JP2010048635A - Radar system - Google Patents

Radar system Download PDF

Info

Publication number
JP2010048635A
JP2010048635A JP2008212349A JP2008212349A JP2010048635A JP 2010048635 A JP2010048635 A JP 2010048635A JP 2008212349 A JP2008212349 A JP 2008212349A JP 2008212349 A JP2008212349 A JP 2008212349A JP 2010048635 A JP2010048635 A JP 2010048635A
Authority
JP
Japan
Prior art keywords
signal
converter
frequency
digital
representative value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008212349A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamamoto
清 山本
Kazuo Matsuura
一雄 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008212349A priority Critical patent/JP2010048635A/en
Publication of JP2010048635A publication Critical patent/JP2010048635A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that conventional converters are expensive and noise increases when a ΔΣ type A/D converter of patent document 1 is merely exchanged to an inexpensive successive-approximation type A/D converter. <P>SOLUTION: The radar system includes a signal output section outputting a first analogue signal having a first frequency and a second analogue signal having a second frequency; a successive-approximation type A/D converter, connected to the signal output section, converting the first and second analogue signals output by the signal output section respectively into a first and a second digital signals, overlapping the first and the second digital signals, and outputting them as one digital signal; and an operational circuit, connected to a signal conversion section, separating the one digital signal into a first and a second digital signals, and outputting them; in which the operational circuit computes a first representative value indicating a representative value of the first digital signal in a first time interval and computes a second representative value indicating a representative value of the second digital signal in a second time interval within a unit time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、連続的な電波を用いて障害物を検知するレーダ装置に関する。   The present invention relates to a radar apparatus that detects an obstacle using continuous radio waves.

自動車で走行時に障害物や前方走行車までの距離を計測する装置として、ミリ波を利用したレーダ装置が広く利用されている。レーダ装置は電波を放射し、障害物や車両などの物体からの反射波を受信する。そして、受信した反射波の強弱,周波数のドップラーシフト,電波の発射から反射波の受信までの伝搬時間などを検出し、その結果から物体までの距離や相対速度を計測する。   A radar device using millimeter waves is widely used as a device for measuring the distance to an obstacle or a forward vehicle when traveling in an automobile. The radar device emits radio waves and receives reflected waves from objects such as obstacles and vehicles. Then, the intensity of the received reflected wave, the Doppler shift of the frequency, the propagation time from the emission of the radio wave to the reception of the reflected wave, and the like are detected, and the distance and relative velocity to the object are measured from the result.

ここで、2周波CW方式のレーダ装置における、変調/復調回路に関する技術がある(特許文献1参照)。   Here, there is a technique related to a modulation / demodulation circuit in a two-frequency CW radar device (see Patent Document 1).

特許第2945821号公報Japanese Patent No. 2945821

従来方式では、復調回路11及び12とΔΣ型A/D変換器2個(15及び16)を用いて、復調を行っている(図2参照)。しかし、当該変換器は回路構成が複雑でコストが高いという課題がある。従って、回路構成が簡単でコストの安い逐次比較型A/D変換器を用いることが考えられるが、特許文献1の技術において、単にΔΣ型A/D変換器を逐次比較型A/D変換器に置き換えただけでは、ΔΣ型A/D変換器に内蔵のアンチエイリアスフィルタが利用できず、ナイキスト周波数を超える周波数の信号が折返しノイズとなって混入し、ノイズが大きくなる、という課題がある。   In the conventional method, demodulation is performed using the demodulation circuits 11 and 12 and two ΔΣ A / D converters (15 and 16) (see FIG. 2). However, the converter has a problem that the circuit configuration is complicated and the cost is high. Therefore, it is conceivable to use a successive approximation A / D converter with a simple circuit configuration and low cost. However, in the technique of Patent Document 1, a ΔΣ A / D converter is simply replaced with a successive approximation A / D converter. However, there is a problem that the anti-aliasing filter built in the ΔΣ A / D converter cannot be used, and a signal having a frequency exceeding the Nyquist frequency is mixed as aliasing noise, resulting in increased noise.

そこで、本発明の目的は、逐次比較型A/D変換器を用いてもノイズを抑えることが可能なレーダ装置を提供することにある。   Accordingly, an object of the present invention is to provide a radar apparatus that can suppress noise even when a successive approximation A / D converter is used.

上記課題を解決するため、本発明の望ましい態様の一つは次の通りである。   In order to solve the above problems, one of the desirable embodiments of the present invention is as follows.

レーダ装置は、第1の周波数を有する第1のアナログ信号及び第2の周波数を有する第2のアナログ信号を出力する信号出力部と、信号出力部に接続され、信号出力部が出力した第1及び第2のアナログ信号を、それぞれ第1及び第2のデジタル信号に変換し、当該第1及び第2のデジタル信号を重ね合わせて一つのデジタル信号として出力する逐次比較型A/D変換器と、信号変換部に接続され、一つのデジタル信号を第1及び第2のデジタル信号に振り分けて出力する演算回路を備え、演算回路は、単位時間のうち、第1の時間区間で前記第1のデジタル信号の代表値を示す第1の代表値を計算し、第2の時間区間で前記第2のデジタル信号の代表値を示す第2の代表値を計算する。   The radar apparatus includes a signal output unit that outputs a first analog signal having a first frequency and a second analog signal having a second frequency, and a first signal output from the signal output unit. And a successive approximation A / D converter that converts the first and second analog signals into first and second digital signals, and superimposes the first and second digital signals to output a single digital signal. And an arithmetic circuit that is connected to the signal conversion unit and distributes one digital signal to the first and second digital signals and outputs the first digital signal, and the arithmetic circuit includes the first time interval in a first time interval in a unit time. A first representative value indicating a representative value of the digital signal is calculated, and a second representative value indicating a representative value of the second digital signal is calculated in a second time interval.

