JP2010025077A - Device and method for air-fuel ratio control of internal combustion engine - Google Patents

Device and method for air-fuel ratio control of internal combustion engine Download PDF

Info

Publication number
JP2010025077A
JP2010025077A JP2008190618A JP2008190618A JP2010025077A JP 2010025077 A JP2010025077 A JP 2010025077A JP 2008190618 A JP2008190618 A JP 2008190618A JP 2008190618 A JP2008190618 A JP 2008190618A JP 2010025077 A JP2010025077 A JP 2010025077A
Authority
JP
Japan
Prior art keywords
oxygen sensor
air
fuel
output value
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008190618A
Other languages
Japanese (ja)
Inventor
Koichi Mizutani
公一 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mikuni Corp
Original Assignee
Mikuni Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corp filed Critical Mikuni Corp
Priority to JP2008190618A priority Critical patent/JP2010025077A/en
Priority to CN200910151448A priority patent/CN101634253A/en
Publication of JP2010025077A publication Critical patent/JP2010025077A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To determine activation of an oxygen sensor, and appropriately control an air-fuel ratio, on the basis of an output voltage of an oxygen sensor in exhaust gas. <P>SOLUTION: An air-fuel ratio control device which controls the ratio (air-fuel ratio) of a mass of air to a mass of fuel in an air-fuel mixture is provided with the oxygen sensor for detecting the concentration of oxygen contained in the exhaust gas, and a controller for controlling the air-fuel ratio on the basis of signals of the oxygen sensor. When an output value of the oxygen sensor after engine start-up becomes lower than a first set reference value over a period of a first set time period, the control device makes a first fuel-injection control on the basis of the output value of the oxygen sensor. When an output value of the oxygen sensor becomes lower than the first set reference-value over a period of a second set time period, the control device makes a second fuel-injection control on the basis of the output value of the oxygen sensor. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関から排出された排気ガス中における酸素濃度の測定結果に基づき空燃比の制御を行う内燃機関の空燃比制御装置及び空燃比制御方法に関する。   The present invention relates to an air-fuel ratio control apparatus and an air-fuel ratio control method for an internal combustion engine that controls an air-fuel ratio based on a measurement result of oxygen concentration in exhaust gas discharged from the internal combustion engine.

従来から、内燃機関における燃料と空気の混合比(空燃比)を最適化する制御として、内燃機関より排出される排気ガス中の酸素濃度を酸素センサによって検出し、その検出値に基づいて燃料の噴射量を調整するフィードバック制御が行われている。   Conventionally, as control for optimizing the mixing ratio (air-fuel ratio) of fuel and air in an internal combustion engine, the oxygen concentration in the exhaust gas discharged from the internal combustion engine is detected by an oxygen sensor, and based on the detected value, the fuel concentration Feedback control for adjusting the injection amount is performed.

このような内燃機関の空燃比制御に用いられる酸素センサは、一般に、ジルコニア素子(固体電解質)によりそのセンサ本体が構成されている。このジルコニア素子は、所定の温度(例えば300℃)に達すると、排気ガスと大気間の酸素濃度差により起電力を発生し、その起電力は酸素濃度比によって決まる。即ち、ジルコニア素子による酸素センサの出力電圧は、理論空燃比(ガソリン内燃機関の場合、14.7)より濃い混合気(リッチ状態)の時は高い電圧値を示し、理論空燃費より薄い混合気(リーン状態)の時は低電圧値を示す。そこで、この酸素センサの出力電圧値の中間付近に基準値を設定してリッチリーン判定を行い、このリッチリーン判定において酸素センサの出力電圧がこの基準設定値よりも高い場合はリッチ、低い場合はリーンと判定する。そして燃料噴射量を、リッチと判定した場合は減量し、リーンと判定された場合は増量することで、空燃比を理論空燃比に近づける制御を行うようにするのである。   In general, an oxygen sensor used for air-fuel ratio control of such an internal combustion engine has a sensor body constituted by a zirconia element (solid electrolyte). When the zirconia element reaches a predetermined temperature (for example, 300 ° C.), an electromotive force is generated due to an oxygen concentration difference between the exhaust gas and the atmosphere, and the electromotive force is determined by the oxygen concentration ratio. That is, the output voltage of the oxygen sensor by the zirconia element shows a high voltage value when the air-fuel mixture is richer than the stoichiometric air-fuel ratio (14.7 in the case of a gasoline internal combustion engine) (rich state), and the air-fuel mixture is thinner than the stoichiometric air-fuel ratio. When in the (lean state), a low voltage value is indicated. Therefore, a rich lean determination is performed by setting a reference value near the middle of the output voltage value of the oxygen sensor, and when the rich sensor is higher than the reference set value in the rich lean determination, it is rich. Judged as lean. When the fuel injection amount is determined to be rich, the fuel injection amount is decreased. When the fuel injection amount is determined to be lean, the fuel injection amount is increased, and control is performed to bring the air-fuel ratio closer to the stoichiometric air-fuel ratio.

しかし、上述の酸素センサは、センサ素子が所定温度以上に昇温しなければ活性化せず正確な酸素濃度の検出ができない。通常、酸素センサ素子は高温の排気ガスにより加熱され、所定の活性温度以上になるとその出力が安定化する。   However, the above-described oxygen sensor is not activated unless the sensor element is heated to a predetermined temperature or higher, and the oxygen concentration cannot be detected accurately. Usually, the oxygen sensor element is heated by high-temperature exhaust gas, and its output is stabilized when the oxygen sensor element reaches a predetermined activation temperature or higher.

