonmagnetic coating materials were used, the leveling when applied was good, and a smooth nonmagnetic layer could be formed. Therefore, an upper magnetic layer excellent in surface smoothness was obtained. As a result, all the magnetic recording media of Examples 7 to 12 were excellent in electromagnetic conversion characteristics.

実施例7〜12において、非磁性層塗料は、粘度上昇が見られず安定性に優れており、非磁性層塗料をフィルタリングする際のフィルターの目詰まりの発生もなかった。このように、製造工程上においても利点があった。   In Examples 7 to 12, the nonmagnetic layer coating material was excellent in stability with no increase in viscosity, and there was no clogging of the filter when filtering the nonmagnetic layer coating material. Thus, there was also an advantage in the manufacturing process.

Figure 2010049731
Figure 2010049731

Claims (8)

非磁性支持体と、非磁性支持体の一方の面上の下層非磁性層と、下層非磁性層上の上層磁性層とを少なくとも有する磁気記録媒体であって、
前記上層磁性層は、強磁性粉末、及び結合剤を少なくとも含み、
前記下層非磁性層は、カーボンブラック、カーボンブラック以外の非磁性無機粉末、及び結合剤を少なくとも含み、
前記下層非磁性層に含まれる結合剤として、スルホン酸金属塩基及び硫酸金属塩基から選ばれる極性基を200eq/t以上250eq/t以下の範囲で有し、且つ、次の条件:
測定溶媒:トルエン/メチルエチルケトン/シクロヘキサノン=40/40/20(重量比)
測定溶液濃度:4g/L
測定温度:30℃
で測定された還元粘度が0.42以上0.55以下であるポリウレタン樹脂が用いられている磁気記録媒体。
A magnetic recording medium having at least a nonmagnetic support, a lower nonmagnetic layer on one surface of the nonmagnetic support, and an upper magnetic layer on the lower nonmagnetic layer,
The upper magnetic layer includes at least a ferromagnetic powder and a binder,
The lower nonmagnetic layer includes at least carbon black, nonmagnetic inorganic powder other than carbon black, and a binder,
The binder contained in the lower non-magnetic layer has a polar group selected from a sulfonate metal base and a sulfate metal base in a range of 200 eq / t to 250 eq / t, and the following conditions:
Measuring solvent: toluene / methyl ethyl ketone / cyclohexanone = 40/40/20 (weight ratio)
Measurement solution concentration: 4 g / L
Measurement temperature: 30 ° C
A magnetic recording medium in which a polyurethane resin having a reduced viscosity of 0.42 or more and 0.55 or less measured in (1) is used.
前記カーボンブラック以外の非磁性無機粉末は、平均長軸長が40nm以上95nm以下の酸化鉄、及び平均長軸長が40nm以上95nm以下のオキシ水酸化鉄の少なくとも一方を含んでいる、請求項1に記載の磁気記録媒体。   The nonmagnetic inorganic powder other than the carbon black contains at least one of iron oxide having an average major axis length of 40 nm to 95 nm and iron oxyhydroxide having an average major axis length of 40 nm to 95 nm. 2. A magnetic recording medium according to 1. 前記酸化鉄は、BET法による比表面積が80m2 /g以上100m2 /g以下のものである、請求項2に記載の磁気記録媒体。 The magnetic recording medium according to claim 2, wherein the iron oxide has a specific surface area by a BET method of 80 m 2 / g or more and 100 m 2 / g or less. 前記オキシ水酸化鉄は、BET法による比表面積が80m2 /g以上100m2 /g以下のものである、請求項2に記載の磁気記録媒体。 The magnetic recording medium according to claim 2, wherein the iron oxyhydroxide has a specific surface area of 80 m 2 / g or more and 100 m 2 / g or less by a BET method. 前記ポリウレタン樹脂は、放射線官能基を有する、請求項1〜4のうちのいずれかに記載の磁気記録媒体。   The magnetic recording medium according to claim 1, wherein the polyurethane resin has a radiation functional group. 前記上層磁性層は、0.30μm以下の厚さを有する、請求項1〜5のうちのいずれかに記載の磁気記録媒体。   The magnetic recording medium according to claim 1, wherein the upper magnetic layer has a thickness of 0.30 μm or less. 前記下層非磁性層は、0.3μm以上1.3μm以下の厚さを有する、請求項1〜6のうちのいずれかに記載の磁気記録媒体。   The magnetic recording medium according to claim 1, wherein the lower nonmagnetic layer has a thickness of 0.3 μm to 1.3 μm. 非磁性支持体と、非磁性支持体の一方の面上の下層非磁性層と、下層非磁性層上の上層磁性層とを少なくとも有する磁気記録媒体の製造方法であって、
カーボンブラック、カーボンブラック以外の非磁性無機粉末、及び結合剤として、スルホン酸金属塩基及び硫酸金属塩基から選ばれる極性基を200eq/t以上250eq/t以下の範囲で有し、且つ、次の条件:
測定溶媒:トルエン/メチルエチルケトン/シクロヘキサノン=40/40/20(重量比)
測定溶液濃度:4g/L
測定温度:30℃
で測定された還元粘度が0.42以上0.55以下であるポリウレタン樹脂を少なくとも含む非磁性層用塗料を調製する工程と、
非磁性支持体の一方の面上に、調製された非磁性層用塗料を塗布して下層非磁性層を形成する工程と、
前記下層非磁性層上に、強磁性粉末、及び結合剤を少なくとも含む磁性層用塗料を塗布、乾燥して上層磁性層を形成する工程と
を含む磁気記録媒体の製造方法。
A method for producing a magnetic recording medium comprising at least a nonmagnetic support, a lower nonmagnetic layer on one surface of the nonmagnetic support, and an upper magnetic layer on the lower nonmagnetic layer,
Carbon black, a nonmagnetic inorganic powder other than carbon black, and a binder having a polar group selected from sulfonate metal base and sulfate metal base in the range of 200 eq / t to 250 eq / t, and the following conditions :
Measuring solvent: toluene / methyl ethyl ketone / cyclohexanone = 40/40/20 (weight ratio)
Measurement solution concentration: 4 g / L
Measurement temperature: 30 ° C
A step of preparing a coating for a nonmagnetic layer containing at least a polyurethane resin having a reduced viscosity of 0.42 or more and 0.55 or less measured in