本発明によれば、逐次比較型A/D変換器を用いてもノイズを抑えることが可能なレーダ装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the radar apparatus which can suppress noise even if it uses a successive approximation type A / D converter can be provided.

以下、図面を参照して、実施例について説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は、レーダ装置の構成図である。   FIG. 1 is a configuration diagram of a radar apparatus.

当該レーダ装置は、変調/復調回路1,変調/復調回路が出力した信号をミリ波帯の電波に変換する高周波発生器2,高周波発生器2が出力したミリ波帯の電波を送信用と混合用に分配する方向性結合器3,方向性結合器が出力した送信用の電波を外部に送信する送信アンテナ4,先行車等の物体に反射した電波を受信する受信アンテナ5,当該受信した電波と方向性結合器3が出力した混合用の電波を混合してビート信号を発生させるミキサ6,ミキサ6が出力したビート信号を増幅するオペアンプ7,オペアンプ7が出力した増幅されたアナログ信号であるビート信号をデジタル信号に変換(A/D変換)する逐次比較型A/D変換器8,逐次比較型A/D変換器8が出力したデジタル信号を従来のΔΣ型A/D変換器による変換結果と同等のデジタル信号となるよう計算する演算回路9、及び演算回路9が出力したデジタル信号に対してFFT解析処理等を行い当該レーダ装置と先行車等との間の距離,角度,相対速度等を計算する信号処理装置10とからなる。   The radar apparatus includes a modulation / demodulation circuit 1, a high-frequency generator 2 that converts a signal output from the modulation / demodulation circuit into a millimeter-wave radio wave, and a millimeter-wave radio wave output from the high-frequency generator 2 that is mixed with a transmitter. Directional coupler 3 for distribution for use, transmitting antenna 4 for transmitting the transmission radio wave output from the directional coupler 4, receiving antenna 5 for receiving the radio wave reflected on an object such as a preceding vehicle, etc. The mixer 6 that mixes the radio waves for mixing output from the directional coupler 3 and generates a beat signal, the operational amplifier 7 that amplifies the beat signal output from the mixer 6, and the amplified analog signal output from the operational amplifier 7 A successive approximation A / D converter 8 that converts beat signals into digital signals (A / D conversion), and a digital signal output from the successive approximation A / D converter 8 is converted by a conventional ΔΣ A / D converter. Same as result The arithmetic circuit 9 that calculates to be a digital signal, and the digital signal output from the arithmetic circuit 9 perform FFT analysis processing and the like to determine the distance, angle, relative speed, etc. between the radar device and the preceding vehicle, etc. It comprises a signal processing device 10 for calculation.

ここで、一般的な2周波CW方式について説明する。当該方式では、周波数f1,f2の2つの電波を切替え遷移しながら送信し物体で反射して戻ってきた反射波を受信する。f1,f2の二つの送信信号に対してそれぞれビート信号が得られるので、f1を送信している区間に取得したデータから計測されるビート信号の周波数は、ターゲットとの相対速度Vに比例したドップラーシフトfd=−2Vf1/cに等しい。そこで、Vは数式1によって求まる。   Here, a general two-frequency CW system will be described. In this method, two radio waves having frequencies f1 and f2 are transmitted while being switched, and a reflected wave reflected by an object and returned is received. Since a beat signal is obtained for each of the two transmission signals f1 and f2, the frequency of the beat signal measured from the data acquired in the section transmitting f1 is Doppler proportional to the relative speed V with the target. The shift fd is equal to −2Vf1 / c. Therefore, V is obtained by Equation 1.

(数式1)
V=−fd×c/(2×f1)
更に、受信波はターゲットまでの距離Rを往復しているので、受信波の位相は、その受信波が受信された時点での送信波の位相とは異なっている。f1を送信している区間に取得したデータから計測される位相をΔφ1、f2を送信している区間に取得したデータから計測される位相をΔφ2とすると、Rは数式2によって求まる。
(Formula 1)
V = −fd × c / (2 × f1)
Furthermore, since the received wave reciprocates the distance R to the target, the phase of the received wave is different from the phase of the transmitted wave when the received wave is received. If the phase measured from the data acquired in the section transmitting f1 is Δφ1, and the phase measured from the data acquired in the section transmitting f2 is Δφ2, R is obtained by Equation 2.

(数式2)
Δφ1−Δφ2=4πR×(f1−f2)/c
図2は、従来の2周波CW方式レーダ装置の構成図である。
(Formula 2)
Δφ1−Δφ2 = 4πR × (f1−f2) / c
FIG. 2 is a configuration diagram of a conventional two-frequency CW radar device.

従来のレーダ装置は、変調/復調回路1,変調/復調回路が出力した信号をミリ波帯の電波に変換する高周波発生器2,高周波発生器2が出力したミリ波帯の電波を送信用と混合用に分配する方向性結合器3,方向性結合器が出力した送信用の電波を外部に送信する送信アンテナ4,先行車等の物体に反射した電波を受信する受信アンテナ5,当該受信した電波と方向性結合器3が出力した混合用の電波を混合してビート信号を発生させるミキサ6,ミキサ6が出力したビート信号を増幅するオペアンプ7,変調のタイミングに連動して制御される復調回路11及び復調回路12,サンプルホールド回路13及び14,ΔΣ型A/D変換器15及び16,A/D変換結果のデジタル信号に対してFFT解析処理等を行い当該レーダ装置と先行車等との間の距離,角度,相対速度等を計算する信号処理装置10とからなる。   A conventional radar apparatus is used for transmitting a modulation / demodulation circuit 1, a high-frequency generator 2 for converting a signal output from the modulation / demodulation circuit into a millimeter-wave radio wave, and a millimeter-wave radio wave output by a high-frequency generator 2 for transmission. Directional coupler 3 to be distributed for mixing 3, transmitting antenna 4 for transmitting the output radio wave output from the directional coupler 4, receiving antenna 5 for receiving the radio wave reflected on an object such as a preceding vehicle, etc. A mixer 6 that generates a beat signal by mixing a radio wave and a mixing radio wave output from the directional coupler 3, an operational amplifier 7 that amplifies the beat signal output from the mixer 6, and a demodulation controlled in conjunction with the modulation timing Circuit 11 and demodulating circuit 12, sample and hold circuits 13 and 14, ΔΣ type A / D converters 15 and 16, and A / D conversion result digital signal is subjected to FFT analysis processing etc. The signal processing device 10 calculates the distance, angle, relative speed, etc.