図4は、酸素センサの温度特性を示すものである。図4は、酸素センサの出力電圧は低温(未活性)の状態では高く、始動開始後徐々に下がり、ある程度センサ素子温度が上昇したところでリッチとリーンの電圧差が生じ始め(不完全活性)、その後リッチとリーンの明確な電圧差を保って一定に落ち着く(完全活性)ことを示している。そのため、内燃機関の空燃比制御においてリッチリーン判定を正確に行うには、先ず酸素センサが十分に活性化したか否かを判定する必要がある。   FIG. 4 shows the temperature characteristics of the oxygen sensor. FIG. 4 shows that the output voltage of the oxygen sensor is high in a low temperature (inactive) state, gradually decreases after starting, and when the sensor element temperature rises to some extent, a rich and lean voltage difference begins to occur (incomplete activation). After that, it shows that the voltage difference between rich and lean is kept constant (it is completely active). Therefore, in order to accurately perform the rich lean determination in the air-fuel ratio control of the internal combustion engine, it is necessary to first determine whether or not the oxygen sensor is sufficiently activated.

図5は、従来の内燃機関の空燃比制御における酸素センサの活性化判定方法の第1の例を示すものである。図5に示すように、酸素センサの活性化を判定するためには先ず、(1)酸素センサの出力値が、予め設定した活性化判定電圧以下であるかをチェックする。そして、(2)酸素センサの出力値が予め設定した活性化判定電圧以下の状態が、所定時間に亘って連続して経過したかをチェックする。そして、上記(1)及び(2)のチェックが共に「YES」の判定であった場合に、酸素センサが活性化したものと判断し、空燃比制御のリッチリーン判定に移行するようにしていた。   FIG. 5 shows a first example of a conventional oxygen sensor activation determination method in air-fuel ratio control of an internal combustion engine. As shown in FIG. 5, in order to determine the activation of the oxygen sensor, first, (1) it is checked whether the output value of the oxygen sensor is equal to or lower than a preset activation determination voltage. Then, (2) it is checked whether a state where the output value of the oxygen sensor is equal to or lower than a preset activation determination voltage has elapsed for a predetermined time. When both of the above checks (1) and (2) are “YES”, it is determined that the oxygen sensor has been activated, and the routine proceeds to rich lean determination of air-fuel ratio control. .

また、従来の空燃比制御における酸素センサの活性化判定の第2の例として、燃料カット中であると判断された時に酸素センサの出力が予め設定した第1の活性判定値以上であるか否かを判断し、次に上記酸素センサの出力が上記第1の活性化判定値を下回る第2の活性判定値以上であるか否かを継続して判断された時に、上記酸素センサの活性を判断するようにした酸素センサの活性化判断装置が知られている(例えば、特許文献1を参照)。
特許第2745754号公報
Further, as a second example of the oxygen sensor activation determination in the conventional air-fuel ratio control, whether or not the output of the oxygen sensor is equal to or higher than a preset first activity determination value when it is determined that the fuel is being cut. Next, when it is continuously determined whether or not the output of the oxygen sensor is equal to or higher than the second activation determination value lower than the first activation determination value, the activity of the oxygen sensor is determined. There is known an oxygen sensor activation determination device for determination (see, for example, Patent Document 1).
Japanese Patent No. 2745754

一方、近年では、酸素センサをすばやく活性化させるため、センサ素子を加熱するヒータを内蔵した酸素センサが用いられている。しかし、このヒータに通電する電源は通常、バッテリー又は発電機を使用しているため、バッテリーの充電不足や発電機の起電力不足等の要因により電源電圧が低くなった場合、ヒータの発熱量が低下することになる。この場合、センサ素子は十分に加熱されず、その昇温が緩慢になる。また、雨中走行等の場合も同様に、センサ素子の昇温が遅くなる。センサ素子の昇温が緩慢になれば、図4に示す酸素センサの出力電圧の降下も緩慢になり、酸素センサが活性化と判断されてもリッチリーン判定で誤判定が生じてしまう危険性がある。   On the other hand, in recent years, in order to quickly activate the oxygen sensor, an oxygen sensor incorporating a heater for heating the sensor element is used. However, since the power supply for energizing the heater usually uses a battery or a generator, if the power supply voltage becomes low due to insufficient charging of the battery or insufficient electromotive force of the generator, the amount of heat generated by the heater is reduced. Will be reduced. In this case, the sensor element is not heated sufficiently, and its temperature rise becomes slow. Similarly, in the case of running in the rain, the temperature rise of the sensor element is delayed. If the temperature rise of the sensor element becomes slow, the drop in the output voltage of the oxygen sensor shown in FIG. 4 also slows down, and there is a risk that an erroneous determination will occur in the rich lean determination even if it is determined that the oxygen sensor is activated. is there.

図6は、上記した従来の内燃機関の空燃比制御におけるリッチリーン判定の誤判定を説明するための模式図である。図6に示すように、酸素センサ素子の温度上昇が遅くセンサ出力電圧がなかなか下降しない場合、活性化判定により完全活性と判断されたとしても、実際には未だ不完全活性の状態にある可能性がある。このような場合、空燃比状態がリーンであるにも関わらず、酸素センサの出力電圧はリッチリーン判定電圧以上となっているため、リッチと誤判定してしまう。さらに、この誤判定に基づいて燃料の噴射量を減量すれば、オーバーリーンによる内燃機関停止等の内燃機関運転制御の不良を招来することになる。このように、従来の活性化判定及びリッチリーン判定では、センサ素子の昇温が緩慢な場合にはその判定精度が劣化するという問題があったのである。   FIG. 6 is a schematic diagram for explaining erroneous determination of rich lean determination in the above-described conventional air-fuel ratio control of an internal combustion engine. As shown in FIG. 6, when the temperature of the oxygen sensor element is slow and the sensor output voltage does not decrease easily, even if it is determined that the activation is complete by the activation determination, the oxygen sensor element may actually be in an incompletely active state. There is. In such a case, although the air-fuel ratio state is lean, the output voltage of the oxygen sensor is equal to or higher than the rich lean determination voltage, so that it is erroneously determined as rich. Further, if the fuel injection amount is reduced based on this erroneous determination, an internal combustion engine operation control failure such as an internal combustion engine stop due to over leaning will be caused. Thus, the conventional activation determination and rich lean determination have a problem that the determination accuracy deteriorates when the temperature of the sensor element is slow.