Applying a prepared nonmagnetic layer coating on one surface of the nonmagnetic support to form a lower nonmagnetic layer;
Applying a magnetic layer coating material containing at least a ferromagnetic powder and a binder on the lower nonmagnetic layer and drying to form an upper magnetic layer.
JP2008212231A 2008-08-20 2008-08-20 Magnetic recording medium and method for manufacturing the same Expired - Fee Related JP5195153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212231A JP5195153B2 (en) 2008-08-20 2008-08-20 Magnetic recording medium and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212231A JP5195153B2 (en) 2008-08-20 2008-08-20 Magnetic recording medium and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2010049731A true JP2010049731A (en) 2010-03-04
JP5195153B2 JP5195153B2 (en) 2013-05-08

Family

ID=42066694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212231A Expired - Fee Related JP5195153B2 (en) 2008-08-20 2008-08-20 Magnetic recording medium and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP5195153B2 (en)

Cited By (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187129A (en) * 2010-03-10 2011-09-22 Fujifilm Corp Magnetic recording medium
JP2011192360A (en) * 2010-03-16 2011-09-29 Fujifilm Corp Magnetic tape and method for manufacturing the same
JP2011216179A (en) * 2010-03-19 2011-10-27 Fujifilm Corp Magnetic recording medium and method of manufacturing the same
US9984710B2 (en) 2015-12-16 2018-05-29 Fujifilm Corporation Magnetic tape having controlled surface properties of the backcoat and magnetic layer and method of manufacturing the same
US10026433B2 (en) 2015-08-21 2018-07-17 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer and method of manufacturing the same
US10026434B2 (en) 2015-08-21 2018-07-17 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer and method of manufacturing the same
US10347280B2 (en) 2016-06-23 2019-07-09 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10347279B2 (en) 2016-02-03 2019-07-09 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10360937B2 (en) 2017-03-29 2019-07-23 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10366721B2 (en) 2017-06-23 2019-07-30 Fujifilm Corporation Head positioning of timing-based servo system for magnetic tape recording device
US10373633B2 (en) 2016-12-27 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10373639B2 (en) 2017-03-29 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10395685B2 (en) 2017-03-29 2019-08-27 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10403319B2 (en) 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
US10403312B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10403320B2 (en) 2016-12-27 2019-09-03 Fujifilm Corporation Magnetic tape device with TMR head and specific logarithmic decrement and magnetic reproducing method
US10403318B2 (en) 2016-06-24 2019-09-03 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10403317B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10403316B2 (en) 2017-07-19 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer with servo pattern and magnetic tape device
US10403314B2 (en) 2017-02-20 2019-09-03 Fujifilm Corporation Magnetic tape device employing TMR head and magnetic tape with characterized magnetic layer, and head tracking servo method
US10410666B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10410665B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10424330B2 (en) 2017-02-20 2019-09-24 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10431251B2 (en) 2017-03-29 2019-10-01 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10431250B2 (en) 2017-02-20 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10431249B2 (en) 2016-06-23 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10431248B2 (en) 2016-06-10 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
JP2019169227A (en) * 2018-03-23 2019-10-03 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP2019169226A (en) * 2018-03-23 2019-10-03 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP2019169228A (en) * 2018-03-23 2019-10-03 富士フイルム株式会社 Magnetic tape and magnetic tape device
US10438622B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10438628B2 (en) 2016-12-27 2019-10-08 Fujifilm Corporation Magnetic tape device with magnetic tape having particular C-H derived C concentration and magnetic reproducing method
