JP2010043989A - Defect height estimation method by ultrasonic flaw detection - Google Patents

Defect height estimation method by ultrasonic flaw detection Download PDF

Info

Publication number
JP2010043989A
JP2010043989A JP2008209018A JP2008209018A JP2010043989A JP 2010043989 A JP2010043989 A JP 2010043989A JP 2008209018 A JP2008209018 A JP 2008209018A JP 2008209018 A JP2008209018 A JP 2008209018A JP 2010043989 A JP2010043989 A JP 2010043989A
Authority
JP
Japan
Prior art keywords
defect
ultrasonic
flaw detection
height
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008209018A
Other languages
Japanese (ja)
Other versions
JP5192939B2 (en
Inventor
Masakazu Kamibayashi
正和 上林
Seiji Tsuruoka
誠司 鶴岡
Keigo Sakamoto
慶吾 坂本
Hiroyuki Yagita
寛之 八木田
Yu Okabe
雄 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008209018A priority Critical patent/JP5192939B2/en
Publication of JP2010043989A publication Critical patent/JP2010043989A/en
Application granted granted Critical
Publication of JP5192939B2 publication Critical patent/JP5192939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a defect height estimation method by ultrasonic flaw detection capable of precisely estimating a defect height of planar defects present inside a body to be inspected. <P>SOLUTION: In the defect height estimation method by ultrasonic flaw detection, ultrasonic waves are transmitted from an ultrasonic probe arranged on the surface of the body to be inspected to the interior of the body to be detected and defect height of planar defects existing inside the body to be inspected is estimated from the waveform of reflection waves reflected from a reflection source. In the defect height estimation method, a sensitivity calibration level Ac is set in advance by performing ultrasonic flaw detection by a test piece for calibration having a reflection source with a surface in the inside, defect echoes of planar defects are detected by transmitting ultrasonic waves from the ultrasonic probe to the body to be inspected, and defect height of planar defects is estimated from the detected defect echoes by a calculation formula having, as coefficients, the reflection area of the test piece for calibration, a sensitivity calibration level, and the diameter of ultrasonic beams at a detection position of planar defects. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超音波を用いて被検査体内部に存在する面状欠陥を検出する超音波探傷による欠陥高さ推定方法に関し、特に面状欠陥の欠陥高さを精度良く推定するようにした超音波探傷による欠陥高さ推定方法に関する。   The present invention relates to a defect height estimation method by ultrasonic flaw detection that detects a planar defect existing inside an object to be inspected by using an ultrasonic wave, and more particularly, an ultrahigh defect height estimation method that accurately estimates a defect height of a planar defect. The present invention relates to a defect height estimation method by acoustic flaw detection.

一般に、被検査体の内部欠陥を検出する非破壊検査法の一つとして、超音波探傷法が様々な産業分野で多く用いられている。超音波探傷による欠陥検出は、超音波が欠陥で反射する現象を利用して行われる。これは、超音波を送信・受信する超音波探触子を被検査体の表面に配置し、超音波探触子から超音波パルスを送信し、その反射エコーを超音波探触子で受信する。この受信した反射エコーを信号処理し、所定高さ以上の反射エコーの有無に基づいて被検査体内部の欠陥の有無を判定する。このとき、図15(a)に示されるように一つの探触子1A又は1Bで超音波の送受を行うものを一探触子法、(b)に示されるように送信と受信とを別々に二つの探触子1a、1bを用いて行う方法をニ探触子法(タンデム法)という。このような超音波パルス探傷法は、特に金属材料の溶接部の面状欠陥を検出する時に多く用いられ、これは日本工業規格の鋼溶接部の超音波探傷法(JIS Z3060−2002)などに記載されている。そして、超音波探傷により得られる反射エコーの反射源の位置、エコー高さ等に基づいて欠陥の位置、さらには欠陥長さ、欠陥高さが求められる。   In general, ultrasonic flaw detection is widely used in various industrial fields as one of non-destructive inspection methods for detecting internal defects of an object to be inspected. Defect detection by ultrasonic flaw detection is performed using a phenomenon in which ultrasonic waves are reflected by defects. This is because an ultrasonic probe that transmits and receives ultrasonic waves is placed on the surface of the object to be inspected, ultrasonic pulses are transmitted from the ultrasonic probe, and the reflected echoes are received by the ultrasonic probe. . The received reflected echo is signal-processed, and the presence / absence of a defect inside the object to be inspected is determined based on the presence / absence of the reflected echo having a predetermined height or higher. At this time, as shown in FIG. 15 (a), one probe 1A or 1B that transmits and receives ultrasonic waves is one probe method, and as shown in (b), transmission and reception are separately performed. A method using two probes 1a and 1b is called a two-probe method (tandem method). Such an ultrasonic pulse flaw detection method is often used particularly when detecting a surface defect of a welded portion of a metal material, and this is used for an ultrasonic flaw detection method (JIS Z3060-2002) of a steel welded portion of Japanese Industrial Standard. Are listed. Then, the position of the defect, the defect length, and the defect height are determined based on the position of the reflection source of the reflection echo obtained by ultrasonic flaw detection, the echo height, and the like.

欠陥長さの測定については、L線検出法、6dBダウン検出法(JIS Z3060)などの測定方法が規格化されている。一方、寿命診断に有効である板厚方向の欠陥高さの評価方法としては、端部エコー法、TOFD法を用いた方法などが挙げられる。端部エコー法は、図13(b)に示すように、超音波探触子1から面状欠陥7に対して斜めに超音波を入射させると、図13(a)に示すような反射エコーの波形が得られる。この反射エコーのピークを示す位置が欠陥の上端と下端を表す。超音波探触子から欠陥上端、下端までの夫々のビーム路程と、超音波探触子の屈折角とに基づいて欠陥高さが求められる。TOFD(Time of Flight Diffraction)法は、図14に示すように、送信用探触子1aと受信用探触子1bを一定距離を隔てて対向配置し、送信用探触子1aから被検査体中に超音波を送信すると、超音波の拡散により被検査体表面を直接伝搬してくる表面波、欠陥先端部を経由して伝搬してくる回折波又は散乱波、及び裏面で反射して伝搬してくる底面反射波が受信用探触子1bにて受信される。このうち、面状欠陥の先端部からの回折波又は散乱波を検出し、その伝搬時間と入射点間距離とに基づいて幾何学的に欠陥高さを測定するようになっている。また、反射エコー法では、反射エコーの感度校正が行われる。感度校正は、予め超音波パルスの伝搬速度と反射源の大きさが分かっている試験体で超音波探傷を行い、基準となる擬似欠陥から所定レベルの反射エコーを検出するための校正である。   Regarding the measurement of the defect length, measurement methods such as an L-line detection method and a 6 dB down detection method (JIS Z3060) are standardized. On the other hand, as an evaluation method of the defect height in the plate thickness direction which is effective for life diagnosis, a method using an end echo method, a TOFD method, or the like can be given. In the end echo method, as shown in FIG. 13B, when an ultrasonic wave is incident on the planar defect 7 obliquely from the ultrasonic probe 1, a reflected echo as shown in FIG. Waveform is obtained. The position showing the peak of this reflected echo represents the upper and lower ends of the defect. The height of the defect is determined based on the beam paths from the ultrasonic probe to the upper and lower ends of the defect and the refraction angle of the ultrasonic probe. In the TOFD (Time of Flight Diffraction) method, as shown in FIG. 14, a transmitting probe 1a and a receiving probe 1b are arranged to face each other at a predetermined distance, and the object to be inspected is transmitted from the transmitting probe 1a. When an ultrasonic wave is transmitted, the surface wave that propagates directly on the surface of the object to be inspected by the diffusion of the ultrasonic wave, the diffracted wave or scattered wave that propagates through the tip of the defect, and the reflected wave propagates on the back surface. The incoming bottom surface reflected wave is received by the receiving probe 1b. Among these, a diffracted wave or scattered wave from the tip of the planar defect is detected, and the defect height is measured geometrically based on the propagation time and the distance between the incident points. In the reflection echo method, the sensitivity of the reflection echo is calibrated. Sensitivity calibration is calibration for detecting a reflection echo of a predetermined level from a pseudo defect serving as a reference by performing ultrasonic flaw detection with a test body in which the propagation speed of an ultrasonic pulse and the size of a reflection source are known in advance.

ここで、従来の超音波探傷による面状欠陥の検出方法の具体的一例を図12に示す。まず、被検査体の面状欠陥の位置、進展方向性を想定し(S51)、超音波探傷法(UT)によるプローブの探傷屈折角を選定する(S52)。実際に被検査体を検査する前に、校正用試験体を用いて感度校正を行う。校正用試験体には、予め横穴等の擬似欠陥が設けられており、この反射エコーに基づいて感度校正が行われ、欠陥検出レベルが設定される(S54)。そして、超音波探触子による探傷を行い(S55)、得られた反射エコーに基づき欠陥エコーを検出する(S56)。この欠陥エコーから上記した手法により欠陥長さLを求めるとともに、最大エコー高さAを求める。欠陥高さHは、図16に示すように、予め設定された検出レベルに基づいた反射エコーを欠陥エコーとして認識し、エコー高さと欠陥高さの相関線図に基づいて最大エコー高さAから算出する(S57)。エコー高さと欠陥高さの相関線図は、図11に示されるように、所定の超音波における欠陥高さとエコー高さの相関からなり、夫々板厚に依存した形態となっている。図11(a)は2MHzの超音波を用いた場合、(b)は5MHzの超音波を用いた場合を示している。   Here, a specific example of a conventional method for detecting a planar defect by ultrasonic flaw detection is shown in FIG. First, assuming the position of the planar defect of the inspection object and the direction of progress (S51), the flaw detection refraction angle of the probe by the ultrasonic flaw detection method (UT) is selected (S52). Before actually inspecting the object to be inspected, sensitivity calibration is performed using a calibration specimen. The calibration specimen is preliminarily provided with a pseudo defect such as a horizontal hole, and sensitivity calibration is performed based on the reflected echo to set a defect detection level (S54). Then, flaw detection is performed using an ultrasonic probe (S55), and a defect echo is detected based on the obtained reflection echo (S56). The defect length L is obtained from the defect echo by the above-described method, and the maximum echo height A is obtained. As shown in FIG. 16, the defect height H recognizes a reflected echo based on a preset detection level as a defect echo, and determines from the maximum echo height A based on a correlation diagram between the echo height and the defect height. Calculate (S57). As shown in FIG. 11, the correlation diagram between the echo height and the defect height is made up of the correlation between the defect height and the echo height in a predetermined ultrasonic wave, and has a form depending on the plate thickness. FIG. 11A shows a case where 2 MHz ultrasonic waves are used, and FIG. 11B shows a case where 5 MHz ultrasonic waves are used.

上述したように、端部エコー法やTOFD法では、面状欠陥の欠陥高さを評価するために検出するエコーは欠陥端部からの回折波であり、非常に微弱である。そのため、他のノイズと識別しながら正確に回折波を求めるにはかなりの経験と技量が必要とされる。特に、SUSなどの高ノイズ材料でのノイズ識別や、微小欠陥でのエコー識別は困難であった。
そこで、例えば特許文献1(特開2007−71755号公報)には、溶接部の材料、開先条件をもとに探傷条件を設定し、超音波探傷により得られた波形データをもとに信号処理を行い、この信号処理で得られた特性値を求め、この信号処理結果を、予めこの信号処理と同一の信号に基づいて求められた欠陥検出結果と材料ノイズ信号とに区分した情報と比較して、検出信号が欠陥検出信号か材料ノイズ信号かを識別し、該識別された欠陥検出信号に基づいて欠陥位置、深さを評価する方法が開示されている。
As described above, in the edge echo method and the TOFD method, the echo detected for evaluating the defect height of the planar defect is a diffracted wave from the defect edge and is very weak. Therefore, considerable experience and skill are required to accurately obtain a diffracted wave while distinguishing it from other noises. In particular, noise identification with a high noise material such as SUS and echo identification with a minute defect have been difficult.
Therefore, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 2007-71755), flaw detection conditions are set based on the material of the welded portion and the groove conditions, and signals are obtained based on waveform data obtained by ultrasonic flaw detection. Perform processing, determine the characteristic value obtained by this signal processing, and compare this signal processing result with the information divided into the defect detection result and material noise signal obtained based on the same signal as this signal processing in advance Thus, a method for discriminating whether a detection signal is a defect detection signal or a material noise signal and evaluating a defect position and a depth based on the identified defect detection signal is disclosed.

特開2007−71755号公報JP 2007-71755 A

しかしながら、特許文献1等に代表される従来の超音波探傷法では、被検査体内部に存在する欠陥が、ある程度の面積を有する面状欠陥である場合には、欠陥高さの推定結果に誤差が大きいという問題があった。これは、エコー高さを推定する際に、エコー高さと欠陥高さの相関線図に基づいて算出していたが、本来、面状欠陥からエコーが反射された場合には、そのエコー高さは欠陥高さではなく面状欠陥の反射面積に依存するため、エコー高さのみによる欠陥高さの推定には誤差が大きく、精度良く欠陥高さを評価することは困難であった。
従って、本発明は上記従来技術の問題点に鑑み、被検査体内部に存在する面状欠陥の欠陥高さを精度良く推定することを可能とした超音波探傷による欠陥高さ推定方法を提供することを目的とする。
However, in the conventional ultrasonic flaw detection method represented by Patent Document 1 or the like, if the defect existing inside the inspection object is a planar defect having a certain area, an error is caused in the estimation result of the defect height. There was a problem that was large. This was calculated based on the correlation diagram between the echo height and the defect height when estimating the echo height, but when the echo was originally reflected from a planar defect, the echo height was calculated. Since it depends not on the defect height but on the reflection area of the planar defect, there is a large error in estimating the defect height based only on the echo height, and it is difficult to accurately evaluate the defect height.
Accordingly, the present invention provides a defect height estimation method by ultrasonic flaw detection that makes it possible to accurately estimate the defect height of a planar defect existing inside an object to be inspected in view of the above-described problems of the prior art. For the purpose.

そこで、本発明はかかる課題を解決するために、被検査体表面に配置された超音波探触子から被検査体内部に超音波を送信し、反射源から反射される反射波波形に基づいて前記被検査体内部に存在する面状欠陥の欠陥高さを推定する超音波探傷による欠陥高さ推定方法において、
予め、面を有する反射源が内部に設けられた校正用試験体を用いて超音波探傷を行って感度校正レベルを設定しておき、
前記超音波探触子から前記被検査体に超音波を送信して面状欠陥の欠陥エコーを検出した後、
前記校正用試験体の反射面積と、前記設定された感度校正レベルと、前記面状欠陥の検出位置における超音波ビーム径とを係数にもつ算出式を用いて、前記欠陥エコーから面状欠陥の欠陥高さを推定することを特徴とする。
Therefore, in order to solve such a problem, the present invention transmits ultrasonic waves from the ultrasonic probe arranged on the surface of the inspection object to the inside of the inspection object, and based on the reflected wave waveform reflected from the reflection source. In the defect height estimation method by ultrasonic flaws for estimating the defect height of the planar defects present inside the inspection object,
In advance, the sensitivity calibration level is set by performing ultrasonic flaw detection using a calibration specimen in which a reflection source having a surface is provided,
After detecting an echo of a planar defect by transmitting an ultrasonic wave from the ultrasonic probe to the object to be inspected,
Using a calculation formula having coefficients of the reflection area of the calibration specimen, the set sensitivity calibration level, and the ultrasonic beam diameter at the detection position of the planar defect, The defect height is estimated.

本発明によれば、面状欠陥の欠陥高さの推定において、欠陥エコー高さの情報に加えて、校正用試験体の反射面積と、感度校正レベルと、超音波探触子の構成(仕様)から求められる超音波ビーム径を用いることで、反射面積に依存する面状欠陥の欠陥高さを高精度に推定可能となる。
また、端部エコー法やTOFD法などの他の欠陥高さ測定法に比べて、微小き裂での欠陥高さの評価に有効であるとともに、微弱な回折波を検出する必要がないため高ノイズ材料での欠陥高さの評価に有効である。従って、特殊な検査員技量が必要なく、エコー高さの情報から寿命評価に重要とされる欠陥高さを精度よく推定できるため、検査の信頼性が向上する。
According to the present invention, in the estimation of the defect height of the planar defect, in addition to the information of the defect echo height, the reflection area of the calibration specimen, the sensitivity calibration level, and the configuration of the ultrasonic probe (specifications) By using the ultrasonic beam diameter obtained from (2), it becomes possible to estimate the height of the surface defect depending on the reflection area with high accuracy.
Compared with other defect height measurement methods such as the edge echo method and the TOFD method, it is more effective in evaluating the defect height at a microcrack and is not required to detect a weak diffracted wave. This is effective for evaluating the height of defects in noise materials. Therefore, no special inspector skill is required, and the defect height that is important for the life evaluation can be accurately estimated from the echo height information, so that the reliability of the inspection is improved.

また、前記算出式において、前記欠陥エコーから求めた欠陥長さが前記超音波ビーム径より短い時、前記超音波ビーム径として前記欠陥長さを用いることを特徴とする。
このように、面状欠陥の欠陥長さが超音波ビーム径よりも短い時には、超音波ビーム径として前記欠陥長さを用いることにより、より高精度に欠陥高さを推定することが可能となる。尚、面状欠陥の欠陥長さが超音波ビーム径以上である時は、超音波ビーム径を用いるものとする。
In the calculation formula, when the defect length obtained from the defect echo is shorter than the ultrasonic beam diameter, the defect length is used as the ultrasonic beam diameter.
As described above, when the defect length of the planar defect is shorter than the ultrasonic beam diameter, the defect height can be estimated with higher accuracy by using the defect length as the ultrasonic beam diameter. . In addition, when the defect length of the planar defect is equal to or larger than the ultrasonic beam diameter, the ultrasonic beam diameter is used.

さらに、前記校正用試験体に設けられた反射源は、平底穴若しくはスリットであることを特徴とする。
このように、校正用試験体に設けられた反射源として平底穴若しくはスリットを用いることにより、少なくとも一部に面を有した反射源を、校正用試験体に対して簡単に形成することが可能である。
Further, the reflection source provided in the calibration specimen is a flat bottom hole or a slit.
In this way, by using a flat bottom hole or slit as a reflection source provided on the calibration specimen, it is possible to easily form a reflection source having a surface at least partially on the calibration specimen. It is.

さらにまた、前記超音波ビーム径は、前記超音波探触子の径と前記超音波の周波数と前記被検査体の音速から得られる超音波ビーム指向角と、前記欠陥エコーから求められた欠陥検出位置における超音波ビーム路程と、から算出されることを特徴とする。
これにより、超音波ビーム径を正確に求めることができ、欠陥高さの推定精度をより一層向上させることができる。
Furthermore, the ultrasonic beam diameter is determined by detecting the ultrasonic beam directivity angle obtained from the diameter of the ultrasonic probe, the frequency of the ultrasonic wave, and the speed of sound of the inspection object, and the defect echo. It is calculated from the ultrasonic beam path length at the position.
Thereby, an ultrasonic beam diameter can be calculated | required correctly and the estimation precision of defect height can be improved further.

以上記載のごとく本発明によれば、面状欠陥の欠陥高さの推定において、欠陥エコー高さの情報に加えて、校正用試験体の反射面積と、感度校正レベルと、超音波探触子の構成(仕様)から求められる超音波ビーム径を用いることで、反射面積に依存する面状欠陥の欠陥高さを高精度に推定可能となる。また、特殊な検査員技量が必要なく、エコー高さの情報から寿命評価に重要とされる欠陥高さを精度よく推定できるため、検査の信頼性が向上する。   As described above, according to the present invention, in the estimation of the defect height of the planar defect, in addition to the information of the defect echo height, the reflection area of the calibration specimen, the sensitivity calibration level, and the ultrasonic probe By using the ultrasonic beam diameter obtained from the configuration (specification), it is possible to estimate the defect height of the planar defect depending on the reflection area with high accuracy. In addition, since no special inspector skill is required, the defect height that is important for life evaluation can be accurately estimated from the echo height information, so that the reliability of the inspection is improved.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本実施形態は、超音波探傷により被検査体内部に存在する面状欠陥を検出し、その欠陥高さを推定する方法を示す。被検査体としては、内部に面状欠陥が存在する可能性を有し、且つその面状欠陥の位置、進展方向性がある程度想定可能な部品、構造体、組立体に広く用いられ、例えば蒸気タービンの翼植込み部やテノン部、溶接部等が挙げられる。本実施形態に用いられる超音波探傷法は超音波パルス探傷法であり、一探触子法、ニ探触子法(タンデム法)、探触子をアレイ状に並べて複数配置したタンデムアレイ法の何れであってもよく、被検査体に応じて適宜選択する。また、同様に斜角探傷、垂直探傷の何れかは被検査体の形状、面状欠陥の位置や進展方向性等に基づき適宜選択する。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
The present embodiment shows a method for detecting a planar defect existing inside an inspection object by ultrasonic flaw detection and estimating the defect height. As an object to be inspected, it is widely used in parts, structures, and assemblies that have a possibility of having a planar defect inside, and the position and direction of the planar defect can be assumed to some extent. Examples include a turbine blade implantation portion, a tenon portion, and a welded portion. The ultrasonic flaw detection method used in the present embodiment is an ultrasonic pulse flaw detection method. One probe method, two probe methods (tandem method), and a tandem array method in which a plurality of probes are arranged in an array. Any may be sufficient, and it selects suitably according to a to-be-inspected object. Similarly, any one of the oblique flaw detection and the vertical flaw detection is appropriately selected based on the shape of the object to be inspected, the position of the planar defect, the progress direction, and the like.

図1を参照して、本発明の実施形態に係る欠陥高さ推定方法の処理手順を、その具体的構成とともに説明する。
まず、被検査体内部の面状欠陥を、被検査体の応力を含む設計条件や過去のき裂発生事例により想定する(S1)。被検査体が溶接部の場合は、溶接条件から想定する。そして、この想定した面状欠陥の位置、進展方向性に応じた超音波探触子(プローブ)の探傷屈折角を選定する(S2)。
With reference to FIG. 1, the processing procedure of the defect height estimation method according to the embodiment of the present invention will be described together with its specific configuration.
First, a planar defect inside the object to be inspected is assumed based on design conditions including the stress of the object to be inspected and past crack occurrence cases (S1). When the object to be inspected is a welded part, it is assumed from the welding conditions. Then, a flaw detection refraction angle of the ultrasonic probe (probe) corresponding to the assumed position and progress direction of the planar defect is selected (S2).

図2及び図3に、本実施形態で用いられる超音波探傷法の一例を示す。図2は被検査体がタービンであり、(A)は翼植込み溝に発生するき裂(面状欠陥)を検出する場合を示す。タービンのディスク部51に設けられた翼植込み溝511の形状と応力からき裂7の位置と進展方向性を想定し、想定された面状欠陥7の面に対して略直角方向に超音波が入射するように超音波探触子1の探傷屈折角を選定する。ここでは斜角探傷を用いている。超音波探触子1は、被検査体表面に当接配置するため、必要に応じて所定角度を有する台座3を被検査体51と超音波探触子1の間に介在させる。図2(B)は、ブレード52のシュラウド521、522が嵌合されるテノン部に発生したき裂7を検出する場合を示す。この場合、想定されるき裂7に対してテノン部より略直角に超音波が入射するように超音波探触子1を設置する。ここでは垂直探傷を用いている。   2 and 3 show an example of the ultrasonic flaw detection method used in this embodiment. FIG. 2 shows a case in which the object to be inspected is a turbine, and FIG. Assuming the position of the crack 7 and the direction of propagation from the shape and stress of the blade implantation groove 511 provided in the disk part 51 of the turbine, ultrasonic waves are incident in a direction substantially perpendicular to the surface of the assumed planar defect 7. Thus, the flaw detection refraction angle of the ultrasonic probe 1 is selected. In this case, oblique flaw detection is used. Since the ultrasonic probe 1 is placed in contact with the surface of the inspection object, a pedestal 3 having a predetermined angle is interposed between the inspection object 51 and the ultrasonic probe 1 as necessary. FIG. 2B shows a case where the crack 7 generated in the tenon portion into which the shrouds 521 and 522 of the blade 52 are fitted is detected. In this case, the ultrasonic probe 1 is installed so that the ultrasonic wave is incident on the assumed crack 7 at a substantially right angle from the tenon portion. Here, vertical flaw detection is used.

図3は溶接部の探傷例を示し、被検査体5の溶接部6にて、溶接条件から面状欠陥7の位置及び進展方向性を推定し、超音波探触子1の探傷屈折角を設定して斜角探傷している。図3(A)は、超音波探触子1から送信した超音波を欠陥に直接当てる直接波を用いる場合と、被検査体5の底面で反射した超音波を欠陥に当てる反射波を用いる場合であり、(B)は被検査体1の表面に沿って直進するクリーピング波、又は被検査体1の底面で反射する際に生じるクリーピング波を用いる場合であり、(C)は超音波が反射してモード変換したモード変換波を用いる場合であり、これらは、想定される面状欠陥7の肉厚方向の位置等によって適宜選択される。   FIG. 3 shows an example of flaw detection of the welded portion. In the welded portion 6 of the inspection object 5, the position and directionality of the planar defect 7 are estimated from the welding conditions, and the flaw detection refraction angle of the ultrasonic probe 1 is determined. Set and bevel inspection. FIG. 3A shows a case where a direct wave that directly applies an ultrasonic wave transmitted from the ultrasonic probe 1 to a defect and a case that uses a reflected wave that applies an ultrasonic wave reflected from the bottom surface of the inspection object 5 to the defect. (B) is a case of using a creeping wave that travels straight along the surface of the inspection object 1 or a creeping wave that is generated when reflecting from the bottom surface of the inspection object 1, and (C) is an ultrasonic wave. This is a case where a mode-converted wave which is reflected and mode-converted is used, and these are appropriately selected depending on the assumed position of the planar defect 7 in the thickness direction.

次いで、超音波探傷の感度校正を行う(S3)。感度校正は、予め擬似欠陥となる反射源を形成した校正用試験体に対して超音波探触子により超音波を送信して校正エコー高さを検出し、該校正エコー高さと反射源の反射面積に基づき感度校正レベルを設定する。
擬似欠陥は、少なくとも一部に面を有する反射源とし、例えば平底穴やEDM(放電加工)スリットが挙げられる。
図4(A)に、上記図2(A)に示した翼植込み溝(試験体)51にスリット8を形成した図を示し、図4(B)に、上記図2(B)に示したテノン部(試験体)52にスリット8を形成した図を示す。このとき、スリット8は前記想定される面状欠陥と同位置に形成する。図5に、図3に示した溶接部6に平底穴9、9を形成した図を示す。これも想定される面状欠陥と同位置に形成する。
Next, sensitivity calibration for ultrasonic flaw detection is performed (S3). Sensitivity calibration is performed by detecting the height of the calibration echo by transmitting an ultrasonic wave with an ultrasonic probe to a calibration test body in which a reflection source that becomes a pseudo defect is formed in advance. Set the sensitivity calibration level based on the area.
The pseudo defect is a reflection source having a surface at least partially, and examples thereof include a flat bottom hole and an EDM (electric discharge machining) slit.
FIG. 4A shows a view in which the slit 8 is formed in the blade implantation groove (test body) 51 shown in FIG. 2A, and FIG. 4B shows the same in FIG. 2B. The figure which formed the slit 8 in the tenon part (test body) 52 is shown. At this time, the slit 8 is formed at the same position as the assumed planar defect. FIG. 5 shows a view in which flat bottom holes 9 are formed in the welded portion 6 shown in FIG. This is also formed at the same position as the assumed planar defect.

図6(a)に示すようにEDMスリット8を用いる場合、予めEDMスリット8の反射面積を求めておく。EDMスリットの反射面の辺をa、bとすると、反射面積(スリット寸法)はa×bとなる。図6(b)に示すように平底穴9を用いる場合、予め平底穴9の外径φdから反射面積を求めておく。これらの反射面積と校正エコーに基づいて感度校正レベルAcを設定しておく。   When the EDM slit 8 is used as shown in FIG. 6A, the reflection area of the EDM slit 8 is obtained in advance. When the sides of the reflection surface of the EDM slit are a and b, the reflection area (slit dimension) is a × b. When the flat bottom hole 9 is used as shown in FIG. 6B, the reflection area is obtained in advance from the outer diameter φd of the flat bottom hole 9. A sensitivity calibration level Ac is set based on these reflection areas and calibration echoes.

そして、予め欠陥検出レベルを設定しておき(S4)、被検査体1により超音波探傷を行って(S5)、欠陥を表すエコーを検出する(S6)。
前記検出した欠陥エコーに基づき、面状欠陥7の欠陥長さLと、欠陥検出位置のビーム路程PLを求める。
欠陥長さLは、周知の方法で行うことができるが、例えばJIS Z3060に規定される超音波探傷法により求められる。これは、超音波探傷により図7に示す波形グラフにおいて、エコー高さがL線を越える超音波探触子1の移動距離l、lを欠陥長さLとする。
Then, a defect detection level is set in advance (S4), ultrasonic inspection is performed by the inspection object 1 (S5), and an echo representing the defect is detected (S6).
Based on the detected defect echo, the defect length L of the planar defect 7 and the beam path length PL of the defect detection position are obtained.
The defect length L can be determined by a well-known method. For example, the defect length L is determined by an ultrasonic flaw detection method defined in JIS Z3060. In the waveform graph shown in FIG. 7 by ultrasonic flaw detection, the movement distances l 1 and l 2 of the ultrasonic probe 1 whose echo height exceeds the L line are defined as the defect length L.

さらに、超音波探触子1の構成から予め求めておいたビーム指向角φと、ビーム路程PLとから欠陥検出位置でのビーム径Bを求める。
前記ビーム指向角φは、超音波探触子1のプローブ径Dと、プローブ周波数fと、材料音速Cと、波長λから以下の式(1)、(2)により求められる。式(1)はゼロふく射角φを導出する式、式(2)は−6dB実行指向角φ0.5を導出する式である。

Figure 2010043989
Further, the beam diameter B at the defect detection position is obtained from the beam directing angle φ obtained in advance from the configuration of the ultrasonic probe 1 and the beam path length PL.
The beam directing angle φ is obtained from the probe diameter D, the probe frequency f, the material sound velocity C, and the wavelength λ of the ultrasonic probe 1 by the following equations (1) and (2). Expression (1) is an expression for deriving a zero radiation angle φ 0 , and expression (2) is an expression for deriving a −6 dB execution directivity angle φ 0.5 .
Figure 2010043989

図8に示すように、ビーム径Bは、被検査体5の表面に設置された超音波探触子1から面状欠陥7までのビーム路程PLと、上記して求めた−6dB実行指向角φ0.5とから以下の式により求められる。
B=2×PL×tanφ0.5
As shown in FIG. 8, the beam diameter B includes the beam path PL from the ultrasonic probe 1 installed on the surface of the inspection object 5 to the planar defect 7 and the −6 dB execution directivity angle obtained as described above. It can be obtained from the following formula from φ 0.5 .
B = 2 × PL × tan φ 0.5

このようにして求めた感度校正レベルAcと、最大エコー高さAと、欠陥長さLと、ビーム径Bとから欠陥高さHを算出する(S7)。
このとき、欠陥長さLとビーム径Bとを比較し、図9に示すように、欠陥長さLがビーム径B以上(欠陥長さL≧ビーム径B)の場合は、下記式(3)、(4)により欠陥高さHを算出する。尚、図9(a)は校正用試験体の平底穴9と超音波ビーム領域2を示し、(b)は面状欠陥7と超音波ビーム領域2を示している。

Figure 2010043989
The defect height H is calculated from the sensitivity calibration level Ac thus obtained, the maximum echo height A, the defect length L, and the beam diameter B (S7).
At this time, the defect length L and the beam diameter B are compared. As shown in FIG. 9, when the defect length L is equal to or larger than the beam diameter B (defect length L ≧ beam diameter B), the following equation (3 ) And (4), the defect height H is calculated. 9A shows the flat bottom hole 9 and the ultrasonic beam region 2 of the calibration specimen, and FIG. 9B shows the planar defect 7 and the ultrasonic beam region 2.
Figure 2010043989

一方、図10に示すように、欠陥長さLがビーム径Bより短い(欠陥長さL<ビーム径B)場合は、上記式(3)、(4)においてビーム径Bを欠陥長さLに置き換えた下記式(5)、(6)により欠陥高さHを算出する。尚、図10(a)は校正用試験体の平底穴9と超音波ビーム領域2を示し、(b)は面状欠陥7と超音波ビーム領域2を示している。

Figure 2010043989
On the other hand, as shown in FIG. 10, when the defect length L is shorter than the beam diameter B (defect length L <beam diameter B), the beam diameter B is set to the defect length L in the above formulas (3) and (4). The defect height H is calculated by the following formulas (5) and (6) replaced with. 10A shows the flat bottom hole 9 and the ultrasonic beam region 2 of the calibration specimen, and FIG. 10B shows the planar defect 7 and the ultrasonic beam region 2.
Figure 2010043989

これらの式において、πd/4は校正用試験体の平底穴の反射面積であり、EDMスリットを用いる場合には、a(高さ)×b(幅)となる(図6(a)参照)。
このように、上記した式(4)、(6)に示されるように、面状欠陥の欠陥高さHは、校正用試験体の反射面積と、感度校正レベルAcと、面状欠陥の検出位置における超音波ビーム径Bとを係数にもつ算出式を用いて、前記欠陥エコーから面状欠陥の欠陥高さを算出することができる。
In these formulas, [pi] d 2/4 is the reflection area of the flat bottom hole of the calibration specimen, when using the EDM slit becomes a (height) × b (width) (refer to FIG. 6 (a) ).
Thus, as shown in the above-described equations (4) and (6), the defect height H of the planar defect is the reflection area of the calibration specimen, the sensitivity calibration level Ac, and the detection of the planar defect. The defect height of the planar defect can be calculated from the defect echo using a calculation formula having a coefficient of the ultrasonic beam diameter B at the position.

本実施形態によれば、面状欠陥の欠陥高さの推定において、欠陥エコー高さの情報に加えて、校正用試験体の反射面積と、感度校正レベルと、超音波探触子の構成(仕様)から求められる超音波ビーム径を用いることで、反射面積に依存する面状欠陥の欠陥高さを高精度に推定可能となる。
また、端部エコー法やTOFD法などの他の欠陥高さ測定法に比べて、微小き裂での欠陥高さの評価に有効であるとともに、微弱な回折波を検出する必要がないため高ノイズ材料での欠陥高さの評価に有効である。従って、特殊な検査員技量が必要なく、エコー高さの情報から寿命評価に重要とされる欠陥高さを精度よく推定できるため、検査の信頼性が向上する。
According to this embodiment, in the estimation of the defect height of the planar defect, in addition to the information of the defect echo height, the reflection area of the calibration specimen, the sensitivity calibration level, and the configuration of the ultrasonic probe ( By using the ultrasonic beam diameter obtained from the specification, it is possible to accurately estimate the height of the surface defect that depends on the reflection area.
Compared with other defect height measurement methods such as the edge echo method and the TOFD method, it is more effective in evaluating the defect height at a microcrack and is not required to detect a weak diffracted wave. This is effective for evaluating the height of defects in noise materials. Therefore, no special inspector skill is required, and the defect height that is important for the life evaluation can be accurately estimated from the echo height information, so that the reliability of the inspection is improved.

本発明の実施形態に係る欠陥高さ推定方法の処理手順を示すフロー図である。It is a flowchart which shows the process sequence of the defect height estimation method which concerns on embodiment of this invention. タービン翼の超音波探傷法を説明する図で、(A)は斜角探傷を用いた場合の側面図、(B)は垂直探傷を用いた場合の側面図である。It is a figure explaining the ultrasonic flaw detection method of a turbine blade, (A) is a side view at the time of using oblique flaw detection, (B) is a side view at the time of using a vertical flaw detection. 溶接部の超音波探傷法を説明する図で、(A)は直射波・1回反射波を用いる場合、(B)はクリーピング波を用いる場合、(C)はモード変換波を用いる場合を示す図である。It is a figure explaining the ultrasonic flaw detection method of a welding part, (A) is a case where a direct wave and a 1 time reflected wave are used, (B) is a case where a creeping wave is used, (C) is a case where a mode conversion wave is used. FIG. タービン翼の感度校正を説明する図で、(A)は斜角探傷を用いた場合の側面図、(B)は垂直探傷を用いた場合の側面図である。It is a figure explaining the sensitivity calibration of a turbine blade, (A) is a side view at the time of using oblique flaw detection, (B) is a side view at the time of using vertical flaw detection. 溶接部の感度校正を説明する図である。It is a figure explaining the sensitivity calibration of a welding part. 校正用試験体を示す斜視図で、(a)は擬似欠陥としてスリットを有する図、(b)は平底穴を有する図である。It is a perspective view which shows the test body for a calibration, (a) is a figure which has a slit as a pseudo defect, (b) is a figure which has a flat bottom hole. 反射エコーの波形グラフを示す図である。It is a figure which shows the waveform graph of a reflective echo. 超音波のビーム径を説明する図である。It is a figure explaining the beam diameter of an ultrasonic wave. 超音波のビーム径と欠陥長さを比較した図で、欠陥長さがビーム径よりも長い場合を示す。The figure which compared the ultrasonic beam diameter and defect length shows the case where defect length is longer than a beam diameter. 超音波のビーム径と欠陥長さを比較した図で、欠陥長さがビーム径よりも短い場合を示す。The figure which compared the ultrasonic beam diameter and defect length shows the case where defect length is shorter than a beam diameter. エコー高さと欠陥高さの相関線図で、(a)は超音波が2MHzの場合、(b)は5MHzの場合を示す。It is a correlation diagram of echo height and defect height, (a) shows the case where the ultrasonic wave is 2 MHz, and (b) shows the case of 5 MHz. 従来の欠陥高さ推定方法の処理手順を示すフロー図である。It is a flowchart which shows the process sequence of the conventional defect height estimation method. 端部エコー法を説明する図で、(a)は反射エコー波形図、(b)は構成図である。It is a figure explaining an edge part echo method, (a) is a reflected echo waveform figure, (b) is a block diagram. TOFD法を説明する構成図である。It is a block diagram explaining the TOFD method. 一般的な超音波パルス探傷法の構成図で、(a)は一探触子法を示す図、(b)はニ探触子法を示す図である。It is a block diagram of the general ultrasonic pulse flaw detection method, (a) is a figure which shows the one probe method, (b) is a figure which shows the two probe method. 反射エコーによる欠陥検出を説明する図である。It is a figure explaining the defect detection by a reflective echo.

符号の説明Explanation of symbols

1 超音波探触子(プローブ)
2 超音波ビーム領域
3 台座
5 被検査体
6 溶接部
7 面状欠陥
8 スリット
9 平底穴
1 Ultrasonic probe
2 Ultrasonic beam region 3 Base 5 Inspected object 6 Welded part 7 Planar defect 8 Slit 9 Flat bottom hole

Claims (4)

被検査体表面に配置された超音波探触子から被検査体内部に超音波を送信し、反射源から反射される反射波波形に基づいて前記被検査体内部に存在する面状欠陥の欠陥高さを推定する超音波探傷による欠陥高さ推定方法において、
予め、面を有する反射源が内部に設けられた校正用試験体を用いて超音波探傷を行って感度校正レベルを設定しておき、
前記超音波探触子から前記被検査体に超音波を送信して面状欠陥の欠陥エコーを検出した後、
前記校正用試験体の反射面積と、前記設定された感度校正レベルと、前記面状欠陥の検出位置における超音波ビーム径とを係数にもつ算出式を用いて、前記欠陥エコーから面状欠陥の欠陥高さを推定することを特徴とする超音波探傷による欠陥高さ推定方法。
Defects of planar defects existing inside the object to be inspected based on the reflected wave waveform transmitted from the ultrasonic probe arranged on the surface of the object to be inspected to the inside of the object to be inspected and reflected from the reflection source In the defect height estimation method by ultrasonic flaw detection to estimate the height,
In advance, the sensitivity calibration level is set by performing ultrasonic flaw detection using a calibration specimen in which a reflection source having a surface is provided,
After detecting an echo of a planar defect by transmitting an ultrasonic wave from the ultrasonic probe to the object to be inspected,
Using a calculation formula having coefficients of the reflection area of the calibration specimen, the set sensitivity calibration level, and the ultrasonic beam diameter at the detection position of the planar defect, A defect height estimation method by ultrasonic flaw detection, characterized by estimating a defect height.
前記算出式において、前記欠陥エコーから求めた欠陥長さが前記超音波ビーム径より短い時、前記超音波ビーム径として前記欠陥長さを用いることを特徴とする請求項1記載の超音波探傷による欠陥高さ推定方法。   2. The ultrasonic flaw detection according to claim 1, wherein, in the calculation formula, when the defect length obtained from the defect echo is shorter than the ultrasonic beam diameter, the defect length is used as the ultrasonic beam diameter. Defect height estimation method. 前記校正用試験体に設けられた反射源は、平底穴若しくはスリットであることを特徴とする請求項1記載の超音波探傷による欠陥高さ推定方法。   2. The defect height estimation method by ultrasonic flaw detection according to claim 1, wherein the reflection source provided in the calibration specimen is a flat bottom hole or a slit. 前記超音波ビーム径は、前記超音波探触子の径と前記超音波の周波数と前記被検査体の音速から得られる超音波ビーム指向角と、前記欠陥エコーから求められた欠陥検出位置における超音波ビーム路程と、から算出されることを特徴とする請求項1記載の超音波探傷による欠陥高さ推定方法。   The ultrasonic beam diameter is an ultrasonic beam directivity angle obtained from the diameter of the ultrasonic probe, the frequency of the ultrasonic wave, and the speed of sound of the inspection object, and the ultrasonic wave at the defect detection position obtained from the defect echo. The defect height estimation method by ultrasonic flaw detection according to claim 1, wherein the defect height estimation method is calculated from an acoustic beam path.
JP2008209018A 2008-08-14 2008-08-14 Defect height estimation method by ultrasonic flaw detection Active JP5192939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209018A JP5192939B2 (en) 2008-08-14 2008-08-14 Defect height estimation method by ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209018A JP5192939B2 (en) 2008-08-14 2008-08-14 Defect height estimation method by ultrasonic flaw detection

Publications (2)

Publication Number Publication Date
JP2010043989A true JP2010043989A (en) 2010-02-25
JP5192939B2 JP5192939B2 (en) 2013-05-08

Family

ID=42015483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209018A Active JP5192939B2 (en) 2008-08-14 2008-08-14 Defect height estimation method by ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JP5192939B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364485A (en) * 2013-06-24 2013-10-23 中国电子科技集团公司第四十五研究所 Multi-probe position calibration method based on ultrasonic scanning equipment and scanning method
JP5916864B2 (en) * 2012-07-31 2016-05-11 株式会社Ihiインフラシステム Method for measuring unwelded amount and ultrasonic flaw detector
CN109507297A (en) * 2018-12-11 2019-03-22 中航复合材料有限责任公司 A kind of method of determining compound material ultrasound-sound emission detection depth of defect
CN112014466A (en) * 2019-05-30 2020-12-01 上海汽车变速器有限公司 Ultrasonic flaw detection method for shaft shoulder outer inclined plane of tooth shaft welding part welding seam
CN114152667A (en) * 2021-10-28 2022-03-08 芜湖中铁科吉富轨道有限公司 Ultrasonic flaw detection method for welding seam at welding position of three materials on frog
CN114674922A (en) * 2022-03-07 2022-06-28 江苏联峰能源装备有限公司 Ultrasonic detection low-power evaluation method for large-size continuous casting round billet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108169339A (en) * 2017-11-29 2018-06-15 中国航发沈阳黎明航空发动机有限责任公司 Define reference block design method in a kind of ultrasonic water immersion detection edge blind area

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134556A (en) * 1985-12-06 1987-06-17 Hitachi Ltd Ultrasonic flaw detection apparatus
JPH11271282A (en) * 1998-03-19 1999-10-05 Sanyo Special Steel Co Ltd Determining method for nonmetallic inclusion diameter or defect diameter in steel by submerged ultrasonic flaw detection
JP2002350407A (en) * 2001-05-29 2002-12-04 Shinryo Corp Estimation method of pipe inner surface corrosion by utilizing echo height of ultrasonic pulse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62134556A (en) * 1985-12-06 1987-06-17 Hitachi Ltd Ultrasonic flaw detection apparatus
JPH11271282A (en) * 1998-03-19 1999-10-05 Sanyo Special Steel Co Ltd Determining method for nonmetallic inclusion diameter or defect diameter in steel by submerged ultrasonic flaw detection
JP2002350407A (en) * 2001-05-29 2002-12-04 Shinryo Corp Estimation method of pipe inner surface corrosion by utilizing echo height of ultrasonic pulse

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5916864B2 (en) * 2012-07-31 2016-05-11 株式会社Ihiインフラシステム Method for measuring unwelded amount and ultrasonic flaw detector
US9612226B2 (en) 2012-07-31 2017-04-04 Ihi Infrastructure Systems Co., Ltd. Method for measuring height of lack of penetration and ultrasonic flaw detector
CN103364485A (en) * 2013-06-24 2013-10-23 中国电子科技集团公司第四十五研究所 Multi-probe position calibration method based on ultrasonic scanning equipment and scanning method
CN103364485B (en) * 2013-06-24 2016-12-28 中国电子科技集团公司第四十五研究所 Multi probe position calibration method based on ultrasound scanning device, scan method
CN109507297A (en) * 2018-12-11 2019-03-22 中航复合材料有限责任公司 A kind of method of determining compound material ultrasound-sound emission detection depth of defect
CN112014466A (en) * 2019-05-30 2020-12-01 上海汽车变速器有限公司 Ultrasonic flaw detection method for shaft shoulder outer inclined plane of tooth shaft welding part welding seam
CN114152667A (en) * 2021-10-28 2022-03-08 芜湖中铁科吉富轨道有限公司 Ultrasonic flaw detection method for welding seam at welding position of three materials on frog
CN114152667B (en) * 2021-10-28 2023-12-29 芜湖中铁科吉富轨道有限公司 Ultrasonic flaw detection method for welding seam of welding position of three materials on frog
CN114674922A (en) * 2022-03-07 2022-06-28 江苏联峰能源装备有限公司 Ultrasonic detection low-power evaluation method for large-size continuous casting round billet
CN114674922B (en) * 2022-03-07 2024-04-30 江苏联峰能源装备有限公司 Ultrasonic detection low-power evaluation method for large-specification continuous casting round billet

Also Published As

Publication number Publication date
JP5192939B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP5192939B2 (en) Defect height estimation method by ultrasonic flaw detection
CA2496370C (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JPH0352908B2 (en)
CN109196350B (en) Method for detecting defects in materials by ultrasound
US5005420A (en) Ultrasonic method for measurement of depth of surface opening flaw in solid mass
JP5112942B2 (en) Ultrasonic flaw detection method and apparatus
JP3723555B2 (en) Ultrasonic inspection method for welds
JP2007322350A (en) Ultrasonic flaw detector and method
JP5285845B2 (en) Defect detection apparatus and defect detection method
JP4511487B2 (en) Inspection method of damage and corrosion thinning phenomenon caused by hydrogen
JP3581333B2 (en) A method for estimating the shape and size of internal corrosion of pipes using the echo height of ultrasonic pulses
JP2009058238A (en) Method and device for defect inspection
JP4371364B2 (en) Automatic ultrasonic flaw detector and automatic ultrasonic flaw detection method for thick structure
RU2714868C1 (en) Method of detecting pitting corrosion
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP2009156834A (en) Method for measuring depth of crack-like defect
JP2011047655A (en) Defect recognition method and defect recognition device using ultrasonic wave
JP4112526B2 (en) Ultrasonic flaw detection method and apparatus
RU2622459C1 (en) Method of ultrasonic inspection of articles
JP3868443B2 (en) Ultrasonic inspection method of metal material and manufacturing method of steel pipe
JP2003344370A (en) Ultrasonic inspection method
RU2644438C1 (en) Method of ultrasonic controlling surface and subsurface defects of metal products and device for its implementation
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JPH07325070A (en) Ultrasonic method for measuring depth of defect

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130201

R151 Written notification of patent or utility model registration

Ref document number: 5192939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3