なお、従来において、センサ素子の温度(素子内部抵抗)に基づいて活性化判定を行う空燃比制御が開発されている。この装置によれば、早く正確な判定が可能となるが、コストが高くなるという問題があった。   Conventionally, air-fuel ratio control that performs activation determination based on the temperature of the sensor element (element internal resistance) has been developed. According to this apparatus, accurate determination can be made quickly, but there is a problem that the cost increases.

本発明は、上記した従来技術の課題に鑑みてなされたものであり、酸素センサの活性化判定とリッチリーン判定をそれぞれ二段階に亘って行うことにより、正確で安定性に優れた空燃比制御を行うことができる内燃機関の空燃比制御装置及び空燃比制御方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art. By performing the oxygen sensor activation determination and the rich lean determination in two stages, the air-fuel ratio control is accurate and excellent in stability. It is an object of the present invention to provide an air-fuel ratio control apparatus and an air-fuel ratio control method for an internal combustion engine that can perform the above.

このため、本発明は、上記課題を解決するために、燃料と空気の混合気における空気質量と燃料質量の比(空燃比)を制御する内燃機関の空燃比制御装置において、排気ガス中に含まれる酸素濃度を検出する酸素センサと、前記酸素センサの信号に基づいて前記空燃比を制御する制御装置と、を備え、前記制御装置は、前記内燃機関の起動後前記酸素センサの出力値が第1の設定時間に亘って第1の基準設定値を下回った場合に当該酸素センサの出力値に基づいて第1の燃料噴射制御を行い、その後、前記酸素センサの出力値が第2の設定時間に亘って前記第1の基準設定値よりも低く設定された第2の基準設定値を下回った場合に当該酸素センサの出力値に基づいて第2の燃料噴射制御を行う、ことを特徴とする内燃機関の空燃比制御装置を提供する。   Therefore, in order to solve the above problems, the present invention includes an air-fuel ratio control apparatus for an internal combustion engine that controls the ratio of air mass to fuel mass (air-fuel ratio) in a fuel-air mixture. An oxygen sensor for detecting the oxygen concentration and a control device for controlling the air-fuel ratio based on a signal from the oxygen sensor, wherein the control device outputs an output value of the oxygen sensor after the start of the internal combustion engine. The first fuel injection control is performed based on the output value of the oxygen sensor when it falls below the first reference set value for a set time of 1, and then the output value of the oxygen sensor is set to the second set time. The second fuel injection control is performed based on the output value of the oxygen sensor when the value falls below the second reference set value set lower than the first reference set value over a period of time. Air-fuel ratio control device for internal combustion engine To provide.

ここで前記制御装置は、前記第1の燃料噴射制御においては、前記酸素センサの出力値が所定の第1のリッチリーン判定電圧を超えたか否かに基づいて行い、前記第2の燃料噴射制御においては、前記酸素センサの出力値が所定の第2のリッチリーン判定電圧を超えたか否かに基づいて行う。   Here, in the first fuel injection control, the control device performs the second fuel injection control based on whether an output value of the oxygen sensor exceeds a predetermined first rich lean determination voltage. Is performed based on whether or not the output value of the oxygen sensor exceeds a predetermined second rich lean determination voltage.

また、本発明は、上記課題を解決するために、排気ガス中に含まれる酸素濃度に比例する信号を出力する酸素センサの出力値に基づいて、燃料と空気の混合気における空気質量と燃料質量の比(空燃比)を制御する内燃機関の空燃比制御方法において、
(a)前記内燃機関の起動時に前記酸素センサに通電する行程と、
(b)前記酸素センサの出力値が第1の設定時間に亘って第1の基準設定値を下回ったことを確認する行程と、
(c)前記酸素センサの出力値に基づいて第1の燃料噴射制御を行う行程と、
(d)前記酸素センサの出力値が第2の設定時間に亘って前記第1の基準設定値よりも低く設定された第2の基準設定値を下回ったことを確認する行程と、
(e)前記酸素センサの出力値に基づいて第2の燃料噴射制御を行う行程と、の各工程を有することを特徴とする内燃機関の空燃比制御方法を提供する。
In order to solve the above problems, the present invention provides an air mass and a fuel mass in a fuel-air mixture based on an output value of an oxygen sensor that outputs a signal proportional to the oxygen concentration contained in the exhaust gas. In an air-fuel ratio control method for an internal combustion engine that controls the ratio (air-fuel ratio) of
(A) a process of energizing the oxygen sensor when the internal combustion engine is started;
(B) a step of confirming that the output value of the oxygen sensor has fallen below a first reference set value over a first set time;
(C) a step of performing first fuel injection control based on an output value of the oxygen sensor;
(D) a step of confirming that the output value of the oxygen sensor has fallen below a second reference set value set lower than the first reference set value over a second set time;
(E) There is provided an air-fuel ratio control method for an internal combustion engine characterized by comprising steps of performing a second fuel injection control based on an output value of the oxygen sensor.

ここで前記第1の燃料噴射制御は、前記酸素センサの出力値が所定の第1のリッチリーン判定電圧を超えたか否かに基づいて行い、前記第2の燃料噴射制御は、前記酸素センサの出力値が所定の第2のリッチリーン判定電圧を超えたか否かに基づいて行う。   Here, the first fuel injection control is performed based on whether or not the output value of the oxygen sensor exceeds a predetermined first rich lean determination voltage, and the second fuel injection control is performed by the oxygen sensor. This is performed based on whether the output value exceeds a predetermined second rich lean determination voltage.

本発明によれば、酸素センサの活性化判定とリッチリーン判定をそれぞれ二段階に亘って行うことにより、酸素センサ内部に配設されているヒータに通電する電源電圧が低電圧の場合、もしくは雨中走行等の場合でも、リッチリーン判定の精度を向上させることができる。   According to the present invention, the activation determination and the rich lean determination of the oxygen sensor are performed in two stages, respectively, so that the power supply voltage to be supplied to the heater disposed in the oxygen sensor is low voltage or in the rain Even in the case of running or the like, the accuracy of rich lean determination can be improved.

また、従来の酸素センサ活性化判定に比較して、センサ素子の出力電圧が高い状態から活性化判定及びリッチリーン判定を行うことができる。そのため、判定までの時間を短縮することができるのである。   Further, the activation determination and the rich lean determination can be performed from a state in which the output voltage of the sensor element is high as compared with the conventional oxygen sensor activation determination. Therefore, the time until the determination can be shortened.

さらに、センサ素子の温度を基にした活性化判定ではなく、酸素センサの出力値と時間から判定を行うため、コストを低減できたのである。   Furthermore, since the determination based on the output value and time of the oxygen sensor is performed instead of the activation determination based on the temperature of the sensor element, the cost can be reduced.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の空燃比制御装置及び方法における酸素センサ12(図2)の活性化判定及びリッチリーン判定を説明するためのグラフ(模式図)を示す。
図1に示すグラフおいて、縦軸はジルコニア素子による酸素センサの出力電圧を示し、横軸は内燃機関を起動した後の経過時間を示す。ところで、上述したように、ジルコニア素子による酸素センサ12は、内燃機関がリッチ状態で運転されている(排気ガス中の酸素濃度が薄い)時には高い出力値を示し、内燃機関がリーン状態で運転されている(排気ガス中の酸素濃度が濃い)時には低い出力値を示す特性を有するものである。
FIG. 1 is a graph (schematic diagram) for explaining activation determination and rich lean determination of the oxygen sensor 12 (FIG. 2) in the air-fuel ratio control apparatus and method of the present invention.
In the graph shown in FIG. 1, the vertical axis represents the output voltage of the oxygen sensor using a zirconia element, and the horizontal axis represents the elapsed time after starting the internal combustion engine. By the way, as described above, the oxygen sensor 12 using a zirconia element exhibits a high output value when the internal combustion engine is operated in a rich state (the oxygen concentration in the exhaust gas is low), and the internal combustion engine is operated in a lean state. When the engine is in a high state (the oxygen concentration in the exhaust gas is high), it has a characteristic that exhibits a low output value.

図1に示すように、内燃機関の始動後暫らくの間は、酸素センサ12は活性化しておらず又は活性化した状態であっても内燃機関がリッチ状態で始動されることにより排気ガス中の酸素濃度が薄く、酸素センサ12は高い出力値を示す。その後、酸素センサ12の温度が徐々に上昇すると共に内燃機関の起動時のリッチ状態の運転が解消されるに従って酸素センサ12の出力電圧は低下する。   As shown in FIG. 1, for a while after the internal combustion engine is started, even if the oxygen sensor 12 is not activated or activated, the internal combustion engine is started in a rich state, thereby causing exhaust gas in the exhaust gas. The oxygen sensor 12 shows a high output value. Thereafter, as the temperature of the oxygen sensor 12 gradually rises, the output voltage of the oxygen sensor 12 decreases as the rich operation at the start of the internal combustion engine is eliminated.

そして、内燃機関の起動後所定時間経過した時点(図1の例では、23秒後)において、酸素センサ12の出力値が第1の設定時間(図1の例では、2乃至3秒間)に亘って第1の基準設定値(図1の例では、1000mV)を下回ったことを確認して、酸素センサ12の出力値に基づいて第1の燃料噴射制御を行う。   Then, when a predetermined time elapses after starting the internal combustion engine (after 23 seconds in the example of FIG. 1), the output value of the oxygen sensor 12 reaches the first set time (2 to 3 seconds in the example of FIG. 1). Over the first reference set value (1000 mV in the example of FIG. 1), the first fuel injection control is performed based on the output value of the oxygen sensor 12.

ここで、この第1の設定時間は、第1のリッチリーン判定電圧と第2のリッチリーン判定電圧の差に基づいて決められる。そして、当該第1の燃料噴射制御は、酸素センサ12の出力値が所定の第1のリッチリーン判定電圧を超えたか否かに基づいて行うのである。   Here, the first set time is determined based on the difference between the first rich lean determination voltage and the second rich lean determination voltage. The first fuel injection control is performed based on whether or not the output value of the oxygen sensor 12 exceeds a predetermined first rich lean determination voltage.