US10438621B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10438625B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438624B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438623B2 (en) 2017-03-29 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10453488B2 (en) 2017-02-20 2019-10-22 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10460756B2 (en) 2017-02-20 2019-10-29 Fujifilm Corporation Magnetic tape device and head tracking servo method employing TMR element servo head and magnetic tape with characterized magnetic layer
US10475480B2 (en) 2017-02-20 2019-11-12 Fujifilm Corporation Magnetic tape having characterized back coating and magnetic layers
US10475481B2 (en) 2016-02-03 2019-11-12 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10477072B2 (en) 2016-06-22 2019-11-12 Fujifilm Corporation Magnetic tape having characterized magnetic layer and hexagonal ferrite powder
US10482913B2 (en) 2017-02-20 2019-11-19 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10482915B2 (en) 2016-12-27 2019-11-19 Fujifilm Corporation Magnetic tape device and magnetic reproducing method employing TMR head and magnetic tape having characterized magnetic layer
US10490220B2 (en) 2017-03-29 2019-11-26 Fujifilm Corporation Magnetic tape device, magnetic reproducing method, and head tracking servo method
US10497388B2 (en) 2016-06-23 2019-12-03 Fujifilm Corporation Magnetic tape including characterized magnetic layer
US10497389B2 (en) 2016-06-13 2019-12-03 Fujifilm Corporation Magnetic tape and magnetic tape device
US10497384B2 (en) 2017-02-20 2019-12-03 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and magnetic tape with characterized magnetic layer
US10504546B2 (en) 2016-06-23 2019-12-10 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10510369B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10510370B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10510368B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10515660B2 (en) 2016-06-22 2019-12-24 Fujifilm Corporation Magnetic tape having controlled surface properties of the back coating layer and magnetic layer
US10522180B2 (en) 2015-12-16 2019-12-31 Fujifilm Corporation Magnetic tape including characterized magnetic layer, tape cartridge, recording and reproducing device, and method of manufacturing
US10522179B2 (en) 2016-08-31 2019-12-31 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10522171B2 (en) 2016-06-23 2019-12-31 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer
US10529368B2 (en) 2016-08-31 2020-01-07 Fujifilm Corporation Magnetic tape having characterized magnetic layer and back coating layer
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10546602B2 (en) 2017-02-20 2020-01-28 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and tape with characterized XRD intensity ratio
US10546605B2 (en) 2017-03-29 2020-01-28 Fujifilm Corporation Head tracking servo method for magnetic tape recording device
US10573338B2 (en) 2017-02-20 2020-02-25 Fujifilm Corporation Magnetic tape device and magnetic reproducting method employing TMR head and tape with characterized magnetic layer
US10573341B2 (en) 2015-12-25 2020-02-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US10692522B2 (en) 2016-09-16 2020-06-23 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and method for manufacturing same
US20200211592A1 (en) 2018-12-28 2020-07-02 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US10714139B2 (en) 2017-07-19 2020-07-14 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10770105B2 (en) 2017-07-19 2020-09-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10839849B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10839850B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10839851B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854226B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10854227B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854234B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854233B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854231B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854230B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854232B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854228B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854229B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10861491B2 (en) 2016-02-29 2020-12-08 Fujifilm Corporation Magnetic tape
US10896692B2 (en) 2016-02-29 2021-01-19 Fujifilm Corporation Magnetic tape
US10937456B2 (en) 2016-02-29 2021-03-02 Fujifilm Corporation Magnetic tape
