JP2010045279A - Method for polishing both surface of semiconductor substrate - Google Patents

Method for polishing both surface of semiconductor substrate Download PDF

Info

Publication number
JP2010045279A
JP2010045279A JP2008209659A JP2008209659A JP2010045279A JP 2010045279 A JP2010045279 A JP 2010045279A JP 2008209659 A JP2008209659 A JP 2008209659A JP 2008209659 A JP2008209659 A JP 2008209659A JP 2010045279 A JP2010045279 A JP 2010045279A
Authority
JP
Japan
Prior art keywords
polishing
semiconductor substrate
thickness
substrate
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008209659A
Other languages
Japanese (ja)
Inventor
Taizo Hoshino
泰三 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008209659A priority Critical patent/JP2010045279A/en
Publication of JP2010045279A publication Critical patent/JP2010045279A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for polishing both surfaces of a semiconductor substrate, capable of suppressing sagging within tolerance, by preventing an outer peripheral sagging of the substrate, after polishing as much as possible, in response to the planarity required for the semiconductor substrate. <P>SOLUTION: In the method for polishing both surfaces of the semiconductor substrate, a carrier holding the semiconductor substrate is interposed between a pair of upper and lower polishing pads pressed in a mutually approaching direction, and the carrier is rotated about own axis or revolved between the pair of upper and lower polishing pads, in the presence of abrasive grains. In the method for polishing both surfaces of the semiconductor substrate, both surfaces of the front surface and the back surface of the semiconductor substrate held on the carrier are polished simultaneously by the pair of upper and lower polishing pads. In the method, thickness difference (T-t) between the substrate thickness (T) in the case of completion of polishing of the semiconductor substrate and the thickness (t) of the carrier is controlled to 5 μm or larger and 100 μm or smaller. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体基板の両面研磨方法に関し、電子デバイスの作製に供される、平坦度に優れた半導体基板を製作する方法に関するものである。   The present invention relates to a method for double-side polishing a semiconductor substrate, and relates to a method for manufacturing a semiconductor substrate having excellent flatness, which is used for manufacturing an electronic device.

電子デバイスの作製工程においては、フォトリソグラフィーを用いた微細加工が必須であり、また、このフォトリソグラフィー工程においては、半導体基板の表面に塗布したフォトレジストにフォトマスクのパターンを正確に転写する必要があるが、この基板表面に凹凸があると、焦点ズレが発生し、フォトマスクのパターンが適正に転写できなくなる。そして、焦点ズレにより設計通りの微細加工が行われないと、電子デバイスとして動作せず、製品の歩留まりが低下する。かかる事態を避けるために、基板の表面を研磨して平坦度を改善する必要がある。   In the manufacturing process of electronic devices, microfabrication using photolithography is indispensable, and in this photolithography process, it is necessary to accurately transfer the photomask pattern to the photoresist applied to the surface of the semiconductor substrate. However, if the surface of the substrate is uneven, a focus shift occurs and the photomask pattern cannot be properly transferred. If fine processing as designed is not performed due to the focus shift, the device does not operate as an electronic device, and the product yield decreases. In order to avoid such a situation, it is necessary to polish the surface of the substrate to improve the flatness.

従来、半導体基板の研磨においては、研磨基板を研磨ブロックにワックス等により固定し、半導体基板の表面と裏面とをそれぞれ片面ずつ研磨していたが、ワックス等の厚みが不均一になったり、また、半導体基板と研磨ブロックの間にパーティクルが入り込んだりして、研磨終了時における基板の仕上り厚さが面内で不均一になったり、また、基板が局所的に窪んだりして、基板の平坦度を高めることが難しかった。   Conventionally, in polishing a semiconductor substrate, the polishing substrate is fixed to a polishing block with wax or the like, and the front and back surfaces of the semiconductor substrate are polished one by one. However, the thickness of the wax or the like becomes uneven, Particles may enter between the semiconductor substrate and the polishing block, resulting in a non-uniform finish thickness of the substrate at the end of polishing, or a local depression of the substrate, resulting in a flat substrate It was difficult to increase the degree.

そこで、この問題を解決するために、研磨基板を上定盤と下定盤との間に挟み込み、両面を同時に加工する両面研磨の方法が提案された。この両面研磨方法においては、基板を研磨ブロックに貼付することなく、基板の表面と裏面とを同時に研磨できることから、ワックス等による貼付工程を省くことができ、片面研磨方法に比べて基板の平坦度品質が改善される。そして、リソグラフィーによる微細加工を必要とする電子デバイスにおいては、基板の平坦度品質が重要であることから、半導体基板の加工において、この両面研磨方法が広く用いられるようになった。   In order to solve this problem, a double-side polishing method has been proposed in which a polishing substrate is sandwiched between an upper surface plate and a lower surface plate, and both surfaces are processed simultaneously. In this double-side polishing method, since the front and back surfaces of the substrate can be polished simultaneously without sticking the substrate to the polishing block, it is possible to omit the sticking step with wax or the like, and the flatness of the substrate compared to the single-side polishing method Quality is improved. In electronic devices that require fine processing by lithography, the flatness quality of the substrate is important, and this double-side polishing method has been widely used in the processing of semiconductor substrates.

このような半導体基板の両面研磨方法としては、例えば特許文献1、2、3等がある。特許文献1においては、基板の主表面に被保護面を形成し、両面研磨装置を用いて保護されていない面を被保護面よりも速い速度で研磨し、これによって非常に平坦で片面が研磨された半導体基板を生産する方法が提案されている。また、特許文献2においては、ウエハの両面を同時にバフ研磨する又はスクラブするためのシステム等の半導体ウエハ処理システムが提案されている。   Examples of such a double-side polishing method for a semiconductor substrate include Patent Documents 1, 2, and 3, for example. In Patent Document 1, a protected surface is formed on the main surface of a substrate, and a surface that is not protected is polished at a faster speed than the protected surface by using a double-side polishing apparatus, thereby polishing one surface very flat. A method for producing a manufactured semiconductor substrate has been proposed. Further, Patent Document 2 proposes a semiconductor wafer processing system such as a system for simultaneously buffing or scrubbing both surfaces of a wafer.

また、特許文献3においては、両面研磨法に更に工夫を加えて平坦度の改善を行っている。具体的には、定盤が研磨熱を受けて凹又は凸に変化することを想定し、研磨中にこの研磨熱により定盤が平らになるように、予め逆の凸又は凹の形状に上定盤、下定盤を仕立てることが提案されている。しかしながら、研磨条件は、研磨パッド、研磨砥粒、研磨加重、定盤回転数等により一定ではなく、さらに、研磨パッドはその表面状態等が経時的に変化することから、どの程度の研磨熱が発生するかを正確に予測することは容易ではなく、また、仮にその研磨熱の発生量をある程度予測できたとしても、想定される定盤の熱変形量を打ち消すように、定盤の形状を精緻に凸又は凹の形状に加工することも容易でない。
特開平9-45,644号公報 特表2002-509,367号公報 特開2005-335,047号公報
In Patent Document 3, the flatness is improved by further improving the double-side polishing method. Specifically, assuming that the surface plate changes to concave or convex due to the polishing heat, the surface plate is raised to a reverse convex or concave shape in advance so that the surface plate is flattened by this polishing heat during polishing. It has been proposed to tailor the surface plate and lower surface plate. However, the polishing conditions are not constant depending on the polishing pad, polishing abrasive grains, polishing load, surface plate rotation speed, etc. Furthermore, since the surface condition of the polishing pad changes with time, how much polishing heat is generated. It is not easy to accurately predict whether it will occur, and even if the amount of polishing heat generated can be predicted to some extent, the shape of the surface plate should be adjusted so as to cancel out the expected amount of thermal deformation of the surface plate. It is not easy to precisely process it into a convex or concave shape.
JP-A-9-45,644 Special Table 2002-509,367 JP 2005-335,047 A

前記のように、両面研磨方法を適用することでワックス等による貼付工程における品質の不具合に起因する平坦度品質の劣化を防ぐことが可能となり、片面研磨方法に比べて一応の改善がなされ、また、この両面研磨方法に更なる工夫を加えて平坦度を改善する試みがなされてきた。しかしながら、良好な平坦度を実現する手法が複雑で、産業応用上、簡単に適用できるものではない。   As described above, by applying the double-side polishing method, it becomes possible to prevent deterioration of flatness quality due to quality defects in the sticking process with wax or the like, and a temporary improvement is made compared to the single-side polishing method. Attempts have been made to improve the flatness by further improving the double-side polishing method. However, the technique for realizing good flatness is complicated and cannot be easily applied in industrial applications.

また、一般に、基板研磨においては、研磨後の基板の平坦度が研磨パッド、研磨砥粒、研磨加重、定盤回転数等の種々の研磨条件に影響されることが知られている。そして、このことは、上記の如き両面研磨方法においても例外ではなく、先述のように、研磨後の基板厚さが面内で不均一になったり、また、基板が局所的に窪んだりする不具合は発生しないが、研磨中に基板の外周部が中央部に比べてより速く研磨されることから、依然として基板の外周部にダレが発生し、基板の外周部の平坦度が劣化するという問題(外周ダレの問題)が残されている。   In general, in substrate polishing, it is known that the flatness of a substrate after polishing is affected by various polishing conditions such as a polishing pad, polishing abrasive grains, polishing load, and surface plate rotation speed. This is not an exception in the double-side polishing method as described above, and as described above, the substrate thickness after polishing becomes uneven in the surface, and the substrate is locally recessed. However, since the outer peripheral portion of the substrate is polished faster than the central portion during polishing, sagging still occurs in the outer peripheral portion of the substrate, and the flatness of the outer peripheral portion of the substrate deteriorates ( The problem of peripheral sag remains.

また、この外周ダレの許容範囲は、作製しようとするデバイスのデザインルールによって異なる。これは、目的のデザインルールに対応してステッパーを使い分けるが、個々のステッパーで使用される光源の波長に応じて焦点深度が異なっているからであり、外周ダレの大きさがステッパーの焦点深度より大きくなると、デフォーカスが生じ、微細パターンの形成が困難になる。   In addition, the permissible range of the outer peripheral sag varies depending on the design rule of the device to be manufactured. This is because the stepper is properly used according to the target design rule, but the depth of focus differs depending on the wavelength of the light source used in each stepper. When it becomes large, defocusing occurs and it becomes difficult to form a fine pattern.

ここで、基板に求められる外周ダレの許容範囲をASTM F1241 "Wafer Geometry Characteristics; Chapter 1.15 GEOMETRY MEASUREMENT"で規定されている平坦度指標SBIRを用いて定量的に説明すると、概ね次の通りである。即ち、平坦度指標SBIRは定められたサイトの中で基板厚さの最大値と最小値の差で定義される指標であり、「外周ダレが大きい状態」とは、平坦度指標SBIRを用いて表現すれば、外周に位置するサイトにおいてSBIRの値が大きい状態に対応している。単結晶炭化珪素基板の場合は、本材料を用いるパワーデバイスがデザインルール0.5μm程度で作製されることから、リソグラフィーではHgランプのi線を光源とするステッパー(以下、「i線ステッパー」と略す。)が用いられる。このi線ステッパーにおいては、焦点深度が1μm程度であることから、外周サイトにおいてSBIR≦1μmであれば、デフォーカスは起こらず、外周ダレは許容範囲内にあると判断される。一方、Si基板を用いたULSIの場合は、デザインルールが0.05μm程度であることから、リソグラフィー工程ではエキシマレーザーを光源とするステッパーが用いられる。このエキシマレーザーを用いたステッパーでは、焦点深度が0.1μm程度であることから、外周サイトにおいてSBIR≦0.1μmであれば、デフォーカスは起こらず、外周ダレは許容範囲内であると言える。   Here, the permissible range of the peripheral sag required for the substrate is quantitatively explained using the flatness index SBIR defined in ASTM F1241 “Wafer Geometry Characteristics; Chapter 1.15 GEOMETRY MEASUREMENT”. In other words, the flatness index SBIR is an index defined by the difference between the maximum value and the minimum value of the substrate thickness within a predetermined site. In other words, it corresponds to a state where the value of SBIR is large at the site located on the outer periphery. In the case of a single crystal silicon carbide substrate, since a power device using this material is manufactured with a design rule of about 0.5 μm, in lithography, a stepper using the i-line of an Hg lamp as a light source (hereinafter abbreviated as “i-line stepper”) .) Is used. In this i-line stepper, since the depth of focus is about 1 μm, if SBIR ≦ 1 μm at the outer peripheral site, defocus does not occur and it is determined that the outer sagging is within an allowable range. On the other hand, in the case of ULSI using a Si substrate, since the design rule is about 0.05 μm, a stepper using an excimer laser as a light source is used in the lithography process. In the stepper using this excimer laser, since the depth of focus is about 0.1 μm, if SBIR ≦ 0.1 μm at the outer peripheral site, defocusing does not occur, and it can be said that the outer sagging is within an allowable range.

そこで、本発明者は、半導体基板の両面研磨において、基板の外周部における外周ダレの発生を可及的に防止し、この外周ダレの大きさを容易にその許容範囲内に抑制することができ、研磨後の基板平坦度に優れた半導体基板を工業的に容易に製造することができる半導体基板の両面研磨方法を開発すべく鋭意検討を行った。   Therefore, the present inventor can prevent as much as possible the occurrence of peripheral sag in the outer peripheral portion of the substrate in double-side polishing of the semiconductor substrate, and can easily suppress the size of the peripheral sag within the allowable range. The present inventors have intensively studied to develop a double-side polishing method for a semiconductor substrate that can easily industrially manufacture a semiconductor substrate having excellent flatness after polishing.

そして、本発明者は、この両面研磨方法を検討する過程で、両面研磨方法における外周ダレの程度は、研磨パッド、研磨砥粒、研磨加重、定盤回転数等のこれまで知られている研磨条件により影響されるだけではなく、半導体基板の基板厚さとこの半導体基板を研磨中に保持するキャリアの厚さとの間の厚み差にも影響され、研磨工程終盤に向けて次第にその影響が大きくなり、研磨工程終盤では外周ダレの主要因になることを突き止め、本発明を完成させた。   In the course of studying this double-side polishing method, the present inventor is known to the extent that the peripheral sagging in the double-side polishing method is a polishing pad, polishing abrasives, polishing load, surface plate rotation speed, etc. Not only is it affected by the conditions, but also the thickness difference between the thickness of the semiconductor substrate and the thickness of the carrier that holds the semiconductor substrate during polishing, and the influence gradually increases toward the end of the polishing process. In the final stage of the polishing process, it was found that this was the main cause of the sagging of the outer periphery, and the present invention was completed.

即ち、両面研磨方法においては、半導体基板を研磨するとの本来目的のために、半導体基板は常にこの半導体基板を保持するキャリアに比べて厚くなっているが、半導体基板がキャリアより過度に厚い場合には、半導体基板が研磨パッドに強く押しつけられることになる。特に、半導体基板の最外周部は、他の部位に先立って、研磨パッドを押し分けていく部位であることから、研磨パッドとの間に生じる摩擦が大きくなり、この部分での研磨速度が上がることになり、その結果、最外周部にダレが生じている。   That is, in the double-side polishing method, for the original purpose of polishing the semiconductor substrate, the semiconductor substrate is always thicker than the carrier holding the semiconductor substrate, but when the semiconductor substrate is excessively thicker than the carrier. The semiconductor substrate is strongly pressed against the polishing pad. In particular, since the outermost peripheral portion of the semiconductor substrate is a portion where the polishing pad is pushed prior to other portions, friction generated between the polishing pad and the polishing pad increases, and the polishing rate at this portion increases. As a result, sagging occurs at the outermost periphery.

そして、このような基板の外周部が研磨パッドに押し込まれる強さの度合いは、研磨パッドの硬さ、研磨加重等の研磨条件に影響され、また、この押し込まれたことにより基板外周部が優先されて研磨される速度は研磨砥粒及び定盤回転数等の研磨条件にも影響される。また、一般に、研磨パッドが柔らかいほど、研磨加重が大きいほど、基板が押し込まれる度合いが大きくなり、その結果として外周ダレが大きくなる。しかしながら、基板研磨が進んで基板厚さとキャリア厚さとの間の厚み差が小さくなると、研磨パッドは、それが弾性を有することから、基板に接触するだけでなくキャリアにも触れるようになり、基板が押し込まれる度合いが実質的に軽減されるようになる。この状況の最も極端な例が基板とキャリアが同じ厚さとなった場合であり、この場合には、基板が選択的に研磨パッドに押し込まれることがなくなり、結果として、研磨パッドの硬さ、研磨加重等の研磨条件に関わらず、外周ダレは起こらなくなる。   The degree of strength with which the outer peripheral portion of the substrate is pushed into the polishing pad is affected by polishing conditions such as the hardness of the polishing pad and the polishing load. The polishing speed is also affected by polishing conditions such as polishing abrasive grains and surface plate rotation speed. In general, the softer the polishing pad and the greater the polishing load, the greater the degree to which the substrate is pushed in, resulting in greater outer sag. However, when the substrate polishing progresses and the difference in thickness between the substrate thickness and the carrier thickness becomes small, the polishing pad comes into contact with the carrier as well as the substrate because it has elasticity, The degree to which is pushed is substantially reduced. The most extreme example of this situation is when the substrate and carrier are the same thickness, in which case the substrate is not selectively pushed into the polishing pad, resulting in the hardness of the polishing pad, polishing Regardless of polishing conditions such as weighting, outer periphery sag does not occur.

本発明者の研究によれば、研磨過程における基板厚さ(T)とキャリア厚さ(t)との間の厚み差(T-t)と、外周ダレの大きさとの関係は、これを模式的に示すと、図6の如くなり、この厚み差(T-t)が大きい研磨工程初期(例えば、図中の領域A)においては、外周ダレの大きさは、研磨パッドの硬さ、研磨砥粒、研磨加重、定盤回転数等の種々の研磨条件に大きく影響され、厚み差(T-t)が一定であっても大きな変化幅を持っている。しかしながら、基板研磨が進み、基板厚さ(T)とキャリア厚さ(t)との間の厚み差(T-t)が小さくなって研磨パッドがキャリアと触れるようになると、研磨工程初期に比較的大きな影響を与えていた研磨砥粒、研磨加重、定盤回転数等の研磨条件による影響が次第に少なくなって、これらの研磨条件による外周ダレの変化幅が小さくなり、研磨工程終盤(例えば、図中の領域B)においては、上記の研磨条件による影響がほとんど無視できる程度にまで小さくなり、基板厚さ(T)とキャリア厚さ(t)との間の厚み差(T-t)が外周ダレの程度を決める主要な要因となる。   According to the study of the present inventor, the relationship between the thickness difference (Tt) between the substrate thickness (T) and the carrier thickness (t) in the polishing process and the size of the peripheral sag is schematically shown. As shown in FIG. 6, in the initial stage of the polishing process (for example, region A in the figure) where the thickness difference (Tt) is large, the size of the outer peripheral sag is determined by the hardness of the polishing pad, the abrasive grains, the polishing It is greatly affected by various polishing conditions such as weighting and surface plate rotation speed, and has a large variation even if the thickness difference (Tt) is constant. However, when the substrate polishing progresses and the thickness difference (Tt) between the substrate thickness (T) and the carrier thickness (t) decreases and the polishing pad comes into contact with the carrier, it is relatively large in the initial stage of the polishing process. The influence of polishing conditions such as polishing abrasives, polishing load, and platen rotation speed, which had an influence, gradually decreases, and the variation width of the outer peripheral sag due to these polishing conditions becomes small, and the final stage of the polishing process (for example, in the figure) In the region B), the influence of the above polishing conditions is reduced to a level that can be almost ignored, and the difference in thickness (Tt) between the substrate thickness (T) and the carrier thickness (t) is the degree of peripheral sagging. It becomes a main factor that decides.

本発明はこのような外周ダレ発生のメカニズムに関する解析に基づいてなされたものであり、その目的とするところは、半導体基板の研磨終了時における基板厚さ(T)と半導体基板を保持するキャリアの厚さ(t)との間の厚み差(T-t)を管理指標として両面研磨を行い、基板研磨の終点を管理して研磨終了後の基板の外周ダレを許容範囲内に抑制するという新加工手法を提供しようとするものである。具体的には、基板に対して求められる平坦度に応じて、研磨終了時における半導体基板の基板厚さ(T)と半導体基板を保持するキャリアの厚さ(t)との間の厚み差(T-t)が所定の範囲に入るように両面研磨工程を管理することにより、研磨後の基板の外周ダレを可及的に防止して許容範囲内に抑制するものである。   The present invention has been made on the basis of the analysis on the mechanism of the occurrence of the peripheral sag, and the object thereof is to determine the substrate thickness (T) at the end of polishing of the semiconductor substrate and the carrier holding the semiconductor substrate. A new processing method that performs double-sided polishing using the thickness difference (Tt) from the thickness (t) as a management index, controls the end point of substrate polishing, and suppresses the peripheral sag of the substrate after polishing within an allowable range Is to provide. Specifically, depending on the flatness required for the substrate, the thickness difference between the substrate thickness (T) of the semiconductor substrate at the end of polishing and the thickness of the carrier holding the semiconductor substrate (t) ( By managing the double-side polishing step so that Tt) falls within a predetermined range, the outer periphery sagging of the substrate after polishing is prevented as much as possible and is suppressed within an allowable range.

即ち、本発明の趣旨は以下のとおりである。
(1) 互いに接近する方向に加圧された上下一対の研磨パッドの間に半導体基板を保持したキャリアを介装し、このキャリアを研磨砥粒の存在下に前記上下一対の研磨パッドの間で自転及び公転させ、キャリアに保持された半導体基板の表裏両面を上下一対の研磨パッドで同時に研磨する半導体基板の両面研磨方法であって、前記半導体基板の研磨終了時における基板厚さ(T)と前記キャリアの厚さ(t)との間の厚み差(T-t)を5μm以上100μm以下の範囲に管理することを特徴とする半導体基板の両面研磨方法。
That is, the gist of the present invention is as follows.
(1) A carrier holding a semiconductor substrate is interposed between a pair of upper and lower polishing pads pressed in a direction approaching each other, and the carrier is interposed between the pair of upper and lower polishing pads in the presence of abrasive grains. A semiconductor substrate double-side polishing method that rotates and revolves and simultaneously polishes both front and back surfaces of a semiconductor substrate held by a carrier with a pair of upper and lower polishing pads, the substrate thickness (T) at the end of polishing of the semiconductor substrate and A method for double-side polishing a semiconductor substrate, wherein a thickness difference (Tt) between the carrier thickness (t) and the carrier thickness (t) is controlled within a range of 5 μm to 100 μm.

(2) 前記厚み差(T-t)が、5μm以上30μm以下である上記(1)に記載の半導体基板の両面研磨方法。   (2) The method for double-side polishing a semiconductor substrate according to (1), wherein the thickness difference (T-t) is 5 μm or more and 30 μm or less.

(3) 前記半導体基板が単結晶炭化珪素基板である上記(1)又は(2)に記載の半導体基板の両面研磨方法。   (3) The method for double-side polishing a semiconductor substrate according to (1) or (2) above, wherein the semiconductor substrate is a single crystal silicon carbide substrate.

本発明によれば、半導体基板の外周部分が選択的に研磨されることを防ぐことが可能となり、外周ダレのない平坦度に優れた半導体基板の作製が可能となる。また、本発明によれば、基板研磨の終点を研磨終了時における基板厚さ(T)とキャリア厚さ(t)との間の厚み差(T-t)で管理することにより、外周ダレのない平坦度に優れた半導体基板の作製が可能なので、半導体基板の研磨作業が極めて容易になり、外周ダレのない平坦度に優れた半導体基板を工業的に容易に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to prevent that the outer peripheral part of a semiconductor substrate is selectively grind | polished, and manufacture of the semiconductor substrate excellent in the flatness without an outer periphery sagging is attained. Further, according to the present invention, the end point of the substrate polishing is managed by the thickness difference (Tt) between the substrate thickness (T) and the carrier thickness (t) at the end of polishing, so that there is no flattening of the outer periphery. Since a semiconductor substrate excellent in temperature can be manufactured, the polishing operation of the semiconductor substrate becomes extremely easy, and a semiconductor substrate excellent in flatness without peripheral sagging can be easily manufactured industrially.

本発明においては、半導体基板を両面研磨する場合において、半導体基板の外周部が研磨パッドに強く押しつけられることによって半導体基板の外周ダレが生じている状況に鑑み、半導体基板が研磨パッドに押し込まれる度合いを、半導体基板の研磨終了時における基板厚さ(T)とこの半導体基板を保持するキャリアのキャリア厚さ(t)との間の厚み差(T-t)を指標として管理するが、この厚み差(T-t)は、研磨対象の半導体基板の種類によっても異なるが、通常5μm以上100μm以下、好ましくは5μm以上30μm以下に管理され、これによって半導体基板の外周部が研磨パッドに強く押しつけられるとの事態を回避でき、その結果、外周ダレのない半導体基板の作製が可能となる。   In the present invention, when the semiconductor substrate is double-side polished, the degree to which the semiconductor substrate is pushed into the polishing pad in view of the situation where the outer periphery of the semiconductor substrate is caused by the outer circumference of the semiconductor substrate being strongly pressed against the polishing pad. Is managed using the thickness difference (Tt) between the substrate thickness (T) at the end of polishing of the semiconductor substrate and the carrier thickness (t) of the carrier holding the semiconductor substrate as an index. Tt) varies depending on the type of semiconductor substrate to be polished, but is usually controlled to 5 μm or more and 100 μm or less, preferably 5 μm or more and 30 μm or less. As a result, it is possible to manufacture a semiconductor substrate having no peripheral sagging.

例えば、本発明方法を単結晶炭化珪素を始めとする硬質半導体基板の両面研磨に適用する場合は、実用的な研磨速度を確保するために、シリコンを始めとする一般な硬度の半導体基板に比べて研磨圧力を高めることが一般的であるが、このことにより半導体基板の外周部が研磨パッドに強く押しつけられ、半導体基板の外周ダレを発生させることになる。しかしながら、この場合においても、本発明が提案するように、半導体基板の研磨終了時における基板厚さ(T)とこの半導体基板を保持するキャリアのキャリア厚さ(t)との間の厚み差(T-t)をより精緻に管理することにより、具体的には、厚み差(T-t)を5μm以上30μm以下、好ましくは5μm以上20μm以下に管理することにより、研磨キャリアが研磨パッドに押しつけられる圧力が増し、半導体基板の外周部が研磨パッドに押しつけられる圧力との差異が減少し、結果として半導体基板の外周部が突出して研磨パッドに押しつけられる状態が回避され、半導体基板の外周部のダレが低減される。   For example, when the method of the present invention is applied to double-side polishing of a hard semiconductor substrate such as single crystal silicon carbide, in order to ensure a practical polishing rate, compared with a semiconductor substrate having a general hardness such as silicon. In general, the polishing pressure is increased. However, this causes the outer peripheral portion of the semiconductor substrate to be strongly pressed against the polishing pad, and the outer peripheral sagging of the semiconductor substrate is generated. However, even in this case, as proposed by the present invention, the thickness difference between the substrate thickness (T) at the end of polishing of the semiconductor substrate and the carrier thickness (t) of the carrier holding the semiconductor substrate ( By controlling the Tt) more precisely, specifically, the thickness difference (Tt) is controlled to 5 μm to 30 μm, preferably 5 μm to 20 μm, thereby increasing the pressure with which the polishing carrier is pressed against the polishing pad. The difference between the pressure with which the outer peripheral portion of the semiconductor substrate is pressed against the polishing pad is reduced, and as a result, the state where the outer peripheral portion of the semiconductor substrate protrudes and is pressed against the polishing pad is avoided, and sagging of the outer peripheral portion of the semiconductor substrate is reduced. The

また、シリコンを始めとする一般的な硬度を持つ半導体基板に本発明方法を適用する場合は、厚み差(T-t)を通常5μm以上100μm以下に管理すればよいが、好ましくは5μm以上30μm以下に管理するのがよく、かかる場合には、半導体基板の外周部が研磨パッドに押しつけられる圧力がより減少することから、外周ダレの一層の抑制が可能となり、より優れた平坦度品質を持つ半導体基板の作製が可能になる。   In addition, when the method of the present invention is applied to a semiconductor substrate having a general hardness such as silicon, the thickness difference (Tt) may be controlled usually from 5 μm to 100 μm, preferably from 5 μm to 30 μm. In such a case, since the pressure with which the outer peripheral portion of the semiconductor substrate is pressed against the polishing pad is further reduced, it is possible to further suppress the outer peripheral sagging, and the semiconductor substrate having better flatness quality Can be produced.

ここで、管理指標となる半導体基板の基板厚さ(T)及びキャリアのキャリア厚さ(t)を測定する厚み測定方法について、以下に説明する。
先ず、基板厚さ(T)の測定方法については、結果として研磨終了時の基板厚さ(T)を測定できればよく、特に制限されるものではないが、例えば、研磨速度が既知の場合、又は、研磨速度が未知であっても事前の予備実験で研磨時間と基板厚みの関係が判っている場合は、半導体基板の厚み測定に替えて、研磨時間を管理する方法もある。研磨速度が未知で事前実験を行わない場合においても、一連の研磨工程において厚み測定を複数回行い、基板の厚みを管理することが可能である。この場合においては、研磨工程の前半では測定頻度は少なくてよいが、研磨工程の後半では半導体基板の基板厚さ(T)とキャリアのキャリア厚さ(t)との間の厚み差(T-t)の値が次第に小さくなることから、その測定頻度を多くすることが好ましい。なお、測定対象は研磨を行う半導体基板全数であるが、各基板の測定箇所についてはその中央部1点を含めて1箇所以上、好ましくは2箇所以上の複数箇所で行うのが適当である。複数箇所で測定した場合には測定された厚みの平均値を求め、半導体基板の基板厚み(T)とする。
Here, a thickness measuring method for measuring the substrate thickness (T) of the semiconductor substrate and the carrier thickness (t) of the carrier, which are management indexes, will be described below.
First, the method for measuring the substrate thickness (T) is not particularly limited as long as the substrate thickness (T) at the end of polishing can be measured as a result.For example, when the polishing rate is known, or Even if the polishing rate is unknown, if the relationship between the polishing time and the substrate thickness is known in a preliminary experiment, there is a method of managing the polishing time instead of measuring the thickness of the semiconductor substrate. Even when the polishing rate is unknown and the preliminary experiment is not performed, the thickness of the substrate can be managed by measuring the thickness several times in a series of polishing steps. In this case, the measurement frequency may be low in the first half of the polishing step, but the thickness difference (Tt) between the substrate thickness (T) of the semiconductor substrate and the carrier thickness (t) of the carrier in the second half of the polishing step. Since the value of becomes gradually smaller, it is preferable to increase the measurement frequency. Note that the number of measurement targets is the total number of semiconductor substrates to be polished, but it is appropriate to measure each substrate at one or more locations, preferably at two or more locations including one central portion. When the measurement is performed at a plurality of locations, the average value of the measured thicknesses is obtained and set as the substrate thickness (T) of the semiconductor substrate.

一方、キャリアは摩滅する速度が遅いために、キャリア厚さ(t)の測定は一連の研磨工程で1回行えば十分である。キャリア厚さ(t)の測定は、半導体基板を保持するために開けられた穴の外周に沿って、複数箇所について測定するのが好ましい。キャリア厚さ(t)の厚み測定の一例として、穴の外周に沿って90°間隔で厚み測定を計4回行う方法がある。必要に応じて前記の間隔及び測定回数を増減させてよい。半導体基板を保持する穴が複数個ある場合は、それぞれの穴について前記のように厚み測定を行う。測定した厚みの平均値を求め、キャリア厚さ(t)とする。   On the other hand, since the carrier is slow to wear, it is sufficient to measure the carrier thickness (t) once in a series of polishing steps. The measurement of the carrier thickness (t) is preferably performed at a plurality of locations along the outer periphery of the hole opened to hold the semiconductor substrate. As an example of the thickness measurement of the carrier thickness (t), there is a method of measuring the thickness four times at 90 ° intervals along the outer periphery of the hole. The interval and the number of measurements may be increased or decreased as necessary. When there are a plurality of holes for holding the semiconductor substrate, the thickness is measured for each hole as described above. An average value of the measured thicknesses is obtained and set as the carrier thickness (t).

外周ダレのない平坦度に優れた半導体基板を作製する要点は前記の通りであるが、半導体基板の機械強度に合わせて、研磨パッド、研磨圧力、研磨定盤の回転数等の研磨条件を適宜選択するのがよい。ショアA硬度計で測定した硬度に基づいて研磨パッドを選択することが好ましい。一般的に、ガリウムヒ素あるいはインジウム燐を始めとする軟質半導体硬質半導体の研磨に当たっては硬度の低い研磨パッドを、また、炭化珪素を始めとする硬質半導体基板の研磨に当たっては硬度の高い研磨パッドを用いることが好ましい。例えば、ガリウム砒素については50°以上65°以下が、シリコンについては60°以上80°以下が、また、炭化珪素については80°以上90°以下のショア硬度を有する研磨パッドを用いることが好ましい。   The essential points for producing a semiconductor substrate with excellent flatness without peripheral sag are as described above, but in accordance with the mechanical strength of the semiconductor substrate, the polishing conditions such as the polishing pad, polishing pressure, and the number of rotations of the polishing platen are appropriately selected. It is good to choose. It is preferable to select a polishing pad based on the hardness measured with a Shore A hardness meter. Generally, a polishing pad having a low hardness is used for polishing a soft semiconductor hard semiconductor such as gallium arsenide or indium phosphorus, and a polishing pad having a high hardness is used for polishing a hard semiconductor substrate such as silicon carbide. It is preferable. For example, it is preferable to use a polishing pad having a Shore hardness of 50 ° to 65 ° for gallium arsenide, 60 ° to 80 ° for silicon, and 80 ° to 90 ° for silicon carbide.

研磨圧力については、研磨工程初期にこれが研磨速度及び半導体基板の外周ダレの双方に影響を及ぼすことから、半導体基板の機械強度に応じて定めるのがよいが、本発明において、研磨圧力は50g/cm2以上1000g/cm2以下が好ましい。研磨定盤の回転速度については、10rpm以上80rpm以下が好ましい。 The polishing pressure is preferably determined according to the mechanical strength of the semiconductor substrate because it affects both the polishing rate and the peripheral sag of the semiconductor substrate at the initial stage of the polishing process, but in the present invention, the polishing pressure is 50 g / cm 2 or more 1000 g / cm 2 or less. The rotational speed of the polishing platen is preferably 10 rpm or more and 80 rpm or less.

研磨砥粒の種類としては、シリカ(SiO2)、アルミナ(Al2O3)、GC(グリーンSiC)、カーボランダム、ダイヤモンド等を用いるのが一般的であるが、研磨砥粒の種類は、半導体基板の機械強度に合わせて選択するのがよい。即ち、研磨砥粒のビッカース硬度が研磨を行う半導体基板のビッカース硬度より高くなるように、研磨砥粒の種類を選択するのがよく、具体的には、半導体基板の材質がシリコン、ガリウム砒素、インジウム燐等の場合には、シリカ(SiO2)、アルミナ(Al2O3)、GC(グリーンSiC)、カーボランダムを用いることが、また、炭化珪素等の場合にはダイヤモンドを用いることが望ましい。 As the types of abrasive grains, it is common to use silica (SiO 2 ), alumina (Al 2 O 3 ), GC (green SiC), carborundum, diamond, etc. It is preferable to select according to the mechanical strength of the semiconductor substrate. That is, it is preferable to select the type of abrasive grains so that the Vickers hardness of the abrasive grains is higher than the Vickers hardness of the semiconductor substrate to be polished. Specifically, the material of the semiconductor substrate is silicon, gallium arsenide, In the case of indium phosphorus or the like, it is desirable to use silica (SiO 2 ), alumina (Al 2 O 3 ), GC (green SiC), or carborundum, and in the case of silicon carbide or the like, it is desirable to use diamond. .

研磨砥粒のサイズ選択の内、最小サイズについては最終仕上げ面の粗度に合わせて一義的に決まる。一方、研磨砥粒を順次、大きいサイズから小さいサイズに切り替えていくことは当然のことであるが、どれほどのステップを刻んで砥粒サイズを小さくしていくかは、残留スクラッチと生産性を勘案して決める必要があるため、一義的に決めることはできない。例えば、炭化珪素基板を、その表面粗度Raが0.3nm程度となるように研磨する場合の一例として、ダイヤモンド砥粒を粒径9μmより始め、順次、3μm、1μmと小さくし、所望の表面粗度を得た例がある。そして、このように研磨砥粒の粒子サイズを順次小さくしながら研磨作業を行う場合には、基板厚さ(T)の測定は、例えば、研磨砥粒のサイズ減縮の際に行ったり、最小サイズの研磨砥粒で研磨する際に表面状態の確認に合わせて複数回の測定を行う等、研磨作業が中断されるタイミングに合わせて行うのがよい。   Of the size selection of the abrasive grains, the minimum size is uniquely determined according to the roughness of the final surface. On the other hand, it is natural that the abrasive grains are sequentially switched from a larger size to a smaller size, but how many steps should be taken to reduce the abrasive grain size takes into account residual scratches and productivity. Because it is necessary to decide, it cannot be decided uniquely. For example, as an example of polishing a silicon carbide substrate so that its surface roughness Ra is about 0.3 nm, the diamond abrasive grains start with a particle size of 9 μm, and then gradually decrease to 3 μm and 1 μm to obtain a desired surface roughness. There is an example that got the degree. And when performing the polishing operation while sequentially reducing the particle size of the abrasive grains in this way, the measurement of the substrate thickness (T) is performed, for example, when reducing the size of the abrasive grains, or the minimum size When polishing with the polishing abrasive grains, it is preferable to perform the measurement in accordance with the timing at which the polishing operation is interrupted, such as performing a plurality of measurements in accordance with the confirmation of the surface state.

研磨中に半導体基板を保持するキャリアは、半導体基板を研磨する際に同時に研磨パッドに触れ、摩滅することから、ステンレススチール、ブルースチール、スチールを始めとする硬質材料で作製することが好ましい。しかしながら、ガリウムヒ素あるいはインジウム燐を始めとする軟質半導体基板を両面研磨する場合は、研磨キャリアとの接触、衝突により半導体基板の割れや欠けが発生し難くなるように、塩化ビニール、ポリカーボネート、エポキシ樹脂含滲アラミド繊維、エポキシ樹脂含滲ガラス繊維、エポキシ樹脂含滲カーボンファイバを始めとする軟質材料で作製した研磨キャリアを使用してもよい。   The carrier that holds the semiconductor substrate during polishing is preferably made of a hard material such as stainless steel, blue steel, or steel because the carrier touches the polishing pad at the same time as the semiconductor substrate is polished and is worn away. However, when polishing both sides of a soft semiconductor substrate such as gallium arsenide or indium phosphide, vinyl chloride, polycarbonate, and epoxy resin are used so that the semiconductor substrate is not easily cracked or chipped by contact or collision with the polishing carrier. An abrasive carrier made of a soft material such as an impregnated aramid fiber, an epoxy resin-containing glass fiber, or an epoxy resin-containing carbon fiber may be used.

[実施例1及び2並びに比較例1]
以下に、実施例及び比較例に基づいて、本発明の半導体基板の両面研磨方法を具体的に説明する。
なお、以下の実施例1及び2並びに比較例1において、用いられた両面研磨装置は、図1及び図2に示すように、3枚の基板厚さ(T)の半導体基板1をキャリア厚さ(t)のキャリア2の基板収容部2a内に隙間を維持して回転可能に配置し、これら半導体基板1及びキャリア2の上下方向から上研磨パッド3a及び下研磨パッド3bで挟み込み、これら上下の研磨パッド3a,3bの間で半導体基板1を自転及び公転させ、3枚の半導体基板1の両面を同時に研磨できる構成になっている。
[Examples 1 and 2 and Comparative Example 1]
Below, based on an Example and a comparative example, the double-sided grinding | polishing method of the semiconductor substrate of this invention is demonstrated concretely.
Incidentally, in the following Examples 1 and 2 and Comparative Example 1, the double-side polishing apparatus used, as shown in FIG. 1 and FIG. 2, the semiconductor substrate 1 of the three substrate thickness (T) carrier thickness In (t), the substrate 2 of the carrier 2 is disposed so as to be rotatable while maintaining a gap, and is sandwiched between the upper polishing pad 3a and the lower polishing pad 3b from above and below the semiconductor substrate 1 and the carrier 2, and The semiconductor substrate 1 is rotated and revolved between the polishing pads 3a and 3b so that both surfaces of the three semiconductor substrates 1 can be polished simultaneously.

また、実施例1及び2並びに比較例1において、用いられた半導体基板1は直径3インチ(75mm)の単結晶炭化珪素であり、また、その結晶ポリタイプは4Hである。窒素ドープによりn型導電性を示し、抵抗率は20mΩcmである。半導体基板の主面は(0001)面で、C軸は[11-20]方向に8°傾いている。   In Examples 1 and 2 and Comparative Example 1, the semiconductor substrate 1 used was single crystal silicon carbide having a diameter of 3 inches (75 mm), and its crystal polytype was 4H. Nitrogen doping shows n-type conductivity, and the resistivity is 20 mΩcm. The main surface of the semiconductor substrate is the (0001) plane, and the C axis is inclined by 8 ° in the [11-20] direction.

更に、実施例1及び2並びに比較例1の両面研磨においては、1バッチ3枚の構成で研磨を行い、研磨キャリアはステンレス製を用いた。研磨パッドはショアA硬度計で測定した硬度が80°以上90°以下のものを使用した。研磨圧力は250g/cm2以上600g/cm2以下に管理した。研磨スラリーは砥粒としてダイヤモンドを用いたもので、粒径9μmより始め、順次、3μm、1μmと粒径サイズの縮減を行い、研磨面を仕上げた。粒径のサイズ縮減に当たっては、前工程のダイヤ粒が残留しないように十分な水洗を行った。 Further, in the double-side polishing of Examples 1 and 2 and Comparative Example 1, polishing was performed with a configuration of three batches, and the polishing carrier was made of stainless steel. A polishing pad having a hardness of 80 ° or more and 90 ° or less measured with a Shore A hardness tester was used. The polishing pressure was controlled between 250 g / cm 2 and 600 g / cm 2 . The polishing slurry used diamond as abrasive grains. The grain size was reduced to 3 μm and 1 μm in order starting from a grain size of 9 μm to finish the polished surface. In reducing the size of the particle size, sufficient water washing was performed so that the diamond grains from the previous step did not remain.

また、実施例1及び2並びに比較例1において、半導体基板1の基板厚さ(T)の測定は、研磨砥粒のサイズ縮減に同期して行った。即ち、第1回目は研磨砥粒を9μmから3μmに切り換える際に、第2回目は研磨砥粒を3μmから1μmに切り換える際にそれぞれ基板厚さ(T)の測定を行い、また、第3回目以降は30分毎に基板厚さ(T)を測定し、測定された基板厚さ(T)とキャリア厚さ(t)との間の厚み差(T-t)が所定の値(比較例1では120μm、実施例1では60μm、及び実施例2では20μm)になるまで研磨操作及び基板厚さ(T)の測定を繰り返した。なお、キャリア2のキャリア厚さ(t)は、研磨を開始する前に半導体基板1を保持する穴(基板収容部2a)の周囲に沿って90°毎に4点で測定し、その平均値を求めた。   In Examples 1 and 2 and Comparative Example 1, the measurement of the substrate thickness (T) of the semiconductor substrate 1 was performed in synchronization with the size reduction of the abrasive grains. That is, the substrate thickness (T) is measured when the abrasive grains are changed from 9 μm to 3 μm in the first time, and the abrasive grains are changed from 3 μm to 1 μm in the second time. Thereafter, the substrate thickness (T) is measured every 30 minutes, and the thickness difference (Tt) between the measured substrate thickness (T) and the carrier thickness (t) is a predetermined value (in Comparative Example 1) The polishing operation and the measurement of the substrate thickness (T) were repeated until 120 μm, 60 μm in Example 1, and 20 μm in Example 2. The carrier thickness (t) of the carrier 2 is measured at four points every 90 ° along the periphery of the hole (substrate housing portion 2a) for holding the semiconductor substrate 1 before starting polishing, and the average value thereof Asked.

両面研磨後の平坦度品質は、ASTM F1241に規定されるSBIRを用いて定量化した。なお、サイトサイズは1辺10mmの正方形とし、また、エッジ除外(edge exclusion)は2mmの条件下でSBIRを測定した。   The flatness quality after double-side polishing was quantified using SBIR defined in ASTM F1241. The site size was a square with a side of 10 mm, and the SBIR was measured under the condition of edge exclusion of 2 mm.

図3は、厚み差(T)が120μmの比較例1の場合であり、半導体基板1の研磨終了後における基板厚さ(T)とキャリア2のキャリア厚さ(t)との間の厚み差(T-t)が過度に大きい場合の結果である。具体的には、半導体基板の基板厚さ(T)が370μm、キャリア2のキャリア厚さ(t)が250μm、両者の間の厚み差(T-t)が120μmの場合であり、最外周のセルとそれ以外のセルのSBIRを比較すると、最外周セルにおいて値が大きく、外周ダレに起因する平坦度が劣化していることが判る。   FIG. 3 shows the case of Comparative Example 1 in which the thickness difference (T) is 120 μm, and the thickness difference between the substrate thickness (T) and the carrier thickness (t) of the carrier 2 after the polishing of the semiconductor substrate 1 is completed. This is a result when (Tt) is excessively large. Specifically, the substrate thickness (T) of the semiconductor substrate is 370 μm, the carrier thickness (t) of carrier 2 is 250 μm, and the difference in thickness (Tt) between the two is 120 μm. Comparing the SBIR of other cells, it can be seen that the value is large in the outermost peripheral cell, and the flatness due to the outer peripheral sag is deteriorated.

一方、図4は、本発明方法を適用した実施例1の場合で、半導体基板1の研磨終了後における基板厚さ(T)とキャリア2のキャリア厚さ(t)との間の厚み差(T-t)が所定の範囲内に管理された例である。この図4においては、半導体基板1の研磨終了後における基板厚さ(T)が390μm、キャリア2のキャリア厚さ(t)が330μm、両者の間の厚み差(T-t)が60μmである。この実施例1では、図3に示す比較例1に比べて、最外周のセルにおけるSBIRが小さく、外周ダレの発生が抑制されていることが判る。   On the other hand, FIG. 4 shows the thickness difference between the substrate thickness (T) and the carrier thickness (t) of the carrier 2 after polishing of the semiconductor substrate 1 in the case of Example 1 to which the method of the present invention was applied ( In this example, Tt) is managed within a predetermined range. In FIG. 4, the substrate thickness (T) after the polishing of the semiconductor substrate 1 is 390 μm, the carrier thickness (t) of the carrier 2 is 330 μm, and the thickness difference (T−t) between the two is 60 μm. In Example 1, it can be seen that compared with Comparative Example 1 shown in FIG. 3, the SBIR in the outermost peripheral cell is small, and the occurrence of peripheral sagging is suppressed.

また、図5は、本発明を適用した実施例2の場合である。ここでは、半導体基板1の研磨終了後における基板厚さ(T)とキャリア2のキャリア厚さ(t)との間の厚み差(T-t)が実施例1の場合に比べてより狭い範囲内に管理された例である。この図5においては、半導体基板1の磨終了後における基板厚さ(T)が370μm、キャリア2のキャリア厚さ(t)が350μm、両者の間の厚み差(T-t)が20μmである。この場合は、最外周のセルとそれ以外のセルでSBIRはほぼ同程度であり、基板の外周ダレが起こっていないことが判る。   FIG. 5 shows a case of Example 2 to which the present invention is applied. Here, the thickness difference (Tt) between the substrate thickness (T) after the polishing of the semiconductor substrate 1 and the carrier thickness (t) of the carrier 2 is within a narrower range than in the case of Example 1. This is a managed example. In FIG. 5, the substrate thickness (T) after polishing of the semiconductor substrate 1 is 370 μm, the carrier thickness (t) of the carrier 2 is 350 μm, and the thickness difference (T−t) between the two is 20 μm. In this case, the SBIR is almost the same in the outermost cell and the other cells, and it can be seen that there is no substrate sagging.

図1は、両面研磨において、上下の研磨パッドを省略して半導体基板とキャリアとの位置関係を示す斜視説明図である。FIG. 1 is an explanatory perspective view showing the positional relationship between a semiconductor substrate and a carrier with upper and lower polishing pads omitted in double-side polishing.

図2は、図1におけるa-a線断面の形状を示す断面説明図である。FIG. 2 is a cross-sectional explanatory view showing the shape of the cross section along the line aa in FIG.

図3は、比較例1の半導体基板のSBIR測定結果を示すサイトマップ図である。FIG. 3 is a site map showing SBIR measurement results of the semiconductor substrate of Comparative Example 1.

図4は、本発明の実施例1の半導体基板のSBIR測定結果を示すサイトマップ図である。FIG. 4 is a site map diagram showing the SBIR measurement result of the semiconductor substrate of Example 1 of the present invention.

図5は、本発明の実施例2の半導体基板のSBIR測定結果を示すサイトマップ図である。FIG. 5 is a site map showing the SBIR measurement results of the semiconductor substrate of Example 2 of the present invention.

図6は、基板厚さ(T)とキャリア厚さ(t)との厚み差(T-t)と、外周ダレの大きさと、研磨条件(研磨パッドの硬さや研磨加重の大きさ)との関係を説明するための説明図である。Fig. 6 shows the relationship between the thickness difference (Tt) between the substrate thickness (T) and the carrier thickness (t), the size of the peripheral sag, and the polishing conditions (the hardness of the polishing pad and the size of the polishing load). It is explanatory drawing for demonstrating.

符号の説明Explanation of symbols

1:半導体基板、2:キャリア、2a:基板収容部(穴)、3a:上研磨パッド、3b:下研磨パッド、T:基板厚さ、t:キャリア厚さ。   1: Semiconductor substrate, 2: Carrier, 2a: Substrate accommodating portion (hole), 3a: Upper polishing pad, 3b: Lower polishing pad, T: Substrate thickness, t: Carrier thickness.

Claims (3)

互いに接近する方向に加圧された上下一対の研磨パッドの間に半導体基板を保持したキャリアを介装し、このキャリアを研磨砥粒の存在下に前記上下一対の研磨パッドの間で自転及び公転させ、キャリアに保持された半導体基板の表裏両面を上下一対の研磨パッドで同時に研磨する半導体基板の両面研磨方法であって、前記半導体基板の研磨終了時における基板厚さ(T)と前記キャリアの厚さ(t)との間の厚み差(T-t)を5μm以上100μm以下の範囲に管理することを特徴とする半導体基板の両面研磨方法。   A carrier holding a semiconductor substrate is interposed between a pair of upper and lower polishing pads pressed in directions approaching each other, and the carrier rotates and revolves between the pair of upper and lower polishing pads in the presence of abrasive grains. A semiconductor substrate double-side polishing method for simultaneously polishing both front and back surfaces of a semiconductor substrate held by a carrier with a pair of upper and lower polishing pads, the substrate thickness (T) at the end of polishing of the semiconductor substrate and the carrier A method for double-side polishing a semiconductor substrate, wherein a thickness difference (Tt) between the thickness (t) and the thickness (t) is controlled within a range of 5 μm to 100 μm. 前記厚み差(T-t)が、5μm以上30μm以下である請求項1に記載の半導体基板の両面研磨方法。   2. The double-side polishing method of a semiconductor substrate according to claim 1, wherein the thickness difference (T-t) is 5 μm or more and 30 μm or less. 前記半導体基板が単結晶炭化珪素基板である請求項1又は2に記載の半導体基板の両面研磨方法。   3. The double-side polishing method for a semiconductor substrate according to claim 1, wherein the semiconductor substrate is a single crystal silicon carbide substrate.
JP2008209659A 2008-08-18 2008-08-18 Method for polishing both surface of semiconductor substrate Pending JP2010045279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209659A JP2010045279A (en) 2008-08-18 2008-08-18 Method for polishing both surface of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209659A JP2010045279A (en) 2008-08-18 2008-08-18 Method for polishing both surface of semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2010045279A true JP2010045279A (en) 2010-02-25

Family

ID=42016403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209659A Pending JP2010045279A (en) 2008-08-18 2008-08-18 Method for polishing both surface of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2010045279A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222750A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Manufacturing method of silicon carbide single-crystal wafer and silicon carbide single-crystal wafer manufactured thereby
KR101092594B1 (en) 2008-09-26 2011-12-13 호야 가부시키가이샤 Method for manufacturing substrate for mask blank and substrate thereby
JP2014188668A (en) * 2013-03-28 2014-10-06 Hoya Corp Method of manufacturing glass substrate
US9165779B2 (en) 2012-10-26 2015-10-20 Dow Corning Corporation Flat SiC semiconductor substrate
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US9337277B2 (en) 2012-09-11 2016-05-10 Dow Corning Corporation High voltage power semiconductor device on SiC
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
JP2017159382A (en) * 2016-03-08 2017-09-14 スピードファム株式会社 Surface polishing device and carrier
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
JP2018101696A (en) * 2016-12-20 2018-06-28 株式会社Sumco Method for adjusting thickness of carrier plate
JP2021074831A (en) * 2019-11-11 2021-05-20 信越化学工業株式会社 Polishing method of crystal material, and manufacturing method of faraday rotator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150433A (en) * 1998-11-09 2000-05-30 Sumitomo Metal Ind Ltd Manufacture of semiconductor silicon wafer
JP2000235941A (en) * 1999-02-11 2000-08-29 Wacker Siltronic G Fuer Halbleitermaterialien Ag Semiconductor wafer, and manufacture thereof, and use of the same
JP2001088018A (en) * 1999-09-16 2001-04-03 Hitachi Cable Ltd Simultaneous polishing method and device for opposite surfaces of semiconductor wafer
JP2001287155A (en) * 2000-04-10 2001-10-16 Toshiba Ceramics Co Ltd Carrier for polishing
JP2003077870A (en) * 2001-07-05 2003-03-14 Wacker Siltronic Ag Method for simultaneously performing material removal work to both surfaces of semiconductor wafer
JP2004291115A (en) * 2003-03-26 2004-10-21 Komatsu Electronic Metals Co Ltd Lapping machine
JP2006123020A (en) * 2004-10-26 2006-05-18 Seiko Instruments Inc Method of polishing piezoelectric wafer
JP2008103650A (en) * 2006-09-21 2008-05-01 Nippon Steel Corp SiC MONOCRYSTALLINE SUBSTRATE MANUFACTURING METHOD, AND THE SiC MONOCRYSTALLINE SUBSTRATE

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150433A (en) * 1998-11-09 2000-05-30 Sumitomo Metal Ind Ltd Manufacture of semiconductor silicon wafer
JP2000235941A (en) * 1999-02-11 2000-08-29 Wacker Siltronic G Fuer Halbleitermaterialien Ag Semiconductor wafer, and manufacture thereof, and use of the same
JP2001088018A (en) * 1999-09-16 2001-04-03 Hitachi Cable Ltd Simultaneous polishing method and device for opposite surfaces of semiconductor wafer
JP2001287155A (en) * 2000-04-10 2001-10-16 Toshiba Ceramics Co Ltd Carrier for polishing
JP2003077870A (en) * 2001-07-05 2003-03-14 Wacker Siltronic Ag Method for simultaneously performing material removal work to both surfaces of semiconductor wafer
JP2004291115A (en) * 2003-03-26 2004-10-21 Komatsu Electronic Metals Co Ltd Lapping machine
JP2006123020A (en) * 2004-10-26 2006-05-18 Seiko Instruments Inc Method of polishing piezoelectric wafer
JP2008103650A (en) * 2006-09-21 2008-05-01 Nippon Steel Corp SiC MONOCRYSTALLINE SUBSTRATE MANUFACTURING METHOD, AND THE SiC MONOCRYSTALLINE SUBSTRATE

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092594B1 (en) 2008-09-26 2011-12-13 호야 가부시키가이샤 Method for manufacturing substrate for mask blank and substrate thereby
JP2011222750A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Manufacturing method of silicon carbide single-crystal wafer and silicon carbide single-crystal wafer manufactured thereby
US9337277B2 (en) 2012-09-11 2016-05-10 Dow Corning Corporation High voltage power semiconductor device on SiC
US9165779B2 (en) 2012-10-26 2015-10-20 Dow Corning Corporation Flat SiC semiconductor substrate
US9738991B2 (en) 2013-02-05 2017-08-22 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion
US9797064B2 (en) 2013-02-05 2017-10-24 Dow Corning Corporation Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion
JP2014188668A (en) * 2013-03-28 2014-10-06 Hoya Corp Method of manufacturing glass substrate
US9279192B2 (en) 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
US10002760B2 (en) 2014-07-29 2018-06-19 Dow Silicones Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
JP2017159382A (en) * 2016-03-08 2017-09-14 スピードファム株式会社 Surface polishing device and carrier
KR20170104925A (en) 2016-03-08 2017-09-18 스피드팜 가부시키가이샤 Surface polishing apparatus and carrier
KR102496905B1 (en) 2016-03-08 2023-02-07 스피드팸 가부시키가이샤 Surface polishing apparatus and carrier
JP2018101696A (en) * 2016-12-20 2018-06-28 株式会社Sumco Method for adjusting thickness of carrier plate
JP2021074831A (en) * 2019-11-11 2021-05-20 信越化学工業株式会社 Polishing method of crystal material, and manufacturing method of faraday rotator

Similar Documents

Publication Publication Date Title
JP2010045279A (en) Method for polishing both surface of semiconductor substrate
US9033764B2 (en) Method of polishing object to be polished
TWI680507B (en) Wafer polishing method
KR100818683B1 (en) Mirror chamfered wafer, mirror chamfering polishing cloth, and mirror chamfering polishing machine and method
US20030060050A1 (en) Semiconductor wafer with improved local flatness, and method for its production
WO2012147279A1 (en) Semiconductor wafer and method for manufacturing same
KR19990037292A (en) Method and apparatus for polishing semiconductor wafers
KR20100087649A (en) Method of processing synthetic quartz glass substrate for semiconductor
KR102507777B1 (en) Wafer manufacturing method and wafer
KR20160054481A (en) Production method for mirror polished wafers
JP2015029032A (en) Substrate for square mold
JP2003048148A (en) Square substrate grinding method
JP6825733B1 (en) Manufacturing method of semiconductor wafer
CN110052955B (en) Method for manufacturing carrier and method for double-side polishing wafer
KR20150073214A (en) Method for producing polished article
JP2002100594A (en) Method and device for grinding plane
TWI740606B (en) Double side polishing method for workpiece
JP2004022677A (en) Semiconductor wafer
TW201829117A (en) Wafer manufacturing method and wafer
JP2005005315A (en) Method for polishing wafer
JP6939752B2 (en) Helical chamfering method for silicon wafers
JP6589762B2 (en) Double-side polishing equipment
JP5007527B2 (en) Wafer manufacturing method
JP7363978B1 (en) Method for determining wafer polishing conditions, wafer manufacturing method, and wafer single-side polishing system
JP2004223684A (en) Wafer notch polishing pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130319