JP2010016051A - Semiconductor evaluating apparatus - Google Patents

Semiconductor evaluating apparatus Download PDF

Info

Publication number
JP2010016051A
JP2010016051A JP2008172549A JP2008172549A JP2010016051A JP 2010016051 A JP2010016051 A JP 2010016051A JP 2008172549 A JP2008172549 A JP 2008172549A JP 2008172549 A JP2008172549 A JP 2008172549A JP 2010016051 A JP2010016051 A JP 2010016051A
Authority
JP
Japan
Prior art keywords
measured
sample
light
evaluation apparatus
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008172549A
Other languages
Japanese (ja)
Other versions
JP4757285B2 (en
Inventor
Fumihiko Hirose
文彦 廣瀬
Kingo Itaya
謹悟 板谷
Michio Niwano
道夫 庭野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2008172549A priority Critical patent/JP4757285B2/en
Publication of JP2010016051A publication Critical patent/JP2010016051A/en
Application granted granted Critical
Publication of JP4757285B2 publication Critical patent/JP4757285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor evaluating apparatus capable of highly accurately evaluating the carrier mobility of an organic semiconductor material. <P>SOLUTION: The semiconductor evaluating apparatus 100 irradiates a thin planar device under test 10 to be measured with a laser beam 17, generates a current by moving a carrier generated in the device under test 10 to be measured in the surface direction of the device under test 10 to be measured, and evaluates the carrier mobility of the device under test 10 to be measured from the duration of the current. The semiconductor evaluating apparatus 100 includes a sample-to-be-measured installation part 30 for installing the device under test 10 to be measured, the sample-to-be-measured installation part 30 has two transparent glass substrates, the device under test 10 to be measured is disposed to one transparent glass substrate, and a metal film which is a light shielding film is formed on the other transparent glass substrate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体材料等のキャリア移動度を評価する半導体評価装置に関する。   The present invention relates to a semiconductor evaluation apparatus for evaluating carrier mobility of a semiconductor material or the like.

有機半導体材料は、ユビキタス情報端末用途のフレキシブル薄膜トランジスタ(Thin Film Transistor:TFT)や発光ダイオードに利用されることから、その材料開発が盛んに行われている。有機半導体材料のキャリア移動度はデバイスの性能を直接決める特性であり、その評価はこれら材料開発にあたっての重要な指標とされている。これまでキャリア移動度は飛行時間計測法(Time‐of‐flight:TOF)から見積もられてきた。   Since organic semiconductor materials are used for flexible thin film transistors (TFTs) and light-emitting diodes for ubiquitous information terminal applications, the development of such materials has been actively conducted. The carrier mobility of organic semiconductor materials is a characteristic that directly determines device performance, and its evaluation is an important index for developing these materials. Until now, the carrier mobility has been estimated from the time-of-flight measurement method (Time-of-flight: TOF).

図4に、従来のTOF法によるキャリア移動度の測定の様子を示す。この測定方法は膜厚方向のTOF法である。図4に示すように、被測定試料51として有機半導体材料膜を、透明導電膜基板52と、ITOガラス基板53で挟み込み、電圧源54を用いてこの両基板間に、被測定試料51の膜の厚み方向に直流電圧を印加する。透明導電膜基板52側からUV光56をパルスとして照射すると、透明導電膜基板52側の被測定試料51の表面にキャリア(電子とホール)が発生し、厚み方向の電界のクーロン力により電子あるいはホールのいずれかが、ITOガラス基板53側の電極に移動する。キャリア移動に伴い両基板間に変位電流が流れ、信号検出手段55を用いてその変位電流信号を検出することで、その変位電流の持続時間Tfを測定する。そして、その持続時間Tfと被測定試料51の厚さから、被測定試料51である有機半導体材料のキャリア移動度を評価することができる。   FIG. 4 shows how the carrier mobility is measured by the conventional TOF method. This measuring method is the TOF method in the film thickness direction. As shown in FIG. 4, an organic semiconductor material film is sandwiched between a transparent conductive film substrate 52 and an ITO glass substrate 53 as a sample 51 to be measured, and a film of the sample 51 to be measured is interposed between the two substrates using a voltage source 54. A DC voltage is applied in the thickness direction. When UV light 56 is irradiated as a pulse from the transparent conductive film substrate 52 side, carriers (electrons and holes) are generated on the surface of the sample 51 to be measured on the transparent conductive film substrate 52 side, and electrons or electrons are generated by the Coulomb force of the electric field in the thickness direction. One of the holes moves to the electrode on the ITO glass substrate 53 side. A displacement current flows between the substrates as the carrier moves, and the displacement current signal is detected using the signal detection means 55, thereby measuring the duration Tf of the displacement current. The carrier mobility of the organic semiconductor material that is the sample 51 to be measured can be evaluated from the duration Tf and the thickness of the sample 51 to be measured.

例えば、キャリアの移動度をμ、電界強度をE、キャリアの飛行距離、すなわち、膜厚をL、キャリアの速度をvとすると、v=L/Tfの関係から、μはμ=v/Eから求めることができる。   For example, when the carrier mobility is μ, the electric field strength is E, the carrier flight distance, that is, the film thickness is L, and the carrier speed is v, μ is μ = v / E from the relationship of v = L / Tf. Can be obtained from

ところで、従来の測定方法では、変位電流の持続時間Tf、つまり、キャリア移動時間が測定に都合のよい長さになるように、被測定試料51の厚さを調整して測定が行なわれてきた。しかしながら、近年注目されているペンタセンやルブレン等の高移動度有機半導体材料において均一で膜厚の大きい試料を用意することは一般には難しい。つまり、膜厚を厚くするには高純度の試料が大量に必要であり、また、その厚みを均一に制御することも容易ではない。そのため、キャリア移動時間を長くすることは難しく、従来のTOF法ではキャリア移動度を高精度に測定できない問題点がある。   By the way, in the conventional measuring method, the measurement is performed by adjusting the thickness of the sample 51 to be measured so that the duration Tf of the displacement current, that is, the carrier moving time becomes a convenient length for the measurement. . However, it is generally difficult to prepare a uniform and large sample in a high mobility organic semiconductor material such as pentacene or rubrene which has been attracting attention in recent years. That is, in order to increase the film thickness, a large amount of high-purity samples are required, and it is not easy to control the thickness uniformly. Therefore, it is difficult to lengthen the carrier movement time, and there is a problem that the carrier mobility cannot be measured with high accuracy by the conventional TOF method.

例えば、被測定試料51のキャリア移動度が1×10−2cm/V・sec以上になってくると、1mm以上の厚い膜厚の被測定試料51が必要になってくる。通常、有機半導体材料で十分にキャリアを走行させるには1000V/cm以上の電界強度が必要となるが、上記膜厚より小さくなると、変位電流の持続時間がサブマイクロ秒になり、信号検出手段55におけるS/N比の確保が難しく、信号記録が困難になってしまう。なぜなら、変位電流信号の検出信号の継続時間が雑音の継続時間と同程度、あるいは、それ以下となってしまうからである。 For example, when the carrier mobility of the sample 51 to be measured is 1 × 10 −2 cm 2 / V · sec or more, the sample 51 to be measured having a thickness of 1 mm or more is required. Usually, an electric field strength of 1000 V / cm or more is required to sufficiently run the carrier with the organic semiconductor material. However, if the thickness is smaller than the above film thickness, the duration of the displacement current becomes submicroseconds, and the signal detecting means 55 It is difficult to ensure the S / N ratio in this case, and signal recording becomes difficult. This is because the duration of the detection signal of the displacement current signal is about the same as or less than the duration of the noise.

さらに、有機半導体は薄膜トランジスタなど膜の面内方向にキャリアを走行させて使われるため、有機半導体の膜厚方向のキャリア移動度ではなく、面内方向でのキャリア移動度の評価が求められている。また、多くの有機半導体は結晶質をとり、結晶構造が3次元的に異方性をもっており、薄膜トランジスタの増幅性能を向上させるには、面内方向の移動度の異方性をTOF法で評価する必要である。そのためには、従来技術である膜厚方向のTOF法では対応は困難であった。   Furthermore, since organic semiconductors are used by moving carriers in the in-plane direction of a film such as a thin film transistor, it is required to evaluate the carrier mobility in the in-plane direction rather than the carrier mobility in the film thickness direction of the organic semiconductor. . Many organic semiconductors are crystalline and the crystal structure is three-dimensionally anisotropic. To improve the amplification performance of thin film transistors, the anisotropy of in-plane mobility is evaluated by the TOF method. It is necessary to do. For this purpose, it is difficult to cope with the TOF method in the film thickness direction, which is a conventional technique.

例えば、非特許文献1には、被測定試料の厚さの調整が不要となるように、また、有機半導体膜の面内方向の移動度を測定する技術が開示されている。図5に、この測定に用いられる被測定試料の様子を示す。図5に示すように、透過性ガラス基板62上の遮光膜63にはスリットが形成されており、そのスリットを介してパルス光68が透過性ガラス基板62側から被測定試料61に入射される。その入射光は透過性ガラス基板62及びシリコン酸化膜64を透過し、被測定試料61に照射される。被測定試料61の横方向の両端には2つの電極65が形成されており、この2つの電極65間に電源66から電圧が印加される。パルス光68の入射に起因して発生するキャリアが2つの電極65間を移動し、その移動に伴う変位電流による抵抗67の両端間の電圧変動を検出することにより、その変位電流の持続時間を測定するものである。   For example, Non-Patent Document 1 discloses a technique for measuring the mobility in the in-plane direction of an organic semiconductor film so that adjustment of the thickness of a sample to be measured is not necessary. FIG. 5 shows the state of the sample to be measured used for this measurement. As shown in FIG. 5, a slit is formed in the light shielding film 63 on the transparent glass substrate 62, and the pulsed light 68 is incident on the sample 61 to be measured from the transparent glass substrate 62 side through the slit. . The incident light passes through the transparent glass substrate 62 and the silicon oxide film 64 and is irradiated to the sample 61 to be measured. Two electrodes 65 are formed at both ends of the sample 61 to be measured, and a voltage is applied from the power source 66 between the two electrodes 65. The carrier generated due to the incidence of the pulsed light 68 moves between the two electrodes 65, and by detecting the voltage fluctuation between both ends of the resistor 67 due to the displacement current accompanying the movement, the duration of the displacement current can be reduced. Measure.