US10978105B2 (en) 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11373680B2 (en) 2017-09-29 2022-06-28 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229522A (en) * 2000-02-09 2001-08-24 Toyobo Co Ltd Magnetic recording medium
JP2004063049A (en) * 2002-07-31 2004-02-26 Tdk Corp Magnetic recording medium
JP2004152333A (en) * 2002-10-29 2004-05-27 Fuji Photo Film Co Ltd Magnetic recording medium
JP2005149623A (en) * 2003-11-17 2005-06-09 Tdk Corp Magnetic recording medium
JP2007299459A (en) * 2006-04-28 2007-11-15 Dowa Electronics Materials Co Ltd Oxy iron hydroxide powder for multi-layered magnetic recording medium, and magnetic recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229522A (en) * 2000-02-09 2001-08-24 Toyobo Co Ltd Magnetic recording medium
JP2004063049A (en) * 2002-07-31 2004-02-26 Tdk Corp Magnetic recording medium
JP2004152333A (en) * 2002-10-29 2004-05-27 Fuji Photo Film Co Ltd Magnetic recording medium
JP2005149623A (en) * 2003-11-17 2005-06-09 Tdk Corp Magnetic recording medium
JP2007299459A (en) * 2006-04-28 2007-11-15 Dowa Electronics Materials Co Ltd Oxy iron hydroxide powder for multi-layered magnetic recording medium, and magnetic recording medium

Cited By (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187129A (en) * 2010-03-10 2011-09-22 Fujifilm Corp Magnetic recording medium
JP2011192360A (en) * 2010-03-16 2011-09-29 Fujifilm Corp Magnetic tape and method for manufacturing the same
US8617728B2 (en) 2010-03-16 2013-12-31 Fujifilm Corporation Magnetic tape and method of manufacturing the same
JP2011216179A (en) * 2010-03-19 2011-10-27 Fujifilm Corp Magnetic recording medium and method of manufacturing the same
US10910009B2 (en) 2015-08-21 2021-02-02 Fujifilm Corporation Magnetic tape having a characterized magnetic layer and method of manufacturing the same
US10026433B2 (en) 2015-08-21 2018-07-17 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer and method of manufacturing the same
US10026434B2 (en) 2015-08-21 2018-07-17 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer and method of manufacturing the same
US10540996B2 (en) 2015-09-30 2020-01-21 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10403319B2 (en) 2015-12-16 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer, tape cartridge, and recording and reproducing device
US10522180B2 (en) 2015-12-16 2019-12-31 Fujifilm Corporation Magnetic tape including characterized magnetic layer, tape cartridge, recording and reproducing device, and method of manufacturing
US9984710B2 (en) 2015-12-16 2018-05-29 Fujifilm Corporation Magnetic tape having controlled surface properties of the backcoat and magnetic layer and method of manufacturing the same
US10573341B2 (en) 2015-12-25 2020-02-25 Fujifilm Corporation Magnetic tape and method of manufacturing the same
US10347279B2 (en) 2016-02-03 2019-07-09 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10475481B2 (en) 2016-02-03 2019-11-12 Fujifilm Corporation Magnetic tape having characterized backcoat layer and method of manufacturing the same
US10937456B2 (en) 2016-02-29 2021-03-02 Fujifilm Corporation Magnetic tape
US10896692B2 (en) 2016-02-29 2021-01-19 Fujifilm Corporation Magnetic tape
US10861491B2 (en) 2016-02-29 2020-12-08 Fujifilm Corporation Magnetic tape
US10431248B2 (en) 2016-06-10 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10679660B2 (en) 2016-06-13 2020-06-09 Fujifilm Corporation Magnetic tape and magnetic tape device
US10497389B2 (en) 2016-06-13 2019-12-03 Fujifilm Corporation Magnetic tape and magnetic tape device
US10515660B2 (en) 2016-06-22 2019-12-24 Fujifilm Corporation Magnetic tape having controlled surface properties of the back coating layer and magnetic layer
US10477072B2 (en) 2016-06-22 2019-11-12 Fujifilm Corporation Magnetic tape having characterized magnetic layer and hexagonal ferrite powder
US10510369B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10510370B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10347280B2 (en) 2016-06-23 2019-07-09 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10522171B2 (en) 2016-06-23 2019-12-31 Fujifilm Corporation Magnetic tape having controlled surface properties of the magnetic layer
US10431249B2 (en) 2016-06-23 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10497388B2 (en) 2016-06-23 2019-12-03 Fujifilm Corporation Magnetic tape including characterized magnetic layer
US10510368B2 (en) 2016-06-23 2019-12-17 Fujifilm Corporation Magnetic tape including characterized magnetic layer and magnetic tape device
