JP2010020025A - Optical scanner and image forming apparatus - Google Patents

Optical scanner and image forming apparatus Download PDF

Info

Publication number
JP2010020025A
JP2010020025A JP2008179615A JP2008179615A JP2010020025A JP 2010020025 A JP2010020025 A JP 2010020025A JP 2008179615 A JP2008179615 A JP 2008179615A JP 2008179615 A JP2008179615 A JP 2008179615A JP 2010020025 A JP2010020025 A JP 2010020025A
Authority
JP
Japan
Prior art keywords
scanning
scanning direction
sub
main scanning
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008179615A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Funato
広義 船戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2008179615A priority Critical patent/JP2010020025A/en
Publication of JP2010020025A publication Critical patent/JP2010020025A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high image quality and low cost optical scanner in which variation in the beam waist position of a scanning beam is excellently corrected. <P>SOLUTION: The optical scanner includes: a light source 11; an optical scanning means 15a; a scanning optical system including variable focus means 13, 14 (or 21A, 21B); and a scanning beam focus detection means which detects the focus shift and the shift direction of the scanning beam on a scanning face 17, wherein the variable focus means can independently vary a main scanning direction and a sub scanning direction, and the scanning beam focus detection means is disposed in a region in which an image is not recorded on the scanning face or equivalent face of scanning, and independently detects the focus shift amount and the shift direction of the scanning beam in the main scanning direction and the sub scanning direction. Thus, the focus shift amount and the shift direction of the scanning beam in the main scanning direction and in the sub scanning direction are individually detected, and the variable focus means corrects the focus shift amount in the main scanning direction and that in the sub scanning direction independently and simultaneously. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光走査装置及び、その光走査装置を備えたデジタル複写機、プリンタ、プロッタ、ファクシミリ、あるいはこれらの複合機等の画像形成装置に関する。   The present invention relates to an optical scanning apparatus and an image forming apparatus such as a digital copying machine, a printer, a plotter, a facsimile, or a multifunction machine including the optical scanning apparatus.

レーザプリンタ等に関連して広く知られた光走査装置は、一般に、半導体レーザ等の光源からの光ビームを、ポリゴンミラーやガルバノミラー等の光偏向器により偏向し、fθレンズ等の結像光学系により被走査面に向けて集光して被走査面上に光スポットを形成し、この光スポットで被走査面を光走査するように構成されている。なお、光走査の方向を主走査方向、主走査方向に直交する方向を副走査方向と言う。また、被走査面の実体をなすものは光導電性の感光体等である感光媒体の感光面である。   In general, an optical scanning device known in relation to a laser printer or the like generally deflects a light beam from a light source such as a semiconductor laser by an optical deflector such as a polygon mirror or a galvanometer mirror, and forms an imaging optical device such as an fθ lens. The system is configured to collect light toward the surface to be scanned to form a light spot on the surface to be scanned, and to scan the surface to be scanned with this light spot. The optical scanning direction is referred to as the main scanning direction, and the direction orthogonal to the main scanning direction is referred to as the sub-scanning direction. Further, what forms the surface to be scanned is a photosensitive surface of a photosensitive medium such as a photoconductive photosensitive member.

以上のような光走査装置に求められる性能として、以下のようなことが挙げられる。
1.被走査面上での画像形成領域におけるビームスポット径の均一性。
2.被走査面上での走査速度の等速性(fθ特性)。
光走査装置の光偏向器としては、ポリゴンミラーと呼ばれる回転多面鏡が広く用いられているが、ポリゴンミラーを用いて光走査を行うと、画像形成領域の端部の方が中央部よりも走査速度が速くなりfθ特性が実現できず、また、画像形成領域の端部と中央部では光路長が異なるため、像面湾曲が生じ、ビームスポット径の均一性が保たれない。fθ特性及び像面湾曲を補正するのがfθレンズであり、fθレンズにより上記の1、2の性能が満たされる。
また、fθレンズの更なる性能向上、及び低コスト化のため、樹脂を用いて非球面化されたレンズが用いられている。
そのため、温度変動にレンズ面形状およびレンズ屈折率の変動が生じ、これによりビームウエスト位置変動が生じやすく、被走査面上におけるビームスポット径の太りが発生しやすくなる。そして、ビームスポット径の太りは出力画像の大きな品質劣化を招く。この理由により、光走査装置のより一層の高性能化を難しくしている。
The following is mentioned as the performance required for the optical scanning apparatus as described above.
1. Uniformity of the beam spot diameter in the image forming area on the surface to be scanned.
2. Constant velocity of scanning speed on the surface to be scanned (fθ characteristic).
A rotating polygon mirror called a polygon mirror is widely used as an optical deflector of an optical scanning device. However, when optical scanning is performed using a polygon mirror, the end of the image forming area scans more than the center. Since the speed is increased and the fθ characteristic cannot be realized, and the optical path length is different between the end portion and the central portion of the image forming region, field curvature occurs and the uniformity of the beam spot diameter cannot be maintained. The fθ lens corrects the fθ characteristic and the curvature of field, and the performances 1 and 2 are satisfied by the fθ lens.
Further, in order to further improve the performance of the fθ lens and reduce the cost, a lens aspherical using a resin is used.
For this reason, the lens surface shape and the refractive index of the lens vary due to temperature variation, which tends to cause beam waist position variation, and the beam spot diameter on the surface to be scanned tends to increase. Further, the increase in the beam spot diameter causes a large quality degradation of the output image. For this reason, it is difficult to further improve the performance of the optical scanning device.

また、光走査装置に関連して、
(1) 「走査面に1対のナイフエッジを配置して、ナイフエッジの後方に置かれた受光素子で検出した信号を微分してビーム集光位置のずれを検出する」ものや、(2) 「光走査光学系において、周囲温度による走査面の焦点移動を可変焦点レンズ、あるいは焦点可変レンズを用いて補正する。補正には走査面の走査ビームを検出して、走査面における走査ビーム径が最小になるように、可変焦点レンズ、あるいは焦点可変レンズの焦点を可変して補正する。走査ビームの集光状態の検出には走査面に置かれ、走査面を基準に光軸方向の正負対称位置におかれた2個のナイフエッジを走査した透過光の光量の立上りと立下りを検出して、前記立上りと立下りの時間を比較して走査光の集光状態を検出する」ものなどが知られている。
In connection with the optical scanning device,
(1) “A pair of knife edges are arranged on the scanning plane and the signal detected by the light receiving element placed behind the knife edges is differentiated to detect the deviation of the beam condensing position” (2 "In the optical scanning optical system, the focal shift of the scanning surface due to the ambient temperature is corrected using a variable focus lens or a variable focus lens. For the correction, the scanning beam on the scanning surface is detected by detecting the scanning beam on the scanning surface. The focal point of the variable focus lens or the variable focus lens is varied so that the focus is minimized, and the focus state of the scanning beam is placed on the scanning surface, and the positive and negative in the optical axis direction with respect to the scanning surface. Detects the rise and fall of the amount of transmitted light that has scanned two knife edges placed at symmetrical positions, and compares the rise and fall times to detect the condensing state of the scanning light. Etc. are known.

ここで、公知例として、例えば特許文献1(特開平4−155304号公報)には「集光位置検出装置」が開示されており、これは走査面上に集光、走査されるレーザビームの集光位置検出器であって、走査面からの距離が異なる位置に配置された一対のナイフエッジを走査レーザビームが走査する。ナイフエッジを透過した光は後方に置かれた受光素子で検出され受光信号を発生する。検出した受光信号を微分した信号の出力ピーク値または、信号の時間幅を検知して、前記走査面からのレーザビームの集光位置のずれ量を検出する。
この公知例では、走査レーザビームの集光位置のずれ量、ずれ方向を検出できるのは主走査方向のみであり、副走査方向の検出についての開示はない。
Here, as a known example, for example, Patent Document 1 (Japanese Patent Laid-Open No. 4-155304) discloses a “condensing position detecting device”, which is a laser beam focused and scanned on a scanning surface. The scanning laser beam scans a pair of knife edges which are condensing position detectors and are arranged at different positions from the scanning plane. The light transmitted through the knife edge is detected by a light receiving element placed behind and generates a light reception signal. An output peak value of a signal obtained by differentiating the detected light reception signal or a time width of the signal is detected to detect a deviation amount of the condensing position of the laser beam from the scanning surface.
In this known example, the amount and direction of deviation of the condensing position of the scanning laser beam can be detected only in the main scanning direction, and there is no disclosure about detection in the sub-scanning direction.

特許文献2(特開平7−20395号公報)には、「レーザビーム走査光学装置」が開示されており、これは、走査面と等価な面の走査開始端あるいは走査終了端におかれた光センサで走査ビーム集光状態を検出して、その結果で走査ビーム中のレンズを変位させて焦点を補正する。
走査ビーム集光状態を検出する光センサは走査等価面におかれた平板状スリット板を通過したビームを光電変換素子で検出する。スリットは主走査に直交するものと傾斜するものが設けられ、直交するスリットを通過したビームの検出で主走査方向のビーム径がまず調整され、その後に傾斜したスリットを通過したビームの検出で副走査方向のビーム径が調整される。
この公知例によると光センサの出力でビーム径を調整するとき、走査レンズ系のレンズの変位方向(補正方向)は光センサの出力からはわからない。このため、試行錯誤的な補正動作が必要となり、迅速な補正を行うことが困難である。
Patent Document 2 (Japanese Patent Laid-Open No. 7-20395) discloses a “laser beam scanning optical device”, which includes light placed at a scanning start end or a scanning end end of a surface equivalent to a scanning surface. The scanning beam condensing state is detected by the sensor, and as a result, the lens in the scanning beam is displaced to correct the focal point.
The optical sensor that detects the scanning beam condensing state detects the beam that has passed through the flat slit plate placed on the scanning equivalent plane by the photoelectric conversion element. There are slits that are perpendicular to the main scanning and those that are inclined, and the beam diameter in the main scanning direction is first adjusted by detecting the beam that has passed through the orthogonal slit, and then the secondary beam is detected by detecting the beam that has passed through the inclined slit. The beam diameter in the scanning direction is adjusted.
According to this known example, when the beam diameter is adjusted by the output of the optical sensor, the displacement direction (correction direction) of the lens of the scanning lens system is not known from the output of the optical sensor. For this reason, trial and error correction operation is required, and it is difficult to perform quick correction.

特許文献3(特開平6−289304号公報)には、「集光位置検出装置」が開示されており、これは、走査ビームの走査域外の別位置に配置された2枚のミラーで反射された走査ビームは共通の光検出手段で受光して、受光信号の微分信号をピークホールドして走査ビームの集光位置ずれを検出する。
この公知例でも走査レーザビームの集光位置のずれ量、ずれ方向を検出できるのは主走査方向のみであり、副走査方向の検出についての開示はない。また2枚のミラーの位置調整が必要となる欠点がある。
Patent Document 3 (Japanese Patent Application Laid-Open No. 6-289304) discloses a “condensing position detection device”, which is reflected by two mirrors arranged at different positions outside the scanning region of the scanning beam. The scanned beam is received by a common light detecting means, and the differential signal of the received light signal is peak-held to detect the converging position deviation of the scanned beam.
Even in this known example, the amount and direction of deviation of the condensing position of the scanning laser beam can be detected only in the main scanning direction, and there is no disclosure about detection in the sub-scanning direction. In addition, there is a drawback that the position of the two mirrors needs to be adjusted.

特許文献4(特開2006−258838号公報)には、「光走査装置および多色画像形成装置」が開示されており、これは、光走査装置において、走査面のスポット径と副走査方向走査位置を検出して可変焦点偏向手段である液体レンズでスポット径、走査位置を補正する。スポット径検出は走査開始端と終了端の2点間の時間を計測して、fθレンズの焦点距離変動を検出し、これからスポット径変化を換算する。
しかし、この方法ではスポット径が実際ではなく間接的な換算でしかわからず、またfθレンズの焦点距離変化による換算値しかわからない(コリメートレンズ等、ポリゴンミラー以前のレンズによる焦点の変化はわからない)。また、特許文献4の明細書中では可変焦点偏向手段として、液体レンズは一つの素子で可変焦点と偏向機能をもたせられることが特徴として開示されている。
Patent Document 4 (Japanese Patent Application Laid-Open No. 2006-258838) discloses an “optical scanning device and a multicolor image forming device”, which is a scanning surface spot diameter and sub-scanning direction scanning in the optical scanning device. The position is detected, and the spot diameter and the scanning position are corrected by a liquid lens which is a variable focus deflection means. Spot diameter detection measures the time between two points at the start and end of scanning, detects the focal length variation of the fθ lens, and converts the spot diameter change therefrom.
However, with this method, the spot diameter is not actual but can only be calculated indirectly, and only the converted value based on the change in the focal length of the fθ lens is known (the change in focus due to the lens before the polygon mirror, such as a collimator lens, is not known). Further, in the specification of Patent Document 4, as a variable focus deflection means, it is disclosed as a feature that a liquid lens can have a variable focus and a deflection function with one element.