非特許文献1に開示された測定方法では、キャリアの移動方向を被測定試料の横方向としているので、厚さの薄い被測定試料を用いた場合でも、測定されるキャリア移動時間を長くすることができる。このため、厚膜化が困難な有機半導体材料においても、そのキャリア移動度の測定が可能である。
Atsushi Kuwahara, et al., “Carrier mobility of organic thin films using lateral electrode structure with optical slits”, Applied Physics Letters 89, 2006
In the measurement method disclosed in Non-Patent Document 1, since the carrier moving direction is the horizontal direction of the sample to be measured, even when a thin sample to be measured is used, the measured carrier moving time is lengthened. Can do. For this reason, even in an organic semiconductor material that is difficult to increase in thickness, the carrier mobility can be measured.
Atsushi Kuwahara, et al., “Carrier mobility of organic thin films using lateral electrode structure with optical slits”, Applied Physics Letters 89, 2006

しかしながら、非特許文献1に開示された評価方法では、パルス光68を被測定試料61に照射する際に、照射部位を電極65近傍にあわせるため、被測定試料61、電極65、遮光膜63の位置関係を調整して形成する必要がある。これら測定用の治具を構成するためには、リソグラフィや顕微鏡での組み立て操作が必要であり、また、透過性ガラス基板62、遮光膜63等を積層させて形成しているために、作製歩留まりが悪いという問題が生じていた。   However, in the evaluation method disclosed in Non-Patent Document 1, when the pulsed light 68 is irradiated onto the sample 61, the irradiated region is aligned with the vicinity of the electrode 65, so that the sample 61, the electrode 65, and the light shielding film 63 are measured. It is necessary to adjust the positional relationship. In order to configure these measurement jigs, an assembly operation with lithography or a microscope is required, and the transmissive glass substrate 62, the light-shielding film 63, and the like are laminated to form a manufacturing yield. There was a problem of being bad.

さらに、非特許文献1の評価方法では、被測定試料61を交換して測定するには、透過性ガラス基板62、遮光膜63、シリコン酸化膜64、電極65から構成される積層構造を再作製しなければならない。また、遮光膜63はレーザ光によって損傷を受けやすく、このため、損傷を受けたときにはこれら全部品を再構成しなければならず、このような測定にかかわる手間と部品消耗のコストが大きくなる問題が生じていた。   Further, in the evaluation method of Non-Patent Document 1, in order to exchange and measure the sample 61 to be measured, a laminated structure composed of a transmissive glass substrate 62, a light shielding film 63, a silicon oxide film 64, and an electrode 65 is reproduced. Must. Further, the light shielding film 63 is easily damaged by the laser beam. For this reason, all of these parts must be reconfigured when they are damaged, which increases the labor and cost of parts consumption. Has occurred.

上記問題点に鑑み、本発明の目的は、非常に簡便に消耗コストを抑えると共に、半導体材料のキャリア移動度を高精度に評価することができる半導体評価装置を提供することである。   In view of the above problems, an object of the present invention is to provide a semiconductor evaluation apparatus that can very easily reduce the consumption cost and evaluate the carrier mobility of a semiconductor material with high accuracy.

上記目的を達成するために、本発明にかかる半導体評価装置は、薄型平板状の被測定試料にレーザ光を照射し、当該レーザ光の照射に起因して発生するキャリアを前記被測定試料の表面方向に移動させることにより電流を生成し、当該生成された電流の持続時間から前記被測定試料のキャリア移動度を評価する半導体評価装置であって、前記レーザ光が前記被測定試料に照射されるように前記被測定試料を設置する被測定試料設置部を備え、前記被測定試料設置部は、第1面及び当該第1面の反対側に形成された第2面を持つ第1の透過性基板と、前記第1の透過性基板の第2面に接触する第3面及び当該第3面の反対側に形成された第4面を持つ第2の透過性基板と、前記第1の透過性基板の第2面と前記第2の透過性基板の第3面とが接触するように前記第1の透過性基板及び前記第2の透過性基板を固定可能な固定部材と、を有し、前記第2の透過性基板の第3面には、前記レーザ光を通過させる開口部を持つ遮光膜が形成されており、前記第1の透過性基板の第1面上に前記被測定試料を配置し、前記第2の透過性基板の第4面から入射される前記レーザ光のうち前記遮光膜の開口部を通過するレーザ光を前記被測定試料に照射させることを特徴とする。   In order to achieve the above object, a semiconductor evaluation apparatus according to the present invention irradiates a thin flat plate-like sample to be measured with laser light, and generates carriers generated by the laser light irradiation on the surface of the sample to be measured. A semiconductor evaluation apparatus for generating a current by moving in a direction and evaluating the carrier mobility of the sample to be measured from the duration of the generated current, wherein the sample to be measured is irradiated with the laser light In this way, a measured sample setting part for setting the measured sample is provided, and the measured sample setting part has a first surface and a first permeability having a second surface formed on the opposite side of the first surface. A second transmissive substrate having a substrate, a third surface contacting the second surface of the first transmissive substrate, and a fourth surface formed on the opposite side of the third surface; and the first transmissive substrate. The second surface of the transparent substrate and the third surface of the second transparent substrate are in contact with each other. And a fixing member capable of fixing the first transmissive substrate and the second transmissive substrate, and allows the laser light to pass through a third surface of the second transmissive substrate. A light-shielding film having an opening, wherein the sample to be measured is disposed on a first surface of the first transmissive substrate, and is incident from a fourth surface of the second transmissive substrate; The laser beam that passes through the opening of the light shielding film in the light is irradiated on the sample to be measured.

上記の半導体評価装置では、薄型平板状の被測定試料に発生するキャリアを被測定試料の横方向に移動させることにより電流を生成し、その電流の持続時間から被測定試料のキャリア移動度を評価する。このため、被測定試料の厚さの調整は不要であり、薄型の被測定試料を用いた場合でも、キャリア移動度を高精度に評価することができる。   In the above semiconductor evaluation apparatus, a current is generated by moving the carrier generated in a thin flat plate-like sample to be measured in the lateral direction of the sample to be measured, and the carrier mobility of the sample to be measured is evaluated from the duration of the current. To do. For this reason, it is not necessary to adjust the thickness of the sample to be measured, and the carrier mobility can be evaluated with high accuracy even when a thin sample to be measured is used.

そして、透過性基板を着脱が可能な2層の積層とし、第1の透過性基板に被測定試料を設置し、第2の透過性基板にレーザ光の照射部位を限定させるための遮光膜を形成し、固定部材により2つの透過性基板が接触するように固定する。この第1及び第2の透過性基板が固定部材により固定可能とすることで、被測定試料の交換の際は、第1の透過性基板だけを交換し、一方、遮光膜が損傷したときには第2の透過性基板だけを交換すればよい。このため、部品消耗を抑えることができる半導体評価装置を実現することができる。   Then, the transmissive substrate is a two-layer stack that can be attached and detached, a sample to be measured is placed on the first transmissive substrate, and a light-shielding film is provided on the second transmissive substrate to limit the laser light irradiation site. Then, the two transmissive substrates are fixed to each other by a fixing member. Since the first and second transmissive substrates can be fixed by the fixing member, only the first transmissive substrate is replaced when the sample to be measured is replaced. Only the second transparent substrate needs to be replaced. For this reason, it is possible to realize a semiconductor evaluation apparatus capable of suppressing component consumption.

また、固定部材により第1の透過性基板と第2の透過性基板とを固定可能とすることにより、被測定試料のレーザ光の照射部位と遮光膜の開口部との位置調整が、第1の透過性基板に被測定試料を取り付けた後であっても調整することができるため、被測定試料設置部の構成が容易になる。   Further, by allowing the first transmissive substrate and the second transmissive substrate to be fixed by the fixing member, the position adjustment between the laser light irradiation portion of the sample to be measured and the opening of the light shielding film can be performed. Since the adjustment can be made even after the sample to be measured is attached to the transparent substrate, the configuration of the sample-to-be-measured portion is facilitated.

さらに、第2の透過性基板の第3面に遮光膜を形成し、その形成後に第1の透過性基板を接着することになる。このため、レーザ光が照射されたときのスパッタ効果による遮光膜の散乱が機械的に押し付けられることになり、その結果、遮光膜の損傷が抑制されることになる。   Further, a light shielding film is formed on the third surface of the second transmissive substrate, and the first transmissive substrate is bonded after the formation. For this reason, scattering of the light shielding film due to the sputtering effect when the laser beam is irradiated is mechanically pressed, and as a result, damage to the light shielding film is suppressed.

前記第1の透過性基板の厚さと前記第2の透過性基板の厚さとの合計値は、1mm以下であることが好ましい。   The total value of the thickness of the first transmissive substrate and the thickness of the second transmissive substrate is preferably 1 mm or less.

通常、透過性基板の耐久性の観点から、被測定試料の厚さに合わせて透過性基板の厚さも厚くなるが、上記の半導体評価装置では、被測定試料の薄型化に合わせて、透過性基板の厚さも薄くすることが可能となる。本発明者らは、透過性基板の厚さについて鋭意検討を行った結果、透過性基板の厚さを1mm以下とすれば、レーザ光を透過させても、被測定試料に入射されるレーザ光の強度により、被測定試料内におけるキャリアの発生が十分に行われることがわかった。   Normally, from the viewpoint of the durability of the transmissive substrate, the thickness of the transmissive substrate also increases with the thickness of the sample to be measured. It is possible to reduce the thickness of the substrate. As a result of intensive studies on the thickness of the transmissive substrate, the present inventors have determined that the laser light incident on the sample to be measured even if the laser light is transmitted if the thickness of the transmissive substrate is 1 mm or less. It has been found that the generation of carriers in the sample to be measured is sufficiently performed by the strength of.

すなわち、上記の半導体評価装置では、第1の透過性基板の厚さと第2の透過性基板の厚さとの合計値を1mm以下とすることにより、透過性基板を透過して被測定試料に達するレーザ光の強度の低下が抑制されるので、被測定試料内のキャリアの発生が十分に行われ、キャリア移動に伴う電流の検出精度を向上させることができる。   That is, in the above-described semiconductor evaluation apparatus, the total value of the thickness of the first transmissive substrate and the thickness of the second transmissive substrate is set to 1 mm or less, so that the sample passes through the transmissive substrate and reaches the sample to be measured. Since the decrease in the intensity of the laser beam is suppressed, carriers in the sample to be measured are sufficiently generated, and the detection accuracy of the current accompanying the carrier movement can be improved.

