JP2010045471A - Low impedance loss line - Google Patents

Low impedance loss line Download PDF

Info

Publication number
JP2010045471A
JP2010045471A JP2008206585A JP2008206585A JP2010045471A JP 2010045471 A JP2010045471 A JP 2010045471A JP 2008206585 A JP2008206585 A JP 2008206585A JP 2008206585 A JP2008206585 A JP 2008206585A JP 2010045471 A JP2010045471 A JP 2010045471A
Authority
JP
Japan
Prior art keywords
impedance loss
line
loss line
low impedance
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008206585A
Other languages
Japanese (ja)
Inventor
Hirokazu Toya
弘和 遠矢
Norihisa Tooya
紀尚 遠矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cast Kk I
I Cast Inc
Original Assignee
Cast Kk I
I Cast Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cast Kk I, I Cast Inc filed Critical Cast Kk I
Priority to JP2008206585A priority Critical patent/JP2010045471A/en
Publication of JP2010045471A publication Critical patent/JP2010045471A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transmission line structure achieving a function of an ideal power supply that includes a very low impedance value and a very small transmission coefficient value up to a band exceeding several-hundreds [kHz] to 1 [GHz], and can not be provided by a capacitor. <P>SOLUTION: The low impedance loss line is formed of: an anode foil 24 composed of a valve acting metal and having etching portions formed on both surfaces and dielectric oxide films formed on the surfaces of the etching portions; a first cathode foil 21; a second cathode foil 27; first and second conductive polymer layers 23, 25 respectively formed on the dielectric oxide films formed on both the surfaces of the anode foil 24; a fist conductive polymer past layer 22 for sticking the first cathode foil 21 to the first conductive polymer layer 23; and a second conductive polymer past layer 26 for sticking the second cathode foil 27 to the second conductive polymer layer 25. The loss line forms a parallel line using the first and second cathode foils 21, 27 as electrodes. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回路または回路部品に関し、特に、高速スイッチング素子を使用する、情報技術装置やディジタルデータ通信機器の直流電源分配回路、並びに高周波DC−DCコンバータ等の電力変換器に使用し、小型軽量化が可能で、変換効率、信号品位(シグナルインテグリティ)、および電磁環境適合性(EMC)を向上させることが出来る低インピーダンス損失線路に関する。 The present invention relates to a circuit or a circuit component, and in particular, is used for a power converter such as a high-frequency DC-DC converter and a DC power distribution circuit of an information technology apparatus and a digital data communication device using a high-speed switching element. The present invention relates to a low-impedance loss line that can be converted and can improve conversion efficiency, signal quality (signal integrity), and electromagnetic compatibility (EMC).

近年、コンピュータを初めとするディジタル回路システムの高性能、小型化の要求が強い。ディジタル回路システムを構成するトランジスタの高速化は、高性能化や小型化に効果があるが、電磁ノイズや消費電力が増えると考えられて来た。 In recent years, there is a strong demand for high performance and downsizing of digital circuit systems including computers. The speeding up of transistors constituting a digital circuit system is effective for higher performance and miniaturization, but it has been considered that electromagnetic noise and power consumption increase.

IECにおいては、情報技術装置やマルチメディア機器を対象に新たなEMI規格であるCISPR32の制定に向けた作業が進んでいる。ここでは、装置または機器からの放射妨害波について320[MHz]から6[GHz]まで、電源ラインおよび通信線による伝導妨害波について150[kHz]から30[MHz]までが規制の対象となる。許容値は従来の情報技術装置向けのCISPR22と同様であるが、適用対象がディジタル家電を含むマルチメディア機器まで拡大される。 In IEC, work toward the establishment of CISPR32, which is a new EMI standard, for information technology devices and multimedia devices is progressing. In this case, the restriction target is 320 [MHz] to 6 [GHz] for the radiated disturbance wave from the apparatus or device, and 150 [kHz] to 30 [MHz] for the conductive disturbance wave caused by the power line and the communication line. The allowable value is the same as that of the CISPR 22 for the conventional information technology apparatus, but the application target is extended to a multimedia device including a digital home appliance.

一方、半導体技術の先端を進む半導体集積回路においてはトランジスタの高速化が進んでいる。非特許文献1によると、2007年のテクノロジノードにおける高性能MPUのPチャネル型電界効果トランジスタの最小上昇時間(ゲートディレー)は0.64[ps](ピコ秒)であり、電源電圧は1.1[V]である。 On the other hand, in semiconductor integrated circuits that are at the forefront of semiconductor technology, the speed of transistors is increasing. According to Non-Patent Document 1, the minimum rise time (gate delay) of the P-channel field effect transistor of the high-performance MPU in the technology node in 2007 is 0.64 [ps] (picosecond), and the power supply voltage is 1. 1 [V].

電磁気学によると、回路の状態には活性状態(exited states)、定常状態(stationary states)および、実用上は定常状態と見なせる準定常状態(quasi
stationary states)が存在する。活性状態とは、回路上の電界と磁界が変化または振動している状態であり交流回路はその一例である。振動する電界と磁界は電磁波となって絶縁体中を進行する。該絶縁体が真空空間の場合は、電磁波は光速で進行する。
According to electromagnetism, circuit states can be considered as active states (exited states), steady states (stationary states), and quasi-steady states (quasi-stationary states that can be regarded as steady states in practice).
There are stationary states. The active state is a state in which the electric field and magnetic field on the circuit are changing or oscillating, and an AC circuit is one example. The oscillating electric and magnetic fields travel as electromagnetic waves in the insulator. When the insulator is a vacuum space, the electromagnetic wave travels at the speed of light.

定常状態とは、回路上の電界と磁界が静止している状態であり直流回路はその一例である。準定常状態とは、電界と磁界が電磁波となって回路上を進行するが、電磁波の波長が回路長に対して非常に長く回路内での電磁波の挙動が強弱振動だけと見なしても通常の界路設計においてほぼ不都合が生じないと見なされる状態である。低周波アナログ回路や、およそ1[ns]以上の立ち上がり時間を有するトランジスタと10[cm]以下の長さの配線で構成される回路は、実用上、準定常状態と見なすことの出来る回路の一例であるとされて来た。 The steady state is a state where the electric field and magnetic field on the circuit are stationary, and a DC circuit is an example. The quasi-stationary state means that the electric field and magnetic field travel on the circuit as electromagnetic waves, but the wavelength of the electromagnetic waves is very long relative to the circuit length, and even if the behavior of the electromagnetic waves in the circuit is regarded as only strong and weak vibrations, This is a state that is considered to cause almost no inconvenience in the field path design. An example of a circuit that can be regarded as a quasi-stationary state in practice is a low-frequency analog circuit or a circuit composed of a transistor having a rise time of approximately 1 [ns] and a wiring having a length of 10 [cm] or less. It has been said that.

電磁気学によると、活性状態にある回路の電流はアンペールの法則として定義され次式で示される。 According to electromagnetics, the current in a circuit in an active state is defined as Ampere's law and is given by

電磁気学によると、電位Vは、電界の及ばない無限遠から導線の一点までの電界の積分値と定義されるが実用的にはグランド面から導線の一点までの電界の積分値として、また、電界Eは電位Vの傾きとしてそれぞれ次式から求められる。 According to electromagnetism, the electric potential V is defined as an integral value of an electric field from an infinite point where the electric field does not reach to one point of the conductor, but practically as an integral value of the electric field from the ground plane to one point of the conductor, E is obtained from the following equation as the slope of the potential V.

マックスウエルは、磁界に関する理論と電界に関する理論を融合したマックスウエルの方程式を1873年に発表し、続いてこの式をダランベールの波動方程式の形式に変形し、ベクトル波動方程式を導出した。マックスウエルは、1862年頃から主張していた、電磁波と光はともに光速で伝搬することをこの式を用いて理論的に証明し、線形電磁波理論(以下電磁波理論)を完成させ、これにより電磁気学が完成した。ヘルツは、1887年に、実験によって電磁波の存在を実証し、マックスウエルの電磁波理論の正しさを証明した。 Maxwell published Maxwell's equation, which merged the theory of magnetic fields and the theory of electric fields, in 1873, and then transformed this equation into the form of D'Alembert's wave equation to derive the vector wave equation. Maxwell, who had been insisting since 1862, theoretically proved that both electromagnetic waves and light propagate at the speed of light using this equation, and completed linear electromagnetic wave theory (hereinafter referred to as electromagnetic wave theory). Was completed. In 1887, Hertz demonstrated the existence of electromagnetic waves by experiment and proved the correctness of Maxwell's electromagnetic wave theory.

電磁気学によると、時間的に変化する電界と磁界は相互に作用しつつ横波となって空間または誘電体中を伝搬する。真空中を伝搬する電磁波の速度は光速である。伝搬する電磁波はポインチングベクトル理論に従って電力を伝搬する。空間を伝搬する電磁波は、周期および極性が一致し振幅ベクトルが進行方向に対して直交する電界波と磁界波とから構成される。この状態の電磁波はTEM(transverse electromagnetic)波と呼ばれる。電磁気学によると、時間的に変化する電界と磁界は相互に作用しつつ横波となって空間または誘電体中を伝搬する。真空中を伝搬する電磁波の速度は光速である。伝搬する電磁波はポインチングベクトル理論に従って電力を伝搬する。空間を伝搬する電磁波は、周期および極性が一致し振幅ベクトルが進行方向に対して直交する電界波と磁界波とから構成される。この状態の電磁波はTEM(transverse electromagnetic)波と呼ばれる。TEM波を構成する電界波の振幅を磁界波の振幅で割った値は波動インピーダンス(surge
impedanceまたはwave impedance)と呼ばれる。
According to electromagnetism, an electric field and a magnetic field that change with time interact with each other and propagate in a space or a dielectric as a transverse wave. The speed of the electromagnetic wave propagating in the vacuum is the speed of light. The propagating electromagnetic wave propagates power according to the pointing vector theory. An electromagnetic wave propagating in space is composed of an electric field wave and a magnetic field wave whose period and polarity coincide and whose amplitude vector is orthogonal to the traveling direction. The electromagnetic wave in this state is called a TEM (transverse electromagnetic) wave. According to electromagnetism, an electric field and a magnetic field that change with time interact with each other and propagate in a space or a dielectric as a transverse wave. The speed of the electromagnetic wave propagating in the vacuum is the speed of light. The propagating electromagnetic wave propagates power according to the pointing vector theory. An electromagnetic wave propagating in space is composed of an electric field wave and a magnetic field wave whose period and polarity coincide and whose amplitude vector is orthogonal to the traveling direction. The electromagnetic wave in this state is called a TEM (transverse electromagnetic) wave. The value obtained by dividing the amplitude of the electric field wave constituting the TEM wave by the amplitude of the magnetic field wave is the wave impedance (surge
impedance or wave impedance).

電磁気学によると、電磁波は空間だけでなく媒体中も進行する。損失のない誘電体中を進行する電磁波の速度は、光速に対して比誘電率の平方根だけ遅くなり、波長は比誘電率の平方根だけ短くなる。後者は、波長圧縮と呼ばれる。 According to electromagnetism, electromagnetic waves travel not only in space but also in media. The speed of the electromagnetic wave traveling through the lossless dielectric is slowed by the square root of the relative permittivity with respect to the speed of light, and the wavelength is shortened by the square root of the relative permittivity. The latter is called wavelength compression.

電磁気学によると、損失のある媒体中を進行する電磁波は、次式で示される減衰定数γに従い、進行に伴って振幅が減少し位相が変化する。 According to electromagnetism, an electromagnetic wave traveling in a lossy medium follows an attenuation constant γ expressed by the following equation, and the amplitude decreases and the phase changes with progress.

式(3)において、γの実数項であるαは減衰定数、γの虚数項であるβは位相定数と呼ばれる。αは、nep/m(ネパー/メートル)の単位で表される。1
[nep/m]は、1メートル進行して振幅がexp-1または0.368倍に減衰することを意味する。
In Equation (3), α, which is a real term of γ, is called an attenuation constant, and β, which is an imaginary term of γ, is called a phase constant. α is expressed in units of nep / m (neper / meter). 1
[nep / m] means that the amplitude decreases by exp- 1 or 0.368 times after proceeding 1 meter.

電磁気学によると、式(3)中のγ 2を変形して得られる次式の括弧の項は、損失のある誘電体に関する複素誘電率と定義され、虚数部(σ/εω)を実数部(εr)で割った値を誘電体損失の正接と呼び、tanδで表す。但し、tanδは、電磁気学上、深い意味を持たない。 According to electromagnetics, the term in parentheses in the following equation obtained by transforming γ 2 in equation (3) is defined as the complex permittivity for a lossy dielectric, and the imaginary part (σ / ε 0 ω) is defined as The value divided by the real part (ε r ) is called the dielectric loss tangent and is represented by tan δ. However, tan δ has no deep meaning in electromagnetics.

電磁波が導体中を進行する場合は、導体中では電磁波に作用する電荷は存在せず導電率σは ωεに比べて非常に大きいので、γは次式で表される。次式中における減衰定数α の逆数であるδは、表皮厚さと呼ばれる。 When the electromagnetic wave travels in the conductor, there is no electric charge acting on the electromagnetic wave in the conductor, and the conductivity σ is much larger than ωε, so γ is expressed by the following equation. Δ, which is the reciprocal of the attenuation constant α in the following equation, is called the skin thickness.

電磁気学によると、導体中を進行する電磁波の電界と磁界の比である固有インピーダンスZは、損失のある媒体中の固有インピーダンスにおいて導電率σがωεに比べて非常に大きいとして、次式で与えられる。 According to electromagnetics, the intrinsic impedance Z 0, which is the ratio of the electric field to the magnetic field of the electromagnetic wave traveling in the conductor, is assumed to be very large compared to ωε in the intrinsic impedance in a lossy medium. Given.

回路上の電界と磁界が変化または振動している活性状態または準定常状態においては電磁波理論が回路を支配し、この場合は導体中を電磁波が進むことは困難である。しかし回路上の電界と磁界が静止している定常状態においては、導体中を電荷の移動による電流が流れることが出来る。 In the active state or quasi-stationary state where the electric and magnetic fields on the circuit are changing or oscillating, the electromagnetic wave theory dominates the circuit, and in this case, it is difficult for the electromagnetic wave to travel through the conductor. However, in a steady state where the electric and magnetic fields on the circuit are stationary, a current can flow through the conductor due to the movement of charges.

物理学によると、導体中には無尽蔵に近い自由電子すなわち電荷が存在する。直流電源に静的負荷が接続されている場合は導体中の電荷の移動による電流が流れるが、一般に、電荷の移動軸方向にはわずかな電界しか印加されないので、電荷の平均移動速度は極めて遅い。 According to physics, there are almost inexhaustible free electrons or charges in the conductor. When a static load is connected to the DC power supply, a current flows due to the movement of the charge in the conductor, but generally only a small electric field is applied in the direction of the movement axis of the charge, so the average movement speed of the charge is extremely slow. .

例えば、1平方ミリメートルの断面を有する銅線中を導体中の電荷の速度(dq/dt)で定義される10アンペアの電流が進行しているときの電流の進行速度は、物理学に従って計算すると常温で0.368[mm/s]となる。導体中の電荷は、遅いながらも移動は可能であるので、導体の他端で定常的に電荷が消費される際に導体の一端から同量の電荷が定常的に供給されれば、導体の他端に接続される抵抗器等の定常負荷へのエネルギー供給が支障なく行われる。 For example, when a current of 10 amperes defined by a charge velocity (dq / dt) in a conductor is traveling in a copper wire having a cross section of 1 square millimeter, the current progression rate is calculated according to physics It becomes 0.368 [mm / s] at room temperature. Since the charge in the conductor can move although it is slow, if the same amount of charge is constantly supplied from one end of the conductor when the charge is constantly consumed at the other end of the conductor, Energy supply to a steady load such as a resistor connected to the other end is performed without any trouble.