2周波CW方式レーダでは、送信する周波数を時間的に切替えているので、通常、f1を送信して得たビート信号fd1と周波数f2を送信して得たビート信号fd2とを分離する復調回路が必要となる。復調回路11及び12は、送信周波数の変調タイミングに連動して、変調/復調回路01から送られる制御信号により制御される。即ち、fd1を得る時にはf1を送信している時間に復調回路11のアナログスイッチのゲートを開き、f2を送信している時には復調回路12のアナログスイッチのゲートを閉じる。又、それぞれのアナログスイッチの後段にはサンプルホールド回路13及び14が接続され、それぞれの出力信号をホールドした後、ΔΣ型A/D変換器15及び16によって、ビート信号をデジタル信号へ変換する。   In the two-frequency CW system radar, since the frequency to be transmitted is temporally switched, a demodulation circuit that separates the beat signal fd1 obtained by transmitting f1 and the beat signal fd2 obtained by transmitting frequency f2 is usually provided. Necessary. The demodulation circuits 11 and 12 are controlled by a control signal sent from the modulation / demodulation circuit 01 in conjunction with the modulation timing of the transmission frequency. That is, when fd1 is obtained, the analog switch gate of the demodulation circuit 11 is opened at the time when f1 is transmitted, and when the f2 is transmitted, the analog switch gate of the demodulation circuit 12 is closed. Sample hold circuits 13 and 14 are connected to the subsequent stage of each analog switch, hold the respective output signals, and then convert the beat signals into digital signals by ΔΣ type A / D converters 15 and 16.

次に、本実施例をより分かりやすくする為に、まず、従来方式のA/D変換以降の処理手順を説明する。   Next, in order to make this embodiment easier to understand, first, a processing procedure after A / D conversion of the conventional method will be described.

2周波CW方式レーダの場合、受信されミキサ6から出力されるビート信号は、図4のように示される。ビート信号は、位相の異なる2つのSin波が、送信周波数f1,f2を切替えるタイミングで時分割された信号として観測される。   In the case of a two-frequency CW system radar, the beat signal received and output from the mixer 6 is shown as in FIG. The beat signal is observed as a signal in which two Sin waves having different phases are time-divided at a timing when the transmission frequencies f1 and f2 are switched.

図3は、従来の復調処理の内容を示す図である。(A)の101は一般的な2周波CW方式のレーダの変調波形を示し、(B)で101に同期した信号処理のタイミングを模式的に示している。   FIG. 3 is a diagram showing the contents of a conventional demodulation process. 101 of (A) shows a modulation waveform of a general two-frequency CW radar, and the timing of signal processing synchronized with 101 is schematically shown in (B).

A/D変換はf1,f2各チャンネル毎に単位時間(周期)Tの間に1つのデータ出力を行うが、ΔΣ型A/D変換器はTの全ての時間区域においてオーバーサンプリング処理を行うのでf2信号を送受信している期間はf1データをホールドすることによりf2の情報がf1に回り込まないようにしている。逆にf1信号を送受信している期間はf2データをホールドすることによりf1の情報がf2に回り込まないようにしている。   In the A / D conversion, one data output is performed for each channel f1 and f2 during a unit time (period) T. However, since the ΔΣ A / D converter performs oversampling processing in all time zones of T. During the period in which the f2 signal is transmitted / received, the f1 data is held to prevent the information of f2 from entering the f1. Conversely, during the period during which the f1 signal is transmitted and received, the f2 data is held so that the information of f1 does not wrap around f2.

このようにして、復調回路11,12、サンプルホールド回路13,14を通った信号は、ΔΣ型A/D変換器15,16によってデジタル変換される。ΔΣ型A/D変換器15からは、送信信号がf1の区間のビート信号fd1のサンプル値が出力され、ΔΣ型A/D変換器16からは、送信信号がf2の区間のビート信号fd2のサンプル値が出力される。これらのビート信号fd1とfd2、及びΔΣ型A/D変換器の出力値の関係を図5に示す。   In this way, the signals that have passed through the demodulation circuits 11 and 12 and the sample and hold circuits 13 and 14 are digitally converted by the ΔΣ A / D converters 15 and 16. The ΔΣ A / D converter 15 outputs a sample value of the beat signal fd1 in the section where the transmission signal is f1, and the ΔΣ A / D converter 16 outputs the beat signal fd2 in the section where the transmission signal is f2. Sample value is output. FIG. 5 shows the relationship between the beat signals fd1 and fd2 and the output value of the ΔΣ A / D converter.

ΔΣ型A/D変換器はデータ出力周期をオーバーサンプリング数で除した期間を一単位として積分と比較を繰返すので変換周期の間に入力電圧が大きく変化する場合は出力に大きく影響を及ぼす。   Since the ΔΣ A / D converter repeats integration and comparison with a period obtained by dividing the data output cycle by the number of oversampling as a unit, if the input voltage changes greatly during the conversion cycle, it greatly affects the output.