したがって、ペンタセンやルブレン等の高移動度有機半導体材料において均一で膜厚の大きい試料を用意することが困難な場合でも、そのキャリア移動度を高精度に評価することが可能となる。   Therefore, even when it is difficult to prepare a uniform and large sample thickness in a high mobility organic semiconductor material such as pentacene or rubrene, the carrier mobility can be evaluated with high accuracy.

前記遮光膜は、アルミニウム、チタン、鉄、ニッケル及び銅のいずれか1つを含む金属膜であることが好ましい。   The light shielding film is preferably a metal film including any one of aluminum, titanium, iron, nickel, and copper.

この場合、被測定試料は透過性基板に遮光膜を形成した積層構造上に配置されるので、被測定試料の耐久性を向上させることができる。また、遮光膜をアルミニウム、チタン、鉄、ニッケル及び銅のいずれか1つを含む金属膜から構成することにより、被測定試料の耐久性をより向上させることができる。   In this case, since the sample to be measured is arranged on the laminated structure in which the light shielding film is formed on the transmissive substrate, the durability of the sample to be measured can be improved. Moreover, the durability of the sample to be measured can be further improved by forming the light shielding film from a metal film containing any one of aluminum, titanium, iron, nickel, and copper.

前記被測定試料設置部はさらに、前記被測定試料上に形成された2つの対向する電極を有し、前記被測定試料に照射されるレーザ光を出射する光照射手段と、前記光照射手段によるレーザ光の照射に同期して、前記2つの対向する電極間に電圧を印加する電圧印加手段と、前記被測定試料の電極の一方に直列接続された負荷抵抗部の両端間の電圧を検出する信号検出手段と、をさらに備えるが好ましい。   The sample-to-be-measured portion further includes two opposing electrodes formed on the sample to be measured, and a light irradiating unit that emits a laser beam that irradiates the sample to be measured, and the light irradiating unit. In synchronization with the irradiation of the laser beam, the voltage application means for applying a voltage between the two opposing electrodes and the voltage between both ends of the load resistance unit connected in series to one of the electrodes of the sample to be measured are detected. And a signal detecting means.

この場合、被測定試料にレーザ光が照射される時期に同期して、被測定試料に設けられた2つの対向する電極間に電圧が印加されるので、被測定試料内のキャリア移動に合わせて、信号検出手段が被測定試料の電極の一方に直列接続された負荷抵抗部の両端間の電圧を検出することができる。このため、信号検出手段の電圧検出の精度を高めることができる。   In this case, a voltage is applied between two opposing electrodes provided on the sample to be measured in synchronism with the time when the sample to be measured is irradiated with the laser light, so that the carrier moves within the sample to be measured. The signal detection means can detect the voltage across the load resistor connected in series to one of the electrodes of the sample to be measured. For this reason, the accuracy of voltage detection of the signal detection means can be improved.

前記負荷抵抗部の抵抗値は、50〜1000Ωであることが好ましく、前記信号検出手段は、500pF以下の入力容量を持ち、前記負荷抵抗部の両端間の電圧を増幅する前置増幅器を有することが好ましい。   It is preferable that a resistance value of the load resistance unit is 50 to 1000Ω, and the signal detection unit has a preamplifier having an input capacitance of 500 pF or less and amplifying a voltage between both ends of the load resistance unit. Is preferred.

この場合、有機半導体材料のように極めて絶縁性の高い被測定試料の場合でも、キャリア移動により発生する電流による電圧変位を精度良く検出することができる。   In this case, even in the case of a sample to be measured having a very high insulating property such as an organic semiconductor material, it is possible to accurately detect a voltage displacement due to a current generated by carrier movement.

前記前置増幅器は、自身に固有の直流電圧成分及び利得を持ち、入力電圧から直流電圧成分を減算し、当該減算結果に利得を乗算した電圧を出力することが好ましい。   The preamplifier preferably has its own direct-current voltage component and gain, subtracts the direct-current voltage component from the input voltage, and outputs a voltage obtained by multiplying the subtraction result by the gain.

この場合、前置増幅器の直流電圧成分及び利得を用いて入力電圧が増幅されるので、前置増幅器により増幅を効率的に行うことができる。   In this case, since the input voltage is amplified using the DC voltage component and gain of the preamplifier, amplification can be performed efficiently by the preamplifier.

前記前置増幅器は、前記被測定試料から25cm以内の距離に位置することが好ましい。   The preamplifier is preferably located at a distance within 25 cm from the sample to be measured.

この場合、被測定試料と前置増幅器とを結ぶ電線から発生する電磁波に起因するノイズの影響を前置増幅器が受けてしまうことを抑制することができる。このノイズは、10〜100MHz程度の電磁波であり、波長は最大1m程度となる。通常、電線の長さがその波長の1/4以下、すなわち、25cm以下であれば、電線がアンテナとして機能することがなくなる。   In this case, it is possible to suppress the preamplifier from being affected by noise caused by electromagnetic waves generated from the electric wire connecting the sample to be measured and the preamplifier. This noise is an electromagnetic wave of about 10 to 100 MHz, and the wavelength is about 1 m at the maximum. Usually, if the length of the wire is 1/4 or less of the wavelength, that is, 25 cm or less, the wire does not function as an antenna.

前記被測定試料及び前記負荷抵抗部を収納する収納容器をさらに備えることが好ましい。   It is preferable to further include a storage container for storing the sample to be measured and the load resistance portion.

前記収納容器はさらに、前記前置増幅器を収納することが好ましい。   Preferably, the storage container further stores the preamplifier.

前記収納容器は、自身の内部を真空状態とする排気装置、及び、自身の内部を窒素雰囲気または不活性ガス雰囲気とするガス導入装置のうちのいずれかを有することが好ましい。   It is preferable that the storage container has any one of an exhaust device that makes the inside of the container a vacuum state and a gas introduction device that makes the inside of the container a nitrogen atmosphere or an inert gas atmosphere.

大気中でこの評価を行うと、大気中の湿度の影響で、被測定試料の周りで放電が起き易くなり、放電が起きると被測定試料の消耗や測定データにノイズが混入するという好ましくない問題が生じる。また、不活性ガスを用いる効果は、有機半導体試料との化学反応を抑えて、試料の劣化をおさえるのに効果がある。   When this evaluation is performed in the atmosphere, discharge is likely to occur around the sample to be measured due to the influence of humidity in the atmosphere, and if the discharge occurs, noise is mixed into the sample to be measured and measurement data is mixed. Occurs. Further, the effect of using the inert gas is effective in suppressing the chemical reaction with the organic semiconductor sample and suppressing the deterioration of the sample.

前記光照射手段から前記被測定試料までのレーザ光の光路上に配置され、前記レーザ光の進行を遮断可能な光遮断部と、前記信号検出手段の検出結果を処理することにより、前記被測定試料のキャリア移動度を評価する信号処理手段とをさらに備え、前記信号処理手段は、前記光遮断部による前記レーザ光の透過時における前記信号検出手段の検出結果を複数回積算して透過時平均値を算出し、前記光遮断部による前記レーザ光の遮断時における前記信号検出手段の検出結果を複数回積算して遮断時平均値を算出し、前記透過時平均値と前記遮断時平均値との差分値から、前記被測定試料のキャリア移動度を評価することが好ましい。   A light blocking unit that is disposed on the optical path of the laser beam from the light irradiation unit to the sample to be measured and can block the progress of the laser beam, and processing the detection result of the signal detection unit, thereby Signal processing means for evaluating carrier mobility of the sample, and the signal processing means integrates the detection results of the signal detection means a plurality of times when the laser light is transmitted by the light blocking unit, and averages the transmission time Calculating a value, calculating the average value at the time of interruption by multiplying the detection results of the signal detection means at the time of interruption of the laser light by the light interruption unit, and calculating the average value at the time of transmission and the average value at the time of interruption. It is preferable to evaluate the carrier mobility of the sample to be measured from the difference value.

この場合、信号検出手段のS/N比が向上し、且つ、信号処理手段が積算平均で信号を処理することにより、装置自体の振動の影響を受けにくくなり、除振装置を必要とせず、装置が小型化できる。   In this case, the signal-to-noise ratio of the signal detection means is improved, and the signal processing means processes the signal by integration averaging, so that it is less susceptible to the vibration of the apparatus itself, and no vibration isolator is required. The device can be miniaturized.

本発明の半導体評価装置は、以上のように、前記レーザ光が前記被測定試料に照射されるように前記被測定試料を設置する被測定試料設置部を備え、前記被測定試料設置部は、第1面及び当該第1面の反対側に形成された第2面を持つ第1の透過性基板と、前記第1の透過性基板の第2面に接触する第3面及び当該第3面の反対側に形成された第4面を持つ第2の透過性基板と、前記第1の透過性基板の第2面と前記第2の透過性基板の第3面とが接触するように前記第1の透過性基板及び前記第2の透過性基板を固定可能な固定部材と、を有し、前記第2の透過性基板の第3面には、前記レーザ光を通過させる開口部を持つ遮光膜が形成されており、前記第1の透過性基板の第1面上に前記被測定試料を配置し、前記第2の透過性基板の第4面から入射される前記レーザ光のうち前記遮光膜の開口部を通過するレーザ光を前記被測定試料に照射させる。   As described above, the semiconductor evaluation apparatus of the present invention includes a measured sample setting unit that sets the measured sample so that the laser beam is irradiated onto the measured sample, and the measured sample setting unit includes: A first transparent substrate having a first surface and a second surface formed on the opposite side of the first surface, a third surface in contact with the second surface of the first transparent substrate, and the third surface The second transmissive substrate having a fourth surface formed on the opposite side of the first transmissive substrate, the second surface of the first transmissive substrate and the third surface of the second transmissive substrate in contact with each other. A fixing member capable of fixing the first transmissive substrate and the second transmissive substrate; and a third surface of the second transmissive substrate having an opening through which the laser light passes. A light-shielding film is formed, the sample to be measured is disposed on the first surface of the first transmissive substrate, and the second transmissive substrate is Wherein the laser beam passing through the opening of the light shielding film of the laser light incident from the surface to be irradiated to the sample.