伝送線路上の電気信号の進行を扱うのが電気通信工学である。電気通信工学によると、直流的に絶縁された2本の導体間に電気信号を与えると、電気信号は電流波と電圧波となって伝送線路を進行するとしている。 Telecommunications engineering handles the progression of electrical signals on transmission lines. According to telecommunications engineering, when an electric signal is applied between two DC-insulated conductors, the electric signal becomes a current wave and a voltage wave and travels through the transmission line.

電気通信工学では、交流回路理論と同様に、電流を導体中の電荷の平均速度(dq/dt)すなわち導体電流としている。しかし、電磁気学の基礎を成すマックスウエルの方程式においては、導体電流は、時間の関数ではない電流密度Jに対応させている。 In telecommunications engineering, as in AC circuit theory, the current is the average charge velocity (dq / dt) in the conductor, that is, the conductor current. However, in Maxwell's equations that form the basis of electromagnetism, the conductor current corresponds to a current density J that is not a function of time.

交流回路理論や電気通信工学が電流をdq/dtと定義しているのは以下の理由によると考えられる。交流回路理論を支える重要な法則の一つであるキルヒホッフの法則が発表されたのが1845年で、マックスウエルが電磁波の存在を理論的に証明しヘルツによって実験で電磁波の存在が確認される42年前である。また、電気通信工学を支える重要な理論の一つである電信方程式が開発されたのが1874年で、同様に電磁波の存在が確認される13年前である。従って、交流回路理論および電気通信工学が実用化された当時は、回路の作用を電磁波の作用とする考え方がそもそも存在していなかった。さらに、その後も理論の修正が行われなかった。 The AC circuit theory and telecommunications engineering define the current as dq / dt for the following reasons. Kirchhoff's law, one of the important laws supporting AC circuit theory, was announced in 1845, Maxwell theoretically proves the existence of electromagnetic waves, and Hertz confirms the existence of electromagnetic waves by experiments42 Years ago. The telegraph equation, one of the important theories supporting telecommunications engineering, was developed in 1874, 13 years before the existence of electromagnetic waves was confirmed. Therefore, at the time when AC circuit theory and telecommunications engineering were put into practical use, there was no idea that the action of the circuit was the action of electromagnetic waves. Furthermore, the theory was not revised after that.

電気通信工学の基礎を成す電信方程式において、導体電流が光速で流れることが出来るとしている根拠となっているのはダランベールの波動方程式である。ダランベールの波動方程式では、波動の主体をスカラー量のラプラシアンとするベクトル関数で表現し、波動の主体を特定していない。導体電流が導体間電圧とともに波となることが、電気回路を支配する電磁気学と整合していなので、電圧と電流に関する回路方程式をダランベールの波動方程式に対比させて得られる電信方程式は、電磁気学とは無関係であり、また電磁気学に整合していないことになる。 In the telegraph equation that forms the basis of telecommunications engineering, the basis of the fact that the conductor current can flow at the speed of light is the D'Alembert wave equation. In D'Alembert's wave equation, a wave function is represented by a vector function with the Laplacian of a scalar quantity, and the wave's subject is not specified. Since the fact that the conductor current becomes a wave with the voltage between conductors is consistent with the electromagnetism governing the electric circuit, the telegraph equation obtained by comparing the circuit equation for voltage and current with the D'Alembert wave equation is the electromagnetism Is irrelevant and inconsistent with electromagnetism.

電流の定義が電磁気学に整合していないとなると、線路の電圧や、インピーダンス、電磁波との関係、さらには伝送損失に関しても電磁気学と矛盾する事態が生じる可能性がある。電気通信工学にはこのような問題が内在するが、歴史が古く伝送線路設計への豊富な適用実績を背景に、従来通りの連続波を対象とする伝送線路設計では電磁気学との矛盾が顕在化しないよう、工夫が施されている。 If the definition of current does not match electromagnetism, there may be a situation that contradicts electromagnetism in terms of line voltage, impedance, electromagnetic wave relationships, and transmission loss. Such problems are inherent in telecommunications engineering, but due to its long history and abundant track record of application to transmission line design, conventional transmission line design for continuous wave is inconsistent with electromagnetics. The idea is taken so that it may not become.

スイッチング波またはディジタル波のような間欠波を対象とする伝送線路設計においても電気通信工学に基づくと効率的であると言う考え方が支配的である。しかし電気通信工学のディジタル回路への実用実績が少ないため、電磁気学と対比しつつ慎重に設計や解析を行わないと、電磁気学との前記矛盾が顕在化する可能性がある。 In transmission line design for intermittent waves such as switching waves or digital waves, the idea of being efficient based on telecommunications engineering is dominant. However, since there is little practical experience with digital circuits in telecommunications engineering, the contradiction with electromagnetism may become apparent unless careful design and analysis are performed in comparison with electromagnetism.

電磁気学によれば、絶縁された2本の導体で構成される伝送線路に印加された電磁波は、TEMモードとなって準光速で進行する。絶縁が真空であれば進行速度は高速となる。このとき伝送線路で観測される電流や電圧は、それぞれ式(1)および式(2)から求められ、実態は伝送線路の導体ではなくて絶縁体中を進む電界波と磁界波である。電気通信工学によると、伝送線路上のTEM波を構成する電界波の振幅を磁界波の振幅で割った値が、特性インピーダンスである。 According to electromagnetics, an electromagnetic wave applied to a transmission line composed of two insulated conductors enters a TEM mode and travels at a quasi-light speed. If the insulation is vacuum, the traveling speed is high. At this time, the current and voltage observed in the transmission line are obtained from the equations (1) and (2), respectively, and the actual state is not the conductor of the transmission line but the electric field wave and magnetic field wave traveling through the insulator. According to telecommunication engineering, the characteristic impedance is a value obtained by dividing the amplitude of the electric field wave constituting the TEM wave on the transmission line by the amplitude of the magnetic field wave.

電磁気学と電気通信工学によると、伝送線路上を進行する信号の挙動は、伝送線路の特性インピーダンスと伝搬定数によって決まる。平板導体や絶縁体の材料特性は、伝送線路の特性インピーダンスに対して実用上ほとんど影響を及ぼさない。 According to electromagnetism and telecommunications engineering, the behavior of a signal traveling on a transmission line is determined by the characteristic impedance and propagation constant of the transmission line. The material properties of the flat conductor and the insulator have little practical effect on the characteristic impedance of the transmission line.

電気通信工学によると、直径aの2本の導線の中心間を距離dだけ離して平行に配置した構造の、レッヘル線路の特性インピーダンスは次式から求めることが出来る。 According to the telecommunications engineering, the characteristic impedance of the Rehel line having a structure in which the centers of two conductors having a diameter a are arranged in parallel with a distance d can be obtained from the following equation.

電気通信工学によると、実用的なマイクロストリップ線路ならびに平行板線路の特性インピーダンスは次式から求めることが出来る。 According to telecommunications engineering, the characteristic impedance of practical microstrip lines and parallel plate lines can be obtained from the following equation.

電気通信工学によると、既知の特性インピーダンスZを有する伝送線路を通して未知の特性インピーダンスZを有する伝送線路に電磁波を注入したときの、
前記二つの伝送線路の接続点における反射係数S11は、次式で表される。
According to telecommunications engineering, when electromagnetic waves are injected into a transmission line having an unknown characteristic impedance Z 1 through a transmission line having a known characteristic impedance Z 0 ,
The reflection coefficient S 11 at the connection point of the two transmission lines is expressed by the following equation.

電気通信工学によると、反射係数がS11である、線路間の透過係数S21Γは、次式で表される。 According to telecommunications engineering, reflection coefficient is S 11, the transmission coefficient S 21Ganma between lines is expressed by the following equation.

電気通信工学によると減衰定数α1を超える損失線路の透過係数S21αは、次式で表される。 According to telecommunication engineering, the transmission coefficient S 21α of the loss line exceeding the attenuation constant α1 is expressed by the following equation.

電磁気学によると、実用的な伝送線路の減衰定数は、電磁波が損失のある誘電体内を進行するときの減衰と、電磁波が誘電体内を進行する過程でその一部が導体内に侵入して熱になる導体損と、伝送線路外に漏れ出る放射損との和となると考えることが出来る。 According to electromagnetics, the practical transmission line attenuation constant is determined by the attenuation when the electromagnetic wave travels through a lossy dielectric body, and part of the electromagnetic wave penetrates into the conductor in the course of the electromagnetic wave traveling through the dielectric. It can be considered that this is the sum of the conductor loss and the radiation loss leaking out of the transmission line.

高速ディジタルデータ通信機器の配線設計は電気通信工学に従って行われている。しかし、電気通信工学は正弦波等の連続波を扱う伝送線路設計には適するが、前述のようにディジタル信号のような間欠波を扱う伝送線路設計には、電磁気学との矛盾があり適さない。 Wiring design of high-speed digital data communication equipment is performed according to telecommunication engineering. However, telecommunications engineering is suitable for transmission line design that handles continuous waves such as sine waves, but as mentioned above, transmission line design that handles intermittent waves such as digital signals is not suitable because of inconsistencies with electromagnetics. .

高速ディジタルデータ通信機器や高周波電力変換器おける直流電源は、回路に電荷を供給すると考えられている。 DC power supplies in high-speed digital data communication equipment and high-frequency power converters are considered to supply charges to the circuit.

電磁気学によると、マックスウエルは、単位(試験)点電荷に働く力の原因は、単位点電荷の存在する場所における電界にあるとし、クーロンの法則を修正した。この事実はあまり知られていない。 According to electromagnetism, Maxwell modified Coulomb's law, assuming that the force acting on the unit (test) point charge is due to the electric field where the unit point charge exists. This fact is not well known.

修正された電磁気学によると、電界に関する静電(electrostatic)エネルギーwは、次式で表される。 According to the modified electromagnetics, the electrostatic energy w E related to the electric field is expressed by the following equation.

このように、静電エネルギーwは電荷が持っているのではなくて電界Eと電束密度Dの積または電界Eとして媒質に蓄積していることになる。 Thus, the electrostatic energy w E is not carried by the electric charge but is accumulated in the medium as the product of the electric field E and the electric flux density D or the electric field E.

なお、電圧Vが印加された容量Cのコンデンサに蓄積されている静電エネルギーwは、電極距離をd、電極面積をSとすると、次式で表される。 The electrostatic energy w C stored in the capacitor having the capacitance C to which the voltage V is applied is expressed by the following equation, where d is the electrode distance and S is the electrode area.

電磁気学によると磁界に関する静磁気(magnetostatic)エネルギーwは磁界と磁束密度の積として媒質に蓄積しているとされ、次式で表される。 According to electromagnetism, the magnetostatic energy w H relating to the magnetic field is assumed to be accumulated in the medium as the product of the magnetic field and the magnetic flux density, and is expressed by the following equation.

電流Iが印加された誘導Lのリアクトルに蓄積されている静磁気エネルギーwは、リアクトルの磁路長をl 、磁路の断面積をSとすると、次式で表される。 The magnetostatic energy w L stored in the reactor of the induction L to which the current I is applied is expressed by the following equation, where l is the magnetic path length of the reactor and S is the cross-sectional area of the magnetic path.

非特許文献4および非特許文献5に示される孤立電磁波コンセプトによると、半導体集積回路内のトランジスタは、スイッチングの瞬間に、非線形波動またはソリトンの一種である孤立電磁波を励起する。ディジタル回路システムを構成する回路モジュール内のトランジスタも同様である。 According to the isolated electromagnetic wave concept shown in Non-Patent Document 4 and Non-Patent Document 5, the transistor in the semiconductor integrated circuit excites an isolated electromagnetic wave, which is a kind of nonlinear wave or soliton, at the moment of switching. The same applies to the transistors in the circuit module constituting the digital circuit system.

トランジスタのスイッチング動作時の孤立電磁波の励起メカニズムは、1834年にJohn Scott Russell がソリトンを発見する際に行った種々の実験の内の水を貯めた水門(ゲート)を急に開くことによって生じたソリトンの発生メカニズムや、ソリトンの一種であると確認されている津波の生成過程に極めて類似している。 The excitation mechanism of isolated electromagnetic waves during the switching operation of the transistor was caused by suddenly opening a sluice (gate) containing water in various experiments conducted by John Scott Russell in 1834 when he discovered solitons. It is very similar to the generation mechanism of solitons and the tsunami generation process that has been confirmed to be a kind of solitons.

前記孤立電磁波コンセプトによると、トランジスタがオフからオンにスイッチングする瞬間に、トランジスタの電位が前記直流電源の電圧を電源線路と信号線路の特性インピーダンス分割した値になる。従って、電源線路には電圧を分割電圧まで下げる極性の孤立電磁波が、信号線路には電圧を分割電圧まで上げる極性の孤立電磁波がそれぞれ同時に励起され、電磁波理論に従い、互いにその振幅ベクトルが直交する孤立電界波と孤立磁界波を伴って伝送線路上を進行する。 According to the isolated electromagnetic wave concept, at the moment when the transistor switches from OFF to ON, the potential of the transistor becomes a value obtained by dividing the voltage of the DC power supply by the characteristic impedance of the power supply line and the signal line. Therefore, isolated electromagnetic waves with a polarity that lowers the voltage to the divided voltage are excited on the power line, and isolated electromagnetic waves with a polarity that raises the voltage to the divided voltage are excited simultaneously on the signal line, and the isolated amplitude vectors are orthogonal to each other according to the electromagnetic wave theory. It travels on the transmission line with electric field waves and solitary magnetic field waves.

図1は、インバータに関する電磁波等価回路の一例である。 FIG. 1 is an example of an electromagnetic wave equivalent circuit related to an inverter.

図1において、特性インピーダンスZ0の伝送線路の途中にインバータ1が接続されており、特性インピーダンスZ0の伝送線路5は直流電源4とインバータ1との間に接続されて電源線路を構成し、特性インピーダンスZ0の伝送線路6はインバータ1と整合終端抵抗7との間に接続されて信号線路を構成している。インバータ1は、PチャネルMOS
FET2とNチャネルMOS FET3によるコンプリメンタリー構成である。
In Figure 1, an inverter 1 is connected to the middle of the transmission line of the characteristic impedance Z 0, the transmission line 5 of the characteristic impedance Z 0 is connected between the DC power supply 4 and the inverter 1 constitutes a power line, The transmission line 6 having the characteristic impedance Z 0 is connected between the inverter 1 and the matching termination resistor 7 to constitute a signal line. Inverter 1 is a P-channel MOS
Complementary configuration with FET 2 and N-channel MOS FET 3.

図1において、インバータ1のオン状態とは、PチャネルMOS FET2がオンでNチャネルMOS FET3がオフの状態であり、インバータ1のオフ状態はその逆である。伝送線路を進行するTEM波に関する磁界と電流の関係および電界と電位の関係は、電磁気学においてそれぞれアンペアの法則および電位の定義として示される。 In FIG. 1, the on state of the inverter 1 is a state in which the P channel MOS FET 2 is on and the N channel MOS FET 3 is off, and the off state of the inverter 1 is the opposite. The relationship between the magnetic field and the current and the relationship between the electric field and the potential with respect to the TEM wave traveling through the transmission line are shown as the amperage law and the definition of the potential in electromagnetics, respectively.

図2は、線路上の電源側の電位波形と電界波形の一例である。図3は、線路上の抵抗側の電位波形と電界波形の一例である。 FIG. 2 is an example of a potential waveform and an electric field waveform on the power supply side on the line. FIG. 3 shows an example of a potential waveform and an electric field waveform on the resistance side on the line.

図2は、インバータ1がオン時の伝送線路6上の電位波形9と、電磁気学に示される電位の定義から逆算して求められる伝送線路6上を進む電界波形8とを示す。図3は、インバータ1がオン時の伝送線路5上の電位波形11と、電磁気学に示される電位の定義から逆算して求められる電源側の伝送線路5上を進む電界波形10とを示す。 FIG. 2 shows a potential waveform 9 on the transmission line 6 when the inverter 1 is on, and an electric field waveform 8 that travels on the transmission line 6 obtained by back calculation from the definition of the potential shown in electromagnetics. FIG. 3 shows a potential waveform 11 on the transmission line 5 when the inverter 1 is on, and an electric field waveform 10 that travels on the transmission line 5 on the power source side, which is obtained by calculating backward from the definition of the potential indicated in electromagnetics.