特開平4−155304号公報JP-A-4-155304 特開平7−20395号公報Japanese Patent Laid-Open No. 7-20395 特開平6−289304号公報JP-A-6-289304 特開2006−258838号公報JP 2006-258838 A

図21に公知例として特許文献1に記載の実施例を示す。図21(a)に断面図、(b)に平面図を示し、走査面である感光体9と同一面の感光体領域外に1対のナイフエッジ7a、7bが走査面に対しずれて配置されている。その下に受光素子1が配置され、ナイフエッジを透過した走査レーザビームの光量変化を検出する。受光素子で検出した信号は微分されて、生成された2つの微分信号のピーク値、あるいはパルス幅を比較して走査ビームの集光ずれとずれ方向を検出する。
この公知例によれば、走査レーザビームの集光位置ずれ、及びずれ方向を検出できる。しかし、検出できるのは主走査方向の集光位置ずれ及びずれ方向のみであり、副走査方向の情報は得られない。
FIG. 21 shows an embodiment described in Patent Document 1 as a known example. FIG. 21A is a cross-sectional view, and FIG. 21B is a plan view. A pair of knife edges 7a and 7b are disposed outside the photosensitive region on the same surface as the photosensitive member 9 that is the scanning surface. Has been. A light receiving element 1 is disposed below the light receiving element 1 to detect a change in the amount of light of the scanning laser beam transmitted through the knife edge. The signal detected by the light receiving element is differentiated, and the peak value or pulse width of the two generated differential signals is compared to detect the condensing deviation and the deviation direction of the scanning beam.
According to this known example, it is possible to detect the deviation of the condensing position and the deviation direction of the scanning laser beam. However, only the condensing position shift and the shift direction in the main scanning direction can be detected, and information in the sub-scanning direction cannot be obtained.

本発明は上記事情に鑑みてなされたものであり、本発明の目的は、走査ビームのビームウエスト位置変動を良好に補正することができ、高画質で低コストの光走査装置と、その光走査装置を備えた高画質の画像形成装置を提供することにある。
より具体的には、
(1) 光走査装置の温度変動による走査ビームの焦点ずれを検出して、可変焦点手段により焦点ずれを補正し、環境変化があっても常に焦点ずれのない光走査を可能とさせること、
(2) 走査ビームの検出は主走査方向及び副走査方向の焦点ずれ量と、ずれの方向の両方を検出し、可変焦点手段により主走査方向、副走査方向の焦点ずれを独立して同時に補正し迅速化させること、
(3) 焦点ずれの検出手段の走査光学系中への配置精度が緩く、設置時の特別な位置調整を不要とさせること、
(4) 主走査方向と副走査方向の焦点ずれ検出を一体化して、小型化することができる構成を提供すること、
を目的(課題)としている。
The present invention has been made in view of the above circumstances, and an object of the present invention is to satisfactorily correct a beam waist position variation of a scanning beam, and to provide a high-quality and low-cost optical scanning device and its optical scanning. An object of the present invention is to provide a high-quality image forming apparatus provided with the apparatus.
More specifically,
(1) To detect defocus of the scanning beam due to temperature fluctuations of the optical scanning device, correct the defocus by the variable focus means, and always enable optical scanning without defocus even if there is an environmental change,
(2) Scanning beam detection detects both the amount of defocus and the direction of defocus in the main and sub-scan directions, and simultaneously corrects the defocus in the main and sub-scan directions independently by the variable focus means. Speeding up,
(3) The positioning accuracy of the defocus detection means in the scanning optical system is loose, and no special position adjustment is required during installation.
(4) Providing a configuration that can be downsized by integrating defocus detection in the main scanning direction and the sub-scanning direction;
Is the purpose (issue).

上記目的を達成するため、本発明では以下のような解決手段を採っている。
本発明の第1の手段は、光走査装置であり、「光源と、該光源からの光ビームを走査する光走査手段と、該光走査手段で走査される走査ビームを走査面に集光する可変焦点手段を含む走査光学系と、前記走査面における走査ビームの焦点ずれ及びずれ方向を検出する走査ビーム焦点検出手段とを備え」、「前記可変焦点手段は主走査方向と副走査方向を独立に可変でき」、「前記走査ビーム焦点検出手段は前記走査面あるいは走査等価面の画像記録を行わない領域に配置され、前記走査面あるいは走査等価面からビーム進行方向に互いに正負方向にずれて配置されたナイフエッジ対を有し、該ナイフエッジ対の1組は主走査方向に垂直なエッジ線を持ち、もう1組は主走査方向に対して傾いたエッジ線を持ち、これらナイフエッジ対を透過したビームを検出する光検出器を備えており」、「前記走査面への集光ビームについて主走査方向集光径が副走査方向集光径に等しいか小さいときには、前記主走査方向に垂直なエッジ線を持つ走査ビーム焦点検出手段の出力から主走査可変焦点手段により主走査方向の焦点ずれを補正するとともに、主走査方向に対して傾いたナイフエッジ線を持つ走査ビーム焦点検出手段の出力から副走査可変焦点手段により副走査方向の焦点ずれを補正する」ことを特徴とする。
In order to achieve the above object, the present invention employs the following solutions.
The first means of the present invention is an optical scanning device, and “a light source, an optical scanning unit that scans a light beam from the light source, and a scanning beam that is scanned by the optical scanning unit is condensed on a scanning surface. A scanning optical system including a variable focus unit, and a scanning beam focus detection unit for detecting a defocus and a shift direction of the scanning beam on the scanning surface. ”“ The variable focus unit is independent of the main scanning direction and the sub-scanning direction ” "The scanning beam focus detection means is arranged in an area where no image is recorded on the scanning plane or the scanning equivalent plane, and is shifted from the scanning plane or the scanning equivalent plane in the beam traveling direction in the positive and negative directions. A pair of knife edge pairs, one set of knife edge pairs having an edge line perpendicular to the main scanning direction and the other set having edge lines inclined with respect to the main scanning direction. Transparent A light detector for detecting the beam ”,“ when the condensed light beam on the scanning surface has a condensing diameter in the main scanning direction equal to or smaller than the condensing diameter in the sub-scanning direction, an edge perpendicular to the main scanning direction ” The focus shift in the main scanning direction is corrected from the output of the scanning beam focus detection means having a line by the main scanning variable focus means, and the sub-scan is detected from the output of the scanning beam focus detection means having a knife edge line inclined with respect to the main scanning direction. The focus shift in the sub-scanning direction is corrected by the scanning variable focus means ”.

本発明の第2の手段は、第1の手段に記載の光走査装置において、前記走査面への集光ビームについて主走査方向集光径が副走査方向集光径より大きいときには、主走査方向に対して傾いたエッジ線を持つ走査ビーム焦点検出手段のナイフエッジの傾き角αが主走査方向に対して45°より小さな角度であり、前記主走査方向に垂直なエッジ線を持つ走査ビーム焦点検出手段の出力を元に主走査可変焦点手段により主走査方向の焦点ずれを補正するとともに、主走査方向に対して傾いたエッジ線を持つ走査ビーム焦点検出手段の出力を元に副走査可変焦点手段により副走査方向の焦点ずれを補正することを特徴とする。
また、本発明の第3の手段は、第1または第2の手段に記載の光走査装置において、前記走査ビーム焦点検出手段はビーム進行方向にずれて配置されたナイフエッジ対が1組は主走査方向に垂直なエッジ線を持ち、もう1組は主走査方向に対して傾いたエッジ線を持ち、各組のうちビーム進行方向に対して走査面から同じ方向にずれて配置されるナイフエッジが少なくとも1つは共通の基板に形成され、透過ビームを検出する光検出器がナイフエッジ各組に対し共通して1個配置されて検出することを特徴とする。
According to a second means of the present invention, in the optical scanning device according to the first means, when the condensing diameter in the main scanning direction is larger than the condensing diameter in the sub scanning direction with respect to the condensing beam on the scanning surface, The scanning beam focal point having an edge line perpendicular to the main scanning direction, and the inclination angle α of the knife edge of the scanning beam focal point detecting means having an edge line inclined with respect to the main scanning direction is smaller than 45 ° with respect to the main scanning direction. The main scanning variable focus means corrects the defocus in the main scanning direction based on the output of the detecting means, and the sub-scanning variable focus based on the output of the scanning beam focus detecting means having an edge line inclined with respect to the main scanning direction. It is characterized in that the defocus in the sub-scanning direction is corrected by the means.
According to a third means of the present invention, in the optical scanning device according to the first or second means, the scanning beam focus detection means is mainly composed of a pair of knife edge pairs arranged so as to be shifted in the beam traveling direction. A knife edge having an edge line perpendicular to the scanning direction and the other set having an edge line inclined with respect to the main scanning direction, and being displaced in the same direction from the scanning plane with respect to the beam traveling direction in each group Are formed on a common substrate, and one photodetector for detecting a transmitted beam is arranged in common for each knife edge group and detected.

本発明の第4の手段は、第1〜第3の手段のいずれか一つに記載の光走査装置において、前記可変焦点手段は電圧の印加により焦点を可変し、主走査方向および副走査方向が独立に焦点可変制御できるように配置されていることを特徴とする。
また、本発明の第5の手段は、第1〜第3の手段のいずれか一つに記載の光走査装置において、前記主走査方向可変焦点手段は副走査方向に母線を持つシリンドリカルレンズと該シリンドリカルレンズの光軸方向移動手段からなり、前記副走査方向可変焦点手段は主走査方向に母線を持つシリンドリカルレンズと該シリンドリカルレンズの光軸方向移動手段からなることを特徴とする。
According to a fourth means of the present invention, in the optical scanning device according to any one of the first to third means, the variable focus means changes a focus by applying a voltage, and a main scanning direction and a sub-scanning direction. Are arranged so that the focus can be controlled independently.
According to a fifth means of the present invention, in the optical scanning device according to any one of the first to third means, the main scanning direction variable focus means includes a cylindrical lens having a bus in the sub-scanning direction and the cylindrical lens. The sub-scanning direction variable focal point means is composed of a cylindrical lens having a generating line in the main scanning direction and an optical axis direction moving means of the cylindrical lens.

本発明の第6の手段は、像担持体面(走査面)を光ビームで走査して潜像を形成し、該潜像を現像して顕像化する画像形成装置において、前記光ビームの走査手段として、第1〜第5の手段のいずれか一つに記載の焦点ずれを補正する光走査装置を用いたことを特徴とする。   According to a sixth means of the present invention, in the image forming apparatus that scans the surface of the image carrier (scanning surface) with a light beam to form a latent image and develops the latent image to make it visible, the light beam is scanned. As the means, the optical scanning device for correcting the defocus described in any one of the first to fifth means is used.

第1の手段の光走査装置では、走査面への集光ビームについて主走査方向集光径が副走査方向集光径に等しいか小さいときに、主走査方向及び副走査方向の走査レーザビーム焦点ずれ量及びずれの方向を個別に検出することができ、主走査、副走査独立した可変焦点手段により主走査方向、副走査方向の焦点ずれの補正を独立にかつ同時に行うことができ、迅速化した補正が可能となる。
また、走査面におくナイフエッジ対の配置精度は緩くてよく、設置時の特別な位置調整が必要ないという利点がある。
In the optical scanning device of the first means, when the condensed beam on the scanning surface has a condensing diameter in the main scanning direction equal to or smaller than the condensing diameter in the sub-scanning direction, the scanning laser beam focal points in the main scanning direction and the sub-scanning direction The amount of deviation and the direction of deviation can be detected individually, and the main focus and sub-scan independent variable focus means can independently and simultaneously correct the defocus in the main and sub-scan directions. Correction becomes possible.
In addition, the arrangement accuracy of the knife edge pair placed on the scanning plane may be loose, and there is an advantage that no special position adjustment is required at the time of installation.

第2の手段の光走査装置では、走査面への集光ビームについて主走査方向集光径が副走査方向集光径より大きいときにも、主走査方向、及び副走査方向の走査レーザビーム焦点ずれ量及びずれの方向を個別に検出することができ、主走査、副走査独立した可変焦点手段により主走査方向、副走査方向の焦点ずれの補正を独立にかつ同時に行うことができ、迅速化した補正が可能となる。
また、第3の手段の光走査装置では、主走査と副走査の焦点ずれ検出を一体化して独立した検出を可能とし、簡易、小型化することができる走査レーザビーム焦点検出手段を備えた光走査装置を提供することができる。
In the optical scanning device of the second means, the scanning laser beam focal points in the main scanning direction and the sub-scanning direction even when the condensed beam diameter in the main scanning direction is larger than the condensed beam diameter in the sub-scanning direction. The amount of deviation and the direction of deviation can be detected individually, and the main focus and sub-scan independent variable focus means can independently and simultaneously correct the defocus in the main and sub-scan directions. Correction becomes possible.
Further, in the optical scanning device of the third means, the light provided with the scanning laser beam focus detection means that enables independent detection by integrating the main-scanning and sub-scanning defocus detection, and can be simplified and miniaturized. A scanning device can be provided.

第4の手段の光走査装置では、機械的な移動がなく、電子的に主走査、副走査方向に独立した、同時焦点ずれ補正を可能とすることができる。
また、第5の手段の光走査装置では、第4の手段とは別の方法で主走査、副走査方向に独立した、同時焦点ずれ補正を可能とすることができる。
In the optical scanning device of the fourth means, there is no mechanical movement, and simultaneous defocus correction can be made electronically independent in the main scanning and sub-scanning directions.
In the optical scanning device of the fifth means, simultaneous defocus correction can be performed independently of the main scanning and sub-scanning directions by a method different from the fourth means.

第6の手段の画像形成装置では、光ビームの走査手段として、上記の焦点ずれを補正することができる光走査装置を用いたことにより、走査ビームのビームウエスト位置変動を良好に補正することができ、高画質で低コストの単色または多色画像形成装置を提供することができる。   In the image forming apparatus of the sixth means, by using the optical scanning apparatus capable of correcting the defocus as the optical beam scanning means, it is possible to satisfactorily correct the beam waist position fluctuation of the scanning beam. In addition, it is possible to provide a single-color or multicolor image forming apparatus with high image quality and low cost.

以下、本発明の構成、動作及び作用効果を図示の実施例に基づいて詳細に説明する。   Hereinafter, the configuration, operation, and effects of the present invention will be described in detail based on the illustrated embodiments.

[実施例1]
図1、図2に本発明を適用した光走査装置の走査光学系の一実施例を示す。図1は光走査装置の光走査手段である光偏向器としての回転多面鏡15以降の光学系の配置例を示した平面図(主走査断面図)であり、図2(a),(b)は光源である半導体レーザ(LD)11から走査面17までの光学系の配置例を示した側面図(副走査断面図)をそれぞれ表している。
図1において、回転多面鏡15で偏向されたレーザビームは、fθレンズ16により集束され、走査面17上に微小な光スポットとして集光されて主走査方向Aに走査される。fθレンズ16は図1では1枚構成であり、主走査方向と副走査方向で焦点距離が異なるアナモフィックレンズである。また、これに限定されず2群2枚構成、あるいはアナモフィックレンズ1枚構成+長尺シリンドリカルレンズ構成などバリエーションが多い。
[Example 1]
1 and 2 show an embodiment of a scanning optical system of an optical scanning apparatus to which the present invention is applied. FIG. 1 is a plan view (main scanning sectional view) showing an arrangement example of optical systems after the rotary polygon mirror 15 as an optical deflector which is an optical scanning means of the optical scanning device, and FIGS. ) Represents a side view (sub-scan sectional view) showing an example of the arrangement of the optical system from the semiconductor laser (LD) 11 as the light source to the scanning surface 17.
In FIG. 1, the laser beam deflected by the rotary polygon mirror 15 is focused by the fθ lens 16, condensed as a small light spot on the scanning surface 17, and scanned in the main scanning direction A. The fθ lens 16 has a single lens configuration in FIG. 1 and is an anamorphic lens having different focal lengths in the main scanning direction and the sub-scanning direction. Moreover, it is not limited to this, and there are many variations such as a two-group two-lens configuration, or an anamorphic one-lens configuration + a long cylindrical lens configuration.

図2の(a)、(b)ともに、光源である半導体レーザ(LD)11とLD11からの発散光を光学系に取り込むカップリングレンズ12、回転多面鏡の反射面15a、fθレンズ16、及び走査面17は共通であり、同様の配置で図示してある。
図2(a)は、カップリングレンズ12と回転多面鏡15の間に、主走査方向と副走査方向を独立に可変できる可変焦点手段として、副走査方向に母線を持つシリンドリカルレンズ13と主走査方向に母線を持つシリンドリカルレンズ14が配置されている。前段のシリンドリカルレンズ13は主走査方向についてカップリングレンズ12と共同してLD11からの発散ビームを平行ビームにコリメートする機能を持ち、後段のシリンドリカルレンズ14は平行ビームを副走査方向のみ回転多面鏡の反射面15aに集光する機能を持つ。
2A and 2B, a semiconductor laser (LD) 11 that is a light source and a coupling lens 12 that takes in diverging light from the LD 11 into an optical system, a reflecting surface 15a of a rotary polygon mirror, an fθ lens 16, and The scanning surface 17 is common and is illustrated in a similar arrangement.
FIG. 2A shows a cylindrical lens 13 having a generating line in the sub-scanning direction and a main scanning as a variable focus means capable of independently changing the main scanning direction and the sub-scanning direction between the coupling lens 12 and the rotary polygon mirror 15. A cylindrical lens 14 having a generating line in the direction is arranged. The front cylindrical lens 13 has a function of collimating the divergent beam from the LD 11 into a parallel beam in cooperation with the coupling lens 12 in the main scanning direction, and the rear cylindrical lens 14 is a rotating polygon mirror only in the sub-scanning direction. It has a function of condensing on the reflecting surface 15a.

前記fθレンズ16は主走査方向は平行ビームを走査面上に集光し、副走査方向は回転多面鏡の反射面15aに集光したビームを走査面17に再結像するように反射面15aと走査面17が結像の共役関係になった、いわゆる回転多面鏡の面倒れ補正光学系の機能を持つ。走査光学系中の焦点可変機能は主走査方向はシリンドリカルレンズ13を光軸方向aに前後に移動させる移動手段により行う。移動手段としてはリニアモータ、回転モータ、圧電体などによるリニア送りで行う。また、副走査方向はシリンドリカルレンズ14を光軸方向bに前後に移動させる移動手段により行う。このように母線が直交する2つのシリンドリカルレンズ13,14を光軸方向a,bに移動させることにより、主走査、副走査ともに独立した焦点可変を行うことができる。   The fθ lens 16 condenses parallel beams on the scanning surface in the main scanning direction, and in the sub-scanning direction, the reflecting surface 15a re-images the beam condensed on the reflecting surface 15a of the rotary polygon mirror on the scanning surface 17. And the scanning plane 17 have a function of a so-called rotating polygon mirror surface tilt correction optical system in which the imaging is conjugate. The variable focus function in the scanning optical system is performed by moving means for moving the cylindrical lens 13 back and forth in the optical axis direction a in the main scanning direction. As the moving means, linear feeding by a linear motor, a rotary motor, a piezoelectric body or the like is performed. Further, the sub-scanning direction is performed by moving means for moving the cylindrical lens 14 back and forth in the optical axis direction b. In this way, by moving the two cylindrical lenses 13 and 14 whose buses are orthogonal to each other in the optical axis directions a and b, it is possible to perform independent variable focus in both main scanning and sub-scanning.

図2(b)ではカップリングレンズ12だけでLD11からの発散光を平行ビームに変換する。また、シリンドリカルレンズ14は,図2(a)における主走査方向に母線を持つシリンドリカルレンズ14と同一である。ここで可変焦点手段は主走査、副走査を独立に可変できる主走査焦点可変素子21A、副走査焦点可変素子21Bからなり、カップリングレンズ12とシリンドリカルレンズ14間に配置されている。なお、配置場所はこれに限らず、光源11から回転多面鏡15の間であれば特に限定されない。
主走査焦点可変素子21A、副走査焦点可変素子21Bはともに素子への印加電圧により焦点が可変され、また独立に可変制御ができる。これら素子は具体的には液晶の電圧による屈折率変化を用いた液晶レンズ、または液体のぬれ性を電圧により可変させてレンズ面形状を変化させて可変焦点レンズ作用を行う液体レンズ等がある。
In FIG. 2B, the diverging light from the LD 11 is converted into a parallel beam only by the coupling lens 12. The cylindrical lens 14 is the same as the cylindrical lens 14 having a bus in the main scanning direction in FIG. Here, the variable focus means includes a main scanning focus variable element 21A and a sub scanning focus variable element 21B that can independently change main scanning and sub scanning, and is disposed between the coupling lens 12 and the cylindrical lens 14. The arrangement location is not limited to this, and is not particularly limited as long as it is between the light source 11 and the rotary polygon mirror 15.
Both the main scanning focus variable element 21A and the sub-scanning focus variable element 21B are variable in focus by the voltage applied to the elements, and can be variably controlled independently. Specifically, these elements include a liquid crystal lens that uses a change in refractive index due to the voltage of the liquid crystal, or a liquid lens that changes the lens surface shape by changing the wettability of the liquid by the voltage and performs a variable focus lens action.

ここで、図2(a),(b)の場合ともに、図1の走査面17(あるいは走査等価面)の画像を印字する有効走査領域(画像記録領域)外の走査開始部分に本願の走査ビーム焦点検出手段18を配置して走査面17における走査ビームの焦点ずれを検出する。本発明の走査ビーム焦点検出手段18は走査ビームの焦点ずれとずれ方向ともに検知できる。また、主走査方向と副走査方向の焦点ずれが検出できるのが特徴である。なお、図1は一つの走査ビーム焦点検出手段18で主走査、副走査両方向の焦点ずれが検出できる場合の実施例である。   Here, in both cases of FIGS. 2A and 2B, the scanning of the present application is performed at a scanning start portion outside the effective scanning area (image recording area) for printing the image on the scanning surface 17 (or scanning equivalent surface) of FIG. The beam focus detection means 18 is arranged to detect the defocus of the scanning beam on the scanning surface 17. The scanning beam focus detection means 18 of the present invention can detect both the defocus and the shift direction of the scanning beam. In addition, it is possible to detect a defocus in the main scanning direction and the sub scanning direction. FIG. 1 shows an embodiment in which a single scanning beam focus detection means 18 can detect a defocus in both main scanning and sub-scanning directions.

これに対し、図6または図7に示す実施例は、一つの走査ビーム焦点検出手段で一方向の焦点ずれが検出できるものを2つ使った実施例である。
ここで、図6の実施例の構成では、走査ビーム焦点検出手段18−1が主走査方向、走査ビーム焦点検出手段18−2が副走査方向の焦点ずれを検出し、ともに走査面(あるいは走査等価面)の画像を印字する有効走査領域外の走査開始部分に配置されて、主走査及び副走査方向の焦点ずれを個別に検出する。
On the other hand, the embodiment shown in FIG. 6 or FIG. 7 is an embodiment using two devices that can detect a defocus in one direction by one scanning beam focus detection means.
Here, in the configuration of the embodiment of FIG. 6, the scanning beam focus detection means 18-1 detects the defocus in the main scanning direction and the scanning beam focus detection means 18-2 detects the defocus in the sub-scanning direction. (Equivalent surface) is disposed at the scanning start portion outside the effective scanning area where the image is printed, and the focus shift in the main scanning direction and the sub scanning direction is individually detected.

また、図7の実施例の構成では、やはり走査ビーム焦点検出手段18−1が主走査方向、走査ビーム焦点検出手段18−2が副走査方向の焦点ずれを検出し、走査ビーム焦点検出手段18−1が有効走査領域外の走査開始端、走査ビーム焦点検出手段18−2が走査終了端に配置され、それぞれ主走査及び副走査方向の焦点ずれを個別に検出する。   Further, in the configuration of the embodiment of FIG. 7, the scanning beam focus detection means 18-1 detects the defocus in the main scanning direction, and the scanning beam focus detection means 18-2 detects the defocus in the sub scanning direction. -1 is located at the scanning start end outside the effective scanning area, and the scanning beam focus detection means 18-2 is located at the scanning end end, and individually detects the defocus in the main scanning direction and the sub scanning direction.

次に走査ビーム焦点検出手段についての実施例であるが、主走査方向の走査ビーム焦点ずれを検出するには、図21の公知例に示すような主走査方向に垂直な方向にエッジ線を持ち、走査面の前後にずれて配置された1対のナイフエッジとエッジの背後に配置された光検出器で構成される手段で行われる。ここまでは公知であるが、副走査方向の走査ビーム焦点ずれを検出するには、図3、図4に示すように、主走査方向に対し斜めに傾斜したエッジ線を持ち、走査面の前後にずれて配置された1対のナイフエッジ1,2とナイフエッジ1,2の背後に配置された光検出器20の構成で行われる。ここで図3は走査ビーム焦点検出手段の一実施例を示す図であり、光源側から見たナイフエッジ対の平面図である。また、図4は図3に示す走査ビーム焦点検出手段のナイフエッジ対から光検出器に至る光学系の主走査方向断面図である。   Next, an embodiment of the scanning beam focus detection means will be described. To detect a scanning beam defocus in the main scanning direction, an edge line is provided in the direction perpendicular to the main scanning direction as shown in the known example of FIG. This is done by means consisting of a pair of knife edges arranged offset from the front and back of the scanning plane and a photodetector arranged behind the edges. Although known so far, in order to detect the scanning beam defocus in the sub-scanning direction, as shown in FIGS. 3 and 4, it has an edge line inclined obliquely with respect to the main scanning direction, and the front and back of the scanning surface. This is performed by a configuration of a pair of knife edges 1 and 2 which are arranged to be shifted to each other and a photodetector 20 which is arranged behind the knife edges 1 and 2. FIG. 3 is a view showing an embodiment of the scanning beam focus detection means, and is a plan view of the knife edge pair as seen from the light source side. 4 is a sectional view in the main scanning direction of the optical system from the knife edge pair of the scanning beam focus detection means shown in FIG. 3 to the photodetector.

図3では1対のナイフエッジ1,2のエッジ線の方向は主走査方向に対して45°方向に傾斜している場合を示す。ナイフエッジ1、及びナイフエッジ2は互いに平行に、かつビーム進行方向に対して走査面から正負対称な位置にずれて配置される。ナイフエッジ1,2を透過した走査ビームは集光レンズ19を介して光検出器20で受光される。なお、集光レンズ19は必須ではなく、集光レンズ19を用いない構成でも良い。集光レンズ19を用いるメリットは受光用の光検出器20の受光面の大きさが小さくて済み、焦点ずれを検出するための走査ビームがナイフエッジ1,2を横切るときの受光信号立上り、立下り波形を正確に検出できることにあり、焦点ずれの検出精度を向上することができる。   FIG. 3 shows a case where the direction of the edge line of the pair of knife edges 1 and 2 is inclined at 45 ° with respect to the main scanning direction. The knife edge 1 and the knife edge 2 are arranged in parallel to each other and shifted from the scanning plane to a position that is symmetric with respect to the beam traveling direction. The scanning beam that has passed through the knife edges 1 and 2 is received by the photodetector 20 via the condenser lens 19. In addition, the condensing lens 19 is not essential and the structure which does not use the condensing lens 19 may be sufficient. The advantage of using the condensing lens 19 is that the size of the light receiving surface of the light receiving light detector 20 is small, and the light receiving signal rises and rises when the scanning beam for detecting defocusing crosses the knife edges 1 and 2. By being able to accurately detect the downstream waveform, it is possible to improve defocus detection accuracy.

図4は主走査方向断面の平面図(主走査方向断面図)であり、走査ビームが図の上方から下方へ走査している。図4(a)は、走査ビームが丁度走査面17に集光しているときで、走査に伴い、ナイフエッジ1による遮光→ナイフエッジ1から透過を始め→ナイフエッジ1にかからず全透過→ナイフエッジ2に遮光され始め→ナイフエッジ2による遮光、という過程を経る。また、図4(b)は、走査面17より光源側に集光している(前方集束)状態、図4(c)は、走査面17より遠方に集光している(後方集束)状態を表している。   FIG. 4 is a plan view of the cross section in the main scanning direction (cross section in the main scanning direction), and the scanning beam scans from the top to the bottom of the figure. FIG. 4A shows a state where the scanning beam is just focused on the scanning surface 17, and the light is shielded by the knife edge 1 along with the scanning → transmission starts from the knife edge 1 → the entire transmission is not applied to the knife edge 1. → The light is shielded by the knife edge 2 → The light is shielded by the knife edge 2. 4B shows a state where light is condensed toward the light source side from the scanning surface 17 (forward focusing), and FIG. 4C shows a state where light is condensed farther than the scanning surface 17 (backward focusing). Represents.

図5は図4の走査ビーム焦点検出手段の光検出器20で検出された波形の関係を示す図である。図の横軸は時間軸tで、縦軸は信号振幅である。図5(a)はナイフエッジ後方の光検出器20の受光波形である。図5(a)の左図は前方集束状態を、図5(a)の中央図は走査ビームが丁度走査面に集光しているとき、図5(a)の右図は後方集束状態のときの受光波形である。図5(a)の3つの図を比較すると、走査面に集光している中央図の波形はナイフエッジ1を透過した信号の立上り時間とナイフエッジ2による立下り時間は等しく、前方集束となる図5(a)の左図ではナイフエッジ1を透過した信号の立上り時間が短く、ナイフエッジ2による立下り時間が長くなっている。また、後方集束となる図5(a)の右図ではナイフエッジ1を透過した信号の立上り時間が長く、ナイフエッジ2による立下り時間は短くなっている。   FIG. 5 is a diagram showing the relationship of waveforms detected by the photodetector 20 of the scanning beam focus detection means of FIG. The horizontal axis in the figure is the time axis t, and the vertical axis is the signal amplitude. FIG. 5A shows a light reception waveform of the photodetector 20 behind the knife edge. The left figure in FIG. 5A shows the forward-focused state, the middle figure in FIG. 5A shows the scanning beam just focused on the scanning surface, and the right-hand figure in FIG. 5A shows the rear-focused state. Is the received light waveform. Comparing the three diagrams of FIG. 5A, the waveform of the central diagram focused on the scanning plane shows that the rise time of the signal transmitted through the knife edge 1 is equal to the fall time of the knife edge 2, and the forward focusing and In the left diagram of FIG. 5A, the rise time of the signal transmitted through the knife edge 1 is short, and the fall time by the knife edge 2 is long. Further, in the right diagram of FIG. 5A, which is the rear focusing, the rise time of the signal transmitted through the knife edge 1 is long and the fall time by the knife edge 2 is short.

この状況は図5(a)の受光波形を時間微分した図5(b)で明らかとなる。時間微分した図5(b)はナイフエッジ面における走査ビームのビーム形状に相似した波形を示すことになる。すなわち丁度走査面に集光している図5(b)の中央図の微分波形はナイフエッジ1とナイフエッジ2における微分波形であるビーム形状が等しくなっており、前方集束となる図5(b)の左図ではナイフエッジ1におけるビーム形状が細く、ナイフエッジ2におけるビーム形状は太くなっている。また後方集束となる図5(b)の右図ではナイフエッジ1におけるビーム形状は太く、ナイフエッジ2におけるビーム形状が細くなっている。   This situation becomes clear in FIG. 5 (b) obtained by time-differentiating the received light waveform of FIG. 5 (a). FIG. 5B obtained by time differentiation shows a waveform similar to the beam shape of the scanning beam on the knife edge surface. That is, the differential waveform in the center diagram of FIG. 5B that is just focused on the scanning plane has the same beam shape as the differential waveform at knife edge 1 and knife edge 2, and FIG. In the left figure of (), the beam shape at the knife edge 1 is thin, and the beam shape at the knife edge 2 is thick. Further, in the right view of FIG. 5B, which is the back focus, the beam shape at the knife edge 1 is thick and the beam shape at the knife edge 2 is thin.

この微分波形から焦点ずれとずれ方向を検出するため、微分波形からしきい値(図5(b)の微分波形に入っている横線)でしきい値処理を行い、2値化したのが図5(c)である。走査面に集光している図5(c)の中央のパルス波形のパルス幅は等しく、前方集束の集光状態となる図5(c)の左図ではナイフエッジ1における2値化パルス幅よりナイフエッジ2における2値化パルス幅の方が大きく、後方集束の集光状態となる図5(c)の右図では逆にナイフエッジ1における2値化パルス幅がナイフエッジ2における2値化パルス幅より大きくなる。以上のことから、ナイフエッジ1における2値化パルス幅をt3、ナイフエッジ2におけるパルス幅をt4として、フォーカス誤差信号Fを、
F=t3−t4
とすると、Fにより焦点ずれとずれ方向がわかる。
すなわち、F=0のときが丁度走査面に集光していることになり、F<0の場合が、集光位置が光源側にずれている前方集束の状態、F>0の場合が光源の反対方向にずれている後方集束の状態となり、このFの値及び正負により焦点ずれ量とずれ方向を知ることができる。
In order to detect the focus shift and the shift direction from this differential waveform, the threshold value is processed from the differential waveform with a threshold value (horizontal line in the differential waveform in FIG. 5B), and binarized. 5 (c). The pulse width of the central pulse waveform in FIG. 5C focused on the scanning plane is equal, and the binarized pulse width at the knife edge 1 is shown in the left diagram of FIG. The binarized pulse width at the knife edge 2 is larger, and in the right diagram of FIG. 5 (c) where the converging state is backward focused, the binarized pulse width at the knife edge 1 is binary at the knife edge 2. Greater than the pulse width. From the above, assuming that the binarized pulse width at the knife edge 1 is t3 and the pulse width at the knife edge 2 is t4, the focus error signal F is
F = t3-t4
Then, F indicates the defocus and shift direction.
That is, when F = 0, the light is focused on the scanning surface. When F <0, the light converging position is shifted to the light source side, and when F> 0, the light source is focused. It is in the state of back focusing that is shifted in the opposite direction, and the amount of defocus and the direction of shift can be known from the value of F and positive / negative.

このフォーカス誤差信号Fを元に走査光学系中の可変焦点手段(図2(a)のシリンドリカルレンズ13,14の移動手段、または、図2(b)の主走査焦点可変素子21A、副走査焦点可変素子21Bの駆動手段)にフィードバックして、フォーカス誤差信号Fが0となるように可変焦点制御を行う。
なお、ナイフエッジ対からの受光信号から走査ビーム焦点ずれを検出する方法は、この他に、特許文献1に開示されているように、微分信号のピーク値をピークホールドして、受光信号の立上りと立下りに対応した微分ピークのピーク電圧を比較演算しても求められる。
Based on the focus error signal F, variable focus means in the scanning optical system (moving means for the cylindrical lenses 13 and 14 in FIG. 2A, or main scanning focus variable element 21A in FIG. 2B, sub-scanning focus). The variable focus control is performed so that the focus error signal F becomes zero by feeding back to the driving means of the variable element 21B.
In addition to this, as disclosed in Patent Document 1, the method of detecting the scanning beam defocus from the light reception signal from the knife edge pair holds the peak value of the differential signal and rises the light reception signal. And the peak voltage of the differential peak corresponding to the falling edge can also be calculated.

次に、主走査方向に対し、斜めに傾けたナイフエッジ対により副走査方向の走査ビーム焦点検出が行えることを説明する。図14に走査レーザビームのビーム形状が円形状のときの本発明のナイフエッジ透過光検出信号の受光波形を示す。走査レーザビームに記入されている破線1は主走査に垂直なナイフエッジが検出する走査ビーム検出の方向を示し、その下の図が主走査に垂直なナイフエッジ対に対応した受光信号である。また破線2は主走査に対し傾斜したナイフエッジが検出する走査ビーム検出の方向を示し、その右下の図は傾斜したナイフエッジ対に対応した受光信号である。図では主走査方向に対し45°傾斜したナイフエッジによる受光信号を示している。これら受光信号から焦点ずれ検出を行うには図5で説明したように、受光信号を時間微分して、走査ビーム形状に相似の信号を得て、そのしきい値処理を行うことで実施できる。図から走査レーザビームのビーム形状が円形状のときは、主走査方向の走査ビーム焦点ずれは主走査に垂直なナイフエッジ対から得られる。また副走査方向の走査ビーム焦点ずれは主走査に対し傾斜したナイフエッジ対から得られる。   Next, it will be described that scanning beam focus detection in the sub-scanning direction can be performed by a pair of knife edges inclined obliquely with respect to the main scanning direction. FIG. 14 shows a light reception waveform of the knife edge transmitted light detection signal of the present invention when the beam shape of the scanning laser beam is circular. A broken line 1 written in the scanning laser beam indicates a scanning beam detection direction detected by a knife edge perpendicular to the main scanning, and a lower figure shows a light reception signal corresponding to the knife edge pair perpendicular to the main scanning. A broken line 2 indicates a scanning beam detection direction detected by a knife edge inclined with respect to the main scanning, and a lower right diagram shows a light reception signal corresponding to the inclined knife edge pair. In the figure, a light reception signal by a knife edge inclined by 45 ° with respect to the main scanning direction is shown. As described with reference to FIG. 5, detection of defocus from these received light signals can be performed by differentiating the received light signals with respect to time, obtaining signals similar to the scanning beam shape, and performing threshold processing thereof. From the figure, when the beam shape of the scanning laser beam is circular, the scanning beam defocus in the main scanning direction is obtained from a pair of knife edges perpendicular to the main scanning. The scanning beam defocus in the sub-scanning direction is obtained from a pair of knife edges inclined with respect to the main scanning.

また、図15に示すように走査レーザビームの主走査方向集光径が副走査方向集光径より小さいときには、主走査方向に対し、傾斜したナイフエッジ対から得られる受光信号は主走査方向より副走査方向のビーム形状による信号がメインとなっており、副走査方向の走査ビーム焦点ずれ検出は主走査に対し傾斜したナイフエッジ対から近似的に得ることができる。   Further, as shown in FIG. 15, when the condensing diameter of the scanning laser beam in the main scanning direction is smaller than the condensing diameter in the sub-scanning direction, the light reception signal obtained from the knife edge pair inclined with respect to the main scanning direction is from the main scanning direction. The signal based on the beam shape in the sub-scanning direction is the main, and scanning beam defocus detection in the sub-scanning direction can be approximately obtained from a pair of knife edges inclined with respect to the main scanning.

以上のことから、走査面への集光ビームについて主走査方向集光径が副走査方向集光径に等しいか、小さいときには、前記主走査方向に垂直なエッジ線を持つ走査ビーム焦点検出手段(例えば図6、図7の走査ビーム焦点検出手段18−1)の出力から主走査方向の焦点ずれを、主走査方向に対して傾いたナイフエッジ線を持つ走査ビーム焦点検出手段(例えば図6、図7の走査ビーム焦点検出手段18−2)の出力から副走査方向の焦点ずれを独立して検出することができる。
主走査方向と副走査方向の焦点ずれ検出が独立にできるので、その補正は図19(a)に示すフロー図のように、走査ビーム焦点検出手段の主走査フォーカスセンサ(主走査Foセンサ)から出力される主走査方向の焦点ずれ信号(主走査フォーカスエラー信号Fo1)を元に主走査方向焦点可変手段(例えば図2(b)の主走査焦点可変素子(主走査可変焦点レンズ)21Aの駆動)を制御して主走査方向の焦点ずれを補正する。また図19(b)に示すように、走査ビーム焦点検出手段の副走査フォーカスセンサ(近似副走査Foセンサ)から出力される近似的な副走査方向の焦点ずれ信号(近似副走査フォーカスエラー信号Fo2)を元に副走査方向焦点可変手段(例えば図2(b)の副走査焦点可変素子(副走査可変焦点レンズ)21Bの駆動)を制御して副走査方向の焦点ずれを補正する。そしてこの補正を独立に同時に並行して行う。但し、図19(a)中のt1、t2は主走査方向に垂直なナイフエッジ対透過光の受光出力の微分波形から得られる2つの2値化パルスのパルス幅、図19(b)中のt3、t4は主走査方向に対し傾斜したナイフエッジ対透過光の受光出力の微分波形から得られる2つの2値化パルスのパルス幅である。
From the above, when the condensing diameter in the main scanning direction is equal to or smaller than the condensing diameter in the sub-scanning direction with respect to the condensing beam on the scanning surface, the scanning beam focus detection means having an edge line perpendicular to the main scanning direction ( For example, the scanning beam focus detection means (for example, FIG. 6, FIG. 6), which has a knife edge line inclined from the output of the scanning beam focus detection means 18-1) in FIGS. Defocus in the sub-scanning direction can be detected independently from the output of the scanning beam focus detection means 18-2) in FIG.
Since the defocus detection in the main scanning direction and the sub-scanning direction can be performed independently, the correction is performed from the main scanning focus sensor (main scanning Fo sensor) of the scanning beam focus detection means as shown in the flowchart of FIG. Based on the output focus shift signal (main scanning focus error signal Fo1) in the main scanning direction, the main scanning direction focus variable means (for example, main scanning focus variable element (main scanning variable focus lens) 21A in FIG. 2B) is driven. ) To correct the defocus in the main scanning direction. Further, as shown in FIG. 19B, an approximate sub-scanning defocus signal (approximate sub-scanning focus error signal Fo2) output from the sub-scanning focus sensor (approximate sub-scanning Fo sensor) of the scanning beam focus detection means. ) To control the sub-scanning direction focus changing means (for example, driving the sub-scanning focus changing element (sub-scanning variable focus lens) 21B in FIG. 2B) to correct the defocus in the sub-scanning direction. This correction is performed independently and simultaneously in parallel. However, t1 and t2 in FIG. 19 (a) are the pulse widths of two binarized pulses obtained from the differential waveform of the received light output of the knife edge pair transmitted light perpendicular to the main scanning direction, and in FIG. 19 (b). t3 and t4 are the pulse widths of two binarized pulses obtained from the differential waveform of the received light output of the knife edge pair transmitted light inclined with respect to the main scanning direction.

以上のように主走査方向、副走査方向の独立した焦点ずれ補正は、例えば図2(b)に示した電圧印加制御の主走査焦点可変素子21A及び副走査焦点可変素子21Bに各々独立にFo1,Fo2の信号をフィードバックして主走査、副走査同時に焦点ずれ補正を行う。   As described above, independent defocus correction in the main scanning direction and the sub-scanning direction is performed independently for each of the main scanning focus variable element 21A and the sub-scanning focus variable element 21B for voltage application control shown in FIG. , Fo2 signals are fed back to perform defocus correction simultaneously with main scanning and sub scanning.

また、別の方法として、主走査方向、副走査方向の独立した焦点ずれ補正は、図2(a)に示した焦点可変手段を用い、主走査方向はFo1を元に前段のシリンドリカルレンズ13を光軸方向aに前後に移動させる移動手段により行い、副走査方向はFo2を元に後段のシリンドリカルレンズ14を光軸方向bに前後に移動させる移動手段により行う。   As another method, the focus shift unit shown in FIG. 2A is used for independent defocus correction in the main scanning direction and the sub-scanning direction. In the main scanning direction, the preceding cylindrical lens 13 is adjusted based on Fo1. It is performed by moving means for moving back and forth in the optical axis direction a, and the sub-scanning direction is performed by moving means for moving the subsequent cylindrical lens 14 back and forth in the optical axis direction b based on Fo2.

本実施例により、主走査方向及び副走査方向の走査レーザビーム焦点ずれ量及びずれの方向を個別に検出することができ、主走査、副走査独立した可変焦点手段により主走査方向、副走査方向の焦点ずれを独立に同時に迅速化した補正が可能となる。
また、本実施例によれば走査面近傍におくナイフエッジ対の配置精度は緩くてよく、走査ビーム焦点検出手段設置時の特別な位置調整は必要ない。
According to this embodiment, it is possible to individually detect the scanning laser beam defocus amount and the misalignment direction in the main scanning direction and the sub-scanning direction, and the main scanning direction and the sub-scanning direction by the variable focus means independent of the main scanning and sub-scanning. This makes it possible to perform corrections that quickly and independently reduce the defocusing.
Further, according to the present embodiment, the arrangement accuracy of the knife edge pair in the vicinity of the scanning surface may be loose, and no special position adjustment is required when the scanning beam focus detection means is installed.

[実施例2]
次に、走査面への集光ビームについて主走査方向集光径が副走査方向集光径より大きい場合の実施例について図16に示す。この場合は主走査方向に対して斜めに傾斜したエッジ線(図16では45°方向)をもつナイフエッジ対による受光信号は、副走査方向より主走査方向の焦点ずれ信号がメインとなっており、副走査方向の走査ビーム焦点ずれ検出は、この傾斜したナイフエッジ対による信号から得ることができない。
[Example 2]
Next, FIG. 16 shows an embodiment in which the main scanning direction condensing diameter is larger than the sub scanning direction condensing diameter with respect to the condensing beam on the scanning surface. In this case, the light reception signal by the knife edge pair having the edge line inclined obliquely with respect to the main scanning direction (45 ° direction in FIG. 16) is mainly the defocus signal in the main scanning direction from the sub scanning direction. The scanning beam defocus detection in the sub-scanning direction cannot be obtained from the signal by the inclined knife edge pair.

そこで、主走査方向集光径が副走査方向集光径より大きいときについては図17に示すようなナイフエッジ対を用いる。図17(a)は主走査方向の焦点ずれを検出するナイフエッジ対であり、従来と同様である。図17(b)が副走査方向の焦点ずれを検出するために、主走査方向に対して傾いたエッジ線を持つナイフエッジ対であり、走査ビーム焦点検出手段のナイフエッジ3,4の傾き角αが主走査方向に対して45°より小さな角度に設定する。図17(b)ではα≒10°に設定した場合を示す。これは図に示すようにナイフエッジ線をなるべく主走査方向に近くするのである。   Thus, when the main scanning direction condensing diameter is larger than the sub-scanning direction condensing diameter, a knife edge pair as shown in FIG. 17 is used. FIG. 17A shows a knife edge pair for detecting a defocus in the main scanning direction, which is the same as the conventional one. FIG. 17B shows a knife edge pair having an edge line inclined with respect to the main scanning direction in order to detect a defocus in the sub scanning direction, and the inclination angles of the knife edges 3 and 4 of the scanning beam focus detection means. α is set to an angle smaller than 45 ° with respect to the main scanning direction. FIG. 17B shows a case where α≈10 ° is set. This makes the knife edge line as close as possible to the main scanning direction as shown in the figure.

図18に主走査方向集光径が副走査方向集光径より大きいときの図17のナイフエッジに対応した透過光検出信号の受光波形を示す。走査レーザビームに記入されている破線1は図17(a)の主走査に垂直なナイフエッジが検出する走査ビーム形状の方向を示し、その下の図は主走査に垂直なナイフエッジ対に対応した受光信号である。また破線2は図17(b)の主走査に対し傾斜したナイフエッジ3,4が検出する走査ビーム形状の方向を示し、その右下の図は傾斜したナイフエッジ対に対応した受光信号である。図18より走査ビーム焦点検出手段のナイフエッジの傾き角αが主走査方向に対して45°より小さな角度に設定した場合、得られる受光信号は主走査方向より副走査方向のビーム形状による信号がメインとなり、副走査方向の走査ビーム焦点ずれ検出は近似的に、主走査に対しα<45°に傾斜したナイフエッジ対から得ることができる。   FIG. 18 shows a received light waveform of the transmitted light detection signal corresponding to the knife edge of FIG. 17 when the main scanning direction condensing diameter is larger than the sub-scanning direction condensing diameter. The broken line 1 written in the scanning laser beam indicates the direction of the scanning beam shape detected by the knife edge perpendicular to the main scanning in FIG. 17A, and the lower figure corresponds to the knife edge pair perpendicular to the main scanning. Received light signal. A broken line 2 indicates the direction of the scanning beam shape detected by the knife edges 3 and 4 inclined with respect to the main scan in FIG. 17B, and the lower right figure shows a light reception signal corresponding to the inclined knife edge pair. . As shown in FIG. 18, when the tilt angle α of the knife edge of the scanning beam focus detection means is set to an angle smaller than 45 ° with respect to the main scanning direction, the received light signal is a signal based on the beam shape in the sub-scanning direction from the main scanning direction. Scanning beam defocus detection in the main and sub-scanning directions can be approximately obtained from a pair of knife edges inclined at α <45 ° with respect to the main scanning.

本実施例の構成により、主走査方向集光径が副走査方向集光径より大きいときについても主走査方向と副走査方向の焦点ずれ検出が独立してでき、その補正は図19(a),(b)に示すフロー図のように主走査、副走査独立に、同時に行うことができる。
このように本実施例によっても、主走査方向及び副走査方向の走査レーザビーム焦点ずれ量及びずれの方向を個別に検出することができ、主走査、副走査独立した可変焦点手段により主走査方向、副走査方向の焦点ずれを独立に同時に迅速化した補正が可能となる。
また、本実施例によれば走査面近傍におくナイフエッジ対の配置精度は緩くてよく、設置時の特別な位置調整は必要ない。
With the configuration of the present embodiment, even when the condensing diameter in the main scanning direction is larger than the condensing diameter in the sub scanning direction, defocus detection in the main scanning direction and the sub scanning direction can be performed independently, and the correction is performed as shown in FIG. , (B), the main scanning and the sub-scanning can be performed simultaneously at the same time.
As described above, also in this embodiment, the scanning laser beam defocus amount and the misalignment direction in the main scanning direction and the sub-scanning direction can be detected individually, and the main scanning direction can be detected by the variable focus means independent of the main scanning and sub-scanning. Thus, it is possible to perform corrections that simultaneously and quickly accelerate the defocus in the sub-scanning direction.
Further, according to the present embodiment, the arrangement accuracy of the knife edge pair placed in the vicinity of the scanning surface may be loose, and no special position adjustment is required at the time of installation.

[実施例3]
次に、図8、図9に別の実施例を示す。この実施例は主走査と副走査の焦点ずれ検出を一体化して独立した検出を可能とする走査ビーム焦点検出手段の構成例である。図8に走査ビーム焦点検出手段のナイフエッジ群を光源方向から見たときの構成例を示す。ナイフエッジ1,2は主走査方向に垂直なエッジ線をもち、主走査方向の焦点ずれを検出するナイフエッジ対であり、ナイフエッジ3,4は主走査方向に傾斜したエッジ線をもち、副走査方向の焦点ずれを検出するナイフエッジ対である。図9は図8に示す走査ビーム焦点検出手段のナイフエッジ群から光検出器に至る光学系の主走査方向断面図(主走査断面の平面図)であり、走査面17に対しナイフエッジ1,4は光源側にずれて配置され、ナイフエッジ2,3は光源とは反対方向にずれて配置されている。ナイフエッジを透過したビームは集光レンズ19で光検出器20に集光される。ここで、ナイフエッジ2,3は同一の基板端に構成されており、これにより簡易化されている。
[Example 3]
Next, another embodiment is shown in FIGS. This embodiment is a configuration example of a scanning beam focus detection means that integrates main-scan and sub-scan focus shift detection and enables independent detection. FIG. 8 shows a configuration example when the knife edge group of the scanning beam focus detection means is viewed from the light source direction. The knife edges 1 and 2 have edge lines perpendicular to the main scanning direction, and are knife edge pairs for detecting defocus in the main scanning direction. The knife edges 3 and 4 have edge lines inclined in the main scanning direction, This is a knife edge pair for detecting defocus in the scanning direction. FIG. 9 is a sectional view in the main scanning direction (plan view of the main scanning section) of the optical system from the knife edge group of the scanning beam focus detection means shown in FIG. 4 is arranged shifted to the light source side, and knife edges 2 and 3 are arranged shifted in the opposite direction to the light source. The beam that has passed through the knife edge is condensed on the photodetector 20 by the condenser lens 19. Here, the knife edges 2 and 3 are formed on the same substrate end, thereby simplifying.

図10(a)に図9の光検出器20で検出された受光信号の波形の関係を示す。横軸は時間t、縦軸は出力振幅である。この図では走査ビームが走査面に集光しており焦点ずれのないときの信号である。図10(a)の受光信号の最初のピークはナイフエッジ対1,2による主走査方向の焦点ずれを検出するための受光信号で、次のピークはナイフエッジ対3,4による副走査方向の焦点ずれを検出するための受光信号である。図10(b)は図10(a)を時間微分した信号であり、図10(c)は微分信号を図10(b)中の横線に相当するしき値で2値化したパルス出力である。これらパルス列のうち、主走査に関連した最初のナイフエッジ対1,2による2パルスのパルス幅をそれぞれt1,t2とする。また副走査に関連したナイフエッジ対3,4によるパルスのパルス幅をそれぞれt3,t4とする。   FIG. 10A shows the relationship of the waveform of the received light signal detected by the photodetector 20 shown in FIG. The horizontal axis is time t, and the vertical axis is output amplitude. In this figure, the scanning beam is focused on the scanning surface and is a signal when there is no defocus. The first peak of the light reception signal in FIG. 10A is a light reception signal for detecting a defocus in the main scanning direction due to the knife edge pairs 1 and 2, and the next peak is in the sub scanning direction due to the knife edge pairs 3 and 4. It is a light reception signal for detecting defocus. 10B is a signal obtained by time-differentiating FIG. 10A, and FIG. 10C is a pulse output obtained by binarizing the differentiated signal with a threshold corresponding to the horizontal line in FIG. 10B. . Of these pulse trains, the pulse widths of two pulses by the first knife edge pair 1 and 2 related to the main scanning are t1 and t2, respectively. The pulse widths of the knife edge pairs 3 and 4 related to the sub-scan are t3 and t4, respectively.

これらパルス列は走査レーザビームの焦点ずれ状態により変化する。図11はそのパルス列t1、t2の変化の様子を示したものであり、図11のaは走査レーザビーム集光位置が光源側にある前方集束状態で、パルス幅はt1<t2であり、図11のbは丁度走査面に合焦しているときで、パルス幅はt1=t2であり、図11のcは後方集束状態で、パルス幅はt1>t2となる。   These pulse trains change depending on the defocus state of the scanning laser beam. FIG. 11 shows how the pulse trains t1 and t2 change. In FIG. 11, “a” in FIG. 11 is a forward focusing state where the scanning laser beam condensing position is on the light source side, and the pulse width is t1 <t2. 11 b is just when focused on the scanning plane, the pulse width is t 1 = t 2, c in FIG. 11 is the back-focused state, and the pulse width is t 1> t 2.

ここで主走査方向の焦点ずれを検出するためのフォーカス誤差信号をFo1とすると、
Fo1=t1−t2
とする。
また、副走査方向の焦点ずれを検出するためのフォーカス誤差信号をFo2とすると、
Fo2=t3−t4
とする。
Here, if the focus error signal for detecting the defocus in the main scanning direction is Fo1,
Fo1 = t1-t2
And
Further, if the focus error signal for detecting the defocus in the sub-scanning direction is Fo2,
Fo2 = t3-t4
And

図12にフォーカス誤差信号と焦点ずれの関係を示す。Fo1=0,Fo2=0のときが丁度走査面に集光していることになり、Fo1<0,Fo2<0の場合が、集光位置が光源側にずれている前方集束の状態、Fo1>0,Fo2>0の場合が光源の反対方向にずれている後方集束の状態となり、このFo1,Fo2の値及び正・負により焦点ずれ量とずれ方向を知ることができる。
図12(a)は主走査方向のフォーカス誤差信号Fo1が縦軸、横軸が光軸方向の座標zであり、Z=0が走査面位置を表している。図12(b)は副走査方向のフォーカス誤差信号Fo2が縦軸、横軸が光軸方向の座標zであり、z=0が走査面位置を表している。従って図12(a),(b)のフォーカス誤差信号Fo1,Fo2がそれぞれ0になるように、主、副走査方向の可変焦点手段(図2(a)のシリンドリカルレンズ13,14の移動手段、または、図2(b)の主走査焦点可変素子21A、副走査焦点可変素子21Bの駆動手段)を独立に同時に駆動して走査光学系の焦点ずれを補正する。
FIG. 12 shows the relationship between the focus error signal and the defocus. When Fo1 = 0 and Fo2 = 0, the light is focused on the scanning surface. When Fo1 <0 and Fo2 <0, the focal position is shifted forward toward the light source side, Fo1 The case of> 0, Fo2> 0 is a back-focused state shifted in the opposite direction of the light source, and the amount of defocus and the direction of shift can be known by the values of Fo1, Fo2 and positive / negative.
In FIG. 12A, the focus error signal Fo1 in the main scanning direction is the vertical axis, the horizontal axis is the coordinate z in the optical axis direction, and Z = 0 represents the scanning surface position. In FIG. 12B, the focus error signal Fo2 in the sub-scanning direction is the vertical axis, the horizontal axis is the coordinate z in the optical axis direction, and z = 0 represents the scanning surface position. Accordingly, variable focus means in the main and sub-scanning directions (moving means for the cylindrical lenses 13 and 14 in FIG. 2A, so that the focus error signals Fo1 and Fo2 in FIGS. Alternatively, the main scanning focus variable element 21A and the sub-scanning focus variable element 21B in FIG. 2B are simultaneously and independently driven to correct the defocus of the scanning optical system.

なお、ナイフエッジ対からの受光信号から走査ビーム焦点ずれを検出する方法は、この他に、特許文献1に開示されているように、微分信号のピーク値をピークホールドして、受光信号の立上りと立下りに対応したピークのピーク電圧を比較演算しても求められる。   In addition to this, as disclosed in Patent Document 1, the method of detecting the scanning beam defocus from the light reception signal from the knife edge pair holds the peak value of the differential signal and rises the light reception signal. And the peak voltage corresponding to the falling edge is also obtained by comparison calculation.

図13に本実施例の走査ビーム焦点検出手段を実際に構成したセンサの構造例を示す。図13(a)は集光レンズ19があるときの構成例であり、図13(a)の左図は光源方向から見た走査ビーム焦点検出センサのナイフエッジ群の平面図、図13(a)の右図は走査ビーム焦点検出センサの主走査断面図である。ナイフエッジ2,3はそれぞれ同一基板端に形成されている。図13(b)は集光レンズを用いないときの構成例であり、図13(b)の左図は光源方向から見た走査ビーム焦点検出センサのナイフエッジ群の平面図、図13(b)の右図は走査ビーム焦点検出センサの主走査断面図である。図13(b)の構成では、図13(a)に比べてより小型化が可能となる。また、更に図13の構成例では、ナイフエッジ2,3を同一基板端に形成するのみならず、ナイフエッジ1,4も同一基板に形成することにより、更に簡易化することができる。
図13に示す構成の走査ビーム焦点検出センサを用いることにより、主走査と副走査の焦点ずれ検出を一体化して、独立した検出を可能とし、簡易、小型化することができる構成の光走査装置を提供することができる。
FIG. 13 shows a structural example of a sensor that actually configures the scanning beam focus detection means of the present embodiment. FIG. 13A shows a configuration example when the condensing lens 19 is provided. The left diagram of FIG. 13A is a plan view of the knife edge group of the scanning beam focus detection sensor as viewed from the light source direction, and FIG. ) Is a main scanning sectional view of the scanning beam focus detection sensor. The knife edges 2 and 3 are respectively formed on the same substrate end. FIG. 13B shows a configuration example when no condensing lens is used, and the left figure of FIG. 13B is a plan view of the knife edge group of the scanning beam focus detection sensor viewed from the light source direction, and FIG. ) Is a main scanning sectional view of the scanning beam focus detection sensor. In the configuration of FIG. 13B, the size can be further reduced as compared with FIG. Further, in the configuration example of FIG. 13, not only the knife edges 2 and 3 are formed on the same substrate end, but also the knife edges 1 and 4 are formed on the same substrate, so that the simplification can be further simplified.
By using the scanning beam focus detection sensor having the configuration shown in FIG. 13, it is possible to integrate the main scanning and sub-scanning defocus detection to enable independent detection, and to simplify and miniaturize the optical scanning device. Can be provided.

[実施例4]
次に、実施例1〜3で説明した光走査装置を備えた画像形成装置の実施例を説明する。
図20は、実施例1〜3で説明した光走査装置を複数備えた多色画像形成装置100を示している。この多色画像形成装置100は、フルカラー画像をプリント出力する画像形成装置であり、装置内に各色に相当する4つの感光体120Y、120M、120C、120K(以下、符号に対する添字Y、M、C、Kを適宜付け、Y:イエロー、M:マゼンタ、C:シアン、K:ブラックの色に対応する部分として区別するものとする)が並設されたタンデム型のカラー画像形成装置である。
この画像形成装置内には、上部から順に実施例1〜3で説明したいずれかの構成が適用された光走査装置105、現像装置106、感光体120、中間転写ベルト121、定着装置114、給紙カセット111等がレイアウトされている。
なお、図示していないが、この画像形成装置をデジタル複写機やファクシミリ、あるいは複合機として用いる場合には、図示しないスキャナ装置(原稿読取装置)が光走査装置105の上部または分離して別配置さる。
[Example 4]
Next, an embodiment of an image forming apparatus including the optical scanning device described in the first to third embodiments will be described.
FIG. 20 illustrates a multicolor image forming apparatus 100 including a plurality of optical scanning devices described in the first to third embodiments. The multicolor image forming apparatus 100 is an image forming apparatus that prints out a full color image, and includes four photoconductors 120Y, 120M, 120C, and 120K (hereinafter, subscripts Y, M, and C corresponding to reference numerals) corresponding to the respective colors in the apparatus. , K as appropriate, and Y: yellow, M: magenta, C: cyan, and K: black) are arranged in parallel).
In this image forming apparatus, the optical scanning device 105, the developing device 106, the photosensitive member 120, the intermediate transfer belt 121, the fixing device 114, the feeding device to which any of the configurations described in the first to third embodiments are applied in order from the top. A paper cassette 111 and the like are laid out.
Although not shown, when this image forming apparatus is used as a digital copying machine, a facsimile machine, or a multifunction machine, a scanner device (document reading device) (not shown) is disposed above or separately from the optical scanning device 105. Monkey.

中間転写ベルト121の上面側には各色に対応した感光体120Y、120M、120C、120Kが並列順に等間隔で配設されている。
感光体120Y、120M、120C、120Kは同一径に形成されたもので、その周囲には電子写真プロセスに従い画像形成を行うための構成部材が順に配設されている。
すなわち、図20では現像装置106しか図示していないが、感光体120Yを例に説明すると、実際には、感光体120Yの周囲に、図示しない帯電装置(帯電チャージャ、帯電ローラ、帯電ブラシ等)、光走査装置105から画像情報に基づいて出射されたレーザビームLY、現像装置106Y、図示しない転写装置(転写チャージャ、転写ローラ、転写ブラシ等)、図示しないクリーニング装置等が順に配設されている。また、他の感光体120M、120C、120Kに対しても同様の部材が配設されている。
Photoconductors 120Y, 120M, 120C, and 120K corresponding to the respective colors are arranged on the upper surface side of the intermediate transfer belt 121 at equal intervals in the parallel order.
The photoconductors 120Y, 120M, 120C, and 120K are formed to have the same diameter, and constituent members for forming an image according to an electrophotographic process are sequentially arranged around the photoconductors 120Y, 120M, 120C, and 120K.
That is, only the developing device 106 is shown in FIG. 20, but the explanation will be made by taking the photoconductor 120Y as an example. Actually, a charging device (charging charger, charging roller, charging brush, etc.) not shown around the photoconductor 120Y. A laser beam LY emitted from the optical scanning device 105 based on image information, a developing device 106Y, a transfer device (not shown) (transfer charger, transfer roller, transfer brush, etc.), a cleaning device (not shown), and the like are sequentially arranged. . Similar members are also provided for the other photoconductors 120M, 120C, and 120K.