図5のようにΔΣ型A/D変換器の出力はf1とf2が同時に出力されるがオーバーサンプリングしているデータは常に実際のデータではなくその半分程度がホールドされた擬似的なデータであるため、出力された信号の精度は常に誤差を含み、その誤差はf1とf2のサンプル期間がお互いに重なることが無い為に常にどちらかのデータが決まって誤差が大きくなってしまう。   As shown in FIG. 5, the output of the ΔΣ A / D converter outputs f1 and f2 at the same time, but the oversampled data is not actual data but pseudo data in which about half of it is held. Therefore, the accuracy of the output signal always includes an error, and the error does not always overlap with each other because the sampling periods of f1 and f2 do not overlap each other.

次に、本実施例における復調の処理について図1,図6を用いて説明する。   Next, demodulation processing in the present embodiment will be described with reference to FIGS.

本実施例では、第1の周波数f1を有する第1のアナログ信号及び第2の周波数f2を有する第2のアナログ信号を出力するオペアンプ07(信号出力部)と、オペアンプ07に接続され、当該オペアンプ07が出力した第1及び第2のアナログ信号を、それぞれ第1及び第2のデジタル信号に変換し、当該第1及び第2のデジタル信号を重ね合わせて一つのデジタル信号として出力する逐次比較型A/D変換器と、逐次比較型A/D変換器に接続され、重ね合わされた一つのデジタル信号を第1及び第2のデジタル信号に振り分けて出力する演算回路09を用いる。演算回路09は、単位時間のうち、第1の時間区間で第1のデジタル信号の代表値を示す第1の代表値を計算し、第2の時間区間で第2のデジタル信号の代表値を示す第2の代表値を計算する。   In this embodiment, the operational amplifier 07 (signal output unit) that outputs the first analog signal having the first frequency f1 and the second analog signal having the second frequency f2 is connected to the operational amplifier 07, and the operational amplifier The first and second analog signals output from 07 are converted into first and second digital signals, respectively, and the first and second digital signals are superimposed and output as one digital signal. An arithmetic circuit 09 that is connected to the A / D converter and the successive approximation A / D converter and outputs the superimposed one digital signal to the first and second digital signals is used. The arithmetic circuit 09 calculates a first representative value indicating the representative value of the first digital signal in the first time interval in the unit time, and calculates the representative value of the second digital signal in the second time interval. A second representative value is calculated.

ここで、逐次比較型A/D変換器08は、従来使用していたΔΣ型A/D変換器よりも高速で動作するSAR型A/D変換器などを代表とするA/D変換器である。又、演算回路09は、f1とf2とのどちらの時間で変換したかによって当該デジタル信号を振り分け、それぞれの時間区間の代表値を計算して単位時間Tの周期で第1のデジタル信号と第2のデジタル信号を出力する。   Here, the successive approximation A / D converter 08 is an A / D converter typified by a SAR A / D converter that operates at a higher speed than a conventionally used ΔΣ A / D converter. is there. The arithmetic circuit 09 distributes the digital signal according to which time of f1 or f2 is converted, calculates a representative value of each time interval, and calculates the first digital signal and the first digital signal in a cycle of unit time T. 2 digital signals are output.

ΔΣ型A/D変換器は、逐次比較型A/D変換器より少なくとも256倍程度のオーバーサンプリングを行うためノイズシェービング効果が得られ、信号対雑音比(S/N比)に優れているので単純に逐次比較型A/D変換器に置き換えて従来と同様の処理を行ってもS/N比が悪くなり測定精度は実用に耐えないものとなってしまう。   Since the ΔΣ type A / D converter performs oversampling at least about 256 times that of the successive approximation type A / D converter, a noise shaving effect is obtained and the signal-to-noise ratio (S / N ratio) is excellent. Even if it is simply replaced with a successive approximation type A / D converter and the same processing as in the prior art is performed, the S / N ratio is deteriorated and the measurement accuracy is not practical.

逐次比較型A/D変換器を用いてΔΣ型A/D変換器と同等のS/Nを得るためには、より高速にA/D変換し、得られたデジタル信号の代表値を取る処理をする必要がある。取得したデジタル信号の平均値を取る場合、ΔΣ型A/D変換器より約8倍の速さでA/D変換して8個のデータの平均値を計算することにより同等の性能を得られることが実験結果により判明している。   In order to obtain an S / N equivalent to that of a ΔΣ A / D converter using a successive approximation A / D converter, A / D conversion is performed at a higher speed, and a representative value of the obtained digital signal is obtained. It is necessary to do. When taking the average value of the acquired digital signal, the same performance can be obtained by calculating the average value of 8 data by A / D conversion about 8 times faster than the ΔΣ type A / D converter. This has been proved by experimental results.

しかし、ΔΣ型A/D変換器を逐次比較型A/D変換器を置き換え、その出力8個分の平均値を計算して出力する演算回路を設けた場合、A/D変換器の入手性は良くなるものの演算回路が必要となり、コストやスペースのメリットが無いものとなってしまう。   However, if a ΔΣ A / D converter is replaced with a successive approximation A / D converter, and an arithmetic circuit is provided that calculates and outputs the average value of the eight outputs, the availability of the A / D converter However, an arithmetic circuit is required, but there is no cost or space merit.