図2および図3に示すように、インバータ1のスイッチングによって生じる電界の波形は、トランジスタの立ち上がり波形の最大傾斜部の接線を立ち上がり波形と見なして求める立ち上がり時間と円周率との積の逆数として求められる周波数で定義される実効周波数(significant frequency)を有する正弦波の半波形に近似している。実効周波数の考え方を引用すると、前記近似の確かさ(accuracy)は、92%以上と見込まれる。従って、設計だけに限ると実用上、実効周波数で行うことが出来る。 As shown in FIGS. 2 and 3, the waveform of the electric field generated by the switching of the inverter 1 is the reciprocal of the product of the rise time and the circumference determined by regarding the tangent of the maximum slope of the rise waveform of the transistor as the rise waveform. It approximates a half waveform of a sine wave having an effective frequency defined by the required frequency. To quote the concept of effective frequency, the accuracy of the approximation is expected to be 92% or more. Therefore, practically, it can be performed at an effective frequency as far as design is concerned.

図1から図3において、インバータ1がオンすると、図1中のB点とC点の電位は等しくE/2[V]となる。インバータ1によって励起された、お互い逆極性を有する伝送線路6上を進む孤立電界波8と伝送線路5上を進む孤立電界波10は、それぞれインバータ1に対して反対方向に進む。伝送線路6上を進む孤立電界波8は、伝送線路6の電位を0[V]からE/2[V]に上昇させつつ進み、整合終端抵抗7に向かう。一方、伝送線路5上を進む孤立電界波10は、伝送線路5の電位をE[V]からE/2[V]に降下させつつ直流電源4に向かって、それぞれ伝送線路を構成する絶縁体中を準光速で進行する。 1 to 3, when the inverter 1 is turned on, the potentials at points B and C in FIG. 1 are equal to E / 2 [V]. The isolated electric field wave 8 that travels on the transmission line 6 and the isolated electric field wave 10 that travels on the transmission line 5, which are excited by the inverter 1, travel in opposite directions with respect to the inverter 1. The isolated electric field wave 8 traveling on the transmission line 6 travels while increasing the potential of the transmission line 6 from 0 [V] to E / 2 [V], and travels toward the matching termination resistor 7. On the other hand, the isolated electric field wave 10 traveling on the transmission line 5 is an insulator that constitutes the transmission line toward the DC power source 4 while lowering the potential of the transmission line 5 from E [V] to E / 2 [V]. Proceeds with quasi-light speed.

前記孤立電磁波コンセプトによると、伝送線路上を進行する孤立電磁波の波長は次式で定義される。 According to the isolated electromagnetic wave concept, the wavelength of the isolated electromagnetic wave traveling on the transmission line is defined by the following equation.

従来の電源デカップリング回路または回路部品については、下記の特許文献や非特許文献に記載されている。その要点は後述される。
特開2002−260965(P2002−260965A) 特開2005−294449(P2005−294499A) 特開2007−42732(P2007−42732A) 特開2002−164760(P2002−164760A) 特開2004−048650(P2004−048650A) Hirokazu Tohya and Noritaka Toya著 「A NovelDesign Methodology of the On - Chip Power Distribution Network Enhancing thePerformance and Suppressing EMI of the SoC」、IEEE International Symposium onCircuits and Systems 2007、 pp. 889-892、 May 2007. 遠矢弘和、遠矢紀尚 著 「SoCの性能とEMCを大きく改善するオンチップ電源分配回路の新しい設計法」、電子情報通信学会 信学技報、Vol.107、No.149、 EE2007-20、pp.73-78、2007年7月. Stephan Kirchmeyerand Knud Reuter著 「Scientific importance, propertiesand growing applications of poly(3,4-ethylendioxythiophene)、The Royal Societyof Chemistry、Journal of Materials Chemistry.,2005、pp. 2077-2088、2005.
Conventional power supply decoupling circuits or circuit components are described in the following patent documents and non-patent documents. The point will be described later.
JP 2002-260965 (P2002-260965A) JP-A-2005-294449 (P2005-294499A) JP2007-42732 (P2007-42732A) JP 2002-164760 (P2002-164760A) JP-A-2004-048650 (P2004-048650A) Hirokazu Tohya and Noritaka Toya, "A NovelDesign Methodology of the On-Chip Power Distribution Network Enhancing the Performance and Suppressing EMI of the SoC", IEEE International Symposium on Circuits and Systems 2007, pp. 889-892, May 2007. Hirokazu Toya, Norio Naoya Toya “New design method of on-chip power distribution circuit that greatly improves SoC performance and EMC”, IEICE Technical Report, Vol.107, No.149, EE2007-20, pp .73-78, July 2007. Stephan Kirchmeyerand Knud Reuter, `` Scientific importance, properties and growing applications of poly (3,4-ethylendioxythiophene), The Royal Society of Chemistry, Journal of Materials Chemistry., 2005, pp. 2077-2088, 2005.

解決しようとする問題点の第1は、特許文献1に関する。特許文献1は、簡便な製造工程で、良好な特性を有する固体電解コンデンサを得ることができる固体電解コンデンサの製造方法を提供するために、固体電解質層に関する詳細な製法を開示している。しかし、改良の目的がESRの低減であり、開示されている技術によって、コンデンサに期待されている理想電源の機能に近づけることは不可能であった。 The first problem to be solved relates to Patent Document 1. Patent Document 1 discloses a detailed manufacturing method for a solid electrolyte layer in order to provide a method for manufacturing a solid electrolytic capacitor capable of obtaining a solid electrolytic capacitor having good characteristics by a simple manufacturing process. However, the purpose of the improvement is to reduce ESR, and it has been impossible to approximate the function of an ideal power source expected for a capacitor by the disclosed technology.

解決しようとする問題点の第2は、特許文献2に関する。特許文献2は、静電容量及び耐圧の向上と、小型大容量化を可能とした固体電解コンデンサの製造方法を提供するために、固体電解質層に関する詳細な製法を開示している。しかし、改良の目的が静電容量及び耐圧の向上と、小型大容量化であり、開示されている技術によって、コンデンサに期待されている理想電源の機能に近づけることは不可能であった。 A second problem to be solved relates to Patent Document 2. Patent Document 2 discloses a detailed manufacturing method related to a solid electrolyte layer in order to provide a method for manufacturing a solid electrolytic capacitor capable of improving capacitance and withstand voltage and reducing the size and capacity. However, the purpose of the improvement is to increase the capacitance and withstand voltage and to increase the size and capacity, and it has been impossible to approximate the function of an ideal power source expected for a capacitor by the disclosed technology.

解決しようとする問題点の第3は、特許文献3に関する。特許文献3は、大容量、低ESR、高信頼性である固体電解コンデンサを提供するために、セパレータを含む固体電解質層に関する詳細な製法を開示している。しかし、改良の目的が大容量、低ESR、高信頼性であり、開示されている技術によって、コンデンサに期待されている理想電源の機能に近づけることは不可能であった。 A third problem to be solved relates to Patent Document 3. Patent Document 3 discloses a detailed manufacturing method for a solid electrolyte layer including a separator in order to provide a solid electrolytic capacitor having a large capacity, low ESR, and high reliability. However, the purpose of the improvement is large capacity, low ESR, and high reliability, and it has been impossible to approach the function of an ideal power source expected for a capacitor by the disclosed technology.

解決しようとする問題点の第4は、特許文献4に関する。特許文献4は、10KHzから1GHz間での帯域で使用する分布定数型ノイズフィルタの形成法を示している。該分布定数型ノイズフィルタの長さは、電子部品から発生する高周波の1/4波長以上の長さとなるように設定するとしているが、たとえば100[MHz]の高調波すなわち正弦波の1/4波長は大気中で75[cm]、この文献で絶縁体として使用している酸化アルミニウムの場合は、比誘電率が約8.5であるので26[cm]となり、通常の電子・電気機器に使用するには長すぎる。また、線路の入力インピーダンス特性は、反射係数(S11)の測定値または同等の電磁界シミュレーション値から求めるべきところを透過係数(S21)から求める理論的な誤りを犯しているのでデータの信頼性が無い。従って、開示されている技術によって、コンデンサに期待されている理想電源の機能に近づけることは不可能であった。さらに極性を有しているため使用に際して注意が必要であった。 A fourth problem to be solved relates to Patent Document 4. Patent Document 4 shows a method of forming a distributed constant noise filter used in a band between 10 KHz and 1 GHz. The length of the distributed constant type noise filter is set so as to be at least a quarter wavelength of a high frequency generated from an electronic component. For example, a harmonic of 100 [MHz], that is, a quarter of a sine wave is used. The wavelength is 75 [cm] in the atmosphere, and in the case of aluminum oxide used as an insulator in this document, the relative dielectric constant is about 8.5, so it is 26 [cm]. Too long to use. Further, the input impedance characteristic of the line has a theoretical error in determining where the transmission coefficient (S21) should be obtained from the measured value of the reflection coefficient (S11) or the equivalent electromagnetic field simulation value. No. Therefore, it has been impossible to approximate the function of an ideal power source expected for a capacitor by the disclosed technique. Furthermore, since it has polarity, it was necessary to be careful when using it.

解決しようとする問題点の第5は、特許文献5に関する。特許文献7は、高速化、高周波数化に適した平行平板線路型素子を提供するために、電極の構造を詳細に示しているが、使用する材料の物理定数や固体電解質層に関する製法が示されていない。従って期待する透過係数(S21)の特性の裏付けが無い。開示されている技術によって、コンデンサに期待されている理想電源の機能に近づけることは不可能であった。 The fifth problem to be solved relates to Patent Document 5. Patent Document 7 shows the structure of an electrode in detail in order to provide a parallel plate line type element suitable for higher speed and higher frequency, but shows a physical constant of a material used and a manufacturing method related to a solid electrolyte layer. It has not been. Therefore, there is no support for the expected transmission coefficient (S21) characteristics. With the disclosed technology, it has been impossible to approximate the function of an ideal power source expected for a capacitor.

非特許文献1および非特許文献2は本特許の理論的な根拠を成す重要文献であるがすでに詳述した。非特許文献3も本特許の理論的な根拠の一つである。非特許文献3は、ナノサイズの粒子にしたポリ(3,4−エチレンジオキシチオフェン)とポリスチレン・スルホン酸の錯体の例が示されている。このように薬品メーカからナノサイズの固体電解質材料が供給されれば、これを使用する部品メーカ等での化学重合反応工程が不要になる。非特許文献3のような化学メーカの努力により、100 [S/m]以上の導電率を有するナノサイズの固体電解質材料の商品化は間近となっている。 Non-Patent Document 1 and Non-Patent Document 2 are important documents that form the theoretical basis of this patent, but have already been described in detail. Non-patent document 3 is one of the theoretical grounds of this patent. Non-Patent Document 3 shows an example of a complex of poly (3,4-ethylenedioxythiophene) and polystyrene / sulfonic acid made into nano-sized particles. In this way, if a nano-sized solid electrolyte material is supplied from a chemical manufacturer, a chemical polymerization reaction step in a component manufacturer or the like that uses the material becomes unnecessary. Due to the efforts of chemical manufacturers such as Non-Patent Document 3, the commercialization of nano-sized solid electrolyte materials having a conductivity of 100 [S / m] or more is approaching.

電磁気学の定義に従うと、ディジタル信号処理回路の多くは準定常回路に該当すると考えられ、設計には交流回路理論が使用されている。準定常状態の回路は電磁波理論が支配しているが、回路を定常と見なして設計や解析しても実用上の誤差が少ないということを意味する。ディジタル信号処理回路のトランジスタのスイッチング速度が向上すると電磁ノイズが増加し、その対策は非常に難しいとされている。スイッチング周波数が高くなると小型軽量化が計られることはよく知られているが、電磁ノイズの増加が、ディジタル回路システムの高周波化を妨げている大きな要因の一つとなっている。 According to the definition of electromagnetism, most digital signal processing circuits are considered to be quasi-stationary circuits, and AC circuit theory is used in the design. Although the quasi-steady state circuit is dominated by electromagnetic wave theory, it means that there are few practical errors even if the circuit is regarded as stationary and designed and analyzed. When the switching speed of the transistor of the digital signal processing circuit is improved, electromagnetic noise increases, and countermeasures are considered to be very difficult. Although it is well known that when the switching frequency is increased, a reduction in size and weight is achieved. However, an increase in electromagnetic noise is one of the major factors that hinder high frequency operation of digital circuit systems.

定常回路を扱う交流回路理論では、電磁波である電磁ノイズの対策は不可能であることは自明である。従って、トランジスタの高速化に伴って発生する電磁ノイズ問題を解決するためには、ディジタル回路システムを構成する配線の設計において、配線の長さにかかわらず電磁波理論を適用する必要があることになる。 It is self-evident that AC circuit theory that deals with stationary circuits cannot take measures against electromagnetic noise, which is electromagnetic waves. Therefore, in order to solve the electromagnetic noise problem that occurs with the speeding up of the transistor, it is necessary to apply the electromagnetic wave theory in the design of the wiring constituting the digital circuit system regardless of the length of the wiring. .

電気・電子回路には、多くのコンデンサが使用されている。コンデンサは、1875年にドイツ人のクライスト(Ewald George von Kleist)
によって発明された後、原理的な変更がなされないままで電気電子機器に使用されてきた化石のような存在であるが、最近のディジタル化に伴って機器での使用数が増加し続けている。例えばPCのマザーボードにおいては、600個から1000個またはそれ以上のコンデンサが使用され、半導体集積回路パッケージやチップ上にも多くのコンデンサが搭載または形成されており、使用数は増える傾向にある。
Many capacitors are used in electrical and electronic circuits. Capacitor was German Christ (Ewald George von Kleist) in 1875
Is a fossil that has been used in electrical and electronic equipment without being changed in principle, but the number of uses in equipment continues to increase with recent digitization. . For example, in a PC motherboard, 600 to 1000 or more capacitors are used, and many capacitors are mounted or formed on a semiconductor integrated circuit package or chip, and the number of used capacitors tends to increase.

一般に、コンデンサの機能は、交流回路理論に従って電荷の蓄積とされている。また、直流電源は交流回路に電荷を供給すると考えられている。特に半導体メーカは、コンデンサからの電荷の供給が半導体集積回路の安定動作に必須であると考えている。従って、コンデンサは、電荷蓄積または放出性能を高めるために、おおむね絶縁体に対向する電極の形状は正方形または円形であって、対向する電極の全面または中心部に一対の回路接続用端子が備えられている。 In general, the function of a capacitor is charge accumulation in accordance with AC circuit theory. In addition, it is considered that the DC power supply supplies electric charges to the AC circuit. In particular, semiconductor manufacturers consider that the supply of electric charges from capacitors is essential for stable operation of semiconductor integrated circuits. Accordingly, in the capacitor, in order to enhance charge storage or discharge performance, the shape of the electrode facing the insulator is generally square or circular, and a pair of circuit connection terminals are provided on the entire surface or the center of the facing electrode. ing.

一方で、電気・電子回路に使用されているコンデンサの多くは、ディジタル信号処理回路が発生する電磁ノイズを電源分配回路でデカップリング(減結合)するためにも使用されている。以上の理由から、ディジタル回路システムにおいては、コンデンサのほとんどが電源分配回路に搭載され、回路に並列に接続されている。 On the other hand, many capacitors used in electric / electronic circuits are also used for decoupling (decoupling) electromagnetic noise generated by a digital signal processing circuit in a power distribution circuit. For the above reasons, in the digital circuit system, most of the capacitors are mounted on the power distribution circuit and connected in parallel to the circuit.

ところで、コンデンサの機能を電荷の蓄積とする考え方は、前述のようにマックスウエルによって否定され、完成された電磁気学においては、コンデンサの機能は電束密度または電界の蓄積と修正されている。従って、交流回路理論を学んだ回路設計技術者が信じる、コンデンサからの電荷の供給が半導体集積回路の安定動作に必須であるという考え方は、全くの誤りであることが判る。 By the way, the idea that the function of the capacitor is to store electric charge is denied by Maxwell as described above, and in the completed electromagnetics, the function of the capacitor is modified to store electric flux density or electric field. Therefore, the idea that the circuit design engineer who learned the AC circuit theory believes that the supply of electric charge from the capacitor is essential for the stable operation of the semiconductor integrated circuit is completely wrong.