その後、酸素センサ12の出力値が第2の設定時間(図1の例では、1乃至2秒間)に亘って前記第1の基準設定値よりも低く設定された第2の基準設定値(図1の例では、600mV)を下回ったことを確認して、酸素センサ12の出力値に基づいて第2の燃料噴射制御を行う。ここで、この第2の設定時間は、より正確な判定を行うためには長い方が望ましいが、判定を迅速に行うには酸素センサの電圧特性に基づいて適切な時間を設定する。そして、当該第2の燃料噴射制御は、酸素センサ12の出力値が所定の第2のリッチリーン判定電圧を超えたか否かに基づいて行うのである。   Thereafter, a second reference set value (see FIG. 1) in which the output value of the oxygen sensor 12 is set lower than the first reference set value over a second set time (1 to 2 seconds in the example of FIG. 1). In the first example, it is confirmed that the voltage is lower than 600 mV), and the second fuel injection control is performed based on the output value of the oxygen sensor 12. Here, the second set time is preferably longer in order to make a more accurate determination, but in order to make the determination quickly, an appropriate time is set based on the voltage characteristics of the oxygen sensor. Then, the second fuel injection control is performed based on whether or not the output value of the oxygen sensor 12 exceeds a predetermined second rich lean determination voltage.

図2は、本発明に係る内燃機関の空燃比制御装置の構成を示すブロック図である。図2に示すように、本発明の空燃比制御装置10は、制御部11と酸素センサ12とから構成される。制御部11は、酸素センサ12の出力値をモニタリングし、これに基づき酸素センサ12の活性化判定、及び内燃機関21における空燃比のリッチリーン判定を行う。さらにこのリッチリーン判定に基づく燃料噴射制御を行う。酸素センサ12は、内燃機関21の排気ガス経路に設置され、例えば排気ガスを排出する排気管21A内又は内燃機関を搭載する車両のマフラー内(図示せず)に配置され、その排気ガス内の酸素濃度に応じた電圧を出力する。この酸素センサ12はヒータ12Aを内蔵している。   FIG. 2 is a block diagram showing the configuration of the air-fuel ratio control apparatus for an internal combustion engine according to the present invention. As shown in FIG. 2, the air-fuel ratio control device 10 of the present invention includes a control unit 11 and an oxygen sensor 12. The control unit 11 monitors the output value of the oxygen sensor 12, and based on this, the activation determination of the oxygen sensor 12 and the rich lean determination of the air-fuel ratio in the internal combustion engine 21 are performed. Further, fuel injection control based on the rich lean determination is performed. The oxygen sensor 12 is installed in the exhaust gas path of the internal combustion engine 21 and is disposed, for example, in the exhaust pipe 21A for exhaust gas exhaust or in the muffler (not shown) of the vehicle on which the internal combustion engine is mounted. Outputs voltage according to oxygen concentration. The oxygen sensor 12 includes a heater 12A.

制御部11は、酸素センサ12から出力されるアナログ値をディジタル変換するためのA/D変換器、上記した第1の基準設定値、第2の基準設定値、第1の設定時間、第2の設定時間等の固定値や制御プログラムを記憶するROMと、変数値等を記憶するRAMとから構成されるメモリ及び演算処理を行うCPU等を含む。   The control unit 11 converts the analog value output from the oxygen sensor 12 into an A / D converter, the above-described first reference set value, second reference set value, first set time, second The memory includes a ROM that stores a fixed value such as a set time and a control program, and a RAM that stores a variable value and the like, and a CPU that performs arithmetic processing.

図3は、本発明に係る内燃機関の空燃比制御方法における処理の流れを示すフローチャートである。   FIG. 3 is a flowchart showing a processing flow in the air-fuel ratio control method for an internal combustion engine according to the present invention.

本発明では、上述したように、酸素センサ12の活性化判定とリッチリーン判定を、それぞれ二段階に亘って行う。具体的には、図3に示すように、内燃機関21の始動後、一段目活性化判定を行う。まず、内燃機関21を始動とともにヒータ12Aに通電する(ステップS1)。次いで、制御部11は現在の酸素センサ出力電圧値が予め設定した一段目活性化判定電圧値より低い値か否かを判定する(ステップS2)。   In the present invention, as described above, the activation determination and the rich lean determination of the oxygen sensor 12 are performed in two stages. Specifically, as shown in FIG. 3, after the internal combustion engine 21 is started, the first stage activation determination is performed. First, the internal combustion engine 21 is started and energized to the heater 12A (step S1). Next, the control unit 11 determines whether or not the current oxygen sensor output voltage value is lower than a preset first stage activation determination voltage value (step S2).

ここで酸素センサ出力電圧値が一段目活性化判定電圧値より低い値の場合は、その状態が所定時間T1時間(例えば、3秒)持続しているか否かを判定する(ステップS3)。持続している場合は、制御部11は一段目活性化判定において活性と判断し、次のステップに進む。   Here, if the oxygen sensor output voltage value is lower than the first stage activation determination voltage value, it is determined whether or not the state continues for a predetermined time T1 time (for example, 3 seconds) (step S3). When it is sustained, the control unit 11 determines that the first stage activation determination is active, and proceeds to the next step.

第一段目活性化判定において活性と判断されると、一段目リッチリーン判定に移行する。即ち、制御部11は現在の酸素センサ出力電圧値が一段目リッチリーン判定電圧値より高い値か否かを判定する(ステップS4)。高い値の場合、制御装置はリッチと判断し、燃料噴射量を減量する制御を行う(ステップS5)。一方、低い値の場合は、制御部11はリーンと判断して燃料噴射量を増量する制御を行う(ステップS6)ようにする。   If it is determined to be active in the first stage activation determination, the process proceeds to the first stage rich lean determination. That is, the control unit 11 determines whether or not the current oxygen sensor output voltage value is higher than the first stage rich lean determination voltage value (step S4). If the value is high, the control device determines that the fuel is rich and performs control to reduce the fuel injection amount (step S5). On the other hand, if the value is low, the control unit 11 determines that the fuel is lean and performs control to increase the fuel injection amount (step S6).