そこで、本実施例では、従来の復調回路(図2の11,12)を削除してf1を送信して得たビート信号fd1とf2を送信して得たビート信号fd2とを分離せずに一つの逐次比較型A/D変換器に入力し、ΔΣ型A/D変換器より16倍の速さでA/D変換を行って得られたデジタル信号のうち、f1から得られたビート信号fd1を変換した第1のデジタル信号と、f2から得られたビート信号fd2を変換した第2のデジタル信号に振り分けて、それぞれ8個の信号の平均値を計算する。   Therefore, in this embodiment, the conventional demodulation circuit (11, 12 in FIG. 2) is deleted and the beat signal fd1 obtained by transmitting f1 and the beat signal fd2 obtained by transmitting f2 are not separated. Among the digital signals obtained by inputting to one successive approximation A / D converter and A / D conversion 16 times faster than the ΔΣ A / D converter, the beat signal obtained from f1 The first digital signal converted from fd1 and the second digital signal converted from the beat signal fd2 obtained from f2 are allocated, and the average value of each of the eight signals is calculated.

尚、fd1とfd2との信号の切替えタイミング付近の信号をA/D変換した場合、このデータはノイズ要因となり測定精度に影響が出てしまう。そこで、本実施例では、切替えタイミング付近の信号(図6の点線の上向き矢印)を演算回路09で計算しない事によって測定精度を向上させる。実験結果では16倍の速さでA/D変換を行って得られたデジタル信号のうちfd1とfd2それぞれの切替え部分のデータを間引きして、残る6個のデータを平均値処理することにより従来方式と同等以上の性能が得られている。   When A / D conversion is performed on a signal near the switching timing of the signals fd1 and fd2, this data becomes a noise factor and affects the measurement accuracy. Therefore, in this embodiment, the measurement accuracy is improved by not calculating the signal near the switching timing (the dotted upward arrow in FIG. 6) by the arithmetic circuit 09. As a result of the experiment, the data of the switching portions of fd1 and fd2 of the digital signal obtained by performing A / D conversion at 16 times the speed are thinned out, and the remaining 6 data are averaged. Performance equal to or better than the method is obtained.

そして、折返しノイズに関してはA/D変換の速度を16倍にして6個のデータの平均値を取り1つの代表値とする場合、少なくともナイキスト周波数の16倍の周波数までは折返しノイズが発生しないという結果が得られている。   As for aliasing noise, when the A / D conversion speed is 16 times and an average value of 6 data is taken as one representative value, aliasing noise does not occur at least up to 16 times the Nyquist frequency. The result is obtained.

逐次比較型A/D変換器は内部にサンプルホールド回路を有し変換タイミングの一瞬の電圧のみを変換するため、ΔΣ型A/D変換器と違い変換周期の間に入力電圧が大きく変化する場合でも変換タイミングの一瞬の電圧が安定していれば問題は無い。但し、入力信号のノイズによる誤差に関してはΔΣ型A/D変換器のノイズシェービング機能と比較して大きく劣るので変換周期を速くして平均値などを計算することによってノイズ誤差を無くし、アナログ回路で構成された復調回路を省略してA/D変換後の信号を元に復調を行う。   Since the successive approximation A / D converter has a sample-and-hold circuit inside and converts only the instantaneous voltage of the conversion timing, unlike the ΔΣ A / D converter, the input voltage changes greatly during the conversion cycle. However, there is no problem if the instantaneous voltage of the conversion timing is stable. However, the error due to the noise of the input signal is greatly inferior to the noise shaving function of the ΔΣ type A / D converter, so the noise error is eliminated by calculating the average value etc. by increasing the conversion cycle. Demodulation is performed based on the signal after A / D conversion by omitting the configured demodulation circuit.

図1のオペアンプ07を通ったビート信号は逐次比較型A/D変換器08で変調/復調回路01からのタイミング信号によって単位時間Tの16倍の速さで予め定められたタイミングでA/D変換され、当該デジタル化された信号は演算回路09に入力される。演算回路09ではf1のビート信号部分のうち、信頼性の低い信号切替え部分の信号を間引いた6個のデータの平均を算出し、f2のビート信号部分のうち、信頼性の低い信号切替え部分の信号を間引いた6個のデータの平均を算出して夫々のA/D変換結果とする。信号を間引くタイミングは変調/復調回路01からの信号によって把握する。   The beat signal that has passed through the operational amplifier 07 in FIG. 1 is converted into an A / D signal at a timing that is 16 times as fast as the unit time T by a timing signal from the modulation / demodulation circuit 01 in the successive approximation A / D converter 08. The converted and digitized signal is input to the arithmetic circuit 09. The arithmetic circuit 09 calculates an average of six data obtained by decimating the signal of the low-reliability signal switching portion of the beat signal portion of f1, and of the low-reliability signal switching portion of the beat signal portion of f2. The average of the six data obtained by thinning out the signals is calculated and used as each A / D conversion result. The timing of thinning out the signal is grasped by the signal from the modulation / demodulation circuit 01.

ここで、A/D変換された信号の位相差について考えるとf1のビート信号のA/D変換結果とf2のビート信号のA/D変換結果には時間的に単位時間Tの1/2のずれが生じている。信号処理装置10ではf1とf2の位相差を用いて距離を算出するが、この時に単位時間Tの1/2の時間ずれを考慮する。   Here, considering the phase difference of the A / D converted signal, the A / D conversion result of the beat signal of f1 and the A / D conversion result of the beat signal of f2 are ½ of the unit time T in terms of time. There is a gap. In the signal processing apparatus 10, the distance is calculated using the phase difference between f1 and f2, and at this time, a time shift of 1/2 of the unit time T is taken into consideration.