次に、コンデンサに期待されているデカップリング効果について検証を試みる。ここで言うデカップリング効果とは高域の電磁ノイズを遮断し電源供給に必要な直流または低周波域を透過させる効果であるので、デカップリングをロウパスフィルタリングと言うことが出来る。すなわち、コンデンサを回路に並列に接続すると、周波数が高くなるにつれてコンデンサのインピーダンスが小さくなるので、キルヒホッフの法則に従い、並列コンデンサを挟む閉回路間の独立性が高まるが、低周波ではコンデンサの作用は無視できるほどになり、並列コンデンサを挟む閉回路間の一体性が高まる。 Next, we will attempt to verify the decoupling effect expected for capacitors. The decoupling effect referred to here is an effect of blocking high-frequency electromagnetic noise and transmitting a direct current or a low-frequency region necessary for power supply, and therefore decoupling can be referred to as low-pass filtering. In other words, when a capacitor is connected in parallel to the circuit, the impedance of the capacitor decreases as the frequency increases, and independence between the closed circuits that sandwich the parallel capacitor increases according to Kirchhoff's law. It becomes negligible and the unity between the closed circuits that sandwich the parallel capacitor increases.

電気通信工学によると、線路に並列に接続されたときのコンデンサのインピーダンスは、測定系がZの特性インピーダンスを有するネットワークアナライザでS21を測定することによって次式から求められるとされている。 According to telecommunications engineering, the impedance of the capacitor when connected in parallel to the line, there is a determined from the following equation by measuring system measures the S 21 with a network analyzer having a characteristic impedance of Z 0.

これは、コンデンサを線路に並列に接続する場合は、式(11)における線路長zがゼロとなり、透過係数S21と反射係数S11が比例関係となるためである。なお、測定されるS21の値は周波数が高くなると1よりかなり小さくなる。またZは通常50[Ω]である。この場合は、式(17)は簡略化できて、Z=25S21となる。 This is because when the capacitor is connected to the line in parallel, the line length z in equation (11) becomes zero, and the transmission coefficient S 21 and the reflection coefficient S 11 are in a proportional relationship. Note that the measured value of S 21 becomes considerably smaller than 1 as the frequency increases. Z 0 is usually 50 [Ω]. In this case, equation (17) can be simplified and Z C = 25S 21 .

式(17)にS21の測定値を代入することによって、市販されているコンデンサのインピーダンスの周波数特性を求めるとV字型の特性曲線となる。すなわち、セラミックコンデンサ等の比較的静電容量が小さいコンデンサにおいては、直列共振点と呼ばれるインピーダンスが最小となる周波数までは周波数に比例してインピーダンス値が減少し、直列共振周波数以上ではインピーダンスが周波数に比例して増加する特性となる。 By substituting the measured value of S 21 into the equation (17), the frequency characteristic of the impedance of a commercially available capacitor is obtained, resulting in a V-shaped characteristic curve. That is, in a capacitor having a relatively small capacitance such as a ceramic capacitor, the impedance value decreases in proportion to the frequency up to the frequency at which the impedance called the series resonance point is minimized, and the impedance becomes the frequency above the series resonance frequency. The characteristic increases in proportion.

このような特性になる理由は、従来、コンデンサにはリード線、端子、および電極があり、この部分を流れる電流は導体電流であるのでこの部分が等価直列インダクタンス(ESL)として作用し、周波数が高くなるほど電流が流れにくくなるためであるとされている。さらに前記直列共振点のインピーダンスは誘電体損失やリード線、端子、および電極の抵抗等で構成される等価直列抵抗(ESR)によって決まると考えられている。 The reason for this characteristic is that a capacitor conventionally has a lead wire, a terminal, and an electrode, and since the current flowing through this part is a conductor current, this part acts as an equivalent series inductance (ESL), and the frequency is This is because the higher the current, the less the current flows. Further, it is considered that the impedance of the series resonance point is determined by an equivalent series resistance (ESR) composed of dielectric loss, lead wire, terminal, and electrode resistance.

しかし、デカップリングコンデンサの周波数特性についての上記解釈は、電磁気学に照らすと誤りであることが判る。すなわち、デカップリングコンデンサは電磁波の回路と定義されている交流回路での使用が想定されているにもかかわらず、デカップリングコンデンサの周波数特性についての上記解釈は、主に静電磁界における電磁気学の理論に基づいているし、オームの法則は電磁気学とは関係無い。 However, it can be seen that the above interpretation of the frequency characteristics of the decoupling capacitor is incorrect in light of electromagnetics. That is, although the decoupling capacitor is assumed to be used in an AC circuit defined as an electromagnetic wave circuit, the above interpretation of the frequency characteristics of the decoupling capacitor is mainly based on electromagnetics in an electrostatic magnetic field. Based on theory, Ohm's law has nothing to do with electromagnetism.

デカップリングコンデンサは電磁波の回路と定義されている交流回路での使用が想定されているのであれば、回路または線路におけるインピーダンスは、電磁波の進行を想定した特性インピーダンスで無ければならない。しかし、コンデンサは線路から見たときの長さがゼロであるので、コンデンサ部の電磁波はTEMモードでは無い。従って、コンデンサの特性インピーダンスは理論上存在しないことになる。 If the decoupling capacitor is assumed to be used in an AC circuit that is defined as an electromagnetic wave circuit, the impedance of the circuit or line must be a characteristic impedance that assumes the progression of the electromagnetic wave. However, since the length of the capacitor when viewed from the line is zero, the electromagnetic wave in the capacitor portion is not in the TEM mode. Therefore, the characteristic impedance of the capacitor does not exist theoretically.

長年続けられてきたコンデンサに対する、直列共振点と呼ばれるインピーダンスが最小となる周波数以上におけるインピーダンス特性を改善するための各種改良は、以上から、そのほとんどが的を射ないものであったと考えることが出来る。すなわち、ESLを小さくするためにサイズを出来るだけ小さくする。リード線、端子、および電極には導電性の高い材料を使用する。誘電体損を出来るだけ小さくする等である。最近、等価直列抵抗(ESR)が小さすぎるとQファクタが大きくなりかえって電磁ノイズが増えることがあるという理由で、リード線、端子、および電極には導電性が比較的低い材料を使用し誘電体損をやや大きくしたコンデンサも現れているが、デカップリング機能向上の観点からは、これも的を射ない方法と位置づけられる。 From the above, it can be considered that most of the various improvements to improve the impedance characteristics above the frequency at which the impedance, which is called the series resonance point, is the minimum for the capacitor that has been continued for many years, did not hit the target. . That is, the size is reduced as much as possible in order to reduce the ESL. A highly conductive material is used for the lead wire, the terminal, and the electrode. For example, the dielectric loss is made as small as possible. Recently, a material having a relatively low conductivity has been used for a lead wire, a terminal, and an electrode because the Q factor may be increased if the equivalent series resistance (ESR) is too small, which may increase electromagnetic noise. Capacitors with slightly increased losses have also appeared, but from the viewpoint of improving the decoupling function, this is also regarded as a non-targeting method.

さらに、コンデンサの使用法についても誤りがある。コンデンサを多数並列に接続することによって回路のインピーダンスが低くなると言う考え方があり、広く信じられている。この考え方はキルヒホッフの法則が成り立つ場合に有効であるが、キルヒホッフの法則が成り立たない数メガヘルツ以上では無効である。数メガヘルツ以上の信号を扱う電磁波の進行を想定すべき回路において、回路インピーダンスを低くする方法は、伝送線路の特性インピーダンスを低くする以外に無い。 In addition, there are errors in the use of capacitors. There is an idea that the impedance of a circuit is lowered by connecting a large number of capacitors in parallel, which is widely believed. This idea is effective when Kirchhoff's law holds, but is invalid above several megahertz where Kirchhoff's law does not hold. There is no other way to lower the circuit impedance than to lower the characteristic impedance of the transmission line in a circuit that should assume the progression of electromagnetic waves that handle signals of several megahertz or more.

コンデンサは、線路長がゼロであるので、線路に多数のコンデンサを並列に接続しても、線路の特性インピーダンスを低くすることは出来ない。しかし、伝送線路の特性インピーダンスと透過係数は独立であるので、電磁波の透過を減らすことは出来る。コンデンサの場合は、線路長がゼロすなわち線路ではないために、インピーダンスと透過係数が比例関係にあったのであるが、このこのような考え方で求められるインピーダンスは、数メガヘルツ以上の信号を扱うデカップリング回路においては意味のない指標である。 Since the capacitor has a line length of zero, even if a large number of capacitors are connected in parallel to the line, the characteristic impedance of the line cannot be lowered. However, since the transmission line's characteristic impedance and transmission coefficient are independent, transmission of electromagnetic waves can be reduced. In the case of capacitors, because the line length is zero, that is, not a line, the impedance and the transmission coefficient were in a proportional relationship, but the impedance required by this concept is decoupling that handles signals of several megahertz or more. It is a meaningless index in the circuit.

従って、コンデンサの前記V字型のインピーダンス特性は、デカップリング機能の周波数上限を示すためのものであると考えるのが正しい。すなわち、コンデンサの並列使用は、たとえば非特許文献2に従って、電束密度または電界の蓄積の機能に期待して、集中要素モデルが採用できる低周波領域に限る必要があるということになる。これは、電源分配回路のデカップリングに適する部品が、現在において存在しないことを意味する。このことが、電磁ノイズ問題に改善の兆しが見られない最大の理由の一つであることは容易に推定できる。 Therefore, it is correct to think that the V-shaped impedance characteristic of the capacitor is intended to indicate the upper frequency limit of the decoupling function. That is, it is necessary to limit the parallel use of capacitors to a low frequency region where a concentrated element model can be adopted in anticipation of the function of electric flux density or electric field accumulation, for example, according to Non-Patent Document 2. This means that there are currently no components suitable for decoupling the power distribution circuit. It can be easily estimated that this is one of the biggest reasons for no improvement in the electromagnetic noise problem.

アナログ回路は、回路状態の変化が比較的緩やかで始まりと終わりが明確でないことが多い。従って、特に低周波アナログ回路の設計においては、マックスウエルが確立した電磁波理論の代わりに、定常状態の回路を扱う交流回路理論を適用しても、実用上、問題が生じることはほとんど無かった。 In analog circuits, changes in the circuit state are relatively gradual and the beginning and end are often unclear. Therefore, in the design of a low-frequency analog circuit in particular, even if the AC circuit theory that handles a steady-state circuit is applied instead of the electromagnetic wave theory established by Maxwell, there is almost no problem in practical use.

一方、クロック回路やディジタル信号処理回路は、アナログ回路と異なり、状態の変化の期間が短く変化の始まりと終わりは明確である。ディジタル信号処理回路の状態の変化は非常に急激であり、急激な電界または磁界の変化は、電磁気学に従い大きなレベルの電磁波を励起する。ディジタル信号処理回路における電界または磁界の変化は一般に間歇的である。さらに、周波数制御型のディジタル信号処理回路においては、スイッチングの周期は不定である。 On the other hand, unlike an analog circuit, a clock circuit and a digital signal processing circuit have a short state change period and the beginning and end of the change are clear. The change in the state of the digital signal processing circuit is very abrupt, and a sudden change in electric or magnetic field excites a large level of electromagnetic waves according to electromagnetics. Changes in electric or magnetic fields in digital signal processing circuits are generally intermittent. Further, in the frequency control type digital signal processing circuit, the switching cycle is indefinite.

以上のようにアナログ回路とディジタル信号処理回路は、電磁気学の観点からは大きく異なっている。しかし、クロック回路やディジタル信号処理回路で構成される半導体集積回路の設計や解析には、従来からアナログ回路と同様、交流回路理論が使用されて来た。この原因の一つは、スイッチング波がひずみ波の一種とみなされて来たことに因る。 As described above, the analog circuit and the digital signal processing circuit are greatly different from the viewpoint of electromagnetics. However, AC circuit theory has been conventionally used in the design and analysis of semiconductor integrated circuits composed of clock circuits and digital signal processing circuits, as in analog circuits. One of the causes is that the switching wave has been regarded as a kind of distorted wave.

フーリエ変換法によると、ひずみ波は正弦波である多数の高調波から構成されているとされる。これらの高調波は始まりと終わりが無い多数の正弦波である。そうであるとすれば、回路上の信号を高調波毎に解析してその結果を加算すれば、クロック回路やディジタル信号処理回路の解析が可能となる。このように、フーリエ変換法は、クロック回路やディジタル信号処理回路の設計や解析に従来のアナログ回路に関する手法が適用出来るという、利便性の高い道を開いている。 According to the Fourier transform method, the distorted wave is assumed to be composed of a number of harmonics that are sine waves. These harmonics are numerous sine waves with no beginning and no end. If so, the clock circuit and digital signal processing circuit can be analyzed by analyzing the signals on the circuit for each harmonic and adding the results. As described above, the Fourier transform method opens a highly convenient path in which a conventional analog circuit method can be applied to design and analysis of a clock circuit and a digital signal processing circuit.

フーリエ変換法(Fourier transform)と呼ばれ、1812年に提出されアカデミー大賞を受賞した「熱の解析的理論」の中でフランス人のJoseph
Fourierによって最初に使用された。
フーリエ変換法は数学の一手法であり、汎用性はあるが、上位理論である電磁気学との整合性を確認した上で電気電子回路の設計や解析に採用されている訳ではない。
French Joseph in the "Analytical Theory of Heat", called the Fourier transform, submitted in 1812 and awarded the Academy Award
First used by Fourier.
The Fourier transform method is a mathematical method and is versatile, but it has not been adopted in the design and analysis of electrical and electronic circuits after confirming consistency with the higher theory of electromagnetism.

従って、クロック回路やディジタル信号処理回路の設計や解析にフーリエ変換法を適用しているのは、前述の電気通信工学においてダランベールの波動方程式のみに依存して導体電流と導体間電圧が光速でと進行するとしているのと同様、物理学の観点からは誤用と考えるべきである。 Therefore, the Fourier transform method is applied to the design and analysis of clock circuits and digital signal processing circuits because the conductor current and the voltage between conductors at the speed of light depend only on the D'Alembert wave equation in the aforementioned telecommunications engineering. It should be considered misused from a physics perspective, just as it is going on.

スイッチング波形をひずみ波として扱うと、損失を有する損失線路をスイッチング波が進行した場合に、観測結果と解析結果との間で齟齬が生じる。たとえばデューティが1/10で繰り返し周波数が1[GHz]のスイッチング波をフーリエ変換すると振幅の1/10の値の直流成分と1[GHz]を基本波とする高調波とに分解できる。直流電流はほとんど流さないCMOS回路を使用する半導体集積回路内のある長さの配線または伝送線路が、1[GHz]の振幅を1/2に低下させる損失を有しているとすると、配線または伝送線路の終端でのスイッチング波の振幅は、解析結果ではほぼ1/2以下に低下する。 When the switching waveform is treated as a distorted wave, a wrinkle occurs between the observation result and the analysis result when the switching wave travels through a lossy line having a loss. For example, when a switching wave having a duty of 1/10 and a repetition frequency of 1 [GHz] is Fourier transformed, it can be decomposed into a DC component having a value of 1/10 of the amplitude and a harmonic having 1 [GHz] as a fundamental wave. If a certain length of wiring or transmission line in a semiconductor integrated circuit using a CMOS circuit that hardly passes direct current has a loss that reduces the amplitude of 1 [GHz] to 1/2, The amplitude of the switching wave at the end of the transmission line is reduced to almost ½ or less in the analysis result.

しかし、電磁気学に従うと、スイッチング波の定常振幅は直流電源から供給される静電エネルギーによって維持される。静電エネルギーは波動エネルギーではないので配線または伝送線路の損失の作用は受けない。従って、伝送線路の終端で観測されるスイッチング波の振幅は減衰しないはずである。 However, according to electromagnetics, the steady-state amplitude of the switching wave is maintained by electrostatic energy supplied from a DC power source. Since electrostatic energy is not wave energy, it is not affected by the loss of wiring or transmission lines. Therefore, the amplitude of the switching wave observed at the end of the transmission line should not be attenuated.

この事実は、スイッチング波をひずみ波として扱うことが誤りであることを示している。また、この事実は、フーリエ変換法に基づいて生じる群速度の概念に従う、ディジタル信号配線における信号品位(シグナルインテグリティ)に関する従来の理論には修正が必要であることを意味する。すなわち、この事実は、クロック回路やディジタル信号処理回路の技術の今後の発展のためには、従来の回路理論に代わる理論が必要であることを示唆している。 This fact indicates that it is an error to treat the switching wave as a distorted wave. This fact also means that the conventional theory of signal quality (signal integrity) in digital signal wiring, which follows the concept of group velocity that arises based on the Fourier transform method, needs to be modified. That is, this fact suggests that a theory replacing the conventional circuit theory is necessary for the future development of the technology of the clock circuit and the digital signal processing circuit.

ディジタル信号処理回路を誤り無く高い性能で動作させるためには、ディジタル信号処理回路に直流電源を分配する電源分配回路での充分なデカップリングが必要である。前記電源分配回路でのデカップリングが不充分であると、ディジタル信号処理回路の設計や解析において、ディジタル信号処理回路内だけでなくディジタル回路システム内、さらにはディジタル回路システムの外部の電源分配回路もやバッテリ、商用電源ネットワークまでを想定することも必要となる。これでは、設計や解析が事実上不可能になってしまう。 In order to operate the digital signal processing circuit with high performance without error, sufficient decoupling is required in the power distribution circuit that distributes the DC power to the digital signal processing circuit. If the decoupling in the power distribution circuit is insufficient, not only the digital signal processing circuit but also the power distribution circuit outside the digital circuit system is used in the design and analysis of the digital signal processing circuit. It is also necessary to assume a battery, a commercial power supply network, and so on. This makes design and analysis virtually impossible.

しかし、従来のようにスイッチング波形を歪み波として扱うと、ディジタル回路システム内の多くのトランジスタに接続されている前記電源分配回路にはトランジスタの数の歪み波が関係し、それぞれの歪み波には膨大な数の高調波が含まれていることになる。このような状態にある前記電源分配回路のデカップリング回路の設計や解析を行うことは、高性能コンピュータを用いても不可能である。 However, if the switching waveform is treated as a distorted wave as in the conventional case, the power distribution circuit connected to many transistors in the digital circuit system is related to the number of distorted waves, and each distorted wave A huge number of harmonics are included. It is impossible to design and analyze the decoupling circuit of the power distribution circuit in such a state even using a high performance computer.

本発明は、上記問題を根本的に解決する手段を提供することを目的の一つとしている。 An object of the present invention is to provide means for fundamentally solving the above problems.

上記課題を解決するため、請求項1記載の発明は、低インピーダンス損失線路に係り、弁作用金属から成り両面にエッチング部が形成され該エッチング部の表面に誘電体酸化皮膜が形成された陽極箔と、第1の陰極箔と、第2の陰極箔と、前記陽極箔の両面の誘電体酸化皮膜上に形成される導電性ポリマー層と、前記導電性ポリマー層に前記第1の陰極箔、および前記第2の陰極箔を貼付するための導電性ポリマーペースト層から形成され、前記第1の陰極箔および前記第2の陰極箔を電極とする平行板伝送線路構造であることを特徴としている。 In order to solve the above-mentioned problem, the invention according to claim 1 relates to a low impedance loss line, and comprises an anode foil made of a valve metal and having an etched portion formed on both surfaces and a dielectric oxide film formed on the surface of the etched portion. A first cathode foil, a second cathode foil, a conductive polymer layer formed on a dielectric oxide film on both sides of the anode foil, the first cathode foil on the conductive polymer layer, And a parallel plate transmission line structure formed from a conductive polymer paste layer for attaching the second cathode foil and having the first cathode foil and the second cathode foil as electrodes. .

また、請求項2記載の発明は、低インピーダンス損失線路に係り、請求項1記載の低インピーダンス損失線路において、該低インピーダンス損失線路が、少なくとも10[MHz]から10[GHz]の帯域において、前記電源線路を除くスイッチング信号が進行する全ての線路の特性インピーダンスに対して1/100以下または0.5[Ω] 以下の特性インピーダンスと、10[nep/m](ネパー/メートル)以上の減衰定数を有することを特徴としている。 The invention described in claim 2 relates to a low impedance loss line. In the low impedance loss line according to claim 1, the low impedance loss line is in the band of at least 10 [MHz] to 10 [GHz]. Characteristic impedance of 1/100 or less or 0.5 [Ω] or less, and attenuation constant of 10 [nep / m] (neper / meter) or more with respect to the characteristic impedance of all lines on which switching signals travel except the power line It is characterized by having.

また、請求項3記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項2記載の低インピーダンス損失線路において、前記導電性ポリマー層が、100[S/m]以上の導電率を有し、前記導電性ポリマーペースト層が、10[S/m]以上の導電率を有することを特徴としている。 The invention described in claim 3 relates to a low impedance loss line. In the low impedance loss line according to claim 1 or 2, the conductive polymer layer has a conductivity of 100 [S / m] or more. And the conductive polymer paste layer has a conductivity of 10 [S / m] or more.

また、請求項4記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項3記載の低インピーダンス損失線路において、前記弁作用金属が、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、またはそれらの合金であることを特徴している。 The invention described in claim 4 relates to a low impedance loss line. In the low impedance loss line according to claims 1 to 3, the valve action metal is aluminum, tantalum, niobium, titanium, zirconium, or the like. It is characterized by being an alloy.

また、請求項5記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項4記載の低インピーダンス損失線路において、前記導電性ポリマー層が、導電性モノマーを溶解した酸化剤の水溶液中に前記陽極箔を浸漬することによって形成されることを特徴としている。 The invention described in claim 5 relates to a low impedance loss line. In the low impedance loss line according to claims 1 to 4, the conductive polymer layer is in an aqueous solution of an oxidizing agent in which a conductive monomer is dissolved. It is characterized by being formed by immersing the anode foil.

また、請求項6記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項5記載の低インピーダンス損失線路において、前記導電性ポリマー層が、前記陽極箔をナノサイズの粒子からなる導電性ポリマーを溶解したエタノールまたはブタノール溶液中に浸漬することによって形成されることを特徴としている。 The invention described in claim 6 relates to a low-impedance loss line. In the low-impedance loss line according to claims 1 to 5, the conductive polymer layer is a conductive layer made of nano-sized particles. It is characterized by being formed by immersing the functional polymer in a dissolved ethanol or butanol solution.

また、請求項7記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項6記載の低インピーダンス損失線路において、前記モノマーが、3,4−エチレンジオキシチオフェン、ピロール、フラン、多環状スルフィド、またはそれらの置換誘導体であることを特徴としている。 The invention described in claim 7 relates to a low impedance loss line. In the low impedance loss line according to claims 1 to 6, the monomer is 3,4-ethylenedioxythiophene, pyrrole, furan, It is characterized by being a cyclic sulfide or a substituted derivative thereof.

また、請求項8記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項7記載の低インピーダンス損失線路において、前記酸化剤が、ブタノールまたはエタノールに溶解したパラトルエンスルホン酸第二鉄、エチレングリコールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸、またはヨウ素酸であることを特徴としている。 The invention according to claim 8 relates to a low impedance loss line. In the low impedance loss line according to claims 1 to 7, ferric paratoluenesulfonate in which the oxidizing agent is dissolved in butanol or ethanol. It is characterized by being ferric paratoluene sulfonate, periodic acid, or iodic acid dissolved in ethylene glycol.

また、請求項9記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項8記載の低インピーダンス損失線路において、前記酸化剤の溶液が、アエロジルを添加して40〜180
[mpa.s]の粘度と、0.5 [wt %]から5.0 [wt %]の範囲の水分含有率を有していることを特徴としている。
The invention described in claim 9 relates to a low-impedance loss line. In the low-impedance loss line according to claims 1 to 8, the oxidant solution is added with aerosil and is 40 to 180.
It is characterized by having a viscosity of [mpa.s] and a moisture content in the range of 0.5 [wt%] to 5.0 [wt%].

また、請求項10記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項9記載の低インピーダンス損失線路において、前記導電性ポリマー層が、ポリ(p−フェニレン)(22.7°)、またはポリ(p−フェニレンスルフィド)、またはポリアセチレン、またはポリ(3,4−エチレンジオキシチオフェン)、またはポリピロール、またはポリフェニレンビニレン、またはテトラチアフルバレン−テトラキノジメタン(TTF−TCNQ)または、前記いずれかの一つ以上を含む錯体で形成されることを特徴としている。 The invention described in claim 10 relates to a low impedance loss line. In the low impedance loss line according to claims 1 to 9, the conductive polymer layer is made of poly (p-phenylene) (22.7 °). ), Or poly (p-phenylene sulfide), or polyacetylene, or poly (3,4-ethylenedioxythiophene), or polypyrrole, or polyphenylenevinylene, or tetrathiafulvalene-tetraquinodimethane (TTF-TCNQ), or It is formed of a complex containing one or more of any of the above.

また、請求項11記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項10記載の低インピーダンス損失線路において、前記導電性ポリマーペースト層が、バインダー機能を有するポリチオフェンペーストまたはポリピロールペーストであることを特徴としている。 The invention described in claim 11 relates to a low impedance loss line. In the low impedance loss line according to claims 1 to 10, the conductive polymer paste layer is made of polythiophene paste or polypyrrole paste having a binder function. It is characterized by being.

また、請求項12記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項11記載の低インピーダンス損失線路において、前記第1の導電性ポリマーペースト層および前記第2の導電性ポリマーペースト層が、ポリ(p−フェニレン)(22.7°)、またはポリ(p−フェニレンスルフィド)、またはカーボングラファイト、または二酸化マンガン、またはポリアセチレン、またはポリ(3,4−エチレンジオキシチオフェン)、またはポリピロール、またはポリフェニレンビニレン、またはテトラチアフルバレン−テトラキノジメタン(TTF−TCNQ)、またはシリコン、またはゲルマニウム、またはシリコンゲルマニウム合金のいずれか1つ以上を重量比で50%以上含み、ポリエチレン、エポキシ樹脂、フェノール樹脂のいずれかのバインダーに混合されて形成されることを特徴としている。 The invention described in claim 12 relates to a low impedance loss line, wherein the first conductive polymer paste layer and the second conductive polymer paste in the low impedance loss line according to claims 1 to 11. The layer is poly (p-phenylene) (22.7 °), or poly (p-phenylene sulfide), or carbon graphite, or manganese dioxide, or polyacetylene, or poly (3,4-ethylenedioxythiophene), or Polypyrrole, polyphenylene vinylene, tetrathiafulvalene-tetraquinodimethane (TTF-TCNQ), silicon, germanium, or silicon germanium alloy containing at least 50% by weight, polyethylene, epoxy resin , Fenault Is characterized by being mixed in one of the binder resin are formed.

また、請求項13記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項12記載の低インピーダンス損失線路において、前記誘電体酸化皮膜が、前記電解質の形成工程の前、後、または前後に、化成液に5分から120分間浸漬して化成または修復化成されることを特徴としている。 The invention described in claim 13 relates to a low impedance loss line. In the low impedance loss line according to claims 1 to 12, the dielectric oxide film is formed before, after, or after the step of forming the electrolyte. It is characterized by being formed or repaired by immersing it in a chemical conversion solution for 5 to 120 minutes before and after.

また、請求項14記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項13記載の低インピーダンス損失線路において、前記化成液が、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液であることを特徴としている。 The invention described in claim 14 relates to a low-impedance loss line. In the low-impedance loss line according to claims 1 to 13, the chemical conversion liquid is composed of ammonium dihydrogen phosphate, diammonium hydrogen phosphate, or the like. It is characterized by being a phosphoric acid-based chemical, a boric acid-based chemical such as ammonium borate, or an adipic acid-based chemical such as ammonium adipate.

また、請求項15記載の発明は、低インピーダンス損失線路に係り、請求項1から請求項14記載の低インピーダンス損失線路において、該低インピーダンス損失線路が、スイッチング素子またはスイッチング回路ブロックと信号線路と電源線路から構成されるスイッチング回路システムの電源線路の全て、または前記電源線路の前記スイッチング素子またはスイッチング回路ブロックの近傍の一部に使用され、前記第1の陰極箔が前記電源線路を構成する非グランド導体に対して直列に挿入され、前記第2の陰極箔が前記漸減線路を構成するグランド導体に対して並列に接続されて使用されることを特徴としている。 The invention described in claim 15 relates to a low impedance loss line, wherein the low impedance loss line includes a switching element or a switching circuit block, a signal line, and a power source. Non-ground that is used for all power supply lines of a switching circuit system composed of lines, or for a part of the power supply lines in the vicinity of the switching elements or switching circuit blocks, and in which the first cathode foil constitutes the power supply lines The second cathode foil is inserted in series with respect to a conductor, and is used while being connected in parallel to a ground conductor constituting the gradual decrease line.

本発明をスイッチング回路、ディジタル回路またはこれらに使用する印刷配線基板に適用すると、スイッチング素子によって励起される電磁波の漏洩が大幅に抑圧されるために、スイッチング素子が使用されている機器の電磁環境適合性(EMC)を大幅に向上させることが可能となる。 When the present invention is applied to a switching circuit, a digital circuit, or a printed wiring board used for them, leakage of electromagnetic waves excited by the switching elements is greatly suppressed, so that the electromagnetic environment of the equipment in which the switching elements are used is adapted. (EMC) can be greatly improved.

本発明をスイッチング回路、ディジタル回路またはこれらに使用する印刷配線基板に適用すると、スイッチング素子によって励起される電磁波の漏洩が大幅に抑圧されるために、アナログ回路とディジタル回路の混在設計が容易になる。 When the present invention is applied to a switching circuit, a digital circuit, or a printed wiring board used for the switching circuit, leakage of electromagnetic waves excited by the switching element is greatly suppressed, so that a mixed design of analog circuits and digital circuits becomes easy. .

本発明をスイッチング回路、ディジタル回路またはこれらに使用する印刷配線基板に適用すると、高速スイッチング素子を使用する情報技術装置、ディジタルデータ通信機器、並びに高周波DC−DCコンバータの直流電源分配回路に使用し、小型軽量化、低コスト化、高変換効率化、高信号品位(シグナルインテグリティ)化、および高電磁環境適合性(EMC)化を両立させることが可能となる。 When the present invention is applied to a switching circuit, a digital circuit, or a printed wiring board used for these, it is used in an information technology apparatus using a high-speed switching element, a digital data communication device, and a DC power distribution circuit of a high-frequency DC-DC converter. It is possible to achieve both reduction in size and weight, cost reduction, high conversion efficiency, high signal quality (signal integrity), and high electromagnetic compatibility (EMC).

以下、本発明に係る 最良の実施形態について、図面を参照して詳細に説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The best embodiment according to the present invention will be described below in detail with reference to the drawings.

(実施の形態1)
図4は、試作した低インピーダンス損失線路の構造の一例である。図5は、試作した低インピーダンス損失線路のS21特性の一例である。図6は、試作した低インピーダンス損失線路部品の構造の一例である。図7は、試作した低インピーダンス損失線路部品のS21特性の一例である。本実施例における低インピーダンス損失線路および低インピーダンス損失線路部品はいずれも公知である。
(Embodiment 1)
FIG. 4 is an example of the structure of a prototype low impedance loss line. FIG. 5 is an example of the S 21 characteristic of the prototype low impedance loss line. FIG. 6 is an example of the structure of a prototype low impedance loss line component. FIG. 7 is an example of the S 21 characteristic of a prototype low impedance loss line component. Both the low impedance loss line and the low impedance loss line component in this embodiment are known.

図6において、本実施例の低インピーダンス損失線路部品は2個の陽極端子18と4個の陰極端子19を有している。低インピーダンス損失線路は銀ペースト層12、陽極箔13、絶縁層14、固体電解質層15、およびカーボンペースト層16で構成されており、全体が気密封止樹脂17で覆われている。図6の右側の1個の陽極端子18および2個の陰極端子19が、陽極箔13および銀ペースト層12の一端にそれぞれ接続され、図6の左側の1個の陽極端子18および2個の陰極端子19が、陽極箔13および銀ペースト層12損失線路の他端にそれぞれ接続されている。 In FIG. 6, the low impedance loss line component of the present embodiment has two anode terminals 18 and four cathode terminals 19. The low impedance loss line is composed of a silver paste layer 12, an anode foil 13, an insulating layer 14, a solid electrolyte layer 15, and a carbon paste layer 16, and is entirely covered with an airtight sealing resin 17. One anode terminal 18 and two cathode terminals 19 on the right side of FIG. 6 are connected to one end of the anode foil 13 and the silver paste layer 12, respectively, and one anode terminal 18 and two anode terminals 18 on the left side of FIG. A cathode terminal 19 is connected to the other end of the anode foil 13 and the silver paste layer 12 loss line.

図4において、本実施例の低インピーダンス損失線路は、線路部の幅が1[mm]で実効長さが4[mm] 、8[mm] 、16[mm]、および24[mm]を有するエッチング処理が施されたアルミニウム薄膜が陽極箔13として使用されている。アルミニウム薄膜のエッチング部に化成処理によって形成された約15[nm]の前後厚さの酸化アルミニウム被膜が絶縁層14に相当している。アルミニウム薄膜のエッチング部分に化学重合によって付着させたポリピロールが固体電解質層15に相当し、厚さは約2.5[μm]である。カーボンペーストがポリピロールの上に約30[μm]の厚さに塗布され、その上に熱硬化性銀ペーストによって銀ペースト層12が形成されている。 In FIG. 4, the low impedance loss line of the present embodiment has a width of 1 [mm] and effective lengths of 4 [mm], 8 [mm], 16 [mm], and 24 [mm]. An aluminum thin film that has been etched is used as the anode foil 13. An aluminum oxide film having a thickness of about 15 nm formed on the etched portion of the aluminum thin film by chemical conversion corresponds to the insulating layer 14. Polypyrrole adhered to the etched portion of the aluminum thin film by chemical polymerization corresponds to the solid electrolyte layer 15 and has a thickness of about 2.5 [μm]. A carbon paste is applied on polypyrrole to a thickness of about 30 [μm], and a silver paste layer 12 is formed thereon by a thermosetting silver paste.

電磁界シミュレーション結果によると、本実施例の低インピーダンス損失線路の特性インピーダンスは20−30[mΩ]と推定されている。これは、低インピーダンス損失線路を構成する絶縁体5のみをTEM波が進行する場合に比べて3桁ほど大きい値である。TEM波の一部は絶縁体5から固有インピーダンスで決まる比率で半導体9に進入する。半導体中に進入する電磁波は急速に減衰する。 According to the electromagnetic field simulation result, the characteristic impedance of the low impedance loss line of this embodiment is estimated to be 20-30 [mΩ]. This is a value that is three orders of magnitude larger than the case where the TEM wave travels only through the insulator 5 constituting the low impedance loss line. A part of the TEM wave enters the semiconductor 9 from the insulator 5 at a ratio determined by the intrinsic impedance. Electromagnetic waves entering semiconductors are rapidly attenuated.

半導体として使用するポリピロールの導電率を3500[S/m]、絶縁体である酸化アルミニウムの厚さを15[nm]、比誘電率を8.5、ポリピロールの塗布厚さを2.5[μm]、比誘電率を1とし、酸化アルミニウムの比誘電率を8.5とする。低インピーダンス損失線路の幅は1[mm]、導体の厚さは100[μm]である。試作結果から、低インピーダンス損失線路の1mm当たりの静電容量は0.7[μF]である。 The conductivity of polypyrrole used as a semiconductor is 3500 [S / m], the thickness of aluminum oxide as an insulator is 15 [nm], the relative dielectric constant is 8.5, and the coating thickness of polypyrrole is 2.5 [μm]. The relative dielectric constant is set to 1, and the relative dielectric constant of aluminum oxide is set to 8.5. The width of the low impedance loss line is 1 [mm], and the thickness of the conductor is 100 [μm]. From the prototype results, the capacitance per 1 mm 2 of the low impedance loss line is 0.7 [μF].

低インピーダンス損失線路の特性インピーダンスは、ポリピロールの塗布厚さまでTEM波が侵入していると考えると式(8)から32[mΩ]となる。この値は、伝送線路中のポインチングベクトルから求めた電磁界シミュレーション値とほぼ一致する。この値を特性インピーダンスとすれば、50Ωの線路にこの特性インピーダンスを有する低インピーダンス損失線路を接続したときの接続部の透過係数S21αは、式(11)から0.051すなわち−26dBとなる。 The characteristic impedance of the low impedance loss line is 32 [mΩ] from the equation (8) when it is considered that the TEM wave has penetrated to the coating thickness of polypyrrole. This value substantially coincides with the electromagnetic field simulation value obtained from the pointing vector in the transmission line. If this value is the characteristic impedance, the transmission coefficient S 21α of the connecting portion when a low impedance loss line having this characteristic impedance is connected to the 50Ω line is 0.051 or −26 dB from the equation (11).

低インピーダンス損失線路を構成する酸化アルミニウムとポリピロールをTEM波が進行しているときのポリピロールへの透過係数S21Γは、式(10)のZに式(6)から得られるポリピロールの固有インピーダンス、Zに低インピーダンス損失線路の特性インピーダンス値を代入することによって求められる。 The transmission coefficient S 21Γ to the polypyrrole when the TEM wave is traveling through aluminum oxide and polypyrrole constituting the low impedance loss line is the intrinsic impedance of the polypyrrole obtained from the equation (6) in Z 1 of the equation (10), obtained by substituting the characteristic impedance of the low impedance loss line to Z 0.

低インピーダンス損失線路を構成する酸化アルミニウムとポリピロールをTEM波が進行しているときの透過係数S21αは、式(5)から得られるポリピロールの減衰定数にポリピロールへの透過係数を掛けた値をαとして、式(11)に代入すると、低インピーダンス損失線路の長さz毎に求めることが出来る。 The transmission coefficient S 21α when the TEM wave is traveling through aluminum oxide and polypyrrole constituting the low impedance loss line is a value obtained by multiplying the attenuation coefficient of polypyrrole obtained from the equation (5) by the transmission coefficient to polypyrrole. By substituting into equation (11), it can be obtained for each length z of the low impedance loss line.

低インピーダンス損失線路の低周波帯域の特性である静電容量値による50[Ω]の測定系の透過係数S21Cは、式(17)を変形して、次式から求められる。 The transmission coefficient S 21C of the measurement system of 50 [Ω] based on the capacitance value, which is the low frequency band characteristic of the low impedance loss line, is obtained from the following equation by modifying the equation (17).

式(18)において、Zは、静電容量の交流インピーダンス値に、電極の導電率、ここでは半導体であるポリピロールの導電率に従う低周波でのESR値を加えた値と考えることが出来る。ESRは、次式から求められる。 In the equation (18), Z C can be considered as a value obtained by adding the AC impedance value of the capacitance to the ESR value at a low frequency according to the conductivity of the electrode, here, the conductivity of polypyrrole which is a semiconductor. ESR is obtained from the following equation.

概略の低インピーダンス損失線路の透過係数S21Aは、次式から求めることが出来る。 The transmission coefficient S21A of the approximate low impedance loss line can be obtained from the following equation.

式(20)から求められる本実施例の低インピーダンス損失線路の透過係数S21Aは、以下の通りであり、測定結果に近い値となっている。 The transmission coefficient S21A of the low-impedance loss line of the present example obtained from the equation (20) is as follows and is close to the measurement result.

線路長が4[mm]の場合:100[kHz] で−37[dB]、1[MHz]で−53[dB]、10
[MHz]で−73[dB]、100[MHz]で−91[dB]、1[GHz]で−101 [dB]。線路長が8[mm]の場合:100[kHz] で−41[dB]、1[MHz]で−59[dB]、10
[MHz]で−79[dB]、100[MHz]で−97[dB]、1[GHz]で−116 [dB]。線路長が16[mm]の場合:100[kHz] で−46[dB]、1[MHz]で−66
[dB]、10 [MHz]で−86[dB]、100[MHz]で−119[dB]、1[GHz]で−200 [dB]、線路長が24[mm]の場合:100[kHz]
で−50[dB]、1[MHz]で−69[dB]、10 [MHz]で−96[dB]、100[MHz]で−164[dB]、1[GHz]で−287[dB] 。
When the line length is 4 [mm]: -37 [dB] at 100 [kHz], -53 [dB] at 1 [MHz], 10
-73 [dB] at [MHz], -91 [dB] at 100 [MHz], and -101 [dB] at 1 [GHz]. When the line length is 8 [mm]: -41 [dB] at 100 [kHz], -59 [dB] at 1 [MHz], 10
-79 [dB] at [MHz], -97 [dB] at 100 [MHz], and -116 [dB] at 1 [GHz]. When the line length is 16 [mm]: -46 [dB] at 100 [kHz], -66 at 1 [MHz]
When [dB], 10 [MHz] is −86 [dB], 100 [MHz] is −119 [dB], 1 [GHz] is −200 [dB], and the line length is 24 [mm]: 100 [kHz] ]
-50 [dB] at 1 [MHz], -69 [dB] at 10 [MHz], -96 [dB] at 10 [MHz], -164 [dB] at 100 [MHz], -287 [dB] at 1 [GHz] .

低インピーダンス損失線路部品は低インピーダンス損失線路の両端にボード搭載用の端子が備えられている。このために、高周波帯域で端子間に電磁波のバイパスが形成されて透過係数が劣化する。この電磁波のバイパスは、静電容量を流れる変位電流または電束電流によると考えることが出来る。本実施例の低インピーダンス損失線路部品の実測値から端子間距離1[m]当たりのバイパス容量を求めると5×10−17[F/m]となる。 The low impedance loss line component has terminals for board mounting at both ends of the low impedance loss line. For this reason, an electromagnetic wave bypass is formed between the terminals in the high frequency band, and the transmission coefficient deteriorates. It can be considered that this electromagnetic wave bypass is caused by displacement current or electric flux current flowing through the capacitance. When the bypass capacitance per 1 [m] of the distance between the terminals is obtained from the actual measurement value of the low impedance loss line component of this embodiment, it is 5 × 10 −17 [F / m].

端子間の静電容量のインピーダンスをZとすると、直列に接続されている静電容量の透過係数S21Tは、次式から求めることが出来る。 If the impedance of the capacitance between the terminals is Z T , the transmission coefficient S 21T of the capacitance connected in series can be obtained from the following equation.

概略の低インピーダンス損失線路部品の透過係数S21Bは、次式から求めることが出来る。 The transmission coefficient S21B of the approximate low impedance loss line component can be obtained from the following equation.

式(22)から求められる本実施例の低インピーダンス損失線路部品の透過係数S21Bは、以下の通りであり、測定結果に近い値となっている。 The transmission coefficient S 21B of the low-impedance loss line component of this example obtained from the equation (22) is as follows and is close to the measurement result.

線路長が4[mm]の場合:100[kHz] で−37[dB]、1[MHz]で−53[dB]、10 [MHz]で−70[dB]、100[MHz]で−62[dB]、1[GHz]で−42
[dB]。線路長が8[mm]の場合:100[kHz] で−41[dB]、1[MHz]で−59[dB]、10 [MHz]で−76[dB]、100[MHz]で−68[dB]、1[GHz]で−48
[dB]。線路長が16[mm]の場合:100[kHz] で−46[dB]、1[MHz]で−65[dB]、10 [MHz]で−83[dB]、100[MHz]で−74[dB]、1[GHz]で−54
[dB]、線路長が24[mm]の場合:100[kHz] で−50[dB]、1[MHz]で−69[dB]、10 [MHz]で−91[dB]、100[MHz]で−78[dB]、1[GHz]で−58[dB]
When the line length is 4 [mm]: -37 [dB] at 100 [kHz], -53 [dB] at 1 [MHz], -70 [dB] at 10 [MHz], -62 at 100 [MHz] [dB] -42 at 1 [GHz]
[dB]. When the line length is 8 [mm]: -41 [dB] at 100 [kHz], -59 [dB] at 1 [MHz], -76 [dB] at 10 [MHz], -68 at 100 [MHz] [dB] -48 at 1 [GHz]
[dB]. When the line length is 16 [mm]: -46 [dB] at 100 [kHz], -65 [dB] at 1 [MHz], -83 [dB] at 10 [MHz], -74 at 100 [MHz] [dB] -54 at 1 [GHz]
When [dB] and the line length are 24 [mm]: −50 [dB] at 100 [kHz], −69 [dB] at 1 [MHz], −91 [dB] at 100 [MHz], 100 [MHz] ] -78 [dB], 1 [GHz] -58 [dB]
.

以上の計算結果は、図5、図7と同様に、10[MHz] 以下では低インピーダンス損失線路と低インピーダンス損失線路部品の透過特性の差はほとんど無く、10[MHz]を超えると、低インピーダンス損失線路部品では端子間のバイパスによる透過特性の劣化現象が見られ、劣化度は端子間の距離にほぼ比例している。以上から、上記計算式は実用的であると判断できる。 Similar to FIGS. 5 and 7, the above calculation results show that there is almost no difference in transmission characteristics between the low impedance loss line and the low impedance loss line component below 10 [MHz]. In the loss line component, a deterioration phenomenon of transmission characteristics due to bypass between terminals is seen, and the degree of deterioration is almost proportional to the distance between terminals. From the above, it can be determined that the above calculation formula is practical.

(実施の形態2)
図8は、低インピーダンス損失線路の一例である。
(Embodiment 2)
FIG. 8 is an example of a low impedance loss line.

図8において、低インピーダンス損失線路は、弁作用金属から成り両面にエッチング部が形成され該エッチング部の表面に誘電体酸化皮膜が形成された陽極箔24と、第1の陰極箔21と、第2の陰極箔27と、陽極箔24の両面の誘電体酸化皮膜上に形成される第1の導電性ポリマー層23および第2の導電性ポリマー層25と、第1の導電性ポリマー層23に第1の陰極箔21を貼付するための第1の導電性ポリマーペースト層22と、第2の導電性ポリマー層25に第2の陰極箔27を貼付するための第2の導電性ポリマーペースト層26から形成され、第1の陰極箔21および第2の陰極箔27を電極とする平行板線路を形成している。 In FIG. 8, the low impedance loss line is composed of an anode foil 24 made of a valve metal, etched portions formed on both surfaces, and a dielectric oxide film formed on the surface of the etched portion, a first cathode foil 21, Two cathode foils 27, a first conductive polymer layer 23 and a second conductive polymer layer 25 formed on the dielectric oxide films on both sides of the anode foil 24, and the first conductive polymer layer 23. A first conductive polymer paste layer 22 for attaching the first cathode foil 21 and a second conductive polymer paste layer for attaching the second cathode foil 27 to the second conductive polymer layer 25 26, and a parallel plate line is formed using the first cathode foil 21 and the second cathode foil 27 as electrodes.

図8において、低インピーダンス損失線路は整流作用を有している。従って、陰極箔27にグランド線またはグランド板が接続され陰極箔21に正の電圧を有する電源線が接続された場合は陽極箔24と陰極箔27で構成される線路が機能を発揮し、陽極箔24と陰極箔21で構成される線路は短絡に近い状態となり機能しない。一方、陰極箔21にグランド線またはグランド板が接続され陰極箔27に正の電圧を有する電源線が接続された場合は陽極箔24と陰極箔21で構成される線路が機能を発揮し、陽極箔24と陰極箔27で構成される線路は短絡に近い状態となり機能しない。 In FIG. 8, the low impedance loss line has a rectifying action. Therefore, when a ground line or a ground plate is connected to the cathode foil 27 and a power supply line having a positive voltage is connected to the cathode foil 21, the line composed of the anode foil 24 and the cathode foil 27 functions, and the anode The line composed of the foil 24 and the cathode foil 21 is in a state close to a short circuit and does not function. On the other hand, when a ground line or a ground plate is connected to the cathode foil 21 and a power supply line having a positive voltage is connected to the cathode foil 27, the line composed of the anode foil 24 and the cathode foil 21 functions, and the anode The line composed of the foil 24 and the cathode foil 27 is in a state close to a short circuit and does not function.

図8において、低インピーダンス損失線路の幅を1[mm]、長さを12[mm]、導電性ポリマーおよび導電性ポリマーペーストの導電率を1000[S/m]、導電性ポリマーペーストの塗布厚さを20[μm]とする。陽極箔をアルミニウムとして、誘電体酸化皮膜であるアルミナの比誘電率を8.5、厚さ30[nm]とし、陽極箔のエッチングによる面積拡大率を実施の形態1の場合の3割減の153とする。低インピーダンス損失線路の端子間のバイパス容量を10−18[F/m]とする。このときの1mm当たりのESRは、式(19)から1.7[mΩ]となる。 In FIG. 8, the width of the low impedance loss line is 1 [mm], the length is 12 [mm], the conductivity of the conductive polymer and the conductive polymer paste is 1000 [S / m], and the coating thickness of the conductive polymer paste The thickness is 20 [μm]. The anode foil is aluminum, the relative dielectric constant of alumina as the dielectric oxide film is 8.5, the thickness is 30 [nm], and the area expansion rate by etching of the anode foil is reduced by 30% in the case of the first embodiment. 153. The bypass capacitance between the terminals of the low impedance loss line is 10 −18 [F / m]. The ESR per 1 mm 2 at this time is 1.7 [mΩ] from the equation (19).

本実施の形態における低インピーダンス損失線路の特性インピーダンスは、実施の形態1に従い、30[mΩ]と推定される。また、透過係数S21Bは、以下のように推定される。 According to the first embodiment, the characteristic impedance of the low impedance loss line in the present embodiment is estimated to be 30 [mΩ]. Further, the transmission coefficient S 21B is estimated as follows.

線路長が3[mm]の場合:100[kHz]で−34[dB]、1[MHz]で−49[dB]、10 [MHz]で−64[dB]、100[MHz]で−70[dB]、230[MHz]で−71[dB]、1[GHz]で−67
[dB]。線路長が6[mm]の場合:100[kHz]で−38 [dB]、1[MHz]で−55[dB]、10 [MHz]で−70[dB]、100[MHz]で−76[dB]、230[MHz]で−76[dB]、1[GHz]で−73
[dB]。線路長が12[mm]の場合:100[kHz]で−43[dB]、1[MHz]で−61[dB]、10 [MHz]で−76[dB]、100[MHz]で−82[dB]、230[MHz]で−82[dB]、1[GHz]で−80
[dB]、線路長が24[mm]の場合:100[kHz]で−48[dB]、1[MHz]で−67[dB]、10 [MHz]で−82[dB]、100[MHz]で−91[dB]、230[MHz]で−95[dB]、1[GHz]で−92[dB]
When the line length is 3 [mm]: -34 [dB] at 100 [kHz], -49 [dB] at 1 [MHz], -64 [dB] at 10 [MHz], -70 at 100 [MHz] [dB], -71 [dB] at 230 [MHz], -67 at 1 [GHz]
[dB]. When the line length is 6 [mm]: -38 [dB] at 100 [kHz], -55 [dB] at 1 [MHz], -70 [dB] at 10 [MHz], -76 at 100 [MHz] [dB], -76 [dB] at 230 [MHz], -73 at 1 [GHz]
[dB]. When the line length is 12 [mm]: -43 [dB] at 100 [kHz], -61 [dB] at 1 [MHz], -76 [dB] at 10 [MHz], -82 at 100 [MHz] [dB], -82 [dB] at 230 [MHz], -80 at 1 [GHz]
When [dB] and the line length are 24 [mm]: -48 [dB] at 100 [kHz], -67 [dB] at 1 [MHz], -82 [dB] at 100 [MHz], 100 [MHz] ] -91 [dB], 230 [MHz] -95 [dB], 1 [GHz] -92 [dB]
.

(実施の形態3)
図9は、低インピーダンス損失線路を使用するディジタル基本回路の等価回路の一例である。
(Embodiment 3)
FIG. 9 is an example of an equivalent circuit of a digital basic circuit using a low impedance loss line.

図9において、低インピーダンス損失線を使用するディジタル基本回路の等価回路は、直流電源31、インバータ35および40、インバータル35を構成するPチャネルMOS FET36およびNチャネルMOS FET37、オンチップインターコネクト上の電源線路34およびボード上の電源線路33、低インピーダンス損失線路32、信号線路38、ならびに整合終端抵抗39から構成されている。 In FIG. 9, the equivalent circuit of a digital basic circuit using a low impedance loss line includes a DC power supply 31, inverters 35 and 40, a P-channel MOS FET 36 and an N-channel MOS FET 37 constituting the inverter 35, and a power supply on the on-chip interconnect. The line 34 and the power line 33 on the board, the low impedance loss line 32, the signal line 38, and the matching termination resistor 39 are included.

図9において、電源線路34と信号線路38の特性インピーダンスが150[Ω]、電源線路33の特性インピーダンスが50[Ω]、低インピーダンス損失線路32の特性インピーダンスが実施の形態3で設計した値の30[mΩ]と仮定する。インバータ35のオン状態とオフ状態の定義は前述と同様であり、伝送線路上の電界と伝送線路の電位との関係は電磁気学に従う。 In FIG. 9, the characteristic impedance of the power line 34 and the signal line 38 is 150 [Ω], the characteristic impedance of the power line 33 is 50 [Ω], and the characteristic impedance of the low impedance loss line 32 is the value designed in the third embodiment. Assume 30 [mΩ]. The definition of the on state and the off state of the inverter 35 is the same as described above, and the relationship between the electric field on the transmission line and the potential of the transmission line follows electromagnetics.

インバータ35がオフからオンに変化する時の信号線路38の電位波形と、信号線路6上を進む孤立電界波形、並びに電源線路33、34の電位波形と電源線路33、34上を進む孤立電界波形は、前述と同様である。従って、図9の回路の動作説明には図2と図3の波形を使用する。 The potential waveform of the signal line 38 when the inverter 35 changes from off to on, the isolated electric field waveform traveling on the signal line 6, and the potential waveform of the power supply lines 33 and 34 and the isolated electric field waveform traveling on the power supply lines 33 and 34 Is the same as described above. Therefore, the waveforms of FIGS. 2 and 3 are used to explain the operation of the circuit of FIG.

図9において、インバータ35がオフからオンに変化したときの孤立電界波の伝送線路上の進行の様子と伝送線路の電位変化は図2、図3で説明した通りである。 In FIG. 9, how the isolated electric field wave travels on the transmission line and the potential change of the transmission line when the inverter 35 changes from off to on are as described with reference to FIGS. 2 and 3.

図9において、電源線路34上を進行する孤立電磁波は電源線路33との接続部で一部が反射し、低インピーダンス損失線路32との接続部ではほぼ全てが、信号線路38上に励起された孤立電磁波と同極性で反射し、電源線路33、34および信号線路38の電位をE/2[V]からほぼE[V]に上昇させつつ進行し、整合終端抵抗39で消滅する。 In FIG. 9, the isolated electromagnetic wave traveling on the power line 34 is partially reflected at the connection part with the power line 33, and almost all is excited on the signal line 38 at the connection part with the low impedance loss line 32. It is reflected with the same polarity as the isolated electromagnetic wave, proceeds while raising the potentials of the power supply lines 33 and 34 and the signal line 38 from E / 2 [V] to substantially E [V], and disappears by the matching termination resistor 39.

電源線路13の長さが孤立電磁波の波長に対して充分短ければ、インバータ35がオンした後のD点の電位は、電源線路5上を孤立電磁波が進行するときの遅延時間だけ上昇時間が長くなることを除けば、通信を行うのにほぼ充分な値となる。 If the length of the power line 13 is sufficiently short with respect to the wavelength of the isolated electromagnetic wave, the potential at the point D after the inverter 35 is turned on is increased for a delay time when the isolated electromagnetic wave travels on the power line 5. Except for this, the value is almost sufficient for communication.

図9において、低インピーダンス損失線路32の特性インピーダンスは30[mΩ]と、通信を行うのにほぼ充分な値であるが、電源線路33、34を進行する孤立電磁波の一部が低インピーダンス損失線路32に侵入する。 In FIG. 9, the characteristic impedance of the low-impedance loss line 32 is 30 [mΩ], which is a value that is almost sufficient for communication, but some of the isolated electromagnetic waves traveling through the power lines 33 and 34 are part of the low-impedance loss line. 32.

放射電力Pを有する線形電磁波がアンテナから放射されたときのr[m]の距離での電界強度Eは、IEC CISPR16−2−3に示されている次式から求めることが出来る。 The electric field intensity E at a distance r [m] when a linear electromagnetic wave having radiated power P is radiated from the antenna can be obtained from the following equation shown in IEC CISPR 16-2-3.

例えば家庭内使用を目的とするクラスB情報技術装置から10[m]の距離での妨害波電界強度の許容値は、VCCI(CISPR22)で決められており、30[MHz]から230[MHz]で30[dBμV/m]、230[MHz]から1[GHz]で37[dBμV/m]である。式(23)から、例えば230[MHz]での許容放射電力値を求めると、2[nW]となる。 For example, the permissible value of the interference wave electric field strength at a distance of 10 [m] from a class B information technology device intended for home use is determined by VCCI (CISPR22), and is from 30 [MHz] to 230 [MHz]. 30 [dBμV / m] and 230 [MHz] to 1 [GHz] and 37 [dBμV / m]. From the equation (23), for example, an allowable radiated power value at 230 [MHz] is obtained as 2 [nW].

実施の形態3で設計した低インピーダンス損失線路を使用し、図9のインバータ35の代わりに20個の電源端子が設けられており100[W]の消費電力を有する半導体集積回路を想定すると、1個の電源端子で5[W]の電力を分担していることになる。 Assuming a semiconductor integrated circuit that uses the low-impedance loss line designed in the third embodiment, has 20 power terminals instead of the inverter 35 of FIG. This means that 5 [W] of power is shared by each power terminal.

次に、導体集積回路の2個の電源端子毎に、実施の形態2で設計した12[mm]の長さの低インピーダンス損失線路が使用されている場合について、電源ポートから漏洩する不要電磁波の放射電力量を試算する。 Next, in the case where the low impedance loss line having a length of 12 [mm] designed in the second embodiment is used for every two power supply terminals of the conductor integrated circuit, unnecessary electromagnetic waves leaking from the power supply port Estimate the amount of radiated power.

図9において、インバータ35によって励起された孤立電界波8が信号線路38の電位を0[V]からE/2 [V]まで上昇させるエネルギーと、電源線路34に向かう孤立電界波が電源線路の電位をE[V]からE/2 [V] まで降下させるエネルギーの比は、1:3である。従って電源線路34上の電力は7.5[W]となる。電源線路34から電源線路33への電力透過率は0.87となるので、電源線路33を透過する電力は6.5[W]となる。 In FIG. 9, the energy of the isolated electric field wave 8 excited by the inverter 35 increases the potential of the signal line 38 from 0 [V] to E / 2 [V], and the isolated electric field wave toward the power line 34 The ratio of energy for lowering the potential from E [V] to E / 2 [V] is 1: 3. Therefore, the power on the power line 34 is 7.5 [W]. Since the power transmittance from the power line 34 to the power line 33 is 0.87, the power transmitted through the power line 33 is 6.5 [W].

低インピーダンス損失線路32に、実施の形態2で設計した6[mm]の長さの低インピーダンス損失線路が使用されているときの、230[MHz]における透過係数は−76dBである。図7に示したチップセラミックコンデンサの230[MHz]における透過係数よりも約46dB(約1/200)小さい。このときの、低インピーダンス損失線路32を透過する電力は0.86[mW]となる。 When the low impedance loss line having a length of 6 [mm] designed in the second embodiment is used for the low impedance loss line 32, the transmission coefficient at 230 [MHz] is −76 dB. The transmission coefficient at 230 [MHz] of the chip ceramic capacitor shown in FIG. 7 is about 46 dB (about 1/200) smaller. At this time, the power passing through the low impedance loss line 32 is 0.86 [mW].

4.6[mW]のうちの0.1%が大気中に放射され、放射するまでの過程で、孤立電磁波が多くの箇所で反射を繰り返すことによってその0.1%のエネルギーが230[MHz]から1[GHz]の間の1つの周波数に存在すると仮定した場合の電磁エネルギーは0.86[nW]である。この値はクラスB情報技術装置の放射電力許容値2[nW]を充分満たす。 Out of 4.6 [mW], 0.1% is radiated into the atmosphere, and in the process until it radiates, the isolated electromagnetic wave repeatedly reflects in many places, so that the energy of 0.1% is 230 [MHz] ] To 1 [GHz] is assumed to exist at one frequency, and the electromagnetic energy is 0.86 [nW]. This value sufficiently satisfies the radiated power allowable value 2 [nW] of the class B information technology device.

本発明はスイッチング回路を内蔵する半導体集積回路並びに、半導体集積回路を内蔵する情報技術機器、マルチメディア機器、電力変換機器の高性能化、設計容易化と設計期間の短縮化、小型軽量化、低消費電力化、低コスト化、電磁干渉問題の解消又は低減、電磁のノイズによる誤動作の低減、および品質・信頼性向上を実現することが出来る。 The present invention provides a semiconductor integrated circuit having a built-in switching circuit, a high-performance information technology device, a multimedia device, and a power converter device incorporating the semiconductor integrated circuit, easy design and shortening a design period, small size and light weight, low It is possible to reduce power consumption, reduce costs, eliminate or reduce electromagnetic interference problems, reduce malfunctions due to electromagnetic noise, and improve quality and reliability.

図1は、インバータに関する電磁波等価回路の一例である。FIG. 1 is an example of an electromagnetic wave equivalent circuit related to an inverter. 図2は、線路上の電源側の電位波形と電界波形の一例である。FIG. 2 is an example of a potential waveform and an electric field waveform on the power supply side on the line. 図3は、線路上の抵抗側の電位波形と電界波形の一例である。FIG. 3 shows an example of a potential waveform and an electric field waveform on the resistance side on the line. 図4は、試作した低インピーダンス損失線路の構造の一例である。FIG. 4 is an example of the structure of a prototype low impedance loss line. 図5は、試作した低インピーダンス損失線路のS21特性の一例である。FIG. 5 is an example of the S 21 characteristic of the prototype low impedance loss line. 図6は、試作した低インピーダンス損失線路部品の構造の一例である。FIG. 6 is an example of the structure of a prototype low impedance loss line component. 図7は、試作した低インピーダンス損失線路部品のS21特性の一例である。FIG. 7 is an example of the S 21 characteristic of a prototype low impedance loss line component. 図8は、低インピーダンス損失線路の一例である。FIG. 8 is an example of a low impedance loss line. 図9は、低インピーダンス損失線を使用するディジタル基本回路の等価回路の一例である。FIG. 9 is an example of an equivalent circuit of a digital basic circuit using a low impedance loss line.

符号の説明Explanation of symbols

1、35、40
インバータ
2、36 PチャネルMOS FET
3、37 NチャネルMOS FET
4、31 直流電源
5、33、34 電源線路
6、38 信号線路
7、39 整合終端抵抗
8 信号線路上の孤立電界波
9 信号線路の電位波形
10 電源線路上の孤立電界波
11 電源側の線路の電位波形
12 銀ペースト層
13 陽極箔
14 絶縁体層
15 固体電解質層
16 カーボンペースト層
17 気密封止樹脂
18 陽極端子
19 陰極端子
21 第1の陰極箔
22 第1の導電性ポリマーペースト層
23 第1の導電性ポリマー層
24 陽極箔
25 第2の導電性ポリマー層
26 第2の導電性ポリマーペースト層
27 第2の陰極箔
32 低インピーダンス損失線路
1, 35, 40
Inverter 2, 36 P channel MOS FET
3, 37 N-channel MOS FET
4, 31 DC power supply 5, 33, 34 Power supply line 6, 38 Signal line 7, 39 Matching termination resistor 8 Isolated electric field wave 9 on signal line Potential waveform 10 of signal line Isolated electric wave 11 on power supply line 11 Power supply line Potential paste 12 Silver paste layer 13 Anode foil 14 Insulator layer 15 Solid electrolyte layer 16 Carbon paste layer 17 Hermetic sealing resin 18 Anode terminal 19 Cathode terminal 21 First cathode foil 22 First conductive polymer paste layer 23 1 conductive polymer layer 24 anode foil 25 second conductive polymer layer 26 second conductive polymer paste layer 27 second cathode foil 32 low impedance loss line

Claims (15)

弁作用金属から成り両面にエッチング部が形成され該エッチング部の表面に誘電体酸化皮膜が形成された陽極箔と、第1の陰極箔と、第2の陰極箔と、前記陽極箔の両面の誘電体酸化皮膜上に形成される導電性ポリマー層と、前記導電性ポリマー層に前記第1の陰極箔、および前記第2の陰極箔を貼付するための導電性ポリマーペースト層から形成され、前記第1の陰極箔および前記第2の陰極箔を電極とする平行板伝送線路構造であることを特徴とする、低インピーダンス損失線路 An anode foil made of a valve metal and having an etched portion formed on both surfaces and a dielectric oxide film formed on the surface of the etched portion, a first cathode foil, a second cathode foil, and both surfaces of the anode foil Formed from a conductive polymer layer formed on a dielectric oxide film, and a conductive polymer paste layer for attaching the first cathode foil and the second cathode foil to the conductive polymer layer, A low impedance loss line characterized by having a parallel plate transmission line structure using the first cathode foil and the second cathode foil as electrodes. 請求項1記載の低インピーダンス損失線路において、該低インピーダンス損失線路が、少なくとも10[MHz]から10[GHz]の帯域において、前記電源線路を除くスイッチング信号が進行する全ての線路の特性インピーダンスに対して1/100以下または0.5[Ω] 以下の特性インピーダンスと、10[nep/m](ネパー/メートル)以上の減衰定数を有することを特徴とする、低インピーダンス損失線路 2. The low impedance loss line according to claim 1, wherein the low impedance loss line has a characteristic impedance of all lines on which switching signals except the power supply line travel in a band of at least 10 [MHz] to 10 [GHz]. A low impedance loss line characterized by having a characteristic impedance of 1/100 or less or 0.5 [Ω] or less and an attenuation constant of 10 [nep / m] (neper / meter) or more 請求項1から請求項2記載の低インピーダンス損失線路において、前記導電性ポリマー層が、100[S/m]以上の導電率を有し、前記導電性ポリマーペースト層が、10[S/m]以上の導電率を有することを特徴とする、低インピーダンス損失線路 The low impedance loss line according to claim 1 or 2, wherein the conductive polymer layer has a conductivity of 100 [S / m] or more, and the conductive polymer paste layer is 10 [S / m]. Low impedance loss line characterized by having the above conductivity 請求項1から請求項3記載の低インピーダンス損失線路において、前記弁作用金属が、アルミニウム、タンタル、ニオブ、チタン、ジルコニウム、またはそれらの合金であることを特徴とする、低インピーダンス損失線路 4. The low impedance loss line according to claim 1, wherein the valve action metal is aluminum, tantalum, niobium, titanium, zirconium, or an alloy thereof. 請求項1から請求項4記載の低インピーダンス損失線路において、前記導電性ポリマー層が、導電性モノマーを溶解した酸化剤の水溶液中に前記陽極箔を浸漬することによって形成されることを特徴とする、低インピーダンス損失線路 5. The low-impedance loss line according to claim 1, wherein the conductive polymer layer is formed by immersing the anode foil in an aqueous solution of an oxidizing agent in which a conductive monomer is dissolved. Low impedance loss line 請求項1から請求項5記載の低インピーダンス損失線路において、前記導電性ポリマー層が、前記陽極箔をナノサイズの粒子からなる導電性ポリマーを溶解したエタノールまたはブタノール溶液中に浸漬することによって形成されることを特徴とする、低インピーダンス損失線路 6. The low-impedance loss line according to claim 1, wherein the conductive polymer layer is formed by immersing the anode foil in an ethanol or butanol solution in which a conductive polymer made of nano-sized particles is dissolved. Low impedance loss line 請求項1から請求項6記載の低インピーダンス損失線路において、前記モノマーが、3,4−エチレンジオキシチオフェン、ピロール、フラン、多環状スルフィド、またはそれらの置換誘導体であることを特徴とする、低インピーダンス損失線路 The low-impedance loss line according to any one of claims 1 to 6, wherein the monomer is 3,4-ethylenedioxythiophene, pyrrole, furan, polycyclic sulfide, or a substituted derivative thereof. Impedance loss line 請求項1から請求項7記載の低インピーダンス損失線路において、前記酸化剤が、ブタノールまたはエタノールに溶解したパラトルエンスルホン酸第二鉄、エチレングリコールに溶解したパラトルエンスルホン酸第二鉄、過ヨウ素酸、またはヨウ素酸であることを特徴とする、低インピーダンス損失線路 8. The low impedance loss line according to claim 1, wherein the oxidant is ferric paratoluenesulfonate dissolved in butanol or ethanol, ferric paratoluenesulfonate dissolved in ethylene glycol, periodic acid. Or a low impedance loss line characterized by being iodate 請求項1から請求項8記載の低インピーダンス損失線路において、前記酸化剤の溶液が、アエロジルを添加して40〜180
[mpa.s]の粘度と、0.5 [wt %]から5.0 [wt %]の範囲の水分含有率を有していることを特徴とする、低インピーダンス損失線路
9. The low impedance loss line according to claim 1, wherein the oxidizer solution is 40 to 180 by adding Aerosil.
Low impedance loss line characterized by having a viscosity of [mpa.s] and a moisture content ranging from 0.5 [wt%] to 5.0 [wt%]
請求項1から請求項9記載の低インピーダンス損失線路において、前記導電性ポリマー層が、ポリ(p−フェニレン)(22.7°)、またはポリ(p−フェニレンスルフィド)、またはポリアセチレン、またはポリ(3,4−エチレンジオキシチオフェン)、またはポリピロール、またはポリフェニレンビニレン、またはテトラチアフルバレン−テトラキノジメタン(TTF−TCNQ)または、前記いずれかの一つ以上を含む錯体で形成されることを特徴とする、低インピーダンス損失線路 10. The low impedance loss line according to claim 1, wherein the conductive polymer layer is poly (p-phenylene) (22.7 °), poly (p-phenylene sulfide), polyacetylene, or poly ( 3,4-ethylenedioxythiophene), polypyrrole, polyphenylene vinylene, tetrathiafulvalene-tetraquinodimethane (TTF-TCNQ), or a complex containing one or more of the above. Low impedance loss line 請求項1から請求項10記載の低インピーダンス損失線路において、前記導電性ポリマーペースト層が、バインダー機能を有するポリチオフェンペーストまたはポリピロールペーストであることを特徴とする、低インピーダンス損失線路 11. The low impedance loss line according to claim 1, wherein the conductive polymer paste layer is a polythiophene paste or a polypyrrole paste having a binder function. 請求項1から請求項11記載の低インピーダンス損失線路において、前記第1の導電性ポリマーペースト層および前記第2の導電性ポリマーペースト層が、ポリ(p−フェニレン)(22.7°)、またはポリ(p−フェニレンスルフィド)、またはカーボングラファイト、または二酸化マンガン、またはポリアセチレン、またはポリ(3,4−エチレンジオキシチオフェン)、またはポリピロール、またはポリフェニレンビニレン、またはテトラチアフルバレン−テトラキノジメタン(TTF−TCNQ)、またはシリコン、またはゲルマニウム、またはシリコンゲルマニウム合金のいずれか1つ以上を重量比で50%以上含み、ポリエチレン、エポキシ樹脂、フェノール樹脂のいずれかのバインダーに混合されて形成されることを特徴とする、低インピーダンス損失線路 12. The low impedance loss line according to claim 1, wherein the first conductive polymer paste layer and the second conductive polymer paste layer are poly (p-phenylene) (22.7 °), or Poly (p-phenylene sulfide), or carbon graphite, or manganese dioxide, or polyacetylene, or poly (3,4-ethylenedioxythiophene), or polypyrrole, or polyphenylene vinylene, or tetrathiafulvalene-tetraquinodimethane (TTF). -TCNQ), or one or more of silicon, germanium, or silicon germanium alloy in a weight ratio of 50% or more, and mixed with a binder of polyethylene, epoxy resin, or phenol resin. Features and That, low impedance loss line 請求項1から請求項12記載の低インピーダンス損失線路において、前記誘電体酸化皮膜が、前記電解質の形成工程の前、後、または前後に、化成液に5分から120分間浸漬して化成または修復化成されることを特徴とする、低インピーダンス損失線路 13. The low-impedance loss line according to claim 1, wherein the dielectric oxide film is immersed in a chemical forming solution for 5 to 120 minutes before, after, or before and after the electrolyte forming step to form or repair chemical conversion. Low impedance loss line 請求項1から請求項13記載の低インピーダンス損失線路において、前記化成液が、リン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン酸系の化成液、ホウ酸アンモニウム等のホウ酸系の化成液、アジピン酸アンモニウム等のアジピン酸系の化成液であることを特徴とする、低インピーダンス損失線路 14. The low impedance loss line according to claim 1, wherein the chemical conversion liquid is a phosphate chemical conversion liquid such as ammonium dihydrogen phosphate or hydrogen diammonium phosphate, or a boric acid chemical conversion such as ammonium borate. Low impedance loss line characterized by being an adipic acid-based chemical conversion liquid such as ammonium adipate 請求項1から請求項14記載の低インピーダンス損失線路において、該低インピーダンス損失線路が、スイッチング素子またはスイッチング回路ブロックと信号線路と電源線路から構成されるスイッチング回路システムの電源線路の全て、または前記電源線路の前記スイッチング素子またはスイッチング回路ブロックの近傍の一部に使用され、前記第1の陰極箔が前記電源線路を構成する非グランド導体に対して直列に挿入され、前記第2の陰極箔が前記漸減線路を構成するグランド導体に対して並列に接続されて使用されることを特徴とする、低インピーダンス損失線路
15. The low-impedance loss line according to claim 1, wherein the low-impedance loss line is a power supply line of a switching circuit system including a switching element or a switching circuit block, a signal line, and a power supply line, or the power supply. Used in a part of the line in the vicinity of the switching element or switching circuit block, the first cathode foil is inserted in series with respect to a non-ground conductor constituting the power line, and the second cathode foil is A low-impedance loss line that is used in parallel with a ground conductor that forms a gradually decreasing line.
JP2008206585A 2008-08-11 2008-08-11 Low impedance loss line Pending JP2010045471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206585A JP2010045471A (en) 2008-08-11 2008-08-11 Low impedance loss line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206585A JP2010045471A (en) 2008-08-11 2008-08-11 Low impedance loss line

Publications (1)

Publication Number Publication Date
JP2010045471A true JP2010045471A (en) 2010-02-25

Family

ID=42016513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206585A Pending JP2010045471A (en) 2008-08-11 2008-08-11 Low impedance loss line

Country Status (1)

Country Link
JP (1) JP2010045471A (en)

Cited By (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9699785B2 (en) 2012-12-05 2017-07-04 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10129057B2 (en) 2015-07-14 2018-11-13 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN109807416A (en) * 2019-03-11 2019-05-28 东莞市楚匠电子科技有限公司 Power supply DC wire bonding and soldering tin technique
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10439290B2 (en) 2015-07-14 2019-10-08 At&T Intellectual Property I, L.P. Apparatus and methods for wireless communications
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10511346B2 (en) 2015-07-14 2019-12-17 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on an uninsulated conductor
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10790593B2 (en) 2015-07-14 2020-09-29 At&T Intellectual Property I, L.P. Method and apparatus including an antenna comprising a lens and a body coupled to a feedline having a structure that reduces reflections of electromagnetic waves
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal

Cited By (190)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9788326B2 (en) 2012-12-05 2017-10-10 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9699785B2 (en) 2012-12-05 2017-07-04 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10194437B2 (en) 2012-12-05 2019-01-29 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10091787B2 (en) 2013-05-31 2018-10-02 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US10096881B2 (en) 2014-08-26 2018-10-09 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9998932B2 (en) 2014-10-02 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142010B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9882657B2 (en) 2015-06-25 2018-01-30 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10594597B2 (en) 2015-07-14 2020-03-17 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10382072B2 (en) 2015-07-14 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US11658422B2 (en) 2015-07-14 2023-05-23 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US11212138B2 (en) 2015-07-14 2021-12-28 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10439290B2 (en) 2015-07-14 2019-10-08 At&T Intellectual Property I, L.P. Apparatus and methods for wireless communications
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10469107B2 (en) 2015-07-14 2019-11-05 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US11189930B2 (en) 2015-07-14 2021-11-30 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10511346B2 (en) 2015-07-14 2019-12-17 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on an uninsulated conductor
US11177981B2 (en) 2015-07-14 2021-11-16 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10305545B2 (en) 2015-07-14 2019-05-28 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10566696B2 (en) 2015-07-14 2020-02-18 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10819542B2 (en) 2015-07-14 2020-10-27 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10587048B2 (en) 2015-07-14 2020-03-10 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10594039B2 (en) 2015-07-14 2020-03-17 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10686496B2 (en) 2015-07-14 2020-06-16 At&T Intellecutal Property I, L.P. Method and apparatus for coupling an antenna to a device
US10129057B2 (en) 2015-07-14 2018-11-13 At&T Intellectual Property I, L.P. Apparatus and methods for inducing electromagnetic waves on a cable
US10741923B2 (en) 2015-07-14 2020-08-11 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10790593B2 (en) 2015-07-14 2020-09-29 At&T Intellectual Property I, L.P. Method and apparatus including an antenna comprising a lens and a body coupled to a feedline having a structure that reduces reflections of electromagnetic waves
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US10074886B2 (en) 2015-07-23 2018-09-11 At&T Intellectual Property I, L.P. Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN109807416B (en) * 2019-03-11 2021-01-22 东莞市众兴电子科技有限公司 Welding and tin soldering process for power DC wire
CN109807416A (en) * 2019-03-11 2019-05-28 东莞市楚匠电子科技有限公司 Power supply DC wire bonding and soldering tin technique

Similar Documents

Publication Publication Date Title
JP2010045471A (en) Low impedance loss line
JP2010171601A (en) Low impedance-loss line structure
Joseph et al. Numerical modelling, simulation and experimental validation of partial discharge in cross‐linked polyethylene cables
Li et al. Deep trap sites suppressing space charge injection in polycyclic aromatic compounds doped XLPE composite
Wen et al. Transient electric field of the combined insulation structure under positive periodic square waveform voltage: Analytical analysis and application
JP2009254002A (en) Switching power unit
US10504658B2 (en) Conductive material formulation and use thereof
Wang et al. Parameter extraction of conducted electromagnetic interference prediction model and optimisation design for a DC–DC converter system
Wu et al. Analysis for magnetic field disturbance of hybrid DC circuit breaker during breaking
JP2009283748A (en) Low-impedance loss line
JP2009252754A (en) Circuit, circuit designing method, and circuit component
JP2010074209A (en) Attenuation transmission line structure
JP2009272582A (en) Low-impedance loss line component
JP2009253991A (en) Switching power unit
JP2009284293A (en) Low-impedance loss line
JP2009253125A (en) Printed wiring board
JP2009302908A (en) Low impedance loss line
JP2009273068A (en) Low-impedance-loss line
JP2011176558A (en) Low-pass filter
JP2010028519A (en) Digital circuit system
JP2010129791A (en) Low impedance-loss line structure
JP2010193190A (en) Low impedance loss line structure
JP2011066864A (en) Power supply decoupling component
JP2010130371A (en) Concentrated element model type attenuation transmission line structure
JP2009284294A (en) Low-impedance loss line component