次いで、第二段目活性化判定に移行する。この第二段目活性化判定においては、制御部11は現在の酸素センサ出力電圧値が予め設定した二段目活性化判定電圧値より低い値か否かを判定する(ステップS7)。このとき、二段目活性化判定電圧値は一段目活性化判定電圧値よりも低い値に設定されている。酸素センサ出力電圧値が二段目活性化判定電圧値より低い値の場合は、その状態が所定時間T2時間(例えば、3秒)持続しているか否かを判定する(ステップS8)。持続している場合は、制御部11は二段目活性化判定において活性と判断し、次のステップに進む。   Next, the process proceeds to the second stage activation determination. In this second stage activation determination, the control unit 11 determines whether or not the current oxygen sensor output voltage value is lower than a preset second stage activation determination voltage value (step S7). At this time, the second stage activation determination voltage value is set to a value lower than the first stage activation determination voltage value. If the oxygen sensor output voltage value is lower than the second-stage activation determination voltage value, it is determined whether or not the state continues for a predetermined time T2 (for example, 3 seconds) (step S8). If it is sustained, the control unit 11 determines that it is active in the second stage activation determination, and proceeds to the next step.

第二段目活性化判定において活性と判断されると、二段目リッチリーン判定に移行する。即ち、制御部11は現在の酸素センサ出力電圧値が二段目リッチリーン判定電圧値より高い値か否かを判定する(ステップS9)。このとき、二段目リッチリーン判定電圧値は一段目リッチリーン判定電圧値よりも低い値に設定されている。酸素センサ出力電圧値が二段目リッチリーン判定電圧値より高い値の場合、制御装置はリッチと判断し、燃料噴射量を減量する制御を行う(ステップS10)。一方、低い値の場合は、制御部11はリーンと判断して燃料噴射量を増量する制御を行う(ステップS11)。この二段階の活性化判定及びリッチリーン判定は、内燃機関21の駆動中繰り返され、その都度これに基づく燃料噴射制御が行われる。   If it is determined to be active in the second stage activation determination, the process proceeds to the second stage rich lean determination. That is, the control unit 11 determines whether or not the current oxygen sensor output voltage value is higher than the second-stage rich lean determination voltage value (step S9). At this time, the second stage rich lean determination voltage value is set to a value lower than the first stage rich lean determination voltage value. When the oxygen sensor output voltage value is higher than the second stage rich lean determination voltage value, the control device determines that the oxygen is rich and performs control to reduce the fuel injection amount (step S10). On the other hand, if the value is low, the control unit 11 determines that the fuel is lean and performs control to increase the fuel injection amount (step S11). The two-stage activation determination and rich-lean determination are repeated while the internal combustion engine 21 is being driven, and fuel injection control based on this is performed each time.

尚、上記実施形態ではヒータ内蔵型の酸素センサを用いる場合の処理について示したが、ヒータレスの酸素センサを用いた場合でも同様の流れで内燃機関の空燃比制御が可能である。ヒータレスの酸素センサの場合は、排気ガスにより加熱され活性化する。   In the above embodiment, the processing in the case where the heater built-in type oxygen sensor is used has been described. However, even when the heaterless oxygen sensor is used, the air-fuel ratio control of the internal combustion engine can be performed in the same flow. In the case of a heaterless oxygen sensor, it is heated and activated by exhaust gas.

上記のように構成したため、本発明によれば、酸素センサの活性化判定とリッチリーン判定をそれぞれ二段階に亘って行うことにより、酸素センサ内部に配設されているヒータに通電する電源電圧が低電圧の場合、もしくは雨中走行の場合でも、リッチリーン判定精度を向上させることができる。   Since it comprised as mentioned above, according to this invention, the power supply voltage which supplies with electricity to the heater arrange | positioned inside an oxygen sensor by performing activation determination and rich lean determination of an oxygen sensor in two steps, respectively. The rich lean determination accuracy can be improved even in the case of low voltage or traveling in the rain.

また、従来の酸素センサ活性化判定に比較して、センサ素子の出力電圧が高い状態から活性化判定及びリッチリーン判定を行うことができる。そのため、判定までの時間を短縮することができる。   Further, the activation determination and the rich lean determination can be performed from a state in which the output voltage of the sensor element is high as compared with the conventional oxygen sensor activation determination. Therefore, the time until the determination can be shortened.

さらに、センサ素子の温度を基にした活性化判定ではなく、酸素センサの出力値と時間から判定を行うため、コストを低減できるのである。   Furthermore, since the determination based on the output value and time of the oxygen sensor is performed instead of the activation determination based on the temperature of the sensor element, the cost can be reduced.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, Based on the meaning of this invention, various deformation | transformation are possible, These are excluded from the scope of the present invention. is not.

本発明は、内燃機関から排出された排気ガス中における酸素濃度の測定結果に基づき空燃比の制御を行う内燃機関の空燃比制御装置及び空燃比制御方法に関するものであり、産業上の利用可能性を有する。   The present invention relates to an air-fuel ratio control device and an air-fuel ratio control method for an internal combustion engine that controls the air-fuel ratio based on the measurement result of the oxygen concentration in the exhaust gas discharged from the internal combustion engine. Have

本発明の空燃比制御装置及び方法における酸素センサの活性化判定及びリッチリーン判定を説明するためのグラフ(模式図)を示す。The graph (schematic diagram) for demonstrating activation determination of an oxygen sensor and rich lean determination in the air fuel ratio control apparatus and method of this invention is shown. 本発明に係る内燃機関の空燃比制御装置の構成を示すブロック図である。1 is a block diagram showing a configuration of an air-fuel ratio control apparatus for an internal combustion engine according to the present invention. 本発明に係る内燃機関の空燃比制御方法における処理の流れを示すフローチャートである。3 is a flowchart showing a flow of processing in an air-fuel ratio control method for an internal combustion engine according to the present invention. 内燃機関の排気ガス中の酸素濃度を測定する一般的な酸素センサの温度特性図である。It is a temperature characteristic figure of the general oxygen sensor which measures the oxygen concentration in the exhaust gas of an internal-combustion engine. 従来の内燃機関の空燃比制御における酸素センサの活性化判定の概略を示す模式図である。It is a schematic diagram which shows the outline of the activation determination of the oxygen sensor in the air-fuel ratio control of the conventional internal combustion engine. 従来の内燃機関の空燃比制御におけるリッチリーン判定の誤判定を説明するための模式図である。It is a schematic diagram for demonstrating the misjudgment of the rich lean judgment in the air fuel ratio control of the conventional internal combustion engine.

符号の説明Explanation of symbols

10 空燃比制御装置
11 制御部
12 酸素センサ
12A ヒータ
21 内燃機関
21A 排気管
DESCRIPTION OF SYMBOLS 10 Air fuel ratio control apparatus 11 Control part 12 Oxygen sensor 12A Heater 21 Internal combustion engine 21A Exhaust pipe

Claims (4)

燃料と空気の混合気における空気質量と燃料質量の比(以下、「空燃比」という)を制御する内燃機関の空燃比制御装置において、
排気ガス中に含まれる酸素濃度を検出する酸素センサと、
前記酸素センサの信号に基づいて前記空燃比を制御する制御装置と、を備え、
前記制御装置は、前記内燃機関の起動後前記酸素センサの出力値が第1の設定時間に亘って第1の基準設定値を下回った場合に当該酸素センサの出力値に基づいて第1の燃料噴射制御を行い、その後、前記酸素センサの出力値が第2の設定時間に亘って前記第1の基準設定値よりも低く設定された第2の基準設定値を下回った場合に当該酸素センサの出力値に基づいて第2の燃料噴射制御を行う、ことを特徴とする内燃機関の空燃比制御装置。
In an air-fuel ratio control apparatus for an internal combustion engine that controls a ratio of air mass to fuel mass (hereinafter referred to as “air-fuel ratio”) in a mixture of fuel and air,
An oxygen sensor for detecting the oxygen concentration contained in the exhaust gas;
A control device for controlling the air-fuel ratio based on a signal of the oxygen sensor,
When the output value of the oxygen sensor falls below a first reference set value for a first set time after the internal combustion engine is started, the control device performs the first fuel operation based on the output value of the oxygen sensor. When the injection control is performed and then the output value of the oxygen sensor falls below the second reference set value set lower than the first reference set value over a second set time, the oxygen sensor An air-fuel ratio control apparatus for an internal combustion engine, wherein second fuel injection control is performed based on an output value.
前記制御装置は、
前記第1の燃料噴射制御においては、前記酸素センサの出力値が所定の第1のリッチリーン判定電圧を超えたか否かに基づいて行い、
前記第2の燃料噴射制御においては、前記酸素センサの出力値が所定の第2のリッチリーン判定電圧を超えたか否かに基づいて行う、
ことを特徴とする請求項1に記載の内燃機関の空燃比制御装置。
The controller is
The first fuel injection control is performed based on whether an output value of the oxygen sensor exceeds a predetermined first rich lean determination voltage,
The second fuel injection control is performed based on whether the output value of the oxygen sensor exceeds a predetermined second rich lean determination voltage.
The air-fuel ratio control apparatus for an internal combustion engine according to claim 1, wherein:
排気ガス中に含まれる酸素濃度に比例する信号を出力する酸素センサの出力値に基づいて、燃料と空気の混合気における空気質量と燃料質量の比(以下、「空燃比」という)を制御する内燃機関の空燃比制御方法において、
(a)前記内燃機関の起動時に前記酸素センサに通電する行程と、
(b)前記酸素センサの出力値が第1の設定時間に亘って第1の基準設定値を下回ったことを確認する行程と、
(c)前記酸素センサの出力値に基づいて第1の燃料噴射制御を行う行程と、
(d)前記酸素センサの出力値が第2の設定時間に亘って前記第1の基準設定値よりも低く設定された第2の基準設定値を下回ったことを確認する行程と、
(e)前記酸素センサの出力値に基づいて第2の燃料噴射制御を行う行程と、
の各工程を有することを特徴とする内燃機関の空燃比制御方法。
Based on the output value of the oxygen sensor that outputs a signal proportional to the oxygen concentration contained in the exhaust gas, the ratio of the air mass to the fuel mass (hereinafter referred to as “air-fuel ratio”) in the fuel-air mixture is controlled. In an air-fuel ratio control method for an internal combustion engine,
(A) a process of energizing the oxygen sensor when the internal combustion engine is started;
(B) a step of confirming that the output value of the oxygen sensor has fallen below a first reference set value over a first set time;
(C) a step of performing first fuel injection control based on an output value of the oxygen sensor;
(D) a step of confirming that the output value of the oxygen sensor has fallen below a second reference set value set lower than the first reference set value over a second set time;
(E) performing a second fuel injection control based on the output value of the oxygen sensor;
An air-fuel ratio control method for an internal combustion engine comprising the steps of:
前記第1の燃料噴射制御は、前記酸素センサの出力値が所定の第1のリッチリーン判定電圧を超えたか否かに基づいて行い、
前記第2の燃料噴射制御は、前記酸素センサの出力値が所定の第2のリッチリーン判定電圧を超えたか否かに基づいて行う、
ことを特徴とする請求項3に記載の内燃機関の空燃比制御方法。
The first fuel injection control is performed based on whether an output value of the oxygen sensor exceeds a predetermined first rich lean determination voltage,
The second fuel injection control is performed based on whether an output value of the oxygen sensor exceeds a predetermined second rich lean determination voltage.
The air-fuel ratio control method for an internal combustion engine according to claim 3.
JP2008190618A 2008-07-24 2008-07-24 Device and method for air-fuel ratio control of internal combustion engine Pending JP2010025077A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008190618A JP2010025077A (en) 2008-07-24 2008-07-24 Device and method for air-fuel ratio control of internal combustion engine
CN200910151448A CN101634253A (en) 2008-07-24 2009-07-21 Air-fuel ratio control device of internal combustion engine and air-fuel ratio control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190618A JP2010025077A (en) 2008-07-24 2008-07-24 Device and method for air-fuel ratio control of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010025077A true JP2010025077A (en) 2010-02-04

Family

ID=41593560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190618A Pending JP2010025077A (en) 2008-07-24 2008-07-24 Device and method for air-fuel ratio control of internal combustion engine

Country Status (2)

Country Link
JP (1) JP2010025077A (en)
CN (1) CN101634253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530288A3 (en) * 2011-05-31 2014-10-29 Yamaha Hatsudoki Kabushiki Kaisha Activation determining system for oxygen sensor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6586942B2 (en) * 2016-12-26 2019-10-09 トヨタ自動車株式会社 Control device for internal combustion engine
JP6857555B2 (en) * 2017-06-08 2021-04-14 株式会社ミクニ Engine control device and engine control program
CN111486013B (en) * 2019-01-28 2021-10-22 比亚迪股份有限公司 Engine combustion control method and device, storage medium and vehicle
CN112343725B (en) * 2019-08-07 2023-03-03 联合汽车电子有限公司 Control system and control method
WO2021166201A1 (en) * 2020-02-20 2021-08-26 本田技研工業株式会社 Heater control device for air–fuel ratio sensor and heater control method for air–fuel ratio sensor
CN111677597B (en) * 2020-03-31 2022-07-08 江苏疯车网络科技有限公司 Air-fuel ratio control system of electronic fuel injection engine
CN111983132A (en) * 2020-08-14 2020-11-24 昆明贵研催化剂有限责任公司 Small sample evaluation method for performance of three-way catalyst
CN114704362A (en) * 2021-04-26 2022-07-05 长城汽车股份有限公司 Lean-burn NOx trap fault detection method, device, vehicle, medium and equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170533A (en) * 1986-12-29 1988-07-14 Honda Motor Co Ltd Fuel supply control method after starting of internal combustion engine
JPH1019827A (en) * 1996-07-04 1998-01-23 Denso Corp Control apparatus for air-fuel ratio of internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09126040A (en) * 1995-11-02 1997-05-13 Hitachi Ltd Control device for internal combustion engine
JP4051725B2 (en) * 1996-07-19 2008-02-27 株式会社デンソー Air-fuel ratio control method
JP2003148208A (en) * 2001-11-06 2003-05-21 Suzuki Motor Corp Air-fuel ratio control device for internal combustion engine
JP2007231844A (en) * 2006-03-01 2007-09-13 Mitsubishi Electric Corp Control device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63170533A (en) * 1986-12-29 1988-07-14 Honda Motor Co Ltd Fuel supply control method after starting of internal combustion engine
JPH1019827A (en) * 1996-07-04 1998-01-23 Denso Corp Control apparatus for air-fuel ratio of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530288A3 (en) * 2011-05-31 2014-10-29 Yamaha Hatsudoki Kabushiki Kaisha Activation determining system for oxygen sensor

Also Published As

Publication number Publication date
CN101634253A (en) 2010-01-27

Similar Documents

Publication Publication Date Title
JP2010025077A (en) Device and method for air-fuel ratio control of internal combustion engine
JP5348336B2 (en) Failure detection device for electrically heated catalyst
KR101442391B1 (en) Emission control system for internal combustion engine
JP5519571B2 (en) Gas sensor device and control method thereof
JP5817581B2 (en) Exhaust gas purification device for internal combustion engine
JPH0921309A (en) Exhaust gas purification device for internal combustion engine
JP6241360B2 (en) Exhaust gas sensor heater control device
JP2004069457A (en) Apparatus for detecting degradation of air/fuel ratio detecting device
JP3706075B2 (en) O2 sensor and air-fuel ratio control device
JP3982624B2 (en) Heater control device
JP6551314B2 (en) Gas sensor controller
JP6888563B2 (en) Internal combustion engine control device
JPH08165943A (en) Internal combustion engine control device
JP2008038720A (en) Abnormality diagnosis device for downstream side oxygen sensor of exhaust emission control system
JP6268874B2 (en) Gas sensor control device
JP2010249540A (en) Sensor controller
JP4069887B2 (en) Oxygen concentration detector
JP5788834B2 (en) Gas sensor control device
JP4033228B2 (en) Oxygen concentration detector
US20140007651A1 (en) Method and device for determining a lambda air ratio using a gas sensor
KR101188221B1 (en) Fuel control method of vehicle
JP2010002192A (en) Deterioration detector of heater of gas sensor
JP2022007628A (en) Control system for air-fuel ratio sensor
JPH10159640A (en) Diagnostic device for abnormality of air-fuel ratio sensor
JP2007056832A (en) Activation judgment device for air fuel ratio sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121105