図6は入力されるビート信号と逐次比較型A/D変換器でのサンプルタイミングを示す図、図7は本実施例におけるビート信号と演算回路09の出力値の関係を示す図である。2周波CW方式レーダの場合、ミキサ6から出力されるビート信号は、位相の異なる2つのSin波が、送信周波数f1,f2を切替えるタイミングで時分割された信号として観測される。このビート信号を、逐次比較型A/D変換器を用い、高速にA/D変換する。図6では、信頼性の低い信号切替え部分の信号を間引いた6個のデータの平均を算出し、送信周波数がf1の区間、及び、送信周波数がf2の区間の平均値を求めた例を示している。逐次比較型A/D変換器08から高速でサンプルされた値が出力され、演算回路09では、送信周波数がf1の区間、及び、送信周波数がf2の区間の平均値を求めて、信号処理装置10へ、それぞれの平均値が出力される。図10では、演算回路09が出力する、送信周波数がf1の区間、及び、送信周波数がf2の区間のそれぞれの出力値をつないでいけば、ビート信号fd1とfd2が再現できる。但し、この場合、平均値を算出する周期Tの1/2だけ、fd1とfd2のサンプル点の時間ずれが内包されるため、その後の計算で考慮する必要がある。   FIG. 6 is a diagram showing the input beat signal and the sample timing in the successive approximation A / D converter, and FIG. 7 is a diagram showing the relationship between the beat signal and the output value of the arithmetic circuit 09 in this embodiment. In the case of a two-frequency CW radar, the beat signal output from the mixer 6 is observed as a signal that is time-divided at the timing when two Sin waves having different phases are switched between the transmission frequencies f1 and f2. This beat signal is A / D converted at high speed using a successive approximation A / D converter. FIG. 6 shows an example in which an average of six data obtained by thinning out signals of a signal switching portion with low reliability is calculated, and an average value in a section where the transmission frequency is f1 and a section where the transmission frequency is f2 is obtained. ing. A value sampled at a high speed is output from the successive approximation A / D converter 08, and the arithmetic circuit 09 obtains an average value in a section where the transmission frequency is f1 and a section where the transmission frequency is f2, and the signal processing device Each average value is output to 10. In FIG. 10, the beat signals fd1 and fd2 can be reproduced by connecting the output values of the section of the transmission frequency f1 and the section of the transmission frequency f2 output by the arithmetic circuit 09. However, in this case, the time difference between the sample points of fd1 and fd2 is included by ½ of the period T for calculating the average value, and therefore it is necessary to consider in subsequent calculations.

2周波CW方式レーダの場合、距離Rは、数式2を用いて、f1を送信している区間に取得したデータから計測される位相Δφ1、及び、f2を送信している区間に取得したデータから計測される位相Δφ2から求められる。逐次比較型A/D変換器を用いる場合は、サンプル点の時間ずれ(T/2)が内包されるため、次式の関係となる。   In the case of a two-frequency CW system radar, the distance R is calculated from the data acquired in the section transmitting f1 and the phase Δφ1 measured from the data acquired in the section transmitting f1 using Equation 2. It is obtained from the measured phase Δφ2. In the case of using the successive approximation A / D converter, the time difference (T / 2) of the sample points is included, and therefore, the relationship of the following equation is established.

(数式3)
(Δφ1−Δφ2)−2π×fd×(T/2)=4πR×(f1−f2)/c
(Formula 3)
(Δφ1−Δφ2) −2π × fd × (T / 2) = 4πR × (f1−f2) / c

次に第2の実施例について説明する。本実施例ではそれぞれの時間区間の代表値の計算に、FIR等のフィルタ処理と間引き処理(デシメーション)を使用する。FIR等のフィルタ処理と間引き処理は実施例1と同様にデジタル処理であり、図1の演算回路09でf1のビート信号部分のうち、信頼性の低い信号切替え部分の信号を間引いた6個のデータに対してFIRフィルタ処理を施し、f2のビート信号部分のうち、信頼性の低い信号切替え部分の信号を間引いた6個のデータに対してFIRフィルタ処理を施して夫々のA/D変換結果とする事が可能である。   Next, a second embodiment will be described. In the present embodiment, filter processing such as FIR and thinning-out processing (decimation) are used for calculating the representative value of each time interval. Filter processing such as FIR and thinning-out processing are digital processing as in the first embodiment, and six pieces of signals obtained by thinning out the signal switching portion of the beat signal portion of f1 by the arithmetic circuit 09 in FIG. The FIR filter processing is performed on the data, and the FIR filter processing is performed on the six data obtained by thinning out the signals of the signal switching portion with low reliability among the beat signal portions of f2, and the respective A / D conversion results Is possible.

次に第3の実施例について説明する。本実施例ではFMCW方式のレーダにおいて、ビート信号の周波数を得る際に必要なサンプリング周期の16倍以上の速度で受信アナログ信号をデジタル信号に変換し、変調制御の切替え時間付近等反射波が安定しない時間区間にデジタル信号に変換したデータを間引いて平均値やFIRフィルタ処理を行う。尚、レーダ制御回路の概略構成は、図1と同様である。   Next, a third embodiment will be described. In this embodiment, in an FMCW radar, the received analog signal is converted to a digital signal at a speed of 16 times or more of the sampling period necessary for obtaining the frequency of the beat signal, and the reflected wave near the modulation control switching time is stable. The average value or FIR filter processing is performed by thinning out the data converted into the digital signal in the time interval not to be performed. The schematic configuration of the radar control circuit is the same as that shown in FIG.

図8は、送受信周波数パターンの一例を示す図である。尚、送信波(Tx)を実線、受信波(Rx)を破線で描いている。又、τは電波がレーダ装置と物体との間を往復するのに要する時間を、fdはドップラーシフトしている周波数を、fbUは送信波の周波数が高くなりつつある区間に得られるビート信号の周波数を、fbDは送信波の周波数が低くなりつつある区間に得られるビート周波数を示す。   FIG. 8 is a diagram illustrating an example of a transmission / reception frequency pattern. The transmission wave (Tx) is drawn with a solid line, and the reception wave (Rx) is drawn with a broken line. Τ is the time required for the radio wave to travel back and forth between the radar device and the object, fd is the Doppler shifted frequency, and fbU is the beat signal obtained in the interval where the frequency of the transmitted wave is increasing. The frequency fbD indicates a beat frequency obtained in a section where the frequency of the transmission wave is decreasing.