本実施例では、光導電性の感光体120Y、120M、120C、120Kを各色毎に設定された走査面とするものであり、各々の感光体(走査面)120Y、120M、120C、120Kに対して光走査装置105からのレーザビームLY、LM、LC、LKが対応するように設けられている。   In this embodiment, the photoconductive photoconductors 120Y, 120M, 120C, and 120K are used as scanning surfaces set for the respective colors, and the respective photoconductors (scanning surfaces) 120Y, 120M, 120C, and 120K are used. The laser beams LY, LM, LC, and LK from the optical scanning device 105 are provided so as to correspond.

図示しない帯電装置により一様に帯電された感光体120Yは、矢印A方向に回転することによってレーザビームLYを副走査し、感光体120Y上に静電潜像が形成される。
また、光走査装置105によるレーザビームLYの照射位置よりも感光体の回転方向下流側には、感光体120Yにトナーを供給する現像装置106Yが配設され、イエロー(Y)のトナーが供給される。
現像装置106Yから供給されたトナーは、静電潜像が形成された部分に付着し、Yのトナー像が形成される。
同様に感光体120M、120C、120Kに対しても帯電、潜像形成、現像が行われ、それぞれM、C、Kの単色トナー像が形成される。
The photoconductor 120Y uniformly charged by a charging device (not shown) rotates in the direction of arrow A, thereby sub-scanning the laser beam LY, and an electrostatic latent image is formed on the photoconductor 120Y.
Further, a developing device 106Y for supplying toner to the photoconductor 120Y is disposed downstream of the irradiation position of the laser beam LY by the optical scanning device 105, so that yellow (Y) toner is supplied. The
The toner supplied from the developing device 106Y adheres to the portion where the electrostatic latent image is formed, and a Y toner image is formed.
Similarly, charging, latent image formation, and development are performed on the photoconductors 120M, 120C, and 120K, and M, C, and K monochromatic toner images are formed, respectively.

各感光体120Y、120M、120C、120Kの現像装置106Y、106M、106C、106Kの配設位置よりもさらに回転方向下流側には、中間転写ベルト121が配置されている。
中間転写ベルト121は、複数のローラ102a、102b、102cに掛け渡されて支持されており、図示しないモータの駆動により矢印B方向に移動搬送されるようになっている。
この搬送により、中間転写ベルト121は順に感光体120Y、120M、120C、120Kに移動されるようになっている。
中間転写ベルト121には感光体120Y、120M、120C、120Kで現像された各々の単色画像が順次重ね合わせて転写され、中間転写ベルト121上にカラー画像が形成されるようになっている。
An intermediate transfer belt 121 is arranged further downstream in the rotation direction than the arrangement positions of the developing devices 106Y, 106M, 106C, and 106K of the photosensitive members 120Y, 120M, 120C, and 120K.
The intermediate transfer belt 121 is supported around a plurality of rollers 102a, 102b, and 102c, and is moved and conveyed in the direction of arrow B by driving a motor (not shown).
By this conveyance, the intermediate transfer belt 121 is sequentially moved to the photoconductors 120Y, 120M, 120C, and 120K.
The single color images developed by the photoconductors 120Y, 120M, 120C, and 120K are sequentially superimposed and transferred onto the intermediate transfer belt 121, and a color image is formed on the intermediate transfer belt 121.

その後、給紙トレイ111から転写紙が給紙され、二次転写ローラ112を介して矢印C方向に搬送され、中間転写ベルト121から転写紙にカラー画像が転写される。
カラー画像が形成された転写紙は、定着装置114により加熱・加圧されて定着処理された後、画像形成装置上部の排紙トレイ110にフルカラー画像のプリントとして排紙される。
Thereafter, the transfer paper is fed from the paper feed tray 111 and conveyed in the direction of arrow C via the secondary transfer roller 112, and the color image is transferred from the intermediate transfer belt 121 to the transfer paper.
The transfer paper on which the color image is formed is heated and pressed by the fixing device 114 and fixed, and then discharged as a full-color image print onto a paper discharge tray 110 at the top of the image forming device.

上記のような構成の光走査装置を用いた多色画像形成装置100により、連続出力時においても色味の変化がない高品質なカラー画像を提供することができる。
なお、図示しないが、例えばK:ブラックのみからなる単色の画像形成装置にも本発明の光走査装置を適用できる。
The multi-color image forming apparatus 100 using the optical scanning apparatus having the above-described configuration can provide a high-quality color image that does not change color even during continuous output.
Although not shown, for example, the optical scanning device of the present invention can also be applied to a monochrome image forming apparatus composed of only K: black.

以上のような構成の多色画像形成装置において、光走査装置によるレーザビームのビームスポット径は、初期(工場出荷状態)を目標として、各光走査装置ごとに制御を行うのが良い。
ビームスポット径の補正を画像形成中に行うと、前述の焦点可変手段の動作に伴うわずかなリップル(動作直後におけるビームスポット径及びビームスポット位置の微変動)により画像品質が局所的に劣化する恐れがある。
また、画像を1枚出力する程度の時間では、ビームスポット径の変動は少ない。しかし、連続出力中は多色画像形成装置内の環境変動が激しいため、できるだけ短い周期で補正を行う方が望ましい。
以上のことからビームスポット径の補正は、連続プリント中の紙間で行うのが良い。このため本発明の構成及び検出・補正方法を用い、走査レーザビーム焦点ずれの主走査、副走査方向の独立検出と、可変焦点手段へのフィードバックによる主走査、副走査方向の独立した補正を行うことにより、紙間の短時間に迅速に焦点ずれ検出と補正を行うことができる。
また、上記の焦点ずれ検出と補正は、画像形成装置の立ち上げ時、スリープモードからの回復時、プロセスコントロール時などにも適宜、行うことができる。
In the multi-color image forming apparatus configured as described above, the beam spot diameter of the laser beam by the optical scanning device is preferably controlled for each optical scanning device with the initial (factory shipment state) as a target.
If the beam spot diameter is corrected during image formation, the image quality may be locally degraded due to slight ripples (slight fluctuations in the beam spot diameter and beam spot position immediately after the operation) caused by the operation of the above-mentioned focus varying means. There is.
In addition, there is little variation in the beam spot diameter in the time required to output one image. However, during continuous output, environmental fluctuations in the multicolor image forming apparatus are severe, and therefore it is desirable to perform correction in the shortest possible cycle.
From the above, the correction of the beam spot diameter is preferably performed between sheets during continuous printing. For this reason, using the configuration and detection / correction method of the present invention, independent detection in the main scanning and sub-scanning directions of the scanning laser beam defocus and independent correction in the main scanning and sub-scanning directions by feedback to the variable focus means are performed. Accordingly, it is possible to quickly detect and correct the defocusing in a short time between the sheets.
In addition, the above-described defocus detection and correction can be appropriately performed when starting up the image forming apparatus, when recovering from the sleep mode, during process control, and the like.

本発明の一実施例を示す図であって、光走査装置の光偏向器(回転多面鏡)以降の光学系の配置例を示した平面図(主走査断面図)である。It is a figure which shows one Example of this invention, Comprising: It is the top view (main scanning sectional drawing) which showed the example of arrangement | positioning of the optical system after the optical deflector (rotating polygon mirror) of an optical scanning device. (a),(b)はそれぞれ光走査装置の光源(半導体レーザ(LD))から走査面までの光学系の配置例を示した側面図(副走査断面図)である。(A), (b) is the side view (sub-scanning sectional view) which showed the example of arrangement | positioning of the optical system from the light source (semiconductor laser (LD)) of an optical scanning device to a scanning surface, respectively. 走査ビーム焦点検出手段の一実施例を示す図であり、光源側から見たナイフエッジ対の平面図である。It is a figure which shows one Example of a scanning beam focus detection means, and is a top view of the knife edge pair seen from the light source side. 図3に示す走査ビーム焦点検出手段のナイフエッジ対から光検出器に至る光学系の主走査方向断面図である。FIG. 4 is a cross-sectional view in the main scanning direction of the optical system from the knife edge pair of the scanning beam focus detection means shown in FIG. 3 to the photodetector. 図4の走査ビーム焦点検出手段の光検出器で検出された信号波形の関係を示す図である。It is a figure which shows the relationship of the signal waveform detected with the photodetector of the scanning beam focus detection means of FIG. 本発明の別の実施例を示す図であって、光走査装置の光偏向器(回転多面鏡)以降の光学系の配置例を示した平面図(主走査断面図)である。It is a figure which shows another Example of this invention, Comprising: It is the top view (main scanning sectional drawing) which showed the example of arrangement | positioning of the optical system after the optical deflector (rotating polygon mirror) of an optical scanning device. 本発明の別の実施例を示す図であって、光走査装置の光偏向器(回転多面鏡)以降の光学系の配置例を示した平面図(主走査断面図)である。It is a figure which shows another Example of this invention, Comprising: It is the top view (main scanning sectional drawing) which showed the example of arrangement | positioning of the optical system after the optical deflector (rotating polygon mirror) of an optical scanning device. 本発明の別の実施例を示す図であり、主走査と副走査の焦点ずれ検出を一体化して独立した検出を可能とする構成の走査ビーム焦点検出手段のナイフエッジ群を光源方向から見たときの構成例を示す平面図である。It is a figure which shows another Example of this invention, and saw the knife edge group of the scanning beam focus detection means of the structure which integrated the main-scanning and sub-scanning focus shift detection, and enabled the independent detection from the light source direction. It is a top view which shows the example of a structure at the time. 図8に示す走査ビーム焦点検出手段のナイフエッジ群から光検出器に至る光学系の主走査方向断面図である。FIG. 9 is a cross-sectional view in the main scanning direction of the optical system from the knife edge group of the scanning beam focus detection means shown in FIG. 8 to the photodetector. 図9の走査ビーム焦点検出手段の光検出器で検出された信号波形の関係を示す図である。It is a figure which shows the relationship of the signal waveform detected with the photodetector of the scanning beam focus detection means of FIG. 図10(c)のパルス列t1、t2が走査レーザビームの焦点ずれ状態により変化する様子を示した図である。It is the figure which showed a mode that pulse train t1, t2 of FIG.10 (c) changed with the focus shift | offset | difference states of a scanning laser beam. (a)は主走査方向のフォーカス誤差信号と焦点ずれの関係を示す図、(b)副走査方向のフォーカス誤差信号と焦点ずれの関係を示す図である。(A) is a diagram showing the relationship between the focus error signal in the main scanning direction and defocus, and (b) is a diagram showing the relationship between the focus error signal in the sub-scanning direction and defocus. 実施例3の走査ビーム焦点検出手段を実際に構成したセンサの構造例を示す図である。It is a figure which shows the structural example of the sensor which actually comprised the scanning beam focus detection means of Example 3. FIG. 走査レーザビームのビーム形状が円形状のときの本発明のナイフエッジ透過光検出信号の受光波形を示す図である。It is a figure which shows the light reception waveform of the knife edge transmitted light detection signal of this invention when the beam shape of a scanning laser beam is circular. 走査レーザビームの主走査方向集光径が副走査方向集光径より小さいときの本発明のナイフエッジ透過光検出信号の受光波形を示す図である。It is a figure which shows the light reception waveform of the knife edge transmitted light detection signal of this invention when the main scanning direction condensing diameter of a scanning laser beam is smaller than a sub scanning direction condensing diameter. 走査レーザビームの主走査方向集光径が副走査方向集光径より大きいときの本発明のナイフエッジ透過光検出信号の受光波形を示す図である。It is a figure which shows the light-receiving waveform of the knife edge transmitted light detection signal of this invention when the main scanning direction condensing diameter of a scanning laser beam is larger than a sub-scanning direction condensing diameter. 本発明の別の実施例を示すナイフエッジ対の説明図であり、(a)は主走査方向の焦点ずれを検出するナイフエッジ対を光源方向から見たときの平面図であり、(b)は副走査方向の焦点ずれを検出するために主走査方向に対して傾いたエッジ線を持つナイフエッジ対を光源方向から見たときの平面図である。It is explanatory drawing of the knife edge pair which shows another Example of this invention, (a) is a top view when the knife edge pair which detects the focus shift | offset | difference of the main scanning direction is seen from the light source direction, (b) FIG. 5 is a plan view when a knife edge pair having an edge line inclined with respect to the main scanning direction is viewed from the light source direction in order to detect defocus in the sub scanning direction. 主走査方向集光径が副走査方向集光径より大きいときの図17のナイフエッジに対応した透過光検出信号の受光波形を示す図である。It is a figure which shows the light reception waveform of the transmitted light detection signal corresponding to the knife edge of FIG. 17 when a main scanning direction condensing diameter is larger than a sub-scanning direction condensing diameter. 本発明に係る主走査方向と副走査方向の焦点ずれ検出と補正方法の一例を示すフロー図である。It is a flowchart which shows an example of the focus shift detection and the correction | amendment method of the main scanning direction which concerns on this invention, and a subscanning direction. 実施例1〜3で説明した光走査装置を複数備えた多色画像形成装置の概略構成図である。1 is a schematic configuration diagram of a multicolor image forming apparatus including a plurality of optical scanning devices described in Embodiments 1 to 3. FIG. 特許文献1に記載の実施例を示す図の写しである。It is a copy of the figure which shows the Example described in patent document 1.