US10504546B2 (en) 2016-06-23 2019-12-10 Fujifilm Corporation Magnetic tape having characterized magnetic particles and magnetic tape device
US10403318B2 (en) 2016-06-24 2019-09-03 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10529368B2 (en) 2016-08-31 2020-01-07 Fujifilm Corporation Magnetic tape having characterized magnetic layer and back coating layer
US10522179B2 (en) 2016-08-31 2019-12-31 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10692522B2 (en) 2016-09-16 2020-06-23 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and method for manufacturing same
US10510366B2 (en) 2016-12-27 2019-12-17 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10403320B2 (en) 2016-12-27 2019-09-03 Fujifilm Corporation Magnetic tape device with TMR head and specific logarithmic decrement and magnetic reproducing method
US10438628B2 (en) 2016-12-27 2019-10-08 Fujifilm Corporation Magnetic tape device with magnetic tape having particular C-H derived C concentration and magnetic reproducing method
US10482915B2 (en) 2016-12-27 2019-11-19 Fujifilm Corporation Magnetic tape device and magnetic reproducing method employing TMR head and magnetic tape having characterized magnetic layer
US10373633B2 (en) 2016-12-27 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10573338B2 (en) 2017-02-20 2020-02-25 Fujifilm Corporation Magnetic tape device and magnetic reproducting method employing TMR head and tape with characterized magnetic layer
US10475480B2 (en) 2017-02-20 2019-11-12 Fujifilm Corporation Magnetic tape having characterized back coating and magnetic layers
US10460756B2 (en) 2017-02-20 2019-10-29 Fujifilm Corporation Magnetic tape device and head tracking servo method employing TMR element servo head and magnetic tape with characterized magnetic layer
US10482913B2 (en) 2017-02-20 2019-11-19 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10453488B2 (en) 2017-02-20 2019-10-22 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438624B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438625B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10438621B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10497384B2 (en) 2017-02-20 2019-12-03 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and magnetic tape with characterized magnetic layer
US10438622B2 (en) 2017-02-20 2019-10-08 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10546602B2 (en) 2017-02-20 2020-01-28 Fujifilm Corporation Magnetic tape device and reproducing method employing TMR reproducing head and tape with characterized XRD intensity ratio
US10403314B2 (en) 2017-02-20 2019-09-03 Fujifilm Corporation Magnetic tape device employing TMR head and magnetic tape with characterized magnetic layer, and head tracking servo method
US10431250B2 (en) 2017-02-20 2019-10-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10424330B2 (en) 2017-02-20 2019-09-24 Fujifilm Corporation Magnetic tape having characterized back coating layer
US10395685B2 (en) 2017-03-29 2019-08-27 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10438623B2 (en) 2017-03-29 2019-10-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10515661B2 (en) 2017-03-29 2019-12-24 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10497386B2 (en) 2017-03-29 2019-12-03 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10403317B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10490220B2 (en) 2017-03-29 2019-11-26 Fujifilm Corporation Magnetic tape device, magnetic reproducing method, and head tracking servo method
US10410665B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10431251B2 (en) 2017-03-29 2019-10-01 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10403312B2 (en) 2017-03-29 2019-09-03 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US10373639B2 (en) 2017-03-29 2019-08-06 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10546605B2 (en) 2017-03-29 2020-01-28 Fujifilm Corporation Head tracking servo method for magnetic tape recording device
US10360937B2 (en) 2017-03-29 2019-07-23 Fujifilm Corporation Magnetic tape device and head tracking servo method
US10410666B2 (en) 2017-03-29 2019-09-10 Fujifilm Corporation Magnetic tape device and magnetic reproducing method
US11631427B2 (en) 2017-06-23 2023-04-18 Fujifilm Corporation Magnetic recording medium
US10366721B2 (en) 2017-06-23 2019-07-30 Fujifilm Corporation Head positioning of timing-based servo system for magnetic tape recording device