ここで、周波数が時間変化する区間、例えば周波数が時刻の経過に従って直線状に上方に増加する部分から下方に減少していく部分へ変化する部分付近にA/D変換を行った信号は演算回路09で変調/復調回路01からのタイミング信号によって区別され、間引き処理される。間引き処理された信号の平均値を計算して信号処理装置10に入力することにより、逐次比較型A/D変換器08の電圧分解能に起因するノイズや変換速度に起因する折り返しノイズなどの影響を受けにくいレーダが提供可能となる。   Here, a signal in which A / D conversion is performed in a section where the frequency changes over time, for example, a portion where the frequency changes from a portion where the frequency increases linearly upward to a portion where the frequency decreases downward as time elapses, is an arithmetic circuit. At 09, the signal is discriminated by the timing signal from the modulation / demodulation circuit 01 and thinned out. By calculating the average value of the thinned-out signal and inputting it to the signal processing device 10, the influence of noise caused by the voltage resolution of the successive approximation A / D converter 08 and aliasing noise caused by the conversion speed can be obtained. Radar that is difficult to receive can be provided.

本稿によれば、従来2系統必要であったA/D変換器が1系統となり、アナログ回路で構成されていた復調回路がデジタル化されることにより低コスト化と省スペース化が容易となる。又、A/D変換器前段のアナログ回路が削除される事により素子のバラツキによる測定誤差が解消され、より高い精度での測定が可能となる。更に、従来は不要部分の信号もサンプルホールド回路で保持された信号でA/D変換していたが、不要部分の信号は使用しないので更に高い精度での測定が可能となり、全ての信号を処理するよりも処理回路が簡略化できる。   According to this article, the A / D converter, which conventionally required two systems, becomes one system, and the demodulating circuit constituted by an analog circuit is digitized, thereby facilitating cost reduction and space saving. In addition, by eliminating the analog circuit in the previous stage of the A / D converter, measurement errors due to element variations are eliminated, and measurement with higher accuracy becomes possible. Furthermore, A / D conversion was also performed for the signal of the unnecessary part with the signal held in the sample hold circuit in the past. However, since the signal of the unnecessary part is not used, measurement with higher accuracy is possible and all signals are processed. This makes it possible to simplify the processing circuit.

レーダ装置の構成図。The block diagram of a radar apparatus. 従来の2周波CW方式レーダ装置の構成図。The block diagram of the conventional 2 frequency CW system radar apparatus. 従来の復調のタイミングを示す図。The figure which shows the timing of the conventional demodulation. 受信されたビート信号を示す図。The figure which shows the received beat signal. 従来のビート信号とΔΣ型A/D変換器の出力値の関係を示す図。The figure which shows the relationship between the conventional beat signal and the output value of a delta-sigma A / D converter. 本実施例のA/Dサンプルタイミングと出力されるビート信号平均値を示す図。The figure which shows the A / D sample timing of a present Example, and the beat signal average value output. 本実施例のビート信号と演算回路の出力値の関係を示す図。The figure which shows the relationship between the beat signal of a present Example, and the output value of an arithmetic circuit. 送受信周波数パターンの一例を示す図。The figure which shows an example of a transmission / reception frequency pattern.

符号の説明Explanation of symbols

01 変調/復調回路
02 高周波発生器
03 方向性結合器
04 送信アンテナ
05 受信アンテナ
06 ミキサ
07 オペアンプ
08 逐次比較型A/D変換器
09 演算回路
10 信号処理装置
11 復調回路(f1用)
12 復調回路(f2用)
13 サンプルホールド回路(f1用)
14 サンプルホールド回路(f2用)
15 ΔΣ型A/D変換器(f1用)
16 ΔΣ型A/D変換器(f2用)
01 modulation / demodulation circuit 02 high frequency generator 03 directional coupler 04 transmission antenna 05 reception antenna 06 mixer 07 operational amplifier 08 successive approximation A / D converter 09 arithmetic circuit 10 signal processing device 11 demodulation circuit (for f1)
12 Demodulator (for f2)
13 Sample hold circuit (for f1)
14 Sample hold circuit (for f2)
15 ΔΣ A / D converter (for f1)
16 ΔΣ A / D converter (for f2)

Claims (5)