符号の説明Explanation of symbols

1、2、3、4:ナイフエッジ
11:光源(半導体レーザ(LD))
12:カップリングレンズ
13:副走査方向に母線を持つシリンドリカルレンズ
14:主走査方向に母線を持つシリンドリカルレンズ
15:回転多面鏡(光走査手段)
15a:反射面
16:fθレンズ
17:走査面
18:走査ビーム焦点検出手段
18−1:主走査方向の走査ビーム焦点検出手段
18−2:副走査方向の走査ビーム焦点検出手段
19:集光レンズ
20:光検出器
21A:主走査可変焦点素子(主走査可変焦点手段)
21B:副走査可変焦点素子(副走査可変焦点手段)
100:多色画像形成装置
102a、102b、102c:ローラ
105:光走査装置
106Y、106M、106C、106K:現像装置
110:排紙トレイ
111:給紙カセット
112:二次転写ローラ
114:定着装置
120Y、120M、120C、120K:感光体
121:中間転写ベルト
LY、LM、LC、LK:レーザビーム
1, 2, 3, 4: Knife edge 11: Light source (semiconductor laser (LD))
12: Coupling lens 13: Cylindrical lens having a bus in the sub-scanning direction 14: Cylindrical lens having a bus in the main scanning direction 15: Rotating polygon mirror (optical scanning means)
15a: Reflecting surface 16: fθ lens 17: Scanning surface 18: Scanning beam focus detection means 18-1: Scanning beam focus detection means in the main scanning direction 18-2: Scanning beam focus detection means in the sub-scanning direction 19: Condensing lens 20: photodetector 21A: main scanning variable focus element (main scanning variable focus means)
21B: Sub-scanning variable focus element (sub-scanning variable focus means)
DESCRIPTION OF SYMBOLS 100: Multicolor image forming apparatus 102a, 102b, 102c: Roller 105: Optical scanning apparatus 106Y, 106M, 106C, 106K: Developing apparatus 110: Paper discharge tray 111: Paper feed cassette 112: Secondary transfer roller 114: Fixing apparatus 120Y , 120M, 120C, 120K: photoconductor 121: intermediate transfer belt LY, LM, LC, LK: laser beam

Claims (6)

光源と、該光源からの光ビームを走査する光走査手段と、該光走査手段で走査される走査ビームを走査面に集光する可変焦点手段を含む走査光学系と、前記走査面における走査ビームの焦点ずれ及びずれ方向を検出する走査ビーム焦点検出手段とを備え、
前記可変焦点手段は主走査方向と副走査方向を独立に可変でき、
前記走査ビーム焦点検出手段は前記走査面あるいは走査等価面の画像記録を行わない領域に配置され、前記走査面あるいは走査等価面からビーム進行方向に互いに正負方向にずれて配置されたナイフエッジ対を有し、該ナイフエッジ対の1組は主走査方向に垂直なエッジ線を持ち、もう1組は主走査方向に対して傾いたエッジ線を持ち、これらナイフエッジ対を透過したビームを検出する光検出器を備えており、
前記走査面への集光ビームについて主走査方向集光径が副走査方向集光径に等しいか小さいときには、前記主走査方向に垂直なエッジ線を持つ走査ビーム焦点検出手段の出力から主走査可変焦点手段により主走査方向の焦点ずれを補正するとともに、主走査方向に対して傾いたナイフエッジ線を持つ走査ビーム焦点検出手段の出力から副走査可変焦点手段により副走査方向の焦点ずれを補正することを特徴とする光走査装置。
A scanning optical system including a light source, an optical scanning unit that scans a light beam from the light source, a variable focus unit that focuses the scanning beam scanned by the optical scanning unit on a scanning surface, and a scanning beam on the scanning surface And a scanning beam focus detection means for detecting a defocus and a shift direction of
The variable focus means can independently change the main scanning direction and the sub-scanning direction,
The scanning beam focus detection means is arranged in a region where no image is recorded on the scanning plane or scanning equivalent plane, and a pair of knife edges arranged in the positive and negative directions in the beam traveling direction from the scanning plane or scanning equivalent plane. One pair of knife edge pairs has an edge line perpendicular to the main scanning direction, and the other pair has an edge line inclined with respect to the main scanning direction, and detects a beam transmitted through the knife edge pair. Equipped with a photodetector,
When the condensed light beam on the scanning surface has a condensing diameter in the main scanning direction equal to or smaller than the condensing diameter in the sub-scanning direction, the main scanning variable can be made from the output of the scanning beam focus detection means having an edge line perpendicular to the main scanning direction. The focus means corrects the defocus in the main scanning direction, and corrects the defocus in the sub-scanning direction by the sub-scanning variable focus means from the output of the scanning beam focus detecting means having the knife edge line inclined with respect to the main scanning direction. An optical scanning device.
請求項1記載の光走査装置において、
前記走査面への集光ビームについて主走査方向集光径が副走査方向集光径より大きいときには、主走査方向に対して傾いたエッジ線を持つ走査ビーム焦点検出手段のナイフエッジの傾き角αが主走査方向に対して45°より小さな角度であり、前記主走査方向に垂直なエッジ線を持つ走査ビーム焦点検出手段の出力を元に主走査可変焦点手段により主走査方向の焦点ずれを補正するとともに、主走査方向に対して傾いたエッジ線を持つ走査ビーム焦点検出手段の出力を元に副走査可変焦点手段により副走査方向の焦点ずれを補正することを特徴とする光走査装置。
The optical scanning device according to claim 1,
When the condensing diameter in the main scanning direction is larger than the condensing diameter in the sub-scanning direction with respect to the condensing beam on the scanning surface, the inclination angle α of the knife edge of the scanning beam focus detection means having the edge line inclined with respect to the main scanning direction Is an angle smaller than 45 ° with respect to the main scanning direction, and the focus shift in the main scanning direction is corrected by the main scanning variable focusing means based on the output of the scanning beam focus detecting means having an edge line perpendicular to the main scanning direction And an optical scanning device characterized in that the sub-scanning variable focus means corrects the defocus in the sub-scanning direction based on the output of the scanning beam focus detection means having an edge line inclined with respect to the main scanning direction.
請求項1または2記載の光走査装置において、
前記走査ビーム焦点検出手段はビーム進行方向にずれて配置されたナイフエッジ対が1組は主走査方向に垂直なエッジ線を持ち、もう1組は主走査方向に対して傾いたエッジ線を持ち、各組のうちビーム進行方向に対して走査面から同じ方向にずれて配置されるナイフエッジが少なくとも1つは共通の基板に形成され、透過ビームを検出する光検出器がナイフエッジ各組に対し共通して1個配置されて検出することを特徴とする光走査装置。
The optical scanning device according to claim 1 or 2,
In the scanning beam focus detection means, a pair of knife edge pairs which are arranged shifted in the beam traveling direction has an edge line perpendicular to the main scanning direction, and the other pair has an edge line inclined with respect to the main scanning direction. In each set, at least one knife edge arranged in the same direction from the scanning plane with respect to the beam traveling direction is formed on a common substrate, and a photodetector for detecting the transmitted beam is provided for each set of knife edges. On the other hand, an optical scanning device characterized in that one common detector is arranged and detected.
請求項1〜3のいずれか一つに記載の光走査装置において、
前記可変焦点手段は電圧の印加により焦点を可変し、主走査方向および副走査方向が独立に焦点可変制御できるように配置されていることを特徴とする光走査装置。
In the optical scanning device according to any one of claims 1 to 3,
The optical scanning device according to claim 1, wherein the variable focus means is arranged so that the focus can be varied by applying a voltage, and the main scanning direction and the sub-scanning direction can be independently controlled in variable focus.
請求項1〜3のいずれか一つに記載の光走査装置において、
前記主走査方向可変焦点手段は副走査方向に母線を持つシリンドリカルレンズと該シリンドリカルレンズの光軸方向移動手段からなり、前記副走査方向可変焦点手段は主走査方向に母線を持つシリンドリカルレンズと該シリンドリカルレンズの光軸方向移動手段からなることを特徴とする光走査装置。
In the optical scanning device according to any one of claims 1 to 3,
The main scanning direction variable focus means includes a cylindrical lens having a bus line in the sub-scanning direction and an optical axis direction moving means of the cylindrical lens, and the sub-scanning direction variable focus means has a cylindrical lens having a bus line in the main scanning direction and the cylindrical lens. An optical scanning device comprising a lens optical axis direction moving means.
像担持体面(走査面)を光ビームで走査して潜像を形成し、該潜像を現像して顕像化する画像形成装置において、
前記光ビームの走査手段として、請求項1〜5のいずれか一つに記載の焦点ずれを補正する光走査装置を用いたことを特徴とする画像形成装置。
In an image forming apparatus that forms a latent image by scanning an image carrier surface (scanning surface) with a light beam, and develops the latent image into a visible image.
An image forming apparatus using the optical scanning device for correcting defocusing according to claim 1 as the light beam scanning means.
JP2008179615A 2008-07-09 2008-07-09 Optical scanner and image forming apparatus Pending JP2010020025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008179615A JP2010020025A (en) 2008-07-09 2008-07-09 Optical scanner and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008179615A JP2010020025A (en) 2008-07-09 2008-07-09 Optical scanner and image forming apparatus

Publications (1)

Publication Number Publication Date
JP2010020025A true JP2010020025A (en) 2010-01-28

Family

ID=41705003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008179615A Pending JP2010020025A (en) 2008-07-09 2008-07-09 Optical scanner and image forming apparatus

Country Status (1)

Country Link
JP (1) JP2010020025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329259A (en) * 2013-11-27 2017-11-07 奇跃公司 Virtual and augmented reality System and method for
CN113758425A (en) * 2020-06-05 2021-12-07 霍尼韦尔国际公司 Dual optical displacement sensor alignment using a blade

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107329259A (en) * 2013-11-27 2017-11-07 奇跃公司 Virtual and augmented reality System and method for
CN107329259B (en) * 2013-11-27 2019-10-11 奇跃公司 Virtual and augmented reality System and method for
CN113758425A (en) * 2020-06-05 2021-12-07 霍尼韦尔国际公司 Dual optical displacement sensor alignment using a blade
EP3919857A1 (en) * 2020-06-05 2021-12-08 Honeywell International Inc. Dual-optical displacement sensor alignment using at least one alignment target with two knife edges
JP2021193373A (en) * 2020-06-05 2021-12-23 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Dual-optical displacement sensor alignment using knife edges
JP7194232B2 (en) 2020-06-05 2022-12-21 ハネウェル・インターナショナル・インコーポレーテッド Aligning Dual Optical Displacement Sensors Using Knife Edges
US11740356B2 (en) 2020-06-05 2023-08-29 Honeywell International Inc. Dual-optical displacement sensor alignment using knife edges
CN113758425B (en) * 2020-06-05 2023-12-12 霍尼韦尔国际公司 Dual optical displacement sensor alignment using knife edge

Similar Documents

Publication Publication Date Title
US8045248B2 (en) Optical scanning device and image forming apparatus
US7936367B2 (en) Image forming apparatus controlling the output level of the light source
US7903134B2 (en) Laser scanning apparatus having a photodetector having first and second light receiving units
US8654165B2 (en) Optical scanning device and image forming apparatus
JP2008225060A (en) Optical scanning device and image forming apparatus using the same
JP2009008896A (en) Multi-beam optical scanning device and image forming apparatus using the same
JP4378193B2 (en) Multi-beam optical scanning apparatus and image forming apparatus using the same
US7471307B2 (en) Image forming apparatus and method of controlling same
JP2004240266A (en) Light scanner and color image forming apparatus using the same
JP5106345B2 (en) Scanning optical device and image forming apparatus using the same
US7425975B2 (en) Multi-beam image forming apparatus
US7466333B2 (en) Optical scanning apparatus and image-forming apparatus using the same
US7502046B2 (en) Optical scanning unit and image forming apparatus
US7136208B2 (en) Light scanning apparatus and image forming apparatus using the same
JP2010020025A (en) Optical scanner and image forming apparatus
JP2008040136A (en) Optical scanner and color image forming apparatus using the same
EP1291699B1 (en) Optical scanning device using two different beam paths for the beam reflected by the scanning mirror
JP2006208697A (en) Optical scanner, method of detecting light beam and image forming apparatus
JP2006337515A (en) Optical scanner and image forming apparatus
JP2002029085A (en) Imaging apparatus
US8456502B2 (en) Optical scanner and image forming apparatus using the same
JP4298091B2 (en) Method for assembling scanning optical device
JP4612839B2 (en) Method for adjusting color image forming apparatus
JP2004317790A (en) Optical scanner
JP4651211B2 (en) Optical scanning device and image forming apparatus having the same