それゆえ、非常に簡便に消耗コストを抑えると共に、半導体材料のキャリア移動度を高精度に評価することができるという効果を奏する。   Therefore, there is an effect that the consumption cost can be suppressed very simply and the carrier mobility of the semiconductor material can be evaluated with high accuracy.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同一部分には同一符号を付し、図面で同一の符号が付いたものは、説明を省略する場合もある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same part, and what attached the same code | symbol in drawing may abbreviate | omit description.

図1に、本発明の実施の形態にかかる半導体評価装置の概略構成図を示す。図1に示すように、本実施の形態にかかる半導体評価装置100は、被測定試料10を設置する被測定試料設置部30と、被測定試料10に照射されるパルス光を出射する光照射手段11と、被測定試料10に直流電圧を印加する電圧印加手段12と、被測定試料10を流れる電流信号を検出する信号検出手段13と、信号検出手段13の検出結果を処理する信号処理手段22と、半導体評価装置100内の各部を制御する制御手段21と、を備えている。   FIG. 1 shows a schematic configuration diagram of a semiconductor evaluation apparatus according to an embodiment of the present invention. As shown in FIG. 1, a semiconductor evaluation apparatus 100 according to the present embodiment includes a measured sample setting unit 30 that sets a measured sample 10 and a light irradiation unit that emits pulsed light irradiated to the measured sample 10. 11, voltage applying means 12 for applying a DC voltage to the sample 10 to be measured, signal detecting means 13 for detecting a current signal flowing through the sample 10 to be measured, and signal processing means 22 for processing the detection result of the signal detecting means 13. And a control means 21 for controlling each part in the semiconductor evaluation apparatus 100.

また、図2に、被測定試料設置部30の概略断面図を示す。図2(b)は、図2(a)の被測定試料10の周囲を説明するための図である。図2に示す被測定試料設置部30においては、透過性ガラス基板(第1の透過性基板)31aの表面(第1面)上に被測定試料10が配置されている。また、透過性ガラス基板31b(第2の透過性基板)の表面(第3面)上に金属膜(遮光膜)33が蒸着されている。   FIG. 2 shows a schematic cross-sectional view of the measured sample setting part 30. FIG. 2B is a view for explaining the periphery of the sample 10 to be measured shown in FIG. In the measured sample setting section 30 shown in FIG. 2, the measured sample 10 is arranged on the surface (first surface) of a transmissive glass substrate (first transmissive substrate) 31a. A metal film (light-shielding film) 33 is deposited on the surface (third surface) of the transmissive glass substrate 31b (second transmissive substrate).

そして、図2(b)に示すように、透過性ガラス基板31aの裏面(第2面)と透過性ガラス基板31bの表面とが接触するように、透過性ガラス基板31aと透過性ガラス基板31bとは固定部材39により固定されている。固定部材39は、透過性ガラス基板31a及び透過性ガラス基板31bから着脱可能である。固定部材39としては、例えば、金属クランプを用いればよい。   Then, as shown in FIG. 2B, the transmissive glass substrate 31a and the transmissive glass substrate 31b are arranged so that the back surface (second surface) of the transmissive glass substrate 31a and the surface of the transmissive glass substrate 31b are in contact with each other. Is fixed by a fixing member 39. The fixing member 39 is detachable from the transmissive glass substrate 31a and the transmissive glass substrate 31b. For example, a metal clamp may be used as the fixing member 39.

したがって、固定部材39を透過性ガラス基板31a及び透過性ガラス基板31bから外すことにより、透過性ガラス基板31aと透過性ガラス基板31bとは互いに分離する。すなわち、透過性ガラス基板31a上への被測定試料10の配置工程と透過性ガラス基板31b上への金属膜33の蒸着工程とは、互いに独立して実行可能である。   Therefore, by removing the fixing member 39 from the transmissive glass substrate 31a and the transmissive glass substrate 31b, the transmissive glass substrate 31a and the transmissive glass substrate 31b are separated from each other. That is, the step of placing the sample 10 to be measured on the transmissive glass substrate 31a and the step of depositing the metal film 33 on the transmissive glass substrate 31b can be performed independently of each other.

金属膜33の材質としては、例えば、アルミニウム、チタン、鉄、ニッケル、銅等が挙げられる。要は、透過性ガラス基板31bの裏面(第4面)から入射されるレーザ光17が遮光される材質であればよい。   Examples of the material of the metal film 33 include aluminum, titanium, iron, nickel, and copper. In short, any material that shields the laser beam 17 incident from the back surface (fourth surface) of the transmissive glass substrate 31b may be used.

金属膜33の一部には、開口部34が設けられている。開口部34の形状としては、例えば、スリット、微細穴等が挙げられる。金属膜33に向かって入射されたレーザ光17のうち、開口部34を通過するレーザ光のみが透過性ガラス基板31aを通して被測定試料10に照射される。   An opening 34 is provided in a part of the metal film 33. Examples of the shape of the opening 34 include a slit and a fine hole. Of the laser beam 17 incident on the metal film 33, only the laser beam passing through the opening 34 is irradiated on the sample 10 to be measured through the transparent glass substrate 31a.

被測定試料10は、薄型平板状の形状を有しており、透過性ガラス基板31aの表面と直接接触するように配置されている。被測定試料10は、自身のキャリアの移動度が評価されるべき測定試料である。被測定試料10としては、例えば、ペンタセン、ルブレン等の厚膜化が困難な有機半導体材料である。もちろん、被測定試料10として、従来のTOF法を用いて評価可能であるシリコン、ゲルマニウム等の無機半導体材料を用いてもよい。   The sample 10 to be measured has a thin flat plate shape and is disposed so as to be in direct contact with the surface of the transmissive glass substrate 31a. The sample 10 to be measured is a measurement sample whose mobility of its own carrier is to be evaluated. The sample 10 to be measured is an organic semiconductor material that is difficult to increase in thickness, such as pentacene or rubrene. Of course, as the sample 10 to be measured, an inorganic semiconductor material such as silicon or germanium that can be evaluated using a conventional TOF method may be used.

被測定試料10の両端の各々には電極32が形成されており、これら電極32を用いて被測定試料10の両端間に電圧が印加される。より具体的には、これら電極32のうち、一方の電極32は端子Aに直接接続され、他方の電極32は所定の抵抗値を持つ負荷抵抗部35を介して端子Bに接続されている。端子A及び端子Bは電圧印加手段12と接続されており、電圧印加手段12から電圧が入力される。なお、この2つの電極32間の距離は被測定試料10に発生するキャリアの飛行距離Lに相当する。   Electrodes 32 are formed on both ends of the sample 10 to be measured, and a voltage is applied between the both ends of the sample 10 to be measured using these electrodes 32. More specifically, of these electrodes 32, one electrode 32 is directly connected to the terminal A, and the other electrode 32 is connected to the terminal B via a load resistance portion 35 having a predetermined resistance value. The terminals A and B are connected to the voltage application unit 12, and a voltage is input from the voltage application unit 12. The distance between the two electrodes 32 corresponds to the flight distance L of the carrier generated in the sample 10 to be measured.

被測定試料設置部30は端子A及び端子Bに加えて、負荷抵抗部35の両端の各々と接続する端子C及び端子Dを有している。端子C及び端子Dは信号検出手段13と接続されており、負荷抵抗部35の両端間の電圧を信号検出手段13に出力する。   In addition to the terminal A and the terminal B, the measured sample setting part 30 has a terminal C and a terminal D that are connected to both ends of the load resistor 35. The terminals C and D are connected to the signal detection means 13 and output a voltage across the load resistor 35 to the signal detection means 13.

被測定試料設置部30はさらに、被測定試料10、負荷抵抗部35等を収納する収納容器36を有している。収納容器36は、その内部を真空状態に保持できるように構成されており、例えば、被測定試料10の設置後に、収納容器36に設けられている真空ポンプ等の排気装置38によりその内部が排気される。   The measured sample setting unit 30 further includes a storage container 36 for storing the measured sample 10, the load resistance unit 35, and the like. The storage container 36 is configured so that the inside thereof can be kept in a vacuum state. For example, after the sample 10 to be measured is installed, the inside thereof is exhausted by an exhaust device 38 such as a vacuum pump provided in the storage container 36. Is done.

また、収納容器36は、その内部を真空状態に維持することに代えて、窒素や、アルゴン等の不活性ガスの雰囲気にできるように構成されていてもよい。この場合であれば、排気装置38に代えて、収納容器36の内部に窒素、あるいは、アルゴン等の不活性ガスを充填することができるガス導入装置を設ければよい。   Further, the storage container 36 may be configured to be in an atmosphere of an inert gas such as nitrogen or argon instead of maintaining the inside in a vacuum state. In this case, instead of the exhaust device 38, a gas introduction device capable of filling the inside of the storage container 36 with an inert gas such as nitrogen or argon may be provided.

また、収納容器36の材質としては、例えば、アルミニウム、チタン、鉄、ニッケル、銅等の金属で構成される。   Moreover, as a material of the storage container 36, it is comprised with metals, such as aluminum, titanium, iron, nickel, copper, for example.

また、収納容器36は、光照射手段11から出射されるレーザ光17を内部に導入するために、レーザ光17が透過可能な窓37を有している。   Further, the storage container 36 has a window 37 through which the laser light 17 can be transmitted in order to introduce the laser light 17 emitted from the light irradiation means 11 into the inside.

光照射手段11は、図1に示すように、可視光または紫外光であるレーザ光17を出射可能なレーザ光源を有している。そのレーザ光源は、レーザ光17をパルス状に出射可能である。レーザ光17の波長としては、被測定試料10が吸収しやすい波長を選択するのが好ましい。ここでは、光照射手段11は、337nmの波長を持つ窒素パルスレーザ光源を有するものとして説明する。   As shown in FIG. 1, the light irradiation means 11 has a laser light source capable of emitting laser light 17 that is visible light or ultraviolet light. The laser light source can emit the laser beam 17 in a pulse shape. As the wavelength of the laser beam 17, it is preferable to select a wavelength that is easily absorbed by the sample 10 to be measured. Here, the light irradiation means 11 is demonstrated as what has a nitrogen pulse laser light source with a wavelength of 337 nm.