第1の周波数を有する第1のアナログ信号及び第2の周波数を有する第2のアナログ信号を出力する信号出力部と、
前記信号出力部に接続され、前記信号出力部が出力した前記第1及び第2のアナログ信号を、それぞれ第1及び第2のデジタル信号に変換し、当該第1及び第2のデジタル信号を重ね合わせて一つのデジタル信号として出力する逐次比較型A/D変換器と、
前記逐次比較型A/D変換器に接続され、前記一つのデジタル信号を前記第1及び第2のデジタル信号に振り分けて出力する演算回路を備え、
前記演算回路は、単位時間のうち、第1の時間区間で前記第1のデジタル信号の代表値を示す第1の代表値を計算し、第2の時間区間で前記第2のデジタル信号の代表値を示す第2の代表値を計算する、レーダ装置。
A signal output unit for outputting a first analog signal having a first frequency and a second analog signal having a second frequency;
The first and second analog signals connected to the signal output unit and output from the signal output unit are converted into first and second digital signals, respectively, and the first and second digital signals are superimposed. A successive approximation A / D converter that outputs a single digital signal together;
An arithmetic circuit connected to the successive approximation A / D converter, for distributing and outputting the one digital signal to the first and second digital signals;
The arithmetic circuit calculates a first representative value indicating a representative value of the first digital signal in a first time interval in a unit time, and a representative of the second digital signal in a second time interval. A radar apparatus that calculates a second representative value indicating a value.
前記第1の代表値とは、前記第1の時間区間内に変換した複数のデジタル信号の平均値を示し、
前記第2の代表値とは、前記第2の時間区間内に変換した複数のデジタル信号の平均値を示す、請求項1記載のレーダ装置。
The first representative value indicates an average value of a plurality of digital signals converted within the first time interval,
The radar apparatus according to claim 1, wherein the second representative value indicates an average value of a plurality of digital signals converted within the second time interval.
前記演算回路は、前記代表値を計算する際、フィルタ処理及び間引き処理を行う、請求項1記載のレーダ装置。   The radar apparatus according to claim 1, wherein the arithmetic circuit performs a filtering process and a thinning process when calculating the representative value. 前記演算回路は、前記第1の時間区間から前記第2の時間区間に切り替わる際にデジタル信号に変換したデータは、前記第1及び第2の代表値の計算には使用しない、請求項1乃至3何れか一に記載のレーダ装置。   The arithmetic circuit does not use data converted into a digital signal when switching from the first time interval to the second time interval to calculate the first and second representative values. 3. The radar device according to any one of 3. 前記演算回路は、前記単位時間より16倍以上速い時間でアナログ信号をデジタル信号に変換する、請求項1乃至4何れか一に記載のレーダ装置。   The radar device according to any one of claims 1 to 4, wherein the arithmetic circuit converts an analog signal into a digital signal in a time that is 16 times faster than the unit time.
JP2008212349A 2008-08-21 2008-08-21 Radar system Withdrawn JP2010048635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212349A JP2010048635A (en) 2008-08-21 2008-08-21 Radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212349A JP2010048635A (en) 2008-08-21 2008-08-21 Radar system

Publications (1)

Publication Number Publication Date
JP2010048635A true JP2010048635A (en) 2010-03-04

Family

ID=42065840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212349A Withdrawn JP2010048635A (en) 2008-08-21 2008-08-21 Radar system

Country Status (1)

Country Link
JP (1) JP2010048635A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228359A (en) * 2013-05-21 2014-12-08 トヨタ自動車株式会社 Object displacement detection apparatus and object displacement detection method
JP2018047071A (en) * 2016-09-22 2018-03-29 新日本無線株式会社 Walking support device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258362A (en) * 1993-01-06 1994-09-16 Mitsubishi Electric Corp Electronic watthour meter
JPH10282227A (en) * 1997-03-28 1998-10-23 Thomson Csf Method and device for removing distance ambiguity applied to frequency sift keying continuous wave radar
JP2000003478A (en) * 1998-06-16 2000-01-07 Mitsubishi Electric Corp Moving state detection device
JP2002014119A (en) * 2000-06-29 2002-01-18 Agilent Technologies Japan Ltd Method of determining measuring time of a/d converter
JP2008145425A (en) * 2006-11-13 2008-06-26 Toyota Central R&D Labs Inc Radar device
JP2009042061A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Radio wave radar system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258362A (en) * 1993-01-06 1994-09-16 Mitsubishi Electric Corp Electronic watthour meter
JPH10282227A (en) * 1997-03-28 1998-10-23 Thomson Csf Method and device for removing distance ambiguity applied to frequency sift keying continuous wave radar
JP2000003478A (en) * 1998-06-16 2000-01-07 Mitsubishi Electric Corp Moving state detection device
JP2002014119A (en) * 2000-06-29 2002-01-18 Agilent Technologies Japan Ltd Method of determining measuring time of a/d converter
JP2008145425A (en) * 2006-11-13 2008-06-26 Toyota Central R&D Labs Inc Radar device
JP2009042061A (en) * 2007-08-08 2009-02-26 Hitachi Ltd Radio wave radar system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014228359A (en) * 2013-05-21 2014-12-08 トヨタ自動車株式会社 Object displacement detection apparatus and object displacement detection method
JP2018047071A (en) * 2016-09-22 2018-03-29 新日本無線株式会社 Walking support device

Similar Documents

Publication Publication Date Title
JP5478010B2 (en) Electronic scanning radar equipment
JP4602267B2 (en) Electronic scanning radar equipment
JP3746235B2 (en) Distance measuring device
JP4769596B2 (en) Electronic scanning radar equipment
JP4769684B2 (en) Electronic scanning radar equipment
JP3498624B2 (en) Radar equipment
EP2876460B1 (en) A vehicle radar with two transmitter antenna arrangements
JP4190335B2 (en) Radar apparatus and signal processing method thereof
JP4986454B2 (en) Radar equipment
CN113631946A (en) Radar system
JP2006308542A (en) Electronic scan type millimeter wave radar system and computer program
JP2012242166A (en) Radar device
US11977180B2 (en) Radar system with monitoring function
JP2010014488A (en) Signal processing device for fmcw radar device, signal processing method for the fmcw radar device, and the fmcw radar device
JP2008128673A (en) Measuring system and method, measuring device and method, and information processing device and method
CN112859057A (en) MIMO radar device and method for operating a MIMO radar device
JP2010048635A (en) Radar system
JP6244877B2 (en) FMCW radar equipment
US20220350011A1 (en) Radar system and procedures for operating a radar system
JP5677152B2 (en) Holographic radar device
KR101358904B1 (en) Amplitude modulated radar, apparatus and method for reducing a distance measurement error of the same
JPH08166443A (en) Two frequency cw radar sensor
EP3734326A1 (en) Radar device and object detection method of radar device
JP6610116B2 (en) Target information measuring apparatus and target information measuring method
JP4238360B2 (en) Ranging device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120409