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US10770105B2 (en) 2017-07-19 2020-09-08 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10854229B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10839849B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10839850B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10839851B2 (en) 2017-07-19 2020-11-17 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854226B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic tape device
US10854227B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10403316B2 (en) 2017-07-19 2019-09-03 Fujifilm Corporation Magnetic tape having characterized magnetic layer with servo pattern and magnetic tape device
US10714139B2 (en) 2017-07-19 2020-07-14 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854228B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854230B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic tape having characterized magnetic layer
US10854232B2 (en) 2017-07-19 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer
US10854231B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10978105B2 (en) 2017-09-29 2021-04-13 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10854233B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US10515657B2 (en) 2017-09-29 2019-12-24 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US10854234B2 (en) 2017-09-29 2020-12-01 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11462242B2 (en) 2017-09-29 2022-10-04 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11373680B2 (en) 2017-09-29 2022-06-28 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP2019169227A (en) * 2018-03-23 2019-10-03 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP2021044050A (en) * 2018-03-23 2021-03-18 富士フイルム株式会社 Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP2021044051A (en) * 2018-03-23 2021-03-18 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP2022113853A (en) * 2018-03-23 2022-08-04 富士フイルム株式会社 Magnetic tape and magnetic tape device
JP7284326B2 (en) 2018-03-23 2023-05-30 富士フイルム株式会社 Magnetic tapes and magnetic tape devices
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
JP2019169228A (en) * 2018-03-23 2019-10-03 富士フイルム株式会社 Magnetic tape and magnetic tape device
US11581015B2 (en) 2018-03-23 2023-02-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11551716B2 (en) 2018-03-23 2023-01-10 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
JP2019169226A (en) * 2018-03-23 2019-10-03 富士フイルム株式会社 Magnetic tape and magnetic tape device
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11430475B2 (en) 2018-07-27 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US20200211592A1 (en) 2018-12-28 2020-07-02 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11443766B2 (en) 2018-12-28 2022-09-13 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11423935B2 (en) 2018-12-28 2022-08-23 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11437063B2 (en) 2019-01-31 2022-09-06 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device

Also Published As

Publication number Publication date
JP5195153B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP5195153B2 (en) Magnetic recording medium and method for manufacturing the same
JP5572915B2 (en) Polyurethane resin, magnetic coating composition and magnetic recording medium
JP5267764B2 (en) Polyurethane resin and magnetic recording medium using the same
JP4171968B2 (en) Polyurethane resin and magnetic recording medium using the same
JP5681075B2 (en) Magnetic recording medium and method for manufacturing the same
JPH0969222A (en) Magnetic recording medium
JP2005149623A (en) Magnetic recording medium
US20080187783A1 (en) Magnetic recording medium
JP4556299B2 (en) Magnetic recording medium
JP2007042214A (en) Magnetic recording medium
JPH10320746A (en) Magnetic recording medium
JP2008257754A (en) Magnetic recording medium and method for manufacturing the same
JP2004103067A (en) Magnetic recording medium
JP4561368B2 (en) Magnetic recording medium and manufacturing method thereof
JPH10320749A (en) Magnetic recording medium
JP2000322729A (en) Magnetic recording medium
JP2001338412A (en) Magnetic recording medium and method for producing the same
JP2001126230A (en) Magnetic recording medium and its manufacturing method
JP3250631B2 (en) Magnetic recording media
JP2005149622A (en) Magnetic recording medium
JP2000163736A (en) Magnetic recording medium
JP2008192238A (en) Magnetic recording medium
US20040009373A1 (en) Magnetic recording medium
JP2003346324A (en) Magnetic recording medium
JPH10162348A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees