JP2010043926A - Acceleration sensing unit and acceleration sensor - Google Patents

Acceleration sensing unit and acceleration sensor Download PDF

Info

Publication number
JP2010043926A
JP2010043926A JP2008207677A JP2008207677A JP2010043926A JP 2010043926 A JP2010043926 A JP 2010043926A JP 2008207677 A JP2008207677 A JP 2008207677A JP 2008207677 A JP2008207677 A JP 2008207677A JP 2010043926 A JP2010043926 A JP 2010043926A
Authority
JP
Japan
Prior art keywords
acceleration
stress
detection unit
stress sensitive
sensitive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008207677A
Other languages
Japanese (ja)
Other versions
JP2010043926A5 (en
Inventor
So Ichikawa
想 市川
Takahiro Kameda
高弘 亀田
Ryuta Nishizawa
竜太 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Miyazaki Epson Corp
Original Assignee
Seiko Epson Corp
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Miyazaki Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008207677A priority Critical patent/JP2010043926A/en
Publication of JP2010043926A publication Critical patent/JP2010043926A/en
Publication of JP2010043926A5 publication Critical patent/JP2010043926A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an acceleration sensing unit and an acceleration sensor having reduced size, and improved accuracy for detecting acceleration. <P>SOLUTION: The acceleration sensing unit includes: a fixed member 6 prevented from being displaced by applying the acceleration; a crystalline element supporting member 5 provided with a movable member 8 supported in the fixed member by a beam 7; and a crystalline stress sensitive element 11 having a stress sensitive section, and fixed ends integrated with both ends of the stress sensitive section. The stress sensing element is an acceleration sensing unit having fixed both ends supported by the fixed member and the movable member. A notch for indicating an orientation of a crystal axis of a crystal or a first alignment index 9 having a marking are asymmetrically disposed in a proper place in the element supporting member. A second alignment index 16 for indicating the orientation of the crystal axis of the crystal is asymmetrically disposed in a proper place in the stress sensitive element. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、加速度検知ユニット、及び加速度センサに関し、特に応力感応素子と、その
支持部材とに同一材料を用いると共に、指標部を用いてアライメントの改善を図った小型
加速度検知ユニット、及び加速度センサに関するものである。
The present invention relates to an acceleration detection unit and an acceleration sensor, and more particularly, to a small acceleration detection unit and an acceleration sensor that use the same material for a stress sensitive element and a support member thereof and improve alignment by using an index portion. Is.

加速度センサは従来から自動車、航空機、ロッケットから各種プラントの異常振動監視
等まで、広く使用されている。特許文献1には、圧電振動型の加速度センサが開示されて
いる。図9(a)は加速度センサの平面図であり、同図(b)はQ−Q断面図である。加
速度センサ60は、一端のみをパッケージにより支持された片持ち梁62と、この片持ち
梁62に取り付けられた応力検出素子72と、これらを収容するパッケージ80(パッケ
ージ本体80a、蓋部材80b)と、を備えている。片持ち梁62は、金属(例えばアル
ミニウム、真鍮等)等の弾性変形可能な部材により構成され、固定端66、自由端64、
及び梁部68より構成されている。自由端64は、固定端66に加速度が印加されると、
慣性力の作用を受ける部位であり、梁部68に撓みを生じさせる錘の役割を担っている。
梁部68は、固定端66と自由端64とを接続する要素であり、加速度センサ本体60a
に加速度が印加されると撓みが生じる。
加速度の検出方向は、図9のZ軸方向であり、梁部68が平板状に形成されていること
より、加速度検出軸方向と直交するY軸方向への揺動を防止している。
梁部68の長手方向中央部には溝70が形成されており、梁部68に撓みが生じた場合
、固定端66の上面と自由端64の上面とは互いに反対向きの傾斜となる。溝70を梁部
68の中央に形成すれば、梁部68は中央で撓むこととなり、片持ち梁62の固定端66
と自由端64とにそれぞれ固定された応力検出素子の両端部にせん断応力が生じる。
Conventionally, acceleration sensors have been widely used from automobiles, airplanes, and rockets to monitoring abnormal vibrations of various plants. Patent Document 1 discloses a piezoelectric vibration type acceleration sensor. FIG. 9A is a plan view of the acceleration sensor, and FIG. 9B is a QQ sectional view. The acceleration sensor 60 includes a cantilever 62 supported at one end by a package, a stress detection element 72 attached to the cantilever 62, and a package 80 (package body 80a and lid member 80b) for accommodating them. It is equipped with. The cantilever 62 is made of an elastically deformable member such as metal (for example, aluminum, brass, etc.), and has a fixed end 66, a free end 64,
And a beam portion 68. When the acceleration is applied to the fixed end 66, the free end 64 is
It is a part that receives the action of inertial force and plays the role of a weight that causes the beam portion 68 to bend.
The beam portion 68 is an element that connects the fixed end 66 and the free end 64, and the acceleration sensor main body 60a.
When acceleration is applied to the sag, bending occurs.
The acceleration detection direction is the Z-axis direction of FIG. 9, and the beam portion 68 is formed in a flat plate shape, thereby preventing swinging in the Y-axis direction orthogonal to the acceleration detection axis direction.
A groove 70 is formed at the longitudinal center of the beam portion 68. When the beam portion 68 is bent, the upper surface of the fixed end 66 and the upper surface of the free end 64 are inclined in opposite directions. If the groove 70 is formed at the center of the beam portion 68, the beam portion 68 bends at the center, and the fixed end 66 of the cantilever beam 62.
Shear stress is generated at both ends of the stress detecting element fixed to the free end 64 and the free end 64, respectively.

応力検出素子72には、双音叉型圧電振動片を用いている。双音叉型圧電振動片72は
、両端部に形成された2つの基部74、76の間に、2本のビームの振動部78を平行に
差し渡した振動片である。
加速度センサ60の動作原理は、図9に示す加速度センサ60に加速度検出軸方向(Z
軸方向)の加速度が印加されると、片持ち梁62の自由端64には慣性力が作用し、梁部
68は、溝70を基点として撓む。梁部68が撓むことにより双音叉型振動片72には引
張り応力、又は圧縮応力が作用し、この応力により双音叉型振動片72の共振周波数が増
加、又は減少する。この周波数変化より印加された加速度の大きさを検出する。
片持ち梁と、双音叉型圧電振動片とを共に水晶材料で構成し、温度特性を改良した加速
度センサの梁構造が特許文献2に開示されている。図10は特許文献2に係る加速度セン
サの梁構造を示しており、同図において符号90は、2つの振動ビーム91を有する水晶
双音叉振動素子であり、符号92は水晶双音叉振動素子90の接着部(固定端)である。
符号100は、水晶双音叉振動素子90と同一カットの水晶基板により構成した梁である
。そして、水晶双音叉振動素子90の接着部92と当接する梁100の部分の板厚のみを
、他の部分の板厚よりも厚くした突起部110を梁100と一体的に形成し、突起部11
0と双音叉振動素子90の接着部92とは、接着剤等により接着、固定される。更に、梁
100の自由端には重り120を設け、重り120と対向する一端はベース130に固定
する。
As the stress detection element 72, a double tuning fork type piezoelectric vibrating piece is used. The double tuning fork type piezoelectric vibrating piece 72 is a vibrating piece in which two beam vibrating portions 78 are disposed in parallel between two base portions 74 and 76 formed at both ends.
The principle of operation of the acceleration sensor 60 is that the acceleration sensor 60 shown in FIG.
When an acceleration in the axial direction is applied, an inertial force acts on the free end 64 of the cantilever beam 62, and the beam portion 68 bends with the groove 70 as a base point. When the beam portion 68 is bent, a tensile stress or a compressive stress acts on the double tuning fork vibrating piece 72, and the resonance frequency of the double tuning fork vibrating piece 72 increases or decreases due to this stress. The magnitude of the applied acceleration is detected from this frequency change.
Patent Document 2 discloses a beam structure of an acceleration sensor in which both a cantilever beam and a double tuning fork type piezoelectric vibrating piece are made of a quartz material and temperature characteristics are improved. FIG. 10 shows a beam structure of an acceleration sensor according to Patent Document 2. In FIG. 10, reference numeral 90 denotes a crystal double tuning fork vibration element having two vibration beams 91, and reference numeral 92 denotes a crystal double tuning fork vibration element 90. It is an adhesive part (fixed end).
Reference numeral 100 denotes a beam composed of a quartz substrate having the same cut as the quartz double tuning fork vibrating element 90. Then, a protrusion 110 in which only the thickness of the portion of the beam 100 in contact with the bonding portion 92 of the crystal double tuning fork vibrating element 90 is made thicker than the thickness of the other portions is formed integrally with the beam 100, and the protrusion 11
0 and the bonding portion 92 of the double tuning fork vibrating element 90 are bonded and fixed with an adhesive or the like. Furthermore, a weight 120 is provided at the free end of the beam 100, and one end facing the weight 120 is fixed to the base 130.

図10に示すように構成した加速度センサのベース130を被測定物に固定し、矢印方
向に加速度を印加すると重り120は梁100を撓ませ、梁100に固定した水晶双音叉
振動素子90は、圧縮あるいは伸張応力を受け周波数が変化する。つまり、周波数の変化
量から加速度の大きさを測定する加速度センサである。梁100上に突起部110を形成
することにより、突起部110が無い場合に比べて水晶双音叉振動子90に加わる応力の
大きさが増加するため、梁100の板厚を薄くすることなく、且つ重り120の質量を増
加することなく、高感度の加速度センサを構成することができると開示されている。
また、特許文献3には、加速度を受けて揺動する重錘体、当該重錘体を支持しその揺動
によって歪められる起歪体、当該起歪体に貼り付けられ同様に歪められる圧電素子基板、
前記起歪体を支持する脚体、前記圧電素子基板等から電気信号を取り出す為のリード線及
び合成樹脂製の保護容器で構成される加速度センサが開示されている。前記圧電素子基板
は、四隅のうちの一方の隅部を切欠したマーカーが設けられ、加速度センサを組み立てる
ときの指標としている。
特開2008−39662公報 特開平2−248866号公報 特開2001−337102公報
When a base 130 of an acceleration sensor configured as shown in FIG. 10 is fixed to an object to be measured and acceleration is applied in the direction of the arrow, the weight 120 deflects the beam 100, and the crystal double tuning fork vibrating element 90 fixed to the beam 100 includes The frequency changes under compressive or tensile stress. That is, the acceleration sensor measures the magnitude of acceleration from the amount of change in frequency. By forming the protrusion 110 on the beam 100, the magnitude of the stress applied to the crystal double tuning fork vibrator 90 is increased as compared with the case where there is no protrusion 110, so that the plate thickness of the beam 100 is not reduced. In addition, it is disclosed that a highly sensitive acceleration sensor can be configured without increasing the mass of the weight 120.
Patent Document 3 discloses a weight body that swings under acceleration, a strain body that supports the weight body and is distorted by the swing, and a piezoelectric element that is attached to the strain body and similarly distorted. substrate,
An acceleration sensor is disclosed that includes a leg that supports the strain generating body, a lead wire for taking out an electric signal from the piezoelectric element substrate, and a protective container made of synthetic resin. The piezoelectric element substrate is provided with a marker cut out at one of the four corners, and serves as an index for assembling the acceleration sensor.
JP 2008-39662 A JP-A-2-248866 JP 2001-337102 A

しかしながら、片持ち梁及び水晶双音叉振動素子の形状寸法が小さく、例えば、長さが
数mm、厚さが1mm以下になると、特許文献1及び2で開示されているような手法を用
いて加速度検知ユニットを構成すると、加速度検出感度、加速度検出精度のバラツキが大
きくなるという問題があった。
また、特許文献3に開示の圧電素子基板のマーカーは、加速度検知ユニットの検出軸の
判別には役に立つが、加速度検知ユニットを組み立てる際のアライメントには不十分であ
るという問題があった。
本発明は上記問題を解決するためになされたもので、加速度検出精度の良い小型の加速
度検出ユニット、及び加速度センサを提供することにある。
However, when the shape dimensions of the cantilever and the crystal double tuning fork vibrating element are small, for example, when the length is several millimeters and the thickness is 1 mm or less, the acceleration as described in Patent Documents 1 and 2 is used. When the detection unit is configured, there is a problem that variations in acceleration detection sensitivity and acceleration detection accuracy increase.
Moreover, although the marker of the piezoelectric element board | substrate disclosed in patent document 3 is useful for discrimination | determination of the detection axis of an acceleration detection unit, there existed a problem that it was inadequate for the alignment at the time of assembling an acceleration detection unit.
The present invention has been made to solve the above problems, and it is an object of the present invention to provide a small acceleration detection unit and an acceleration sensor with high acceleration detection accuracy.

本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、以下の
形態又は適用例として実現することが可能である。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本発明に係る加速度検知ユニットは、加速度の印加によって変位しない固
定部材、及び前記固定部材に梁にて支持される可動部材を備えた水晶製の素子支持部材と
、応力感応部及び該応力感応部の両端部に夫々一体化された固定端を有した水晶製の応力
感応素子と、を備え、前記梁は、前記可動部材に加速度が印加されると前記可動部材を加
速度検出軸方向へ変位させるよう変形可能な可撓性を有する構成であり、前記応力感応素
子は、前記固定部材と前記可動部材とによって両固定端を夫々支持された加速度検知ユニ
ットであって、前記素子支持部材上の非対称位置に、水晶の結晶軸方向を示す切欠き部、
或いはマーキングから成るアライメント用の第1の指標部を配置すると共に、前記応力感
応素子上の非対称位置に、水晶の結晶軸方向を示すと共にアライメント用の第2の指標部
を配置したことを特徴とする加速度検知ユニットである。
Application Example 1 An acceleration detection unit according to the present invention includes a fixed member that is not displaced by application of acceleration, a crystal element support member that includes a movable member that is supported by a beam on the fixed member, and a stress sensitive unit. And a stress-sensitive element made of quartz crystal having a fixed end integrated at each end of the stress-sensitive portion, and the beam detects acceleration when the acceleration is applied to the movable member. The stress-sensitive element is an acceleration detection unit in which both fixed ends are supported by the fixed member and the movable member, respectively, and is configured to be deformable so as to be displaced in the axial direction. A notch that indicates the crystal axis direction of the crystal at an asymmetric position on the support member,
Alternatively, the first index portion for alignment consisting of markings is disposed, and the second index portion for alignment is disposed at the asymmetric position on the stress sensitive element while indicating the crystal axis direction of the crystal. This is an acceleration detection unit.

以上のように素子支持部材及び応力感応素子の結晶軸方向を合わせ、且つアライメント
用の第1及び第2の指標部を用いて、双方の上下位置を正確に合わせて加速度検知ユニッ
トを構成すると、加速度検出精度、感度が改善されると共に、製造された加速度検知ユニ
ットの検出精度のバラツキが少なくなり、温度特性も改善されるという効果がある。
As described above, when the acceleration detection unit is configured by aligning the crystal axis directions of the element support member and the stress sensitive element and using the first and second index portions for alignment, the vertical position of both is accurately aligned, The acceleration detection accuracy and sensitivity are improved, the variation in the detection accuracy of the manufactured acceleration detection unit is reduced, and the temperature characteristics are improved.

[適用例2]また、加速度検知ユニットは、前記素子支持部材と前記応力感応素子との
外形輪郭を一致させると共に、前記第1及び第2の指標部を手掛かりとして両者の位置ず
れを判定可能に構成したことを特徴とする請求項1に記載の加速度検知ユニットである。
Application Example 2 In addition, the acceleration detection unit can match the outer contours of the element support member and the stress sensitive element, and determine the positional deviation between the two using the first and second index portions as a clue. The acceleration detection unit according to claim 1, wherein the acceleration detection unit is configured.

以上のように素子支持部材及と応力感応素子との外形輪郭と、第1及び第2の指標部と
を使って加速度検知ユニットを構成すると、素子支持部材及と応力感応素子との上下位置
を正確に貼り合わせすることが可能となり、加速度検知ユニットの加速度検出精度、感度
のバラツキが極めて少なくなるという効果がある。
As described above, when the acceleration detection unit is configured using the outer contours of the element support member and the stress sensitive element and the first and second index portions, the vertical positions of the element support member and the stress sensitive element are determined. It is possible to perform bonding accurately, and there is an effect that variations in acceleration detection accuracy and sensitivity of the acceleration detection unit are extremely reduced.

[適用例3]また、加速度検知ユニットは、前記素子支持部材と前記応力感応素子との
対応する特定部位に夫々異なった形状、或いは異なった着色のマーキングを形成し、前記
応力感応素子側のマーキングと前記素子支持部材側のマーキングとの整合の有無を該応力
感応素子を透過して確認可能に構成したことを特徴とする請求項1に記載の加速度検知ユ
ニットである。
Application Example 3 In addition, the acceleration detection unit forms markings having different shapes or different colors on the corresponding specific portions of the element support member and the stress sensitive element, and marking on the stress sensitive element side. The acceleration detection unit according to claim 1, wherein the presence or absence of matching between the sensor support member and the marking on the element support member side can be confirmed through the stress sensitive element.

以上のように素子支持部材と応力感応素子との対応する位置にハーフエッチング・パタ
ーンや蒸着パターンによるマーキングを設け、該マーキングを透過する光で整合の確認を
行えば、加速度検知ユニットの良否の判定が容易となり、加速度検出精度、感度のバラツ
キの極めて少ない加速度検知ユニットが得られるという効果がある。
As described above, the marking of the half-etched pattern or vapor deposition pattern is provided at the corresponding position between the element support member and the stress-sensitive element, and if the alignment is confirmed with the light transmitted through the marking, the quality of the acceleration detection unit is judged. Thus, there is an effect that an acceleration detection unit with extremely small variations in acceleration detection accuracy and sensitivity can be obtained.

[適用例4]また、加速度検知ユニットは、前記切欠き部が、前記素子支持部材、及び
前記応力感応素子の端縁に夫々形成される折り取り残渣を収容するための凹所であること
を特徴とする請求項1に記載の加速度検知ユニットである。
[Application Example 4] In the acceleration detection unit, the notch portion may be a recess for accommodating a break-off residue formed at each of the element support member and an edge of the stress sensitive element. The acceleration detection unit according to claim 1.

以上のように折り取り残渣を切欠き部とし、結晶軸方向の指標として用いれば、温度特
性の安定した加速度検知ユニットが得られるという効果がある。
As described above, if the break-off residue is used as a notch portion and used as an index in the crystal axis direction, an acceleration detecting unit having stable temperature characteristics can be obtained.

[適用例5]また、加速度検知ユニットは、前記応力感応素子が、2つの前記固定端、
及び各固定端間を連設する2つの振動ビームを備えた圧電基板からなる応力感応部と、該
圧電基板の振動領域上に形成した励振電極と、を備えた双音叉型水晶振動素子であること
を特徴とする請求項1に記載の加速度検知ユニットである。
Application Example 5 In the acceleration detection unit, the stress sensitive element includes two fixed ends,
And a double tuning fork type crystal vibrating element provided with a stress sensitive part composed of a piezoelectric substrate provided with two vibration beams connected between the fixed ends, and an excitation electrode formed on a vibration region of the piezoelectric substrate. The acceleration detection unit according to claim 1.

以上のように応力感応素子として双音叉型水晶振動素子を用いて加速度検知ユニットを
構成すると、加速度検知ユニットの加速度検出精度、感度が大幅に向上すると共に、温度
特性、再現性が改善されるという効果がある。
As described above, when an acceleration detection unit is configured using a double tuning fork type crystal vibrating element as a stress sensitive element, the acceleration detection accuracy and sensitivity of the acceleration detection unit are greatly improved, and temperature characteristics and reproducibility are improved. effective.

[適用例6]本発明に係る加速度センサは、請求項1に記載された加速度検知ユニット
と、該加速度検知ユニットを収容するパッケージと、を備えた加速度センサであって、前
記パッケージはパッケージ本体と蓋を有し、前記パッケージ本体の内底部に形成する電極
パターンの一部を、前記パッケージ本体の内底部の正規位置に前記加速度検知ユニットが
搭載された際における該加速度検知ユニットの外形輪郭線と合致する形状とし、位置ずれ
を判定可能に設定したことを特徴とする加速度センサである。
Application Example 6 An acceleration sensor according to the present invention is an acceleration sensor including the acceleration detection unit according to claim 1 and a package that accommodates the acceleration detection unit. A part of an electrode pattern formed on the inner bottom portion of the package body, the outer contour line of the acceleration detection unit when the acceleration detection unit is mounted at a normal position of the inner bottom portion of the package body. The acceleration sensor is characterized in that it has a matching shape and is set so that a positional deviation can be determined.

以上のように素子支持部材と応力感応素子とが所定の位置で正確に張り合わされた加速
度検知ユニットを用い、且つ加速度検知ユニットをパッケージ本体の内底部に形成する電
極パターンに位置合わせをして加速度センサを構成すると、加速度検出精度、感度及び温
度特性が向上し、加速度センサの検出精度、感度バラツキが減少するという効果がある。
As described above, the acceleration detecting unit in which the element supporting member and the stress sensitive element are accurately bonded to each other at a predetermined position is used, and the acceleration detecting unit is aligned with the electrode pattern formed on the inner bottom portion of the package body to accelerate the acceleration. Constructing the sensor has the effect of improving the acceleration detection accuracy, sensitivity, and temperature characteristics, and reducing the detection accuracy and sensitivity variation of the acceleration sensor.

[適用例7]加速度センサは、前記パッケージ本体の内底部と、前記素子支持部材と、
前記応力感応素子と、の対応する特定部位に夫々異なった形状、或いは異なった着色のマ
ーキングを形成し前記分割パッケージ側のマーキングと前記応力感応素子側のマーキング
と前記素子支持部材側のマーキングとの整合の有無を該応力感応素子を透過して確認可能
に構成したことを特徴とする請求項6に記載の加速度センサである。
Application Example 7 The acceleration sensor includes an inner bottom portion of the package body, the element support member,
Different markings of different shapes or different colors are formed at corresponding specific parts of the stress sensitive element, and the marking on the divided package side, the marking on the stress sensitive element side, and the marking on the element support member side The acceleration sensor according to claim 6, wherein the presence or absence of matching can be confirmed through the stress-sensitive element.

以上のように素子支持部材と応力感応素子とが正確に張り合わされた速度検知ユニット
を用いて、パッケージ本体の内底部に形成するマーキングに前記速度検知ユニットに設け
た指標部を合わせ、その整合の有無を光の透過で確認すれば加速度センサの良否を容易に
判別することができるといい効果がある。
As described above, using the speed detection unit in which the element support member and the stress sensitive element are accurately bonded, the marking provided on the inner bottom portion of the package body is aligned with the index portion provided on the speed detection unit, and the alignment is performed. If the presence or absence is confirmed by the transmission of light, it is advantageous that the quality of the acceleration sensor can be easily determined.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明の一実施
形態に係る加速度センサの構成を示す分解斜視図である。加速度センサは、加速度の印加
によって変位しない固定部材6、及び固定部材6に対して梁7を介して連結された可動部
材8を備えた水晶製の素子支持部材5と、応力感応部12及び該応力感応部12の両端部
に夫々一体化された固定端13、14を有した水晶製の応力感応素子11と、素子支持部
材5及び応力感応素子11を収容するパッケージ20(パッケージ本体20a、蓋体20
b)と、を備えている。
素子支持部材5は、同一厚さの矩形平板状の固定部材6と可動部材8の各対向端縁間を
梁7で連結した構造であり、固定部材6及び可動部材8の夫々の上面は、共に同一平面上
にある。梁7の厚さは、固定部材6(又は可動部材8)の厚さよりも薄く、固定部材6及
び可動部材8の側端面中央部に一体的に連結され、加速度が素子支持部材5の主面と直交
する方向(加速度検出軸方向)に印加されると、可動部材8を加速度検出軸方向へ変位さ
せるように梁7が撓むように構成されている。
素子支持部材5の一方の面(上面)の3つの角隅部には、図1に示すようにハーフエッ
チングパターンより成る例えば4つなどの複数の凹部を二行二列に並べた構成のアライメ
ント用の第1の指標部9が配置され、結果として各第1の指標部9は非対称な位置関係と
なっている。第1の指標部9を非対称に配置するのは水晶の結晶軸(+X軸)を特定する
ためである。なお、第1の指標部9は穴(切欠きを含む)、マーキング(印刷等)等で形
成してもよい。
素子支持部材5は、例えばフォトリソグラフィ技術とエッチング手法を用いて、矩形平
板状の水晶基板の主平面の一部を両面から対向するようにエッチング加工し、この部分を
梁7とし、未加工の一方を固定部材6、他方を可動部材8とする手法で形成することがで
きる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an exploded perspective view showing a configuration of an acceleration sensor according to an embodiment of the present invention. The acceleration sensor includes a fixed member 6 that is not displaced by the application of acceleration, and a crystal element support member 5 that includes a movable member 8 connected to the fixed member 6 via a beam 7, a stress sensitive portion 12, A stress sensing element 11 made of crystal having fixed ends 13 and 14 respectively integrated at both ends of the stress sensing part 12, and a package 20 (package main body 20a, lid) containing the element supporting member 5 and the stress sensing element 11 Body 20
b).
The element support member 5 has a structure in which the opposite end edges of the rectangular flat plate-like fixed member 6 and the movable member 8 having the same thickness are connected by beams 7. The upper surfaces of the fixed member 6 and the movable member 8 are respectively Both are on the same plane. The thickness of the beam 7 is thinner than the thickness of the fixed member 6 (or the movable member 8), and is integrally connected to the central portion of the side end surfaces of the fixed member 6 and the movable member 8, and the acceleration is the main surface of the element support member 5. When the beam 7 is applied in a direction orthogonal to the acceleration detection axis direction, the beam 7 is configured to bend so as to displace the movable member 8 in the acceleration detection axis direction.
In the three corners of one surface (upper surface) of the element support member 5, as shown in FIG. 1, for example, a plurality of recesses made of half-etched patterns are arranged in two rows and two columns. 1st index part 9 for this is arrange | positioned, As a result, each 1st index part 9 has asymmetrical positional relationship. The reason why the first indicator portion 9 is arranged asymmetrically is to specify the crystal axis (+ X axis) of the crystal. The first indicator portion 9 may be formed by a hole (including a notch), marking (printing, etc.) or the like.
The element support member 5 is etched by using a photolithographic technique and an etching technique, for example, so that a part of the main plane of the rectangular flat plate-shaped quartz substrate is opposed from both sides. It can be formed by a technique in which one is the fixed member 6 and the other is the movable member 8.

応力感応素子11としては、図1に示すように、2つの固定端13、14、及び該固定
端13、14間を連設する2つの振動ビーム12aを備えた圧電基板として例えば水晶基
板からなる応力感応部12と、水晶基板の振動領域上に形成した励振電極(図示せず)と
、を備えた双音叉型水晶振動素子を用いる。しかし、応力感応素子11は、双音叉型水晶
振動素子11に限定するものではなく、2つの固定端、及び各固定端間を連設する振動領
域を備えた水晶基板からなる応力感応部と、該水晶基板の振動領域上に形成した励振電極
と、を備えた水晶振動素子であってもよい。
応力感応素子11の一方の固定端13上には、端子電極15を形成する際に、第2の指
標部16(蒸着パターン)を設け、他方の固定端14上には結晶軸方向を識別する文字等
から成るマーキング17を形成する。第2の指標部16は、矩形の固定端13の2つの角
隅部に、夫々固定部材6側の2つの第1の指標部9と対応するように配置する。
素子支持部材5と、応力感応素子11との外形輪郭寸法を同一に構成すれば、素子支持
部材5と応力感応素子11とを接着剤を用いて貼り合わせ、加速度検出ユニット3を構成
するときに、外形輪郭を正確に合わせることができる。このとき、素子支持部材5及び応
力感応素子11の夫々の+X軸方向を合わせるために、素子支持部材5上の第1の指標部
9(例えばハーフエッチングパターン)と、応力感応素子11上の第2の指標部16(蒸
着パターンによるマーキング)、及びマーキング17(蒸着パターン)を手掛かりとする

なお、本実施形態では、素子支持部材5と応力感応素子11の一面の3つの角隅部に夫
々指標部を設けることにより軸方向を確認するように構成したが、素子支持部材5と、応
力感応素子11との外形輪郭寸法が一致している場合には、何れか一つ、或いは2つの角
隅部に指標部を設けることで軸方向の確認は可能である。また、個々の指標部の形状、着
色を異ならせることにより指標部間の相違を識別できるように構成してもよい。
As shown in FIG. 1, the stress sensitive element 11 is made of, for example, a quartz substrate as a piezoelectric substrate having two fixed ends 13 and 14 and two vibration beams 12 a connected between the fixed ends 13 and 14. A double tuning fork type crystal vibrating element including a stress sensitive portion 12 and an excitation electrode (not shown) formed on a vibration region of the quartz substrate is used. However, the stress sensitive element 11 is not limited to the double tuning fork type quartz vibrating element 11, and a stress sensitive part including a quartz substrate having two fixed ends and a vibration region connecting between the fixed ends, A quartz crystal resonator element including an excitation electrode formed on a vibration region of the quartz crystal substrate may be used.
When the terminal electrode 15 is formed on one fixed end 13 of the stress sensitive element 11, a second indicator portion 16 (vapor deposition pattern) is provided, and the crystal axis direction is identified on the other fixed end 14. A marking 17 made of characters or the like is formed. The second indicator portions 16 are arranged at the two corners of the rectangular fixed end 13 so as to correspond to the two first indicator portions 9 on the fixing member 6 side, respectively.
When the element support member 5 and the stress sensitive element 11 have the same outer contour size, the element support member 5 and the stress sensitive element 11 are bonded together using an adhesive to form the acceleration detection unit 3. The outer contour can be accurately matched. At this time, in order to align the + X-axis directions of the element support member 5 and the stress sensitive element 11, the first indicator portion 9 (for example, a half etching pattern) on the element support member 5 and the first index portion 9 on the stress sensitive element 11 are arranged. Two index parts 16 (marking with a vapor deposition pattern) and markings 17 (vapor deposition pattern) are used as clues.
In the present embodiment, the axial direction is confirmed by providing the index portions at the three corners of the element support member 5 and one surface of the stress sensitive element 11, but the element support member 5 and the stress When the outline contour dimensions of the sensitive element 11 coincide with each other, it is possible to confirm the axial direction by providing an index portion at one or two corners. Moreover, you may comprise so that the difference between parameter | index parts can be identified by varying the shape and coloring of each parameter | index part.

また、指標部を形成する位置は、素子支持部材5と応力感応素子11の一面の角隅部で
ある必要はなく、長辺、或いは短辺の中心部のような対称位置以外の非対称位置、例えば
長辺や短辺の中心部を外した非対称位置であれば、どのような位置であってもよい。この
ことは、本発明の他の実施形態においても同様に当てはまる。
加速度検出ユニット3を収容するパッケージは、2つの分割パッケージ片から成り、一
方の分割パッケージ片をパッケージ本体20a、他方の分割パッケージ片を蓋体20bと
する。パッケージ本体20aは、セラミックシートの積層体21で形成されており、その
形状は図1に示すように上面が開口した箱型をしている。パッケージ本体20aの内底部
の隅には台座部22が設けられ、台座部22上に電極パターン(パッド電極)23が形成
されている。このパッド電極23は、パッケージ本体20aの底面、或いは側面に形成さ
れる外部端子24と内部配線により導通している。パッケージ本体20aの開口部周縁に
はシールリング25が焼成されており、シールリング25にはニッケルメッキと、金メッ
キ等が施されている。
In addition, the position where the index portion is formed does not have to be a corner portion of one surface of the element support member 5 and the stress sensitive element 11, but an asymmetric position other than a symmetric position such as a central portion of the long side or the short side, For example, any position may be used as long as it is an asymmetric position from which the central part of the long side or the short side is removed. This is true for other embodiments of the invention as well.
The package that accommodates the acceleration detection unit 3 is composed of two divided package pieces, one of the divided package pieces being a package body 20a and the other divided package piece being a lid 20b. The package body 20a is formed of a laminated body 21 of ceramic sheets, and the shape thereof is a box shape having an open top surface as shown in FIG. A pedestal portion 22 is provided at a corner of the inner bottom portion of the package main body 20 a, and an electrode pattern (pad electrode) 23 is formed on the pedestal portion 22. The pad electrode 23 is electrically connected to an external terminal 24 formed on the bottom surface or side surface of the package body 20a by an internal wiring. A seal ring 25 is fired around the periphery of the opening of the package body 20a, and the seal ring 25 is subjected to nickel plating, gold plating, or the like.

加速度センサは、パッケージ本体20aの台座部22上のパッド電極23に導電性接着
剤を塗布し、該導電性接着剤上に加速度検知ユニット3を載置し、導電性接着剤を硬化さ
せた後、シールリング25の上面に金属性の蓋体20bをシーム溶接等で気密溶接して構
成する。この際、パッケージ本体20a内部を真空に保つことにより、応力感応素子11
のQ値を高め、加速度センサの感度を高めることができる。図2(a)は、蓋体20bを
取り除いた加速度センサ1の斜視図であり、同図(b)はQ1−Q1における断面図であ
る。
加速度センサの動作を、図2(b)を用いて説明する。加速度センサ1に加速度検出軸
方向の加速度α(+Z軸方向)が印加されると、慣性力により加速度検知ユニット3には
−Z軸方向に力が作用する。そのため、素子支持部材5と応力感応素子11とから成る加
速度検知ユニット3は、梁7を起点として−Z軸方向に撓むことになる。応力感応素子1
1の固定端13、14は、夫々素子支持部材5の固定部材6と可動部材8とに接着・固定
されているので、応力感応部12には伸長応力が作用し、応力感応素子11の共振周波数
は増加する。逆に、加速度検知ユニット3に−Z軸方向の加速度(−α)が印加されると
、慣性力により+Z軸方向の力が作用し、加速度検知ユニットは、梁7を起点として+Z
軸方向に撓むことになる。この結果、応力感応部12には圧縮応力が作用し、応力感応素
子11の共振周波数は減少する。応力感応素子11の周波数変化はほぼ応力に比例し、応
力は加速度に比例するので、周波数の変化から印加された加速度の大きさを求めることが
できる。
The acceleration sensor is obtained by applying a conductive adhesive to the pad electrode 23 on the pedestal portion 22 of the package body 20a, placing the acceleration detection unit 3 on the conductive adhesive, and curing the conductive adhesive. The metallic lid 20b is hermetically welded to the upper surface of the seal ring 25 by seam welding or the like. At this time, the stress sensitive element 11 is maintained by keeping the inside of the package body 20a in a vacuum.
The Q value can be increased, and the sensitivity of the acceleration sensor can be increased. FIG. 2A is a perspective view of the acceleration sensor 1 with the lid 20b removed, and FIG. 2B is a cross-sectional view taken along Q1-Q1.
The operation of the acceleration sensor will be described with reference to FIG. When an acceleration α in the acceleration detection axis direction (+ Z axis direction) is applied to the acceleration sensor 1, a force acts on the acceleration detection unit 3 in the −Z axis direction due to inertial force. Therefore, the acceleration detection unit 3 including the element support member 5 and the stress sensitive element 11 bends in the −Z-axis direction with the beam 7 as a starting point. Stress sensitive element 1
1 are bonded and fixed to the fixed member 6 and the movable member 8 of the element support member 5, respectively, so that the stress sensitive portion 12 is subjected to an extensional stress and the resonance of the stress sensitive element 11. The frequency increases. Conversely, when acceleration (−α) in the −Z-axis direction is applied to the acceleration detection unit 3, a force in the + Z-axis direction is applied by the inertial force, and the acceleration detection unit starts + Z from the beam 7.
It will bend in the axial direction. As a result, compressive stress acts on the stress sensitive part 12, and the resonance frequency of the stress sensitive element 11 decreases. Since the frequency change of the stress sensitive element 11 is substantially proportional to the stress, and the stress is proportional to the acceleration, the magnitude of the applied acceleration can be obtained from the change of the frequency.

ここで、双音叉型水晶振動素子について簡単に説明する。双音叉型水晶振動素子は伸張
・圧縮応力に対する感度が良好であり、高度計用、或いは深度計用の応力感応素子として
使用した場合には、分解能力が優れているために僅かな気圧差から高度差、深度差を知る
ことができる。また、双音叉型水晶振動素子が呈する周波数温度特性は、上に凸の二次曲
線となり、その頂点温度が常温(25℃)になるように各パラメータを設定する。
双音叉型水晶振動素子の2本の振動ビームに外力Fを加えたときの共振周波数fFは以
下の如くである。
F=f0(1−(KL2F)/(2EI))1/2 (1)
ここで、f0は外力がないときの双音叉型水晶振動素子の共振周波数、Kは基本波モード
による定数(=0.0458)、Lは振動ビームの長さ、Eは縦弾性定数、Iは断面2次
モーメントである。断面2次モーメントIはI=dw3/12より、式(1)は次式のよう
に変形することができる。ここで、dは振動ビームの厚さ、wは幅である。
F=f0(1−SFσ)1/2 (2)
但し、応力感度SFと、応力σとはそれぞれ次式で表される。
F=12(K/E)(L/w)2 (3)
σ=F/(2A) (4)
ここで、Aは振動ビームの断面積(=w・d)である。以上から双音叉型振動子に作用す
る力Fを圧縮方向のとき負、伸張方向(引張り方向)を正としたとき、力Fと共振周波数
Fの関係は、力Fが圧縮力で共振周波数fFが減少し、伸張(引張り)力では増加する。
また応力感度SFは振動ビームのL/wの2乗に比例する。
しかし、応力感応素子30としては、双音叉型水晶振動素子に限らず、伸張・圧縮応力に
よって周波数が変化する圧電振動素子であれば、どのようなものを用いても良い。また、
応力と頂点温度との関係は、双音叉型水晶振動素子に伸張応力を付加すると頂点温度は低
音側へシフトし、圧縮応力を加えると高温側へシフトする特性を有している。
Here, the twin tuning fork type crystal vibrating element will be briefly described. The double tuning fork type quartz vibrating element has good sensitivity to tensile and compressive stress, and when used as a stress sensitive element for altimeters or depth gauges, it has a high decomposing ability, so it has a slight pressure difference to high altitude. You can know the difference and depth difference. Further, the frequency temperature characteristic exhibited by the double tuning fork type crystal resonator element is an upwardly convex quadratic curve, and each parameter is set so that the apex temperature becomes room temperature (25 ° C.).
The resonance frequency f F when the external force F is applied to the two vibrating beams of the double tuning fork type quartz vibrating element is as follows.
f F = f 0 (1- (KL 2 F) / (2EI)) 1/2 (1)
Here, f 0 is the resonance frequency of the double tuning fork type quartz vibrating element when there is no external force, K is a constant according to the fundamental mode (= 0.0458), L is the length of the vibrating beam, E is the longitudinal elastic constant, I Is the moment of inertia of the cross section. Second moment I are from I = dw 3/12, the equation (1) can be modified as follows. Here, d is the thickness of the vibration beam, and w is the width.
f F = f 0 (1−S F σ) 1/2 (2)
However, the stress sensitivity SF and the stress σ are respectively expressed by the following equations.
S F = 12 (K / E) (L / w) 2 (3)
σ = F / (2A) (4)
Here, A is the sectional area (= w · d) of the vibration beam. From the above, when the force F acting on the double tuning fork vibrator is negative in the compression direction and positive in the extension direction (tensile direction), the relationship between the force F and the resonance frequency f F is that the force F is a compression force and the resonance frequency. f F decreases and increases with stretching (tensile) force.
The stress sensitivity S F is proportional to the square of the vibration beam L / w.
However, the stress-sensitive element 30 is not limited to a double tuning fork type crystal vibrating element, and any element may be used as long as it is a piezoelectric vibrating element whose frequency changes due to extension / compression stress. Also,
The relationship between the stress and the apex temperature has a characteristic that the apex temperature shifts to the low tone side when an extensional stress is applied to the double tuning fork type crystal vibrating element and shifts to the high temperature side when compressive stress is applied.

図3は、加速度検知ユニット3の加速度検出精度、感度を上げるため、素子支持部材5
と応力感応素子11との貼り合わせ精度を改善するアライメント用の指標部を示した平面
図である。加速度検知ユニット3の加速度検出精度、感度及び温度特性を改善するため、
素子支持部材5及び応力感応素子11の夫々の結晶軸(+X軸方向)を合わせると共に、
素子支持部材5及び応力感応素子11の夫々の外形輪郭を一致させ、且つ素子支持部材5
及び応力感応素子11の主面を共に平行に保つことが重要である。
図3(a)は、素子支持部材5及び応力感応素子11の夫々の結晶軸(+X軸方向)を
合わせるために、素子支持部材5の固定部6の一方の角隅部(非対称位置)に切欠きk1
(第1の指標部)を設け、応力感応素子11の固定端14上の非対称位置にはマーキング
17(第2の指標部。例えば蒸着パターン)を形成している。マーキング17は、応力感
応素子11の励振電極、端子電極をフォトリソグラフィ技術とエッチング手法で形成する
ときに同時に形成すればよい。
また、図3(a)の素子支持部材5と応力感応素子11との外形輪郭(長手方向両端縁
の位置、輪郭線)は同じに形成されている。このため、指標部k1、17を素子支持部材
5、及び応力感応素子の外形輪郭の非対称位置(長辺や短辺の中心部を回避した位置)に
設けることにより、結晶軸の方向を確認することが可能となる。
FIG. 3 shows an element support member 5 for increasing the acceleration detection accuracy and sensitivity of the acceleration detection unit 3.
It is the top view which showed the parameter | index part for alignment which improves the bonding precision with the stress sensitive element 11. FIG. In order to improve the acceleration detection accuracy, sensitivity and temperature characteristics of the acceleration detection unit 3,
While aligning the crystal axes (+ X-axis direction) of the element support member 5 and the stress sensitive element 11,
The outer contours of the element support member 5 and the stress sensitive element 11 are made to coincide with each other, and the element support member 5
It is important to keep the main surfaces of the stress sensitive element 11 parallel to each other.
FIG. 3A shows one corner (an asymmetric position) of the fixing portion 6 of the element support member 5 in order to align the crystal axes (+ X-axis direction) of the element support member 5 and the stress sensitive element 11. Notch k1
A (first index portion) is provided, and a marking 17 (second index portion, for example, a vapor deposition pattern) is formed at an asymmetric position on the fixed end 14 of the stress sensitive element 11. The marking 17 may be formed simultaneously when the excitation electrode and the terminal electrode of the stress sensitive element 11 are formed by the photolithography technique and the etching method.
Further, the outer contours (positions of both end edges in the longitudinal direction, contour lines) of the element support member 5 and the stress sensitive element 11 in FIG. For this reason, the direction of the crystal axis is confirmed by providing the index parts k1 and 17 at the asymmetrical positions (positions avoiding the central part of the long side and the short side) of the element support member 5 and the outline of the stress sensitive element. It becomes possible.

図3(b)に示す素子支持部材5と応力感応素子11との外形輪郭(長手方向両端縁の
位置、輪郭線)は、同じに形成されている。素子支持部材5の固定部材6の両隅と、可動
部材8の一方の隅にハーフエッチング・パターンで第1の指標部9が非対称に形成され、
+X軸方向を容易に識別できるようにしている。また、応力感応素子11の固定端13の
両角隅部と、固定端14の一方の角隅部には蒸着パターンによる口字形の第2の指標部1
6が非対称に形成され、+X軸方向を容易に判別できるようにしている。第2の指標部1
6は、応力感応素子11の励振電極、端子電極をフォトリソグラフィ技術とエッチング手
法で形成するときに同時に形成すればよい。素子支持部材5の第1の指標部9と、応力感
応素子11の第2の指標部16とは、夫々の外形輪郭を一致させたときに、上下方向に正
確に重なる位置に形成する。
なお、第1及び第2の指標部9、16は穴、マーキング等で形成してもよい。各指標部
の外観を異ならせることにより、指標部間の識別を容易化してもよい。
図3(c)に示す素子支持部材5と応力感応素子11との外形輪郭(長手方向両端縁の
位置、輪郭線)は同じに形成されている。水晶ウエハをエッチング加工して複数の素子支
持部材5を形成する際には連結した複数の素子支持部5を用意する。この連結は、複数の
素子支持部材5が固定部材6の上端と、可動部材8の下端、あるいは側面の一部から突出
した連結部を介して一体化した状態である。連結部は凹所k2、k3、k4内から突出し
た構造であり、素子支持部材5を個片化する際に破断部分になる。これにより水晶ウエハ
を折り取りで個々に分割する際に生じる連結部の残渣は素子支持部材5の規定外周寸法か
らはみ出ることがなく凹所k2、k3、k4内に収容される。そして本実施形態は残渣を
収容する凹所k2、k3、k4を結晶軸(+X軸)を判別する第1の指標部とした例であ
る。同様に、エッチング加工した水晶ウエハから応力感応素子11を折り取りで形成する
際に、折り取り残渣k5、k6を結晶軸(+X軸)識別する第2の指標部16とした例で
ある。素子支持部材5と応力感応素子11とを貼り合せて、加速度検知ユニット3を構成
する際に、これらの指標部を、結晶軸方向を一致させるために用いる。
なお、素子支持部材5の形成は、水晶ウエハ上に格子状に複数の素子支持部材5パター
ンをフォトグラフィ技術で形成し、各素子支持部材5パターンの境界にはエッチングによ
り分割用の溝部と、凹所k2、k3、k4が形成される。溝部に沿って折り取ることで、
個別の素子支持部材5が形成され、その際に凹所k2、k3、k4が素子部材5に残渣と
して残ることになる。
The contours of the element support member 5 and the stress sensitive element 11 shown in FIG. 3B are formed in the same shape (positions and contour lines at both ends in the longitudinal direction). A first index portion 9 is formed asymmetrically in a half etching pattern at both corners of the fixed member 6 of the element support member 5 and one corner of the movable member 8;
The + X axis direction can be easily identified. Further, the second index portion 1 having a square shape formed by a vapor deposition pattern is formed at both corners of the fixed end 13 of the stress sensitive element 11 and one corner of the fixed end 14.
6 is formed asymmetrically so that the + X-axis direction can be easily discriminated. Second indicator part 1
6 may be formed simultaneously when the excitation electrode and the terminal electrode of the stress sensitive element 11 are formed by the photolithography technique and the etching technique. The first indicator portion 9 of the element support member 5 and the second indicator portion 16 of the stress sensitive element 11 are formed at positions where they overlap with each other in the vertical direction when their outer contours are matched.
The first and second indicator portions 9 and 16 may be formed by holes, markings, or the like. By distinguishing the appearance of each index part, identification between index parts may be facilitated.
The contours of the element supporting member 5 and the stress sensitive element 11 shown in FIG. 3C (the positions and contour lines of the longitudinal edges) are formed in the same manner. When a plurality of element support members 5 are formed by etching a quartz wafer, a plurality of element support portions 5 connected to each other are prepared. This connection is a state in which the plurality of element support members 5 are integrated through the connection portion protruding from the upper end of the fixed member 6 and the lower end of the movable member 8 or a part of the side surface. The connecting portion has a structure protruding from the inside of the recesses k2, k3, k4, and becomes a broken portion when the element supporting member 5 is separated. As a result, the residue of the connecting portion that is generated when the quartz wafer is broken up and is divided into individual portions is accommodated in the recesses k2, k3, and k4 without protruding from the prescribed outer peripheral dimensions of the element support member 5. The present embodiment is an example in which the recesses k2, k3, and k4 that contain the residue are used as the first index portion for discriminating the crystal axis (+ X axis). Similarly, when the stress sensitive element 11 is formed by folding from an etched quartz wafer, the broken residues k5 and k6 are used as the second index part 16 for identifying the crystal axis (+ X axis). When the element support member 5 and the stress sensitive element 11 are bonded together to form the acceleration detection unit 3, these index portions are used to match the crystal axis directions.
The element support member 5 is formed by forming a plurality of element support member 5 patterns in a lattice pattern on a quartz wafer by a photolithography technique, and by dividing each element support member 5 pattern by a groove for dividing, Recesses k2, k3, k4 are formed. By breaking along the groove,
The individual element support members 5 are formed, and the recesses k2, k3, and k4 are left as residues in the element member 5 at that time.

図4はパッケージ本体20aの平面図であり、同図(a)は、パッケージ本体20aの
台座部22に形成する電極パターン(パッド電極)23の輪郭線の一部を、切欠きk1を
設けた素子支持部材5の形状と同じに構成することにより、パッケージ本体20aの台座
部22の所定の位置に、素子支持部材5を正確に載置し、接着、固定することが可能とな
る。
また、図4(b)は、パッケージ本体20aの台座部22に形成する2つの電極パター
ン(パッド電極)23の間隔を、素子支持部材5の幅と同一とすると共に、パッド電極2
3の間に第3の指標部27を形成している。第3の指標部27は、電極パターン(パッド
電極)23を形成するときに同時にスクリーン印刷等で形成する。
FIG. 4 is a plan view of the package body 20a. FIG. 4A shows a part of the outline of the electrode pattern (pad electrode) 23 formed on the pedestal portion 22 of the package body 20a with a notch k1. By configuring the same as the shape of the element support member 5, the element support member 5 can be accurately placed at a predetermined position of the pedestal portion 22 of the package body 20a, and can be bonded and fixed.
4B shows that the distance between two electrode patterns (pad electrodes) 23 formed on the pedestal portion 22 of the package body 20a is the same as the width of the element support member 5, and the pad electrode 2
3, the third indicator portion 27 is formed. The third indicator 27 is formed by screen printing or the like at the same time as the electrode pattern (pad electrode) 23 is formed.

図5(a)、(b)、(c)は、加速度センサ1を構成するパッケージ本体20a、素
子支持部材5、及び応力感応素子11の夫々の主面に形成する第3、第1、及び第2の指
標部27、9、16の位置と、形状を示す平面図である。第3、第1、及び第2の指標部
27、9、16の拡大図を夫々の下部に示している。つまり、パッケージ本体20a、素
子支持部材5、及び応力感応素子11の夫々に形成する指標部27、9、16は、マーキ
ングによる十字形、ハーフエッチング・パターンによる4つ紋形、蒸着パターンによる口
字形をしている。素子支持部材5と、応力感応素子11とを接着剤を用いて貼り合せて、
加速度検知ユニット3を形成する際に、第1の指標部9の4つ紋形と、第2の指標部16
の口字形は、上下方向に正確に重なる。更に、加速度検知ユニット3をパッケージ本体2
0aに実装する際に、パッケージ本体20aの台座部22に形成した第3の指標部27の
十字形(マーキング)は、第1の指標部の4つ紋形の間に正確に重なるように、形状寸法
と位置を合わせる。
FIGS. 5A, 5B, and 5C show the third, first, and third portions formed on the main surfaces of the package main body 20a, the element support member 5, and the stress sensitive element 11 constituting the acceleration sensor 1, respectively. It is a top view which shows the position and shape of the 2nd parameter | index part 27,9,16. Enlarged views of the third, first, and second indicator portions 27, 9, 16 are shown at the bottom of each. In other words, the indicator portions 27, 9, and 16 formed on the package body 20a, the element support member 5, and the stress sensitive element 11 are a cross shape by marking, four crest shapes by a half-etching pattern, and a lip shape by a vapor deposition pattern. I am doing. The element support member 5 and the stress sensitive element 11 are bonded using an adhesive,
When forming the acceleration detection unit 3, the four patterns of the first indicator portion 9 and the second indicator portion 16 are formed.
The shape of the squares accurately overlaps vertically. Further, the acceleration detection unit 3 is connected to the package body 2.
When mounting on 0a, the cross shape (marking) of the third indicator portion 27 formed on the pedestal portion 22 of the package body 20a is accurately overlapped between the four crests of the first indicator portion. Match the dimensions and position.

図6(a)は加速度センサの平面図、同図(b)はQ2−Q2における断面図、同図(
c)はQ3−Q3における断面図、同図(d)は第1、第2の指標部9、16が上下方向
に正確に重なった指標模様18の拡大図、同図(e)は第1、第2、及び第3の指標部9
、16、27が上下方向に正確に重なった指標模様19の拡大図である。
素子支持部材5の第1の指標部9(ハーフエッチング・パターン)に応力感応素子11
の指標部16(蒸着パターン)を正確に重ね、且つ素子支持部材5の主面と、応力感応素
子11の主面とが平行に保たれるように加速度検知ユニット3を構成する。応力感応素子
11及び素子支持部材5は、共に水晶で形成され、且つそれらの厚さが薄く、光を良く透
過するため、加速度検知ユニット3を上方から見ると、図6(d)に示す指標模様18が
見える。つまり、応力感応素子11の第2の指標部16(蒸着パターン)の口字形の4つ
の角隅部に、第1の指標部9(ハーフエッチング・パターン)の4つ紋形が重なることな
く配置されるように見える。この加速度検知ユニット3の外形輪郭をパッケージ本体20
aの電極パターン(パッド電極)23の間で挟むように合わせると共に、加速度検知ユニ
ット3の指標模様18をパッケージ本体20aのマーキングによる十字形の第3の指標部
27に正確に合わせ、且つ加速度検知ユニット3の主面がパッケージ本体20aの内部底
面に平行になるよう接着、固定して加速度センサ1を構成する。加速度センサ1を上方か
ら見ると、図6(e)に示す指標模様19が見える。逆に図6(e)のように指標模様1
9が見えれば、加速度検知ユニット3は、パッケージ本体20aの所定の位置に正確に、
且つパッケージ本体20aの底面に平行に接着されたことになる。
6A is a plan view of the acceleration sensor, FIG. 6B is a cross-sectional view taken along Q2-Q2, and FIG.
c) is a cross-sectional view taken along Q3-Q3, FIG. 6D is an enlarged view of the index pattern 18 in which the first and second index portions 9 and 16 are accurately overlapped in the vertical direction, and FIG. , Second and third indicator parts 9
, 16 and 27 are enlarged views of the index pattern 19 in which they are accurately overlapped in the vertical direction.
The stress sensitive element 11 is formed on the first index portion 9 (half etching pattern) of the element supporting member 5.
The acceleration detection unit 3 is configured so that the indicator portions 16 (deposition patterns) of the above are accurately overlapped and the main surface of the element support member 5 and the main surface of the stress sensitive element 11 are kept parallel. Since the stress sensitive element 11 and the element supporting member 5 are both made of quartz and are thin and transmit light well, the index shown in FIG. The pattern 18 is visible. That is, four crests of the first index part 9 (half etching pattern) are arranged without overlapping with the four corners of the square shape of the second index part 16 (deposition pattern) of the stress sensitive element 11. Looks like. The outer contour of the acceleration detection unit 3 is defined as the package body 20.
The electrode pattern (pad electrode) 23a is aligned so as to be sandwiched between the electrode patterns (pad electrodes) 23, and the index pattern 18 of the acceleration detection unit 3 is accurately aligned with the cross-shaped third index portion 27 by marking of the package body 20a, and acceleration detection is performed. The acceleration sensor 1 is configured by bonding and fixing so that the main surface of the unit 3 is parallel to the inner bottom surface of the package body 20a. When the acceleration sensor 1 is viewed from above, an index pattern 19 shown in FIG. Conversely, index pattern 1 as shown in FIG.
If 9 is visible, the acceleration detection unit 3 is accurately positioned at a predetermined position of the package body 20a.
In addition, it is adhered in parallel to the bottom surface of the package body 20a.

次に、素子支持部材5と応力感応素子11とが正確に貼り合わされ、且つ素子支持部材
5の主面と、応力感応素子11の主面とが平行に保たれた加速度検知ユニット3と、パッ
ケージ本体20aとの接着、固定について説明する。
図7は、加速度検知ユニット3がパッケージ本体20aの台座部22に塗布した接着剤
30により、図7(b)の断面図に示すように加速度検知ユニット3の短手方向に傾いて
接着、固定された場合である。この場合には、図7(c)の指標模様19に示すように、
第3指標部27の十字形(マーキング)が、加速度センサ3の指標模様18の一方(短手
方向)に偏在する。
また、図8は、加速度検知ユニット3がパッケージ本体20aの台座部22に塗布した
接着剤30により、図8(b)の断面図に示すように加速度検知ユニット3の長手方向に
傾いて接着、固定された場合である。この場合には、第3指標部の十字形(マーキング)
が、加速度検知ユニット3の指標模様18の一方(長手方向)に偏在する。このように、
指標模様19がずれたものは加速度検出の精度、感度が不良になるので不良品として除去
する必要がある。
また、素子支持部材5と応力感応素子11とを接着剤で接着、固定するときに、接着剤
により素子支持部材5の主面と、応力感応素子11との主面とが傾くと、蒸着パターンの
口字形(指標部16)の枠にハーフエッチング・パターンの4つ紋形(指標部9)が正確
に入らず、ずれるので、この製品は加速度検知ユニット3の段階で不良品として容易に除
去することができる。
Next, the acceleration detection unit 3 in which the element support member 5 and the stress sensitive element 11 are accurately bonded, and the main surface of the element support member 5 and the main surface of the stress sensitive element 11 are maintained in parallel, and the package Adhesion and fixation with the main body 20a will be described.
FIG. 7 shows that the acceleration detection unit 3 is bonded and fixed by the adhesive 30 applied to the pedestal portion 22 of the package body 20a in a direction inclined in the short direction of the acceleration detection unit 3 as shown in the sectional view of FIG. This is the case. In this case, as shown in the index pattern 19 in FIG.
The cross shape (marking) of the third index portion 27 is unevenly distributed on one side (short direction) of the index pattern 18 of the acceleration sensor 3.
8 shows that the acceleration detection unit 3 is bonded to the longitudinal direction of the acceleration detection unit 3 by the adhesive 30 applied to the pedestal portion 22 of the package body 20a, as shown in the sectional view of FIG. This is a fixed case. In this case, the third indicator part cross (marking)
However, it is unevenly distributed in one (longitudinal direction) of the index pattern 18 of the acceleration detection unit 3. in this way,
Since the accuracy and sensitivity of acceleration detection are poor when the index pattern 19 is shifted, it is necessary to remove it as a defective product.
Further, when the element support member 5 and the stress sensitive element 11 are bonded and fixed with an adhesive, if the principal surface of the element support member 5 and the principal surface of the stress sensitive element 11 are inclined by the adhesive, the vapor deposition pattern The four half-etched pattern (indicator part 9) does not accurately enter the frame of the braille shape (indicator part 16) and shifts, so this product is easily removed as a defective product at the stage of the acceleration detection unit 3. can do.

以上説明したように、素子支持部材5及び応力感応素子11の結晶軸方向を合わせ、且
つアライメント用の第1及び第2の指標部を用いて、双方の上下位置を正確に合わせて加
速度検知ユニットを構成すると、加速度検出精度、感度が改善されると共に、製造された
加速度検知ユニットの検出精度のバラツキが少なくなり、温度特性も改善されるという効
果がある。
また、素子支持部材5及と応力感応素子11との外形輪郭と、第1及び第2の指標部と
を用いて加速度検知ユニットを構成すると、素子支持部材5及と応力感応素子11との上
下位置を正確に貼り合わせすることが可能となり、精度の優れた加速度検知ユニットが得
られる。
また、素子支持部材5と応力感応素子11との対応する位置にハーフエッチング・パタ
ーンや蒸着パターンによるマーキングを設け、該マーキングを透過する光で整合の確認を
行えば、加速度検知ユニットの良否の判定が容易となり、加速度検出精度、感度のバラツ
キの極めて少ない加速度検知ユニットが得られる。
また、折り取り残渣を切欠き部とし、結晶軸方向の指標として用いれば、温度特性の安
定した加速度検知ユニットが得られるという効果がある。
また、応力感応素子11として双音叉型水晶振動素子を用いて加速度検知ユニットを構
成すると、加速度検知ユニットの加速度検出精度、感度が大幅に向上すると共に、温度特
性、再現性が改善されるという効果がある。
また、素子支持部材5と応力感応素子11とが所定の位置で正確に張り合わされた加速
度検知ユニット3を用い、且つ加速度検知ユニットを分割パッケージ片の内底部に形成す
る電極パターンに位置合わせをして加速度センサを構成すると、加速度検出精度、感度及
び温度特性が向上し、加速度センサの検出精度、感度バラツキが減少するという効果があ
る。
また、素子支持部材5と応力感応素子11とが正確に張り合わされた速度検知ユニット
3を用いて、分割パッケージ片の内底部に形成するマーキングに前記速度検知ユニット3
に設けた指標模様を合わせ、その整合の有無を光の透過で確認すれば加速度センサの良否
を容易に判別することができるという効果がある。
As described above, the acceleration detection unit is obtained by aligning the crystal axis directions of the element supporting member 5 and the stress sensitive element 11 and accurately aligning the vertical positions of both using the first and second index portions for alignment. If this is configured, the acceleration detection accuracy and sensitivity are improved, the variation in the detection accuracy of the manufactured acceleration detection unit is reduced, and the temperature characteristics are also improved.
When an acceleration detection unit is configured using the outer contours of the element support member 5 and the stress sensitive element 11 and the first and second index portions, the upper and lower sides of the element support member 5 and the stress sensitive element 11 are The position can be accurately bonded, and an acceleration detection unit with excellent accuracy can be obtained.
Moreover, if the marking by a half-etching pattern or a vapor deposition pattern is provided at the corresponding position between the element support member 5 and the stress sensitive element 11, and the alignment is confirmed by light transmitted through the marking, the quality of the acceleration detection unit is judged. Thus, an acceleration detection unit with extremely small variations in acceleration detection accuracy and sensitivity can be obtained.
Further, if the break-off residue is used as a notch and used as an index in the crystal axis direction, an acceleration detection unit having a stable temperature characteristic can be obtained.
Further, when an acceleration detection unit is configured using a double tuning fork type crystal vibrating element as the stress sensitive element 11, the acceleration detection accuracy and sensitivity of the acceleration detection unit are greatly improved, and temperature characteristics and reproducibility are improved. There is.
In addition, the acceleration detecting unit 3 in which the element supporting member 5 and the stress sensitive element 11 are accurately bonded at a predetermined position is used, and the acceleration detecting unit is aligned with the electrode pattern formed on the inner bottom portion of the divided package piece. By configuring the acceleration sensor, the acceleration detection accuracy, sensitivity, and temperature characteristics are improved, and the detection accuracy and sensitivity variations of the acceleration sensor are reduced.
In addition, the speed detection unit 3 in which the element support member 5 and the stress sensitive element 11 are accurately bonded to each other is used to mark the speed detection unit 3 on the marking formed on the inner bottom portion of the divided package piece.
If the index patterns provided in the above are matched and the presence / absence of the alignment is confirmed by light transmission, the quality of the acceleration sensor can be easily determined.

本発明に係る加速度センサの分解斜視図。The disassembled perspective view of the acceleration sensor which concerns on this invention. (a)は本発明に係る加速度センサの斜視図、(b)は断面図。(A) is a perspective view of the acceleration sensor which concerns on this invention, (b) is sectional drawing. (a)、(b)、(c)は素子支持部材及び圧力感応素子の平面図。(A), (b), (c) is a top view of an element support member and a pressure sensitive element. (a)、(b)は夫々パッケージ本体の平面図。(A), (b) is a top view of a package main body, respectively. (a)、(b)、(c)は夫々パッケージ本体、素子支持部材、及び圧力感応素子の平面図と、夫々の指標部の拡大図。(A), (b), (c) is the top view of a package main body, an element support member, and a pressure sensitive element, respectively, and the enlarged view of each parameter | index part. (a)、(b)、(c)は夫々加速度センサの平面図、短手方向断面図、長手方向断面図、(d)は2つの指標部が重なった指標模様図、(e)は3つの指標部が重なった指標模様図。(A), (b), (c) is a plan view of the acceleration sensor, a cross-sectional view in the short direction, a cross-sectional view in the longitudinal direction, (d) is an index pattern diagram in which two index portions are overlapped, and (e) is 3 Index pattern diagram where two index parts overlap. 加速度検知ユニットが短手方向に傾いてパッケージ本体に実装された加速度センサの、(a)は平面図、(b)は断面図、(c)は指標部の指標模様図。FIG. 5A is a plan view, FIG. 5B is a cross-sectional view, and FIG. 5C is an index pattern diagram of an index portion of an acceleration sensor mounted on a package body with the acceleration detection unit tilted in the lateral direction. 加速度検知ユニットが長手方向に傾いてパッケージ本体に実装された加速度センサの、(a)は平面図、(b)は断面図、(c)は指標部の指標模様図。FIG. 4A is a plan view, FIG. 2B is a cross-sectional view, and FIG. 3C is an index pattern diagram of an index portion of an acceleration sensor mounted on a package body with the acceleration detection unit inclined in the longitudinal direction. 従来の加速度センサの、(a)は平面図、(b)は断面図。(A) is a top view of conventional acceleration sensor, (b) is sectional drawing. 従来の加速度センサの梁構造の斜視図。The perspective view of the beam structure of the conventional acceleration sensor.

符号の説明Explanation of symbols

1…加速度センサ、3…加速度検知ユニット、5…素子支持部材、6…固定部材、7…
梁、8…可動部材、9…指標部、11…圧力感応素子、12…応力感応部、13、14…
固定端、15…端子電極、16…指標部、17、27…マーキング、18、19…指標模
様、20…パッケージ、20a…パッケージ本体、20b…蓋体、21…積層体 、22
…台座部、23…電極パターン(パッド電極)、24…外部端子、25…シールリング、
30…接着材、k1、k2、k3、k4、k5、k6…切欠き部
DESCRIPTION OF SYMBOLS 1 ... Acceleration sensor, 3 ... Acceleration detection unit, 5 ... Element support member, 6 ... Fixed member, 7 ...
Beam, 8 ... movable member, 9 ... indicator part, 11 ... pressure sensitive element, 12 ... stress sensitive part, 13, 14 ...
Fixed end, 15 ... terminal electrode, 16 ... indicator part, 17, 27 ... marking, 18, 19 ... indicator pattern, 20 ... package, 20a ... package body, 20b ... lid body, 21 ... laminated body, 22
... base part, 23 ... electrode pattern (pad electrode), 24 ... external terminal, 25 ... seal ring,
30 ... Adhesive, k1, k2, k3, k4, k5, k6 ... Notch

Claims (7)

加速度の印加によって変位しない固定部材、及び前記固定部材に梁にて支持される可動
部材を備えた水晶製の素子支持部材と、応力感応部及び該応力感応部の両端部に夫々一体
化された固定端を有した水晶製の応力感応素子と、を備え、
前記梁は、前記可動部材に加速度が印加されると前記可動部材を加速度検出軸方向へ変
位させるよう変形可能な可撓性を有する構成であり、
前記応力感応素子は、前記固定部材と前記可動部材とによって両固定端を夫々支持され
た加速度検知ユニットであって、
前記素子支持部材上の非対称位置に、水晶の結晶軸方向を示す切欠き部、或いはマーキ
ングから成るアライメント用の第1の指標部を配置すると共に、前記応力感応素子上の非
対称位置に、水晶の結晶軸方向を示すと共にアライメント用の第2の指標部を配置したこ
とを特徴とする加速度検知ユニット。
A fixed member that is not displaced by the application of acceleration, and an element support member made of quartz that includes a movable member supported by a beam on the fixed member, and a stress sensitive portion and both ends of the stress sensitive portion are integrated. A stress-sensitive element made of crystal having a fixed end,
The beam is configured to have a flexibility that can be deformed to displace the movable member in an acceleration detection axis direction when acceleration is applied to the movable member.
The stress sensitive element is an acceleration detection unit in which both fixed ends are supported by the fixed member and the movable member,
A notch portion indicating the crystal axis direction of the crystal or a first index portion for alignment made of marking is disposed at the asymmetric position on the element support member, and the crystal is positioned at the asymmetric position on the stress sensitive element. An acceleration detection unit characterized in that a second indicator portion for alignment is arranged while indicating a crystal axis direction.
前記素子支持部材と前記応力感応素子との外形輪郭を一致させると共に、前記第1及び
第2の指標部を手掛かりとして前記素子支持部材と前記応力感応素子との位置ずれを判定
可能に構成したことを特徴とする請求項1に記載の加速度検知ユニット。
The outer contours of the element support member and the stress sensitive element are made to coincide with each other, and the positional deviation between the element support member and the stress sensitive element can be determined using the first and second index portions as a clue. The acceleration detection unit according to claim 1.
前記素子支持部材と前記応力感応素子との対応する特定部位に夫々異なった形状、或い
は異なった着色のマーキングを形成し、前記応力感応素子側のマーキングと前記素子支持
部材側のマーキングとの整合の有無を該応力感応素子を透過して確認可能に構成したこと
を特徴とする請求項1に記載の加速度検知ユニット。
Different shapes or different colored markings are formed at corresponding specific parts of the element support member and the stress sensitive element, and the marking on the stress sensitive element side and the marking on the element support member side are matched. 2. The acceleration detection unit according to claim 1, wherein the presence or absence can be confirmed through the stress sensitive element.
前記切欠き部は、前記素子支持部材、及び前記応力感応素子の端縁に夫々形成される折
り取り残渣を収容するための凹所であることを特徴とする請求項1に記載の加速度検知ユ
ニット。
The acceleration detection unit according to claim 1, wherein the notch is a recess for accommodating a break-off residue formed on an edge of the element support member and the stress sensitive element, respectively. .
前記応力感応素子は、2つの前記固定端、及び各固定端間を連設する2つの振動ビーム
を備えた圧電基板からなる応力感応部と、該圧電基板の振動領域上に形成した励振電極と
、を備えた双音叉型水晶振動素子であることを特徴とする請求項1に記載の加速度検知ユ
ニット。
The stress sensitive element includes a stress sensitive part including a piezoelectric substrate having two fixed ends and two vibration beams connected between the fixed ends, an excitation electrode formed on a vibration region of the piezoelectric substrate, and The acceleration detecting unit according to claim 1, wherein the acceleration detecting unit is a double tuning fork type crystal vibrating element.
請求項1に記載された加速度検知ユニットと、該加速度検知ユニットを収容するパッケ
ージと、を備えた加速度センサであって、
前記パッケージはパッケージ本体と蓋体を有し、前記パッケージ本体の内底部に形成す
る電極パターンの一部を、該パッケージ本体の内底部の正規位置に前記加速度検知ユニッ
トが搭載された際における該加速度検知ユニットの外形輪郭線と合致する形状とし、位置
ずれを判定可能に設定したことを特徴とする加速度センサ。
An acceleration sensor comprising: the acceleration detection unit according to claim 1; and a package that accommodates the acceleration detection unit.
The package has a package main body and a lid, and the acceleration when the acceleration detection unit is mounted at a normal position on the inner bottom of the package main body is formed on a part of the electrode pattern formed on the inner bottom of the package main body. An acceleration sensor characterized in that it has a shape that matches the outline of the detection unit and is set so as to be able to determine misalignment.
前記パッケージ本体の内底部と、前記素子支持部材と、前記応力感応素子との対応する
特定部位に夫々異なった形状、或いは異なった着色のマーキングを形成し、前記パッケー
ジ本体側のマーキングと前記応力感応素子側のマーキングと前記素子支持部材側のマーキ
ングとの整合の有無を該応力感応素子を透過して確認可能に構成したことを特徴とする請
求項6に記載の加速度センサ。
The package body side marking and the stress-sensitive marking are formed on the inner bottom portion of the package body, the element support member, and the stress-sensitive element by forming different colored markings or different colored markings, respectively. The acceleration sensor according to claim 6, wherein the presence or absence of matching between the element-side marking and the element-supporting member-side marking can be confirmed through the stress-sensitive element.
JP2008207677A 2008-08-12 2008-08-12 Acceleration sensing unit and acceleration sensor Withdrawn JP2010043926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207677A JP2010043926A (en) 2008-08-12 2008-08-12 Acceleration sensing unit and acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207677A JP2010043926A (en) 2008-08-12 2008-08-12 Acceleration sensing unit and acceleration sensor

Publications (2)

Publication Number Publication Date
JP2010043926A true JP2010043926A (en) 2010-02-25
JP2010043926A5 JP2010043926A5 (en) 2011-10-20

Family

ID=42015424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207677A Withdrawn JP2010043926A (en) 2008-08-12 2008-08-12 Acceleration sensing unit and acceleration sensor

Country Status (1)

Country Link
JP (1) JP2010043926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686091A (en) * 2017-07-25 2018-02-13 西安交通大学 A kind of curve high overload resonance type micro accelerometer chip
JP2019078591A (en) * 2017-10-23 2019-05-23 株式会社デンソー Physical quantity sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107686091A (en) * 2017-07-25 2018-02-13 西安交通大学 A kind of curve high overload resonance type micro accelerometer chip
JP2019078591A (en) * 2017-10-23 2019-05-23 株式会社デンソー Physical quantity sensor

Similar Documents

Publication Publication Date Title
JP5305028B2 (en) pressure sensor
TWI484149B (en) External force detecting device and external force detecting sensor
US8297124B2 (en) Pressure sensor
US7954215B2 (en) Method for manufacturing acceleration sensing unit
US9188600B2 (en) Method for manufacturing physical quantity detector, and physical quantity detector
WO2006006677A1 (en) Load sensor and method of producing the same
WO2018066557A1 (en) Sensor chip, strain inducing body, and force sensor device
CN111587368B (en) Sensor chip and force sensor device
US20110100125A1 (en) Acceleration sensor
US7856886B2 (en) Pressure sensor having a diaphragm having a pressure-receiving portion receiving a pressure and a thick portion adjacent to the pressure-receiving portion
KR20120131789A (en) Inertial Sensor
JP4888715B2 (en) Pressure sensor for pressure sensor and method for manufacturing the same
JP2010043926A (en) Acceleration sensing unit and acceleration sensor
EP3517979B1 (en) Vibrating beam accelerometer
US9753057B2 (en) Acceleration sensor
US7535158B2 (en) Stress sensitive element
US9146254B2 (en) Dynamic sensor
JP2008309731A (en) Acceleration detection unit and acceleration sensor
JPH06265569A (en) Acceleration sensor unit
JP5208466B2 (en) Tuning fork type vibration gyro
JP2010230401A (en) Pressure sensor
JP5939037B2 (en) Pressure sensor element and electronic device
JP2011102772A (en) Pressure sensor
JP2013246121A (en) Pressure sensor element and method for manufacturing the same, pressure sensor, and electronic apparatus
US20020078762A1 (en) Load sensor employing a crystal unit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120704