光照射手段11から出射されたレーザ光17は、第1の放物面鏡15及び第2の放物面鏡16の各々により反射された後、被測定試料設置部30に設置された被測定試料10に向かって直進し、被測定試料10に照射される。このレーザ光17の照射により、被測定試料10の照射位置には、キャリア(電子、ホール)が発生する。   The laser beam 17 emitted from the light irradiation means 11 is reflected by each of the first parabolic mirror 15 and the second parabolic mirror 16, and then is measured on the measured sample setting unit 30. It goes straight toward the sample 10 and is irradiated to the sample 10 to be measured. By irradiation with the laser beam 17, carriers (electrons, holes) are generated at the irradiation position of the sample 10 to be measured.

光照射手段11から被測定試料10までのレーザ光17の光路上には、レーザ光17の進行を遮断可能な光遮断部14が配置されている。光遮断部14を動作させることにより、光照射手段11のレーザ光出射動作を停止することなく、被測定試料10へのレーザ光17の照射を中断することができる。また、光遮断部14は、光を検出する光検出部を有しており、光検出部の検出結果に基づき、レーザ光17が自身を通過しているか否かを検出する。   On the optical path of the laser beam 17 from the light irradiation means 11 to the sample 10 to be measured, a light blocking unit 14 capable of blocking the progress of the laser beam 17 is disposed. By operating the light blocking unit 14, the irradiation of the laser beam 17 on the sample 10 to be measured can be interrupted without stopping the laser beam emission operation of the light irradiation unit 11. The light blocking unit 14 includes a light detection unit that detects light, and detects whether or not the laser light 17 passes through the light detection unit 14 based on the detection result of the light detection unit.

電圧印加手段12は、被測定試料設置部30の端子A及び端子Bに接続され、端子A及び端子Bを介して、被測定試料10の両端の電極32間に直流電圧を印加することができる電圧源を有している。電圧源は、好ましくは5kV以下、より好ましくは2.5kV以下の電圧を印加する。この電圧印加により、被測定試料10の2つの電極32に間に電界が生じる。この電界の方向に従って被測定試料10に発生したキャリアが移動する。   The voltage applying means 12 is connected to the terminal A and the terminal B of the measured sample setting section 30 and can apply a DC voltage between the electrodes 32 at both ends of the measured sample 10 via the terminal A and the terminal B. Has a voltage source. The voltage source preferably applies a voltage of 5 kV or less, more preferably 2.5 kV or less. By applying this voltage, an electric field is generated between the two electrodes 32 of the sample 10 to be measured. Carriers generated in the sample 10 to be measured move according to the direction of the electric field.

信号検出手段13は、被測定試料設置部30の端子C及び端子Dに接続され、端子C及び端子Dを介して、負荷抵抗部35の両端間の電圧を検出することができるデジタルオシロスコープを有している。上述したように、レーザ光17の照射により被測定試料10に発生したキャリアは、電圧印加手段12による電圧印加により生じた電界の方向に従って移動する。この移動が持続する期間においては、キャリアの移動に起因して、負荷抵抗部35の両端間の電圧が変位する。デジタルオシロスコープは、この負荷抵抗部35の両端間の電圧変位を検出する。   The signal detection means 13 has a digital oscilloscope that is connected to the terminals C and D of the measured sample setting section 30 and can detect the voltage across the load resistance section 35 via the terminals C and D. is doing. As described above, the carrier generated in the sample 10 to be measured by the irradiation of the laser beam 17 moves according to the direction of the electric field generated by the voltage application by the voltage application unit 12. During the period in which this movement continues, the voltage across the load resistor 35 is displaced due to the movement of the carrier. The digital oscilloscope detects a voltage displacement between both ends of the load resistance unit 35.

また、信号検出手段13はさらに、負荷抵抗部35の両端間の電圧が入力されると、その入力電圧を増幅して出力するプリアンプ(前置増幅器)を有するようにしてもよい。より具体的には、被測定試料設置部30の端子C及び端子Dと、デジタルオシロスコープとの間にプリアンプが接続されるようにすればよい。この場合、負荷抵抗部35の両端間の電圧をプリアンプにより増幅し、その増幅された電圧がデジタルオシロスコープに入力される。このため、デジタルオシロスコープは負荷抵抗部35の両端間の電圧を増幅して検出することができるので、より細かい電圧精度で負荷抵抗部35の両端間の電圧を検出することができる。   Further, the signal detecting means 13 may further include a preamplifier (preamplifier) that amplifies and outputs the input voltage when the voltage across the load resistor 35 is input. More specifically, a preamplifier may be connected between the terminal C and terminal D of the measured sample setting unit 30 and the digital oscilloscope. In this case, the voltage between both ends of the load resistance unit 35 is amplified by the preamplifier, and the amplified voltage is input to the digital oscilloscope. For this reason, since the digital oscilloscope can amplify and detect the voltage across the load resistor 35, the voltage across the load resistor 35 can be detected with finer voltage accuracy.

また、プリアンプは、自身に固有の直流電圧成分(DCオフセット成分)と利得(ゲイン)を持っており、入力電圧から直流電圧成分(DCオフセット成分)を減算し、その減算された入力電圧に利得(ゲイン)を乗算した結果を出力する。このため、プリアンプのダイナミックレンジが増大する。デジタルオシロスコープは、この出力電圧を検出することにより、負荷抵抗部35の両端間の電圧を、より細かい電圧精度で検出することができる。   Also, the preamplifier has its own direct-current voltage component (DC offset component) and gain (gain), and subtracts the direct-current voltage component (DC offset component) from the input voltage, and gain is obtained from the subtracted input voltage. The result of multiplying (Gain) is output. This increases the dynamic range of the preamplifier. By detecting this output voltage, the digital oscilloscope can detect the voltage between both ends of the load resistance unit 35 with finer voltage accuracy.

信号処理手段22は、信号検出手段13から出力される検出結果を取得する。より具体的には、信号処理手段22は、この検出結果を処理することにより、被測定試料10に発生したキャリアが被測定試料10の2つの電極32間を飛行するキャリア移動時間Tfを算出する。そして、その算出結果により、被測定試料10に発生したキャリアの移動度を評価する。   The signal processing unit 22 acquires the detection result output from the signal detection unit 13. More specifically, the signal processing unit 22 processes the detection result to calculate a carrier moving time Tf in which the carrier generated in the sample to be measured 10 flies between the two electrodes 32 of the sample to be measured 10. . Then, based on the calculation result, the mobility of carriers generated in the sample 10 to be measured is evaluated.

制御手段21は、被測定試料10に発生するキャリアの移動度を評価する際における上記の各部間の動作タイミングの制御、及び、上記の各部から出力され、各部に入力される信号の記録、処理等を実行する。より具体低的には、制御手段21は、光照射手段11、電圧印加手段12、信号検出手段13の各々を制御する。   The control means 21 controls the operation timing between the above-mentioned parts when evaluating the mobility of the carrier generated in the sample 10 to be measured, and records and processes the signals output from the above-mentioned parts and input to the respective parts. Etc. More specifically, the control unit 21 controls each of the light irradiation unit 11, the voltage application unit 12, and the signal detection unit 13.

制御手段21及び信号処理手段22は、例えば、コンピュータ20で実現可能である。コンピュータ20は、入力手段23及び出力手段24を有している。出力手段24は、信号処理手段の出力結果を表示する。出力手段24は、液晶表示パネル等の表示装置を有し、出力結果を利用者が視認できるように表示する。入力手段23は、テンキー、キーボード等を備え、例えば、出力手段24の表示形式等が入力される。   The control means 21 and the signal processing means 22 can be realized by the computer 20, for example. The computer 20 has input means 23 and output means 24. The output unit 24 displays the output result of the signal processing unit. The output means 24 has a display device such as a liquid crystal display panel, and displays the output result so that the user can visually recognize it. The input unit 23 includes a numeric keypad, a keyboard, and the like. For example, the display format of the output unit 24 is input.

次に、本発明の実施の形態にかかる半導体評価装置について、具体例を用いて説明する。   Next, a semiconductor evaluation apparatus according to an embodiment of the present invention will be described using a specific example.

光照射手段11のレーザ光源として、USHO製の窒素パルスレーザ光源(波長:337nm)を用いる。光照射手段11は、制御手段21からの光照射開始を示す信号が入力されると、レーザ光源を駆動し、レーザ光源からレーザ光17を出射させる。   As a laser light source of the light irradiation means 11, a nitrogen pulse laser light source (wavelength: 337 nm) made by USHO is used. When the light irradiation means 11 receives a signal indicating the start of light irradiation from the control means 21, the light irradiation means 11 drives the laser light source to emit the laser light 17 from the laser light source.

レーザ光源から出射されたレーザ光17は、第1の放物面鏡15及び第2の放物面鏡16を経由し、被測定試料設置部30に設置された被測定試料10に照射される。レーザ光源から出射されたレーザ光は、光路の途中に設置される光遮断部14内のフォトディテクター(光検出部)により検出される。光遮断部14は、その検出結果を制御手段21に出力する。   The laser beam 17 emitted from the laser light source is irradiated to the sample 10 to be measured installed in the sample-to-be-measured installation unit 30 via the first parabolic mirror 15 and the second parabolic mirror 16. . Laser light emitted from the laser light source is detected by a photodetector (light detection unit) in the light blocking unit 14 installed in the middle of the optical path. The light blocking unit 14 outputs the detection result to the control unit 21.

制御手段21は、その検出結果が入力されると、被測定試料10への電圧印加開始を示す信号を電圧印加手段12に出力する。電圧印加手段12は、その信号が入力されると、電圧源を駆動し、被測定試料10に電圧を印加する。   When the detection result is input, the control means 21 outputs a signal indicating the start of voltage application to the measured sample 10 to the voltage application means 12. When the signal is input, the voltage applying unit 12 drives the voltage source and applies a voltage to the sample 10 to be measured.

被測定試料10としては、薄型平板状の薄膜有機半導体単結晶を用いる。その材料としては、ルブレンを用いる。被測定試料10の面内方向に直流電界を印加するため、被測定試料10の両端(両端間の距離は2mm)に電極32を形成する。電極32の材質は銀である。   As the sample 10 to be measured, a thin flat-plate thin-film organic semiconductor single crystal is used. As the material, rubrene is used. In order to apply a DC electric field in the in-plane direction of the sample 10 to be measured, electrodes 32 are formed on both ends of the sample 10 to be measured (the distance between both ends is 2 mm). The material of the electrode 32 is silver.

透過性ガラス基板31bの表面には、開口部34を形成した金属膜33が接着されている。開口部34はスリットであり、メタルマスク越しにアルミニウムを蒸着した金属膜33に形成される。開口部(スリット)34の幅は、150μmである。レーザ光17は、開口部(スリット)34を通過し、被測定試料10に照射される。   A metal film 33 having an opening 34 is adhered to the surface of the transmissive glass substrate 31b. The opening 34 is a slit and is formed in the metal film 33 in which aluminum is vapor-deposited through a metal mask. The width of the opening (slit) 34 is 150 μm. The laser beam 17 passes through the opening (slit) 34 and is irradiated to the sample 10 to be measured.

被測定試料10にレーザ光17が照射されると、被測定試料10の照射位置にキャリアが発生する。このキャリアが被測定試料10の両端の電極32間における電界方向に従って移動する。このキャリア移動に起因して発生した電流は負荷抵抗部35を流れ、結果として、負荷抵抗部35の両端間の電圧が変位する。   When the laser beam 17 is irradiated on the sample 10 to be measured, a carrier is generated at the irradiation position of the sample 10 to be measured. This carrier moves according to the electric field direction between the electrodes 32 at both ends of the sample 10 to be measured. The current generated due to the carrier movement flows through the load resistor 35, and as a result, the voltage across the load resistor 35 is displaced.

信号検出手段13は、プリアンプを用いて、この電圧変位を増幅し、デジタルオシロスコープで観察記録する。高移動度有機材料の測定をするためには、プリアンプの伝送帯域を十分に確保することが重要である。プリアンプとしては、カットオフ周波数100MHzで、40dBの増幅度を持つものが好ましい。   The signal detection means 13 amplifies this voltage displacement using a preamplifier, and observes and records it with a digital oscilloscope. In order to measure a high mobility organic material, it is important to ensure a sufficient transmission band of the preamplifier. A preamplifier having a cutoff frequency of 100 MHz and an amplification factor of 40 dB is preferable.

図3に、被測定試料10の評価結果を示す。この結果は、有機半導体の単結晶材料であるルブレンのTOF波形である。被測定試料10の電極32間の距離、つまり、キャリア(電子、ホール)の飛行距離は、1.85mmである。図3の右側にはキンクが現れているが、発生したホールの飛行時間に対応していると考えられる。この評価結果から求めたホールの移動度は13cm/V・secである。複数回、同様の評価を行った結果、ホール移動度は10〜20cm/V・secの範囲で記録されている。 FIG. 3 shows the evaluation result of the sample 10 to be measured. This result is a TOF waveform of rubrene, which is a single crystal material of an organic semiconductor. The distance between the electrodes 32 of the sample 10 to be measured, that is, the flight distance of carriers (electrons, holes) is 1.85 mm. A kink appears on the right side of FIG. 3, which is considered to correspond to the flight time of the generated hole. The hole mobility obtained from this evaluation result is 13 cm 2 / V · sec. As a result of performing the same evaluation a plurality of times, the hole mobility is recorded in the range of 10 to 20 cm 2 / V · sec.

このように、本実施の形態の半導体評価装置は、薄膜あるいは板状の被測定試料10の2箇所の異なる部位に電極32を接触させ、その2箇所の電極32に直流電圧を印加して、電極32間に電界を発生させる。   As described above, the semiconductor evaluation apparatus according to the present embodiment brings the electrode 32 into contact with two different parts of the thin film or plate-like sample 10 and applies a DC voltage to the two electrodes 32. An electric field is generated between the electrodes 32.

そして、一方の電極32の近傍において、被測定試料10の表面に可視光あるいは紫外光のレーザ光17を開口部(スリットあるいは微細孔)34のある金属膜33を通して照射し、レーザ光17の照射により発生するキャリアの移動に伴って、電極32間に流れる電流の持続時間から、被測定試料10のキャリア移動度を評価する装置である。   Then, in the vicinity of one electrode 32, the surface of the sample 10 to be measured is irradiated with visible or ultraviolet laser light 17 through a metal film 33 having openings (slits or fine holes) 34, and the laser light 17 is irradiated. This is an apparatus for evaluating the carrier mobility of the sample 10 to be measured from the duration of the current flowing between the electrodes 32 along with the movement of the carriers generated by.

本実施の形態の半導体評価装置100においては、被測定試料10を透過性ガラス基板31a上に、遮光膜となる金属膜33を透過性ガラス基板31b上に、それぞれ固定する。その透過性ガラス基板31a、31bの厚さの合計値は、1mm以下、好ましくは200μm以下であることが好ましい。これは、本実施の形態では、被測定試料10を横向きにし、電極32を形成しているので、被測定試料10の厚さが薄くても、キャリアの走行距離を自由に設定できるからである。結果として、透過性ガラス基板31a、31bの厚さが薄くても被測定試料10の耐久性を維持できる。このため、透過性ガラス基板31aに被測定試料10を貼り付けて、透過性ガラス基板31bに金属膜33を形成し、それら透過性ガラス基板31a、31bを接触させることで、容易にレーザ光17を電極32近傍に照射させることができ、半導体評価装置100の簡便性が向上する。本発明者らの実験によれば、透過性ガラス基板31a、31bは厚くなるとレーザ光17の強度が低下し、検出感度が悪くなる。本発明者らの実験結果により、透過性ガラス基板31a、31bの厚さの合計値は、200μm以下の厚さが好ましい。   In the semiconductor evaluation apparatus 100 of the present embodiment, the sample 10 to be measured is fixed on the transmissive glass substrate 31a, and the metal film 33 to be a light shielding film is fixed on the transmissive glass substrate 31b. The total thickness of the transparent glass substrates 31a and 31b is 1 mm or less, preferably 200 μm or less. This is because, in the present embodiment, since the sample to be measured 10 is turned sideways and the electrode 32 is formed, the traveling distance of the carrier can be freely set even if the sample to be measured 10 is thin. . As a result, the durability of the sample 10 to be measured can be maintained even when the transparent glass substrates 31a and 31b are thin. For this reason, the sample 10 to be measured is attached to the transmissive glass substrate 31a, the metal film 33 is formed on the transmissive glass substrate 31b, and the transmissive glass substrates 31a and 31b are brought into contact with each other. Can be irradiated in the vicinity of the electrode 32, and the simplicity of the semiconductor evaluation apparatus 100 is improved. According to the experiments by the present inventors, when the transmissive glass substrates 31a and 31b are thick, the intensity of the laser light 17 is lowered and the detection sensitivity is deteriorated. According to the results of experiments by the present inventors, the total thickness of the transmissive glass substrates 31a and 31b is preferably 200 μm or less.

また、本実施の形態の半導体評価装置100では、透過性ガラス基板31a、金属膜33、透過性ガラス基板31bの3層積層構造である。このため、レーザ光照射による金属膜33の破損を効果的に防ぐことができる。   Further, the semiconductor evaluation apparatus 100 of the present embodiment has a three-layer laminated structure of the transmissive glass substrate 31a, the metal film 33, and the transmissive glass substrate 31b. For this reason, damage to the metal film 33 due to laser beam irradiation can be effectively prevented.

さらに、本実施の形態の半導体評価装置100では、負荷抵抗部35の抵抗値は、50〜1kΩ、好ましくは50〜300Ωであることが好ましい。また、負荷抵抗部35に発生する電圧を検出するプリアンプの入力容量は、500pF以下であることが好ましい。これは、被測定試料10はきわめて絶縁性が高い、すなわち、内部インピーダンスが高く、このため、低い入力抵抗で、且つ、付帯容量をできる限り抑えた形で電圧を検出しなければ、キャリア移動により発生する電流による電圧変位をはっきり検出することができないからである。   Furthermore, in the semiconductor evaluation apparatus 100 of the present embodiment, the resistance value of the load resistance unit 35 is 50 to 1 kΩ, preferably 50 to 300Ω. The input capacity of the preamplifier that detects the voltage generated in the load resistance unit 35 is preferably 500 pF or less. This is because the sample to be measured 10 has very high insulation, that is, high internal impedance. Therefore, if the voltage is not detected with a low input resistance and with the associated capacitance suppressed as much as possible, it is caused by carrier movement. This is because the voltage displacement due to the generated current cannot be clearly detected.

また、本実施の形態の半導体評価装置100では、信号検出手段13のプリアンプを絶縁性固体物質で封止し、それを金属で遮蔽し、被測定試料10から距離25cm以内に近接させることが好ましく、距離10cm以内に近接させることがより好ましい。この場合、プリアンプのS/N比の改善に効果がある。なぜなら、被測定試料10とプリアンプとを結ぶ電線が長ければ長いほど、被測定試料10とプリアンプ間の信号を伝搬する電線から発生する電磁波に起因するノイズの影響をプリアンプが受けやすくなってしまうからである。このノイズは、10〜100MHz程度の電磁波であり、波長は最大1m程度となる。通常、電線の長さがその波長の1/4以下、すなわち、25cm以下であれば、電線がアンテナとして機能することがなくなる。さらに、安全係数を2倍とし、10cm以下であれば、より効果的となる。   Further, in the semiconductor evaluation apparatus 100 of the present embodiment, it is preferable that the preamplifier of the signal detection means 13 is sealed with an insulating solid material, shielded with metal, and brought close to the measured sample 10 within a distance of 25 cm. More preferably, the distance is within 10 cm. This is effective in improving the S / N ratio of the preamplifier. This is because the longer the wire connecting the sample 10 to be measured and the preamplifier, the more likely the preamplifier is affected by noise caused by electromagnetic waves generated from the wire that propagates the signal between the sample 10 to be measured and the preamplifier. It is. This noise is an electromagnetic wave of about 10 to 100 MHz, and the wavelength is about 1 m at the maximum. Usually, if the length of the wire is 1/4 or less of the wavelength, that is, 25 cm or less, the wire does not function as an antenna. Furthermore, if the safety factor is doubled and 10 cm or less, it becomes more effective.

さらに、本実施の形態の半導体評価装置100では、レーザ光17が被測定試料10に照射されるまでの経路に、光遮断部14を設けている。レーザ光17の透過時に信号検出手段13の検出結果を複数回積算して平均値を算出し、レーザ光17の遮断時に信号検出手段13の検出結果を複数回積算して平均値を算出し、前者平均値と後者平均値の差分値から、被測定試料10のキャリア移動度を評価してもよい。この場合、信号検出手段13のプリアンプのS/N比が向上し、且つ、信号処理手段22が積算平均で信号を処理することで機械振動の影響を受けにくくなり、除振装置を必要とせず、装置が小型化できる。   Furthermore, in the semiconductor evaluation apparatus 100 of the present embodiment, the light blocking unit 14 is provided in the path until the laser beam 17 is irradiated to the sample 10 to be measured. When the laser light 17 is transmitted, the detection results of the signal detection means 13 are integrated multiple times to calculate an average value, and when the laser light 17 is interrupted, the detection results of the signal detection means 13 are integrated multiple times to calculate an average value, The carrier mobility of the sample 10 to be measured may be evaluated from the difference value between the former average value and the latter average value. In this case, the S / N ratio of the preamplifier of the signal detection means 13 is improved, and the signal processing means 22 processes the signal by integration averaging, so that it is less susceptible to mechanical vibrations, and no vibration isolator is required. The device can be downsized.

なお、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   In addition, this invention is not limited to embodiment mentioned above, A various change is possible in the range shown to the claim. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.

また、本発明は、以下のようにも表現することができる。すなわち、本発明にかかる半導体評価装置は、薄膜あるいは板状の被測定試料の2箇所の異なる部位に電極を接触させ、その2箇所の電極に直流の電圧をかけて電極間に電界を発生させ、一方の電極近傍の該試料表面に可視光あるいは紫外光のパルスをスリットあるいは微細孔のある遮光膜をとおして照射し、パルス照射終了後に2箇所の電極に流れる光電流の持続時間から被測定試料のキャリア移動度を評価する装置において、被測定試料を絶縁性透明基板の片面に固定し、遮光膜を該絶縁性透明基板の試料のついた面と反対の面に固定し、該絶縁性透明基板の厚さは1mm以下、望ましくは200μm以下とする。   The present invention can also be expressed as follows. That is, the semiconductor evaluation apparatus according to the present invention causes an electrode to contact two different parts of a thin film or a plate-like sample to be measured, and a DC voltage is applied to the two electrodes to generate an electric field between the electrodes. The sample surface near one electrode is irradiated with a pulse of visible light or ultraviolet light through a light-shielding film having slits or fine holes, and measured from the duration of photocurrent flowing through two electrodes after the pulse irradiation is completed. In an apparatus for evaluating the carrier mobility of a sample, a sample to be measured is fixed to one surface of an insulating transparent substrate, and a light shielding film is fixed to the surface opposite to the surface with the sample of the insulating transparent substrate. The thickness of the transparent substrate is 1 mm or less, preferably 200 μm or less.

遮光板はガラスと金属膜の2層の積層構造、好ましくはガラスと金属膜とガラスの3層積層構造であり、金属膜の材質はアルミニウム、チタン、鉄、ニッケル、銅のいずれか1種類を含有していることが好ましい。   The light shielding plate has a two-layer laminated structure of glass and metal film, preferably a three-layer laminated structure of glass, metal film and glass, and the metal film is made of any one of aluminum, titanium, iron, nickel and copper. It is preferable to contain.

電極と電圧源の間に50から1kΩの抵抗器、好ましくは50から300Ωの抵抗器を直列に接続し、該抵抗器に発生する電圧を入力容量として500pF以下の前置増幅器に入力し、その出力信号を記録し、その記録から被測定試料のキャリア移動度を算出することが好ましい。   A resistor of 50 to 1 kΩ, preferably a resistor of 50 to 300 Ω, is connected in series between the electrode and the voltage source, and the voltage generated in the resistor is input to a preamplifier of 500 pF or less as an input capacitance. It is preferable to record the output signal and calculate the carrier mobility of the sample to be measured from the record.

入力信号から一定値の直流電圧を差し引く機能をもつ前置増幅器を具備したことが好ましい。   A preamplifier having a function of subtracting a constant DC voltage from the input signal is preferably provided.

前置増幅器を絶縁性固体物質で封止し、それを金属で遮蔽し、被測定試料に距離10cm以内に近接させることが好ましい。   It is preferable to seal the preamplifier with an insulating solid material, shield it with metal, and bring it close to the sample to be measured within a distance of 10 cm.

抵抗器と被測定試料を同一の金属容器に収めたことが好ましい。   It is preferable that the resistor and the sample to be measured are contained in the same metal container.

抵抗器と被測定試料と前置増幅器に収めたことが好ましい。   It is preferable to house in a resistor, a sample to be measured and a preamplifier.

被測定試料の周りを、真空、窒素、或は不活性ガス雰囲気にするために、被測定試料を収める金属製真空容器と、ガス導入装置或は真空排気装置を具備したことが好ましい。   In order to create a vacuum, nitrogen, or inert gas atmosphere around the sample to be measured, it is preferable to have a metal vacuum container for storing the sample to be measured and a gas introduction device or a vacuum exhaust device.

可視光あるいは紫外光の試料に照射されるまでの経路に、光遮断器を設け、光の透過時に光電流信号を複数回積算し平均値を算出し、光の遮断時に光電流信号を複数回積算し平均値を算出し、前者平均値と後者平均値の差分値を元に被測定試料のキャリア移動度を評価することが好ましい。   An optical circuit breaker is provided in the path until the sample of visible light or ultraviolet light is irradiated, and the photocurrent signal is integrated several times during transmission of light, the average value is calculated, and the photocurrent signal is output multiple times when light is blocked. It is preferable to integrate and calculate the average value, and to evaluate the carrier mobility of the sample to be measured based on the difference value between the former average value and the latter average value.

本発明は、半導体のキャリア移動度、キャリア寿命等の特性を評価する半導体評価装置に適用できる。   The present invention can be applied to a semiconductor evaluation apparatus for evaluating characteristics such as carrier mobility and carrier life of a semiconductor.

本発明の実施の形態にかかる半導体評価装置の概略構成を示すブロック図である。It is a block diagram showing a schematic structure of a semiconductor evaluation device concerning an embodiment of the invention. (a)は、図1の被測定試料設置部の概略構成を示す断面図、(b)は、(a)の被測定試料の周囲を説明するための図である。(A) is sectional drawing which shows schematic structure of the to-be-measured sample installation part of FIG. 1, (b) is a figure for demonstrating the circumference | surroundings of the to-be-measured sample of (a). 図1の半導体評価装置の評価結果例を示すグラフである。It is a graph which shows the example of an evaluation result of the semiconductor evaluation apparatus of FIG. 従来のTOF法を説明するための図である。It is a figure for demonstrating the conventional TOF method. 従来の他のTOF法を説明するための図である。It is a figure for demonstrating the other conventional TOF method.

符号の説明Explanation of symbols

10 被測定試料
11 光照射手段
12 電圧印加手段
13 信号検出手段
14 光遮断部
15、16 放物面鏡
17 レーザ光
18、36 収納容器
20 コンピュータ
21 制御手段
22 信号処理手段
23 入力手段
24 出力手段
30 被測定試料設置部
31a、31b 透過性ガラス基板(第1の透過性基板、第2の透過性基板)
32 電極
33 金属膜(遮光膜)
34 開口部
35 負荷抵抗部
37 窓
38 排気装置
39 固定部材
DESCRIPTION OF SYMBOLS 10 Sample to be measured 11 Light irradiation means 12 Voltage application means 13 Signal detection means 14 Light blocker 15, 16 Parabolic mirror 17 Laser light 18, 36 Storage container 20 Computer 21 Control means 22 Signal processing means 23 Input means 24 Output means 30 Measured Sample Placement Part 31a, 31b Transparent glass substrate (first transparent substrate, second transparent substrate)
32 electrode 33 metal film (light-shielding film)
34 opening 35 load resistance 37 window 38 exhaust device 39 fixing member

Claims (12)

薄型平板状の被測定試料にレーザ光を照射し、当該レーザ光の照射に起因して発生するキャリアを前記被測定試料の表面方向に移動させることにより電流を生成し、当該生成された電流の持続時間から前記被測定試料のキャリア移動度を評価する半導体評価装置であって、
前記レーザ光が前記被測定試料に照射されるように前記被測定試料を設置する被測定試料設置部を備え、
前記被測定試料設置部は、
第1面及び当該第1面の反対側に形成された第2面を持つ第1の透過性基板と、
前記第1の透過性基板の第2面に接触する第3面及び当該第3面の反対側に形成された第4面を持つ第2の透過性基板と、
前記第1の透過性基板の第2面と前記第2の透過性基板の第3面とが接触するように前記第1の透過性基板及び前記第2の透過性基板を固定可能な固定部材と、を有し、
前記第2の透過性基板の第3面には、前記レーザ光を通過させる開口部を持つ遮光膜が形成されており、
前記第1の透過性基板の第1面上に前記被測定試料を配置し、前記第2の透過性基板の第4面から入射される前記レーザ光のうち前記遮光膜の開口部を通過するレーザ光を前記被測定試料に照射させることを特徴とする半導体評価装置。
A thin flat plate-like sample to be measured is irradiated with laser light, and a carrier is generated by moving the carrier generated due to the irradiation of the laser beam toward the surface of the sample to be measured. A semiconductor evaluation apparatus for evaluating the carrier mobility of the sample to be measured from the duration,
A sample-to-be-measured portion for installing the sample to be measured so that the laser beam is irradiated on the sample to be measured;
The measured sample setting part is:
A first transmissive substrate having a first surface and a second surface formed on the opposite side of the first surface;
A second transmissive substrate having a third surface in contact with the second surface of the first transmissive substrate and a fourth surface formed on the opposite side of the third surface;
A fixing member capable of fixing the first transmissive substrate and the second transmissive substrate so that the second surface of the first transmissive substrate and the third surface of the second transmissive substrate are in contact with each other. And having
A light-shielding film having an opening through which the laser beam passes is formed on the third surface of the second transparent substrate,
The sample to be measured is arranged on the first surface of the first transparent substrate, and passes through the opening of the light shielding film among the laser light incident from the fourth surface of the second transparent substrate. A semiconductor evaluation apparatus for irradiating the sample to be measured with laser light.
前記第1の透過性基板の厚さと前記第2の透過性基板の厚さとの合計値は、1mm以下であることを特徴とする請求項1に記載の半導体評価装置。   The semiconductor evaluation apparatus according to claim 1, wherein a total value of the thickness of the first transmissive substrate and the thickness of the second transmissive substrate is 1 mm or less. 前記遮光膜は、アルミニウム、チタン、鉄、ニッケル及び銅のいずれか1つを含む金属膜であることを特徴とする請求項1または2に記載の半導体評価装置。   3. The semiconductor evaluation apparatus according to claim 1, wherein the light shielding film is a metal film containing any one of aluminum, titanium, iron, nickel, and copper. 前記被測定試料設置部はさらに、前記被測定試料上に形成された2つの対向する電極を有し、
前記被測定試料に照射されるレーザ光を出射する光照射手段と、
前記光照射手段によるレーザ光の照射に同期して、前記2つの対向する電極間に電圧を印加する電圧印加手段と、
前記被測定試料の電極の一方に直列接続された負荷抵抗部の両端間の電圧を検出する信号検出手段と、をさらに備えることを特徴とする請求項1〜3のいずれか1項に記載の半導体評価装置。
The measured sample setting part further includes two opposing electrodes formed on the measured sample,
A light irradiating means for emitting a laser beam applied to the sample to be measured;
Voltage application means for applying a voltage between the two opposing electrodes in synchronization with the irradiation of the laser beam by the light irradiation means;
The signal detection means which detects the voltage between the both ends of the load resistance part connected in series with one of the electrodes of the said to-be-measured sample is further provided, The one of Claims 1-3 characterized by the above-mentioned. Semiconductor evaluation equipment.
前記負荷抵抗部の抵抗値は、50〜1000Ωであることを特徴とする請求項4に記載の半導体評価装置。   The semiconductor evaluation apparatus according to claim 4, wherein a resistance value of the load resistance unit is 50 to 1000Ω. 前記信号検出手段は、500pF以下の入力容量を持ち、前記負荷抵抗部の両端間の電圧を増幅する前置増幅器を有することを特徴とする請求項4または5に記載の半導体評価装置。   The semiconductor evaluation apparatus according to claim 4, wherein the signal detection unit has a preamplifier having an input capacitance of 500 pF or less and amplifying a voltage between both ends of the load resistance unit. 前記前置増幅器は、自身に固有の直流電圧成分及び利得を持ち、入力電圧から直流電圧成分を減算し、当該減算結果に利得を乗算した電圧を出力することを特徴とする請求項6に記載の半導体評価装置。   The preamplifier has a DC voltage component and a gain unique to the preamplifier, subtracts the DC voltage component from the input voltage, and outputs a voltage obtained by multiplying the subtraction result by the gain. Semiconductor evaluation equipment. 前記前置増幅器は、前記被測定試料から25cm以内の距離に位置することを特徴とする請求項6または7に記載の半導体評価装置。   The semiconductor evaluation apparatus according to claim 6, wherein the preamplifier is located at a distance within 25 cm from the sample to be measured. 前記被測定試料及び前記負荷抵抗部を収納する収納容器をさらに備えることを特徴とする請求項4〜8のいずれか1項に記載の半導体評価装置。   The semiconductor evaluation apparatus according to claim 4, further comprising a storage container that stores the sample to be measured and the load resistance unit. 前記収納容器はさらに、前記前置増幅器を収納することを特徴とする請求項9に記載の半導体評価装置。   The semiconductor evaluation apparatus according to claim 9, wherein the storage container further stores the preamplifier. 前記収納容器は、自身の内部を真空状態とする排気装置、及び、自身の内部を窒素雰囲気または不活性ガス雰囲気とするガス導入装置のうちのいずれかを有することを特徴とする請求項9または10に記載の半導体評価装置。   10. The storage container according to claim 9, wherein the storage container includes any one of an exhaust device that makes the inside thereof a vacuum state and a gas introduction device that makes the inside thereof a nitrogen atmosphere or an inert gas atmosphere. 10. The semiconductor evaluation apparatus according to 10. 前記光照射手段から前記被測定試料までのレーザ光の光路上に配置され、前記レーザ光の進行を遮断可能な光遮断部と、
前記信号検出手段の検出結果を処理することにより、前記被測定試料のキャリア移動度を評価する信号処理手段と
をさらに備え、
前記信号処理手段は、前記光遮断部による前記レーザ光の透過時における前記信号検出手段の検出結果を複数回積算して透過時平均値を算出し、前記光遮断部による前記レーザ光の遮断時における前記信号検出手段の検出結果を複数回積算して遮断時平均値を算出し、前記透過時平均値と前記遮断時平均値との差分値から、前記被測定試料のキャリア移動度を評価することを特徴とする請求項4〜11のいずれか1項に記載の半導体評価装置。
A light blocking part arranged on the optical path of the laser beam from the light irradiation means to the sample to be measured, and capable of blocking the progress of the laser beam;
Signal processing means for evaluating carrier mobility of the sample to be measured by processing the detection result of the signal detection means; and
The signal processing means calculates the average value during transmission by multiplying the detection results of the signal detection means during transmission of the laser light by the light blocking section a plurality of times, and when the laser light is blocked by the light blocking section The detection results of the signal detection means are integrated several times to calculate an average value at the time of blocking, and the carrier mobility of the sample to be measured is evaluated from the difference value between the average value at the time of transmission and the average value at the time of blocking The semiconductor evaluation apparatus according to claim 4, wherein the semiconductor evaluation apparatus is a semiconductor evaluation apparatus.
JP2008172549A 2008-07-01 2008-07-01 Semiconductor evaluation equipment Expired - Fee Related JP4757285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172549A JP4757285B2 (en) 2008-07-01 2008-07-01 Semiconductor evaluation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172549A JP4757285B2 (en) 2008-07-01 2008-07-01 Semiconductor evaluation equipment

Publications (2)

Publication Number Publication Date
JP2010016051A true JP2010016051A (en) 2010-01-21
JP4757285B2 JP4757285B2 (en) 2011-08-24

Family

ID=41701923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172549A Expired - Fee Related JP4757285B2 (en) 2008-07-01 2008-07-01 Semiconductor evaluation equipment

Country Status (1)

Country Link
JP (1) JP4757285B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255672A (en) * 2011-06-08 2012-12-27 Institute Of Physical & Chemical Research Method and device for measuring carrier behavior
CN107589360A (en) * 2017-08-29 2018-01-16 中国科学院半导体研究所 Semiconductor test apparatus and method
WO2019187927A1 (en) * 2018-03-30 2019-10-03 国立研究開発法人産業技術総合研究所 Carrier mobility measurement method and carrier mobility measurement device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135125A (en) * 2004-11-08 2006-05-25 Hokkaido Univ High-mobility measuring device
JP2006234738A (en) * 2005-02-28 2006-09-07 Dainippon Printing Co Ltd Substrate, device and method for measuring carrier mobility of semiconductor thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135125A (en) * 2004-11-08 2006-05-25 Hokkaido Univ High-mobility measuring device
JP2006234738A (en) * 2005-02-28 2006-09-07 Dainippon Printing Co Ltd Substrate, device and method for measuring carrier mobility of semiconductor thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255672A (en) * 2011-06-08 2012-12-27 Institute Of Physical & Chemical Research Method and device for measuring carrier behavior
CN107589360A (en) * 2017-08-29 2018-01-16 中国科学院半导体研究所 Semiconductor test apparatus and method
CN107589360B (en) * 2017-08-29 2020-01-31 中国科学院半导体研究所 Semiconductor testing device and method
WO2019187927A1 (en) * 2018-03-30 2019-10-03 国立研究開発法人産業技術総合研究所 Carrier mobility measurement method and carrier mobility measurement device

Also Published As

Publication number Publication date
JP4757285B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP6068183B2 (en) Silicon thin film measuring method, silicon thin film defect detecting method, and silicon thin film defect detecting apparatus
US9523714B2 (en) Electrical inspection of electronic devices using electron-beam induced plasma probes
Da Via et al. 3D active edge silicon sensors with different electrode configurations: Radiation hardness and noise performance
JP3793757B2 (en) Plug-in photoionization sensor
US8952338B2 (en) Crystalline quality evaluation apparatus for thin-film semiconductors, using μ-PCD technique
KR20160052742A (en) Method for evaluating oxide semiconductor thin film, method for managing quality of oxide semiconductor thin film, and evaluation element and evaluation device used in above evaluation method
JP4757285B2 (en) Semiconductor evaluation equipment
Komlenok et al. Diamond detectors with laser induced surface graphite electrodes
Antonelli et al. Fast synchrotron and FEL beam monitors based on single-crystal diamond detectors and InGaAs/InAlAs quantum well devices
JP5948093B2 (en) Semiconductor defect evaluation method
KR101923798B1 (en) Quality evaluation method for laminate having protective layer on surface of oxide semiconductor thin film and quality control method for oxide semiconductor thin film
JP2017116550A (en) Semiconductor detector, radiation detector, and radiation detection device
KR20140012602A (en) Quality control method of target assembly used in forming thin film for semiconductor layers of thin film transistor
JP2006234738A (en) Substrate, device and method for measuring carrier mobility of semiconductor thin film
JP4184075B2 (en) Gas detector for ionizing radiation and method for manufacturing the same
US8536873B2 (en) Substance detection method and substance detection device
Tsai et al. Quantum Efficiency Gain in 2D Perovskite Photo and X‐Ray Detectors
JP2013058742A (en) Semiconductor defect evaluation method
Kramberger LGADs for timing detectors at HL-LHC
US7573271B2 (en) Apparatus for measuring electric characteristics of semiconductor
JP3665207B2 (en) Semiconductor evaluation equipment
JP2009206057A (en) Gas electron amplifier and radiation detector using the same
JP2002043269A (en) Laser cleaning completion judging apparatus and method
WO2018092551A1 (en) Radiation detector and radiation detecting device
WO2022230539A1 (en) Radiation detector, and radiation detecting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees