JP2010008088A - Spatial information detection device - Google Patents

Spatial information detection device Download PDF

Info

Publication number
JP2010008088A
JP2010008088A JP2008164680A JP2008164680A JP2010008088A JP 2010008088 A JP2010008088 A JP 2010008088A JP 2008164680 A JP2008164680 A JP 2008164680A JP 2008164680 A JP2008164680 A JP 2008164680A JP 2010008088 A JP2010008088 A JP 2010008088A
Authority
JP
Japan
Prior art keywords
light
unit
light emitting
spatial information
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008164680A
Other languages
Japanese (ja)
Inventor
Hiroshi Obara
弘士 小原
Minoru Kumahara
稔 熊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008164680A priority Critical patent/JP2010008088A/en
Publication of JP2010008088A publication Critical patent/JP2010008088A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spatial information detection device capable of preventing light from a light emitting section from being buried in noise such as disturbance light, and preventing detection of spatial information from being difficult. <P>SOLUTION: A light detection section 8 detects the amount of light of the light emitting section 2 with an emitted-light-amount detection means 8a arranged at a position which is irradiated with direct light from the emitting section 2. A lighting controller 9 performs individual on-off control of switching elements SW inserted respectively between individual light emitting elements 2a and resistors RL forming the emitting section 2, according to the output of the detection section 8, and changes the number of emitting elements 2a which is turned on actually to emit light. When the amount of light of the emitting section 2 detected by the detection section 8 is smaller than a predetermined bottom value, the lighting controller 9 increases the number of switching elements SW to be turned on and increases the number of emitting elements 2a to be turned on. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発光部から対象空間に投光される光を利用して対象空間の空間情報を検出する空間情報検出装置に関するものである。   The present invention relates to a spatial information detection device that detects spatial information of a target space using light projected from a light emitting unit to the target space.

従来から、この種の空間情報検出装置として、LED(発光ダイオード)を用いた発光部と、対象空間からの反射光を受光する受光部とを備え、発光部により光が投光されてから受光部で受光されるまでの時間に基づいて、対象空間内に存在する物体までの距離を空間情報として検出するものが知られている。ここで、光が投光されてから受光されるまでの時間は非常に短いので、対象空間に投光する光としては強度が一定周期で変化するように変調した強度変調光を用い、発光部から出力される光と受光部で受光される光との間の位相差により前記時間を求めている(たとえば特許文献1参照)。   Conventionally, as this type of spatial information detection device, a light emitting unit using an LED (light emitting diode) and a light receiving unit that receives reflected light from a target space are received, and light is received after the light is projected by the light emitting unit. There is known one that detects a distance to an object existing in a target space as spatial information based on the time until the light is received by the unit. Here, since the time from when the light is projected to when it is received is very short, the intensity-modulated light that is modulated so that the intensity changes at a constant period is used as the light that is projected into the target space. The time is obtained from the phase difference between the light output from the light and the light received by the light receiving unit (see, for example, Patent Document 1).

ところで、発光部(LED)の光量は発光部を流れる電流の大きさに依存するため、安定した光量を得るためには定電流制御を行うことが考えられる。しかし、定電流制御では電流が安定するまでに時間が掛かり、発光部の立ち上がりが遅くなる。そのため、発光部の高速駆動を行う場合には、図10に示すように発光部2と抵抗RLとの直列回路に定電圧VDDを印加する定電圧制御を行う必要がある(たとえば特許文献2参照)。なお、図10の例では、発光部2を複数個の発光素子(LED)2aの直列回路とし、当該直列回路に直列に挿入された駆動用トランジスタ(FET)Trを制御することによって発光部2から強度変調光を出力させる。
特開2004−45304号公報 特開2007−149874号公報
By the way, since the light quantity of a light emission part (LED) is dependent on the magnitude | size of the electric current which flows through a light emission part, in order to obtain the stable light quantity, it is possible to perform constant current control. However, in constant current control, it takes time for the current to stabilize, and the rise of the light emitting unit is delayed. Therefore, when high-speed driving of the light emitting unit is performed, it is necessary to perform constant voltage control in which a constant voltage VDD is applied to the series circuit of the light emitting unit 2 and the resistor RL as shown in FIG. 10 (see, for example, Patent Document 2). ). In the example of FIG. 10, the light emitting unit 2 is a series circuit of a plurality of light emitting elements (LED) 2a, and the light emitting unit 2 is controlled by controlling a driving transistor (FET) Tr inserted in series in the series circuit. Output intensity modulated light.
JP 2004-45304 A JP 2007-149874 A

しかし、定電圧制御では、発光部2の光量は発光素子(LED)2aの温度特性や経年劣化等の影響で変化することがある。発光部2の光量が減少すると、発光部2から投光された光が外乱光(環境光)などのノイズに埋もれ、空間情報の検出が困難となる可能性がある。   However, in the constant voltage control, the light amount of the light emitting unit 2 may change due to the temperature characteristics of the light emitting element (LED) 2a, aging deterioration, or the like. When the light amount of the light emitting unit 2 decreases, the light projected from the light emitting unit 2 is buried in noise such as disturbance light (environmental light), and it may be difficult to detect spatial information.

本発明は上記事由に鑑みて為されたものであって、発光部からの光が外乱光などのノイズに埋もれて空間情報の検出が困難になることのない空間情報検出装置を提供することを目的とする。   The present invention has been made in view of the above-described reasons, and provides a spatial information detection device in which light from a light emitting unit is buried in noise such as ambient light and detection of spatial information does not become difficult. Objective.

請求項1の発明は、複数の発光素子を有し対象空間に光を投光する発光部と、発光部に定電圧を印加した状態で発光素子に流れる電流の大きさを制御する発光駆動回路と、対象空間からの光を受光する受光部と、受光部の出力を用いて対象空間の空間情報を検出する評価演算部と、少なくとも発光部の光量を検知する光検知部と、光検知部で検知された光量に基づいて、発光部の光量が所定範囲内となるように、点灯させる発光素子の個数を制御する点灯制御部とを備えることを特徴とする。   The invention according to claim 1 includes a light emitting unit that has a plurality of light emitting elements and projects light into a target space, and a light emission driving circuit that controls the magnitude of a current flowing through the light emitting element in a state where a constant voltage is applied to the light emitting part. A light receiving unit that receives light from the target space, an evaluation calculation unit that detects spatial information of the target space using the output of the light receiving unit, a light detection unit that detects at least the light amount of the light emitting unit, and a light detection unit And a lighting control unit that controls the number of light emitting elements to be lit so that the light amount of the light emitting unit is within a predetermined range based on the light amount detected in step (b).

この構成によれば、点灯制御部が、光検知部で検知された光量に基づいて、発光部の光量が所定範囲内となるように、点灯させる発光素子の個数を制御するので、発光素子の温度特性や経年劣化等の影響で発光部の光量が減少することがあっても、点灯させる発光素子の個数を増加させることで発光部の光量を所定範囲内に維持することができる。したがって、発光部の光量が減少することにより、発光部から投光された光が外乱光などのノイズに埋もれて空間情報の検出が困難になることを回避できる。   According to this configuration, the lighting control unit controls the number of light emitting elements to be lit based on the light amount detected by the light detection unit so that the light amount of the light emitting unit is within a predetermined range. Even if the light quantity of the light emitting unit decreases due to the influence of temperature characteristics, aging deterioration, etc., the light quantity of the light emitting unit can be maintained within a predetermined range by increasing the number of light emitting elements to be lit. Therefore, it can be avoided that the light emitted from the light emitting unit is buried in noise such as disturbance light and the spatial information is difficult to be detected by reducing the light amount of the light emitting unit.

請求項2の発明は、請求項1の発明において、前記発光駆動回路が、前記発光素子に流れる電流を周期的に変化させることで前記発光部から強度が周期的に変化する強度変調光を投光させ、前記評価演算部が、発光部からの強度変調光と前記受光部により受光した光との位相の関係を用いて前記対象空間の前記空間情報を検出することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the light emission driving circuit emits intensity-modulated light whose intensity changes periodically from the light emitting section by periodically changing a current flowing through the light emitting element. And the evaluation calculation unit detects the spatial information of the target space using a phase relationship between the intensity modulated light from the light emitting unit and the light received by the light receiving unit.

この構成によれば、評価演算部では、発光部で光が投光されてから受光部で受光されるまでに掛かる時間に基づき、対象空間に存在する物体までの距離を空間情報として検出することができる。   According to this configuration, the evaluation calculation unit detects the distance to the object existing in the target space as the spatial information based on the time taken from when the light is emitted by the light emitting unit to when it is received by the light receiving unit. Can do.

請求項3の発明は、請求項1の発明において、前記発光駆動回路が、前記発光部を点灯させる点灯期間と消灯させる消灯期間とを交互に繰り返し、前記評価演算部が、前記受光部での点灯期間の受光量と消灯期間の受光量との差分を用いて前記対象空間の前記空間情報を検出することを特徴とする。   According to a third aspect of the present invention, in the first aspect of the invention, the light emission driving circuit alternately repeats a lighting period for turning on the light emitting unit and a light extinguishing period for turning off the light emitting unit. The spatial information of the target space is detected using a difference between the received light amount during the lighting period and the received light amount during the extinguishing period.

この構成によれば、評価演算部では、受光部での点灯期間の受光量と消灯期間の受光量との差分から、対象空間に存在する物体での光の反射率を空間情報として検出することができる。   According to this configuration, the evaluation calculation unit detects, as spatial information, the reflectance of light at an object existing in the target space from the difference between the received light amount during the lighting period and the received light amount during the extinguishing period. Can do.

請求項4の発明は、請求項1ないし請求項3のいずれかの発明において、前記光検知部が、前記発光部の光量を検知する発光量検知手段に前記受光部を兼用していることを特徴とする。   According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the light detection unit is also used as a light emission amount detection unit that detects a light amount of the light emission unit. Features.

この構成によれば、受光部が発光量検出手段に兼用されることとなるので、受光部とは別に発光量検出手段を設ける場合に比べて、部品点数を削減することができるという利点がある。   According to this configuration, since the light receiving portion is also used as the light emission amount detecting means, there is an advantage that the number of parts can be reduced as compared with the case where the light emission amount detecting means is provided separately from the light receiving portion. .

請求項5の発明は、請求項1ないし請求項4のいずれかの発明において、前記光検知部が外乱光の光量を検知する外乱光検出手段を有しており、前記所定範囲が、外乱光の光量に基づいて下限値が決定されることを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the light detection unit includes disturbance light detection means for detecting the amount of disturbance light, and the predetermined range is disturbance light. The lower limit is determined based on the amount of light.

この構成によれば、所定範囲の下限値が外乱光の光量に基づいて決定されるので、点灯制御部により、発光部の光量を外乱光の光量に対応する所定範囲内に調整することができる。したがって、外乱光の光量が変化するような環境下であっても、発光部から投光された光が外乱光に埋もれて空間情報の検出が困難になることを確実に回避できる。   According to this configuration, since the lower limit value of the predetermined range is determined based on the amount of disturbance light, the lighting control unit can adjust the light amount of the light emitting unit within a predetermined range corresponding to the amount of disturbance light. . Therefore, even in an environment in which the amount of disturbance light changes, it is possible to reliably avoid detection of spatial information because the light projected from the light emitting unit is buried in the disturbance light.

請求項6の発明は、請求項5の発明において、前記光検知部が、前記外乱光検出手段に前記受光部を兼用していることを特徴とする。   The invention of claim 6 is characterized in that, in the invention of claim 5, the light detection unit also serves as the light receiving unit for the disturbance light detection means.

この構成によれば、受光部が外乱光検出手段に兼用されることとなるので、受光部とは別に外乱光検出手段を設ける場合に比べて、部品点数を削減することができるという利点がある。   According to this configuration, since the light receiving unit is also used as the disturbance light detection unit, there is an advantage that the number of parts can be reduced compared to the case where the disturbance light detection unit is provided separately from the light reception unit. .

本発明は、発光部の光量が所定範囲内となるように、点灯制御部によって点灯させる発光部の個数を制御しているので、発光部からの光が外乱光などのノイズに埋もれて空間情報の検出が困難になることを回避できるという利点がある。   In the present invention, since the number of light emitting units to be lit is controlled by the lighting control unit so that the light amount of the light emitting unit is within a predetermined range, the light from the light emitting unit is buried in noise such as disturbance light and spatial information. There is an advantage that it is possible to avoid that it is difficult to detect.

(実施形態1)
本実施形態の空間情報検出装置1は、図2に示すように対象空間に光を投光する発光部2と、発光部2を定電圧駆動する発光駆動回路3と、対象空間からの反射光を受光する受光部4と、対象空間の空間情報を検出する評価演算部5とを備えている。評価演算部5は、発光部2で光が投光されてから受光部4で受光されるまでに掛かる時間(以下、往復時間という)に基づいて、対象空間に存在する物体6までの距離を空間情報として求めるものであって、本実施形態では、対象空間に存在する物体6までの距離値を画素値とした距離画像を生成するものとする。さらに、図2では、発光駆動回路3の駆動タイミングを決定するとともに受光部4での受光タイミングを決定する制御部7が設けられている。制御部7は評価演算部5にも演算のタイミングを指示する。
(Embodiment 1)
As shown in FIG. 2, the spatial information detection apparatus 1 according to the present embodiment includes a light emitting unit 2 that projects light onto a target space, a light emission driving circuit 3 that drives the light emitting unit 2 at a constant voltage, and reflected light from the target space. The light receiving unit 4 that receives the light and the evaluation calculation unit 5 that detects the spatial information of the target space. The evaluation calculation unit 5 calculates the distance to the object 6 existing in the target space based on the time (hereinafter referred to as a round trip time) taken from when the light is emitted by the light emitting unit 2 to when it is received by the light receiving unit 4. In this embodiment, a distance image is generated with a pixel value as a distance value to the object 6 existing in the target space. Further, in FIG. 2, a control unit 7 that determines the drive timing of the light emission drive circuit 3 and determines the light reception timing at the light receiving unit 4 is provided. The control unit 7 also instructs the evaluation calculation unit 5 to calculate timing.

発光部2は、図1に示すようにLED(発光ダイオード)からなる発光素子2aを複数並設して成り、各発光素子2aからの光を対象空間に向けて照射するように構成されている。ここで、各発光素子2aは、それぞれ電流制限用の抵抗RLおよび駆動用トランジスタTrと共に直列回路を形成し、当該直列回路にはそれぞれ定電圧VDDが印加される。   As shown in FIG. 1, the light emitting unit 2 includes a plurality of light emitting elements 2 a made up of LEDs (light emitting diodes), and is configured to irradiate light from each light emitting element 2 a toward a target space. . Here, each light emitting element 2a forms a series circuit together with a current limiting resistor RL and a driving transistor Tr, and a constant voltage VDD is applied to each of the series circuits.

受光部4は、複数の感光要素(図示せず)を半導体基板(図示せず)上に2次元配列したCCD(Charge Coupled Device)撮像素子からなり、結像レンズ(図示せず)を通して対象空間からの光を受光する。なお、発光素子2aとして赤外線を出力する赤外線LEDを用い、受光部4へは赤外線透過フィルタを通して対象空間からの光を入射させる構成としてもよい。この構成では、受光部4に可視光領域の光が入射するのを抑制し、発光部4からの光を可視光領域の外乱光と区別しやすくなる。   The light receiving unit 4 is composed of a CCD (Charge Coupled Device) imaging device in which a plurality of photosensitive elements (not shown) are two-dimensionally arranged on a semiconductor substrate (not shown), and the target space is passed through an imaging lens (not shown). Receives light from. In addition, it is good also as a structure which uses infrared LED which outputs infrared rays as the light emitting element 2a, and injects the light from object space into the light-receiving part 4 through an infrared permeation | transmission filter. In this configuration, it is possible to suppress the light in the visible light region from entering the light receiving unit 4 and to easily distinguish the light from the light emitting unit 4 from the disturbance light in the visible light region.

発光駆動回路3は、上述のように定電圧が印加されている発光素子2aと抵抗RLと駆動用トランジスタTrとの直列回路のうち駆動用トランジスタTrを制御することで、各発光素子2aの出力光の強度を周期的に制御する。すなわち、上述した往復時間は非常に短いので、本実施形態では、対象空間に投光する光に強度が一定周期で周期的に変化するように変調した強度変調光を用い、発光部2から出力される光と受光部4で受光される光との間の位相差により往復時間を求めている。そこで、発光駆動回路3は駆動用トランジスタTrを前記一定周期で駆動することにより、発光素子2aを流れる電流を周期的に変化させ前記強度変調光を実現する。   The light emission driving circuit 3 controls the driving transistor Tr in the series circuit of the light emitting element 2a to which a constant voltage is applied as described above, the resistor RL, and the driving transistor Tr, thereby outputting the output of each light emitting element 2a. Control light intensity periodically. That is, since the round-trip time described above is very short, in this embodiment, the intensity-modulated light that is modulated so that the intensity periodically changes at a constant period is used as the light projected to the target space, and output from the light emitting unit 2. The round trip time is obtained from the phase difference between the received light and the light received by the light receiving unit 4. Therefore, the light emission driving circuit 3 drives the driving transistor Tr at the predetermined period, thereby periodically changing the current flowing through the light emitting element 2a to realize the intensity-modulated light.

ここにおいて、図3(a)に示すように所定の変調周波数(たとえば10MHz)の正弦波で発光部2から出力させる光強度(投光強度)を変調したとき、投光強度と受光部4で受光される光強度(受光強度)との間の位相差φは、発光部2を駆動する変調信号と受光部4(の各感光要素)への入射光との位相差とみなすことができる。そこで、受光部4への入射光の受光強度を変調信号の複数の異なる位相について求め、求めた位相の関係および受光強度から入射光と変調信号との位相差φを求めることが考えられている。具体的には、受光部4において所定の位相幅(時間幅)を有する位相区間ごとの受光光量を検出し、この受光光量を位相差φの演算に用いる。   Here, as shown in FIG. 3A, when the light intensity (projection intensity) output from the light emitting unit 2 is modulated by a sine wave having a predetermined modulation frequency (for example, 10 MHz), the light projection intensity and the light receiving unit 4 The phase difference φ between the received light intensity (received light intensity) can be regarded as the phase difference between the modulation signal for driving the light emitting unit 2 and the light incident on the light receiving unit 4 (each photosensitive element thereof). Therefore, it is considered that the light reception intensity of incident light to the light receiving unit 4 is obtained for a plurality of different phases of the modulation signal, and the phase difference φ between the incident light and the modulation signal is obtained from the relationship between the obtained phases and the light reception intensity. . Specifically, the light receiving unit 4 detects the amount of received light for each phase section having a predetermined phase width (time width), and uses this received light amount for calculating the phase difference φ.

たとえば、発光部2からの強度変調光の位相の0〜π/2、π/2〜π、π〜3π/2、3π/2〜2πの各区間での受光光量をそれぞれA0,A1,A2,A3(図3(b)に斜線部で示す各領域の面積に相当)とし、受光光量A0,A1,A2,A3を求める間に位相差φが変化せず(つまり、物体6までの距離が変化せず)且つ物体6の反射率にも変化がないものとすれば、位相差φ〔rad〕は、φ=tan−1{(A0−A2)/(A1−A3)}と表すことができる。なお、図3に示す例では、各位相区間をπ/2〔rad〕の位相幅に設定しているが、位相幅は適宜に設定することができる。 For example, the received light amounts in the respective sections of 0 to π / 2, π / 2 to π, π to 3π / 2, and 3π / 2 to 2π of the phase of the intensity modulated light from the light emitting unit 2 are respectively A0, A1, A2 , A3 (corresponding to the area of each region indicated by the hatched portion in FIG. 3B), and the phase difference φ does not change during the determination of the received light amounts A0, A1, A2, A3 (that is, the distance to the object 6). If the reflectance of the object 6 does not change, the phase difference φ [rad] is expressed as φ = tan −1 {(A0−A2) / (A1−A3)}. Can do. In the example shown in FIG. 3, each phase section is set to a phase width of π / 2 [rad], but the phase width can be set as appropriate.

このように求まる位相差φ〔rad〕と強度変調光の変調周波数f〔Hz〕とを用いれば、往復時間Δt〔s〕は、Δt=φ/2πf〔s〕と表すことができる。そして、この往復時間Δt〔s〕と光速c〔m/s〕とを用いることで、空間情報検出装置1から物体6までの距離値LはL=c・Δt/2〔m〕と表すことができる。   By using the phase difference φ [rad] thus obtained and the modulation frequency f [Hz] of the intensity-modulated light, the round trip time Δt [s] can be expressed as Δt = φ / 2πf [s]. Then, by using the round trip time Δt [s] and the speed of light c [m / s], the distance value L from the spatial information detecting device 1 to the object 6 is expressed as L = c · Δt / 2 [m]. Can do.

ところで、本実施形態の空間情報検出装置1は、上述した構成に加え、図1に示すように少なくとも発光部2の光量を検知する光検知部8と、光検知部8での検出光量に基づいて点灯させる発光素子2aの個数を制御する点灯制御部9とを備えている。   By the way, in addition to the structure mentioned above, the spatial information detection apparatus 1 of this embodiment is based on the light detection part 8 which detects at least the light quantity of the light emission part 2, and the detected light quantity in the light detection part 8 as shown in FIG. And a lighting control unit 9 for controlling the number of light emitting elements 2a to be lit.

光検知部8は、発光部2からの直接光が照射する位置に配置され、発光部2の出力光を電気信号に変換するフォトダイオード等の光電変換素子を発光量検出手段8aとして具備し、外乱光の影響を殆ど受けずに発光部2の光量を検知可能に構成される。なお、ここでいう光量は単位時間当たりの光強度の積分値であって、光強度の平均値に相当する。   The light detection unit 8 is disposed at a position where direct light from the light emitting unit 2 is irradiated, and includes a photoelectric conversion element such as a photodiode that converts output light of the light emitting unit 2 into an electric signal as the light emission amount detecting means 8a. The light quantity of the light emission part 2 is comprised so that detection is hardly received by the influence of disturbance light. The light quantity here is an integrated value of the light intensity per unit time and corresponds to the average value of the light intensity.

点灯制御部9は、光検知部8の出力に従って、各発光素子2aと抵抗RLとの間にそれぞれ挿入されたスイッチング素子SWを個別にオンオフ制御するように構成される。つまり、オンするスイッチング素子SWの個数に従って、発光部2を構成する発光素子2aの個数を上限として、実際に発光させる発光素子2aの個数(以下、点灯数という)を変更することができる。この点灯制御部9は、光検知部8で検知された発光部2の光量が、ある基準値(以下、下限値という)に満たない場合は、オンするスイッチング素子SWの個数を増加させて発光素子2aの点灯数を増加させる。また、点灯制御部9は、発光部2の光量が下限値より大きいある値(以下、上限値という)を上回った場合には、オンするスイッチング素子SWの個数を減少させて発光素子2aの点灯数を減少させる。   The lighting controller 9 is configured to individually turn on / off the switching elements SW inserted between the light emitting elements 2a and the resistors RL in accordance with the output of the light detector 8. That is, according to the number of switching elements SW that are turned on, the number of light emitting elements 2a that actually emit light (hereinafter referred to as the number of lighting) can be changed with the number of light emitting elements 2a constituting the light emitting unit 2 as an upper limit. When the light intensity of the light emitting unit 2 detected by the light detecting unit 8 is less than a certain reference value (hereinafter referred to as a lower limit value), the lighting control unit 9 increases the number of switching elements SW that are turned on to emit light. The number of lighting of the element 2a is increased. Further, when the light intensity of the light emitting unit 2 exceeds a certain value (hereinafter referred to as the upper limit value), the lighting control unit 9 reduces the number of switching elements SW to be turned on and turns on the light emitting element 2a. Decrease the number.

しかして、発光部2の光量は下限値と上限値との間の所定範囲内に収まることとなり、発光部2の光量が何らかの原因で低下し下限値を下回ったとしても、点灯制御部9が発光素子2aの点灯数を増加させることで、発光部2の光量低下を抑制することができる。本実施形態では、下限値および上限値は受光部4のダイナミックレンジを考慮して予め設定され、点灯制御部9内のレジスタ(図示せず)に記憶される。   Accordingly, the light amount of the light emitting unit 2 falls within a predetermined range between the lower limit value and the upper limit value. Even if the light amount of the light emitting unit 2 decreases for some reason and falls below the lower limit value, the lighting control unit 9 By increasing the number of lighting of the light emitting element 2a, it is possible to suppress a decrease in the light amount of the light emitting unit 2. In the present embodiment, the lower limit value and the upper limit value are set in advance in consideration of the dynamic range of the light receiving unit 4 and are stored in a register (not shown) in the lighting control unit 9.

なお、点灯数を増加させる際の判断基準である下限値と、点灯数を減少させる際の判断基準である上限値とでは上限値の方が大きく設定されている(下限値<上限値)から、点灯制御部9にて発光素子2aの点灯数を増加させたことにより光検知部8で検知される発光部2の光量が増加しても、その際に点灯制御部9が点灯数を減少させることで再び発光部2の光量が下限値を下回ることはない。   In addition, since the lower limit value that is a criterion for increasing the number of lighting and the upper limit value that is a criterion for decreasing the number of lighting is larger, the upper limit value is set larger (lower limit value <upper limit value). Even if the light quantity of the light emitting unit 2 detected by the light detecting unit 8 is increased by increasing the number of lighting of the light emitting elements 2a in the lighting control unit 9, the lighting control unit 9 decreases the number of lightings at that time. By doing so, the light quantity of the light emitting unit 2 does not fall below the lower limit value again.

以上説明した構成の空間情報検出装置1によれば、発光部2の光量を所定範囲内に維持することができるので、発光部2を構成する各発光素子(LED)2aの温度特性や経年劣化等の影響で、発光部2の光量が変化することがあったとしても、当該光量の変化を空間情報の検出に影響を与えない程度に抑えることができる。その結果、従来のように発光部2の光量が低下して発光部2からの光が外乱光(環境光)などのノイズに埋もれて空間情報の検出が困難になることはなく、空間情報の検出を確実に行うことができるという利点がある。   According to the spatial information detecting device 1 having the above-described configuration, the light quantity of the light emitting unit 2 can be maintained within a predetermined range. Therefore, the temperature characteristics and aging deterioration of each light emitting element (LED) 2a constituting the light emitting unit 2 are achieved. Even if the light quantity of the light emitting unit 2 changes due to the influence of the above, the change of the light quantity can be suppressed to such an extent that the detection of the spatial information is not affected. As a result, the amount of light from the light emitting unit 2 is reduced as in the conventional case, and light from the light emitting unit 2 is not buried in noise such as disturbance light (environmental light), so that it is difficult to detect spatial information. There is an advantage that detection can be performed reliably.

ところで、上記実施形態では、空間情報として対象空間に存在する物体6までの距離(距離画像)を取得する空間情報検出装置1を例示したが、この例に限らず、たとえば対象空間における物体6の存否や物体6の光反射率などの空間情報を検出する空間情報検出装置1に本発明を用いることも可能である。物体6の存否や物体6の光反射率を求めるには、図4(a)に示すように発光部2を点灯させる点灯期間T1と消灯させる消灯期間T2とを設定し、点灯期間T1における受光光量と消灯期間T2の受光光量との差分を求める。このとき、発光部2の出力光の強度は矩形波で変調されることとなる。   By the way, in the said embodiment, although the space information detection apparatus 1 which acquires the distance (distance image) to the object 6 which exists in object space as space information was illustrated, it is not restricted to this example, For example, the object 6 in object space The present invention can also be used in the spatial information detection device 1 that detects spatial information such as presence or absence and the light reflectance of the object 6. In order to obtain the presence / absence of the object 6 and the light reflectance of the object 6, as shown in FIG. 4A, a lighting period T <b> 1 for turning on the light emitting unit 2 and a light-off period T <b> 2 for turning off the light are set. The difference between the light amount and the received light amount in the extinguishing period T2 is obtained. At this time, the intensity of the output light of the light emitting unit 2 is modulated by a rectangular wave.

受光部4には、点灯期間T1において発光部2から投光され物体6で反射された信号光と対象空間に存在している環境光とが入射し、消灯期間T2において環境光のみが入射する。したがって、点灯期間T1の受光光量C0と消灯期間T2の受光光量C2との差分(C0−C2)から、環境光の影響を除去して物体6での光の反射の程度(反射率)を評価することができる。   The light receiving unit 4 receives the signal light projected from the light emitting unit 2 during the lighting period T1 and reflected by the object 6 and the environmental light existing in the target space, and only the environmental light enters during the extinguishing period T2. . Therefore, from the difference (C0−C2) between the received light amount C0 in the lighting period T1 and the received light amount C2 in the extinguishing period T2, the influence of ambient light is removed and the degree of reflection (reflectance) of the object 6 is evaluated. can do.

(実施形態2)
本実施形態の空間情報検出装置1は、光検知部8が発光素子2aに流れる電流値によって発光部2の光量を検出する点が実施形態1の空間情報検出装置1と相違する。すなわち、発光量検出手段8aは、発光部2の光出力を直接検出するのではなく、発光部2を構成する発光素子2aに流れる電流値から発光部2の光量を推定するように構成されている。
(Embodiment 2)
The spatial information detection device 1 according to the present embodiment is different from the spatial information detection device 1 according to the first embodiment in that the light detection unit 8 detects the light amount of the light emitting unit 2 based on the current value flowing through the light emitting element 2a. That is, the light emission amount detecting means 8a is configured not to directly detect the light output of the light emitting unit 2, but to estimate the light amount of the light emitting unit 2 from the current value flowing through the light emitting element 2a constituting the light emitting unit 2. Yes.

具体的な構成としては、図5に示すように、各発光素子2aとそれぞれ直列接続されている複数の駆動用トランジスタTrと回路グランドとの間に検出用抵抗RSを挿入し、当該検出用抵抗RSの両端間の電位差から発光素子2aを流れる電流値を算出する。ここでは、差動増幅器OP1を用いて検出用抵抗RSの両端間の電位差を抽出し、当該差動増幅器OP1の出力をローパスフィルタ10にて平均化することで、発光部2の光量に相当する電流の平均値を求めるようにしてある。このようにして求まった電流値(平均値)は、点灯制御部9を構成するコンパレータCP1に入力され下限値と比較される。   As a specific configuration, as shown in FIG. 5, a detection resistor RS is inserted between a plurality of drive transistors Tr connected in series with each light emitting element 2a and circuit ground, and the detection resistor A current value flowing through the light emitting element 2a is calculated from a potential difference between both ends of the RS. Here, the potential difference between both ends of the detection resistor RS is extracted using the differential amplifier OP1, and the output of the differential amplifier OP1 is averaged by the low-pass filter 10, which corresponds to the light amount of the light emitting unit 2. The average value of the current is obtained. The current value (average value) obtained in this way is input to the comparator CP1 constituting the lighting control unit 9 and compared with the lower limit value.

点灯制御部9は、上記コンパレータCP1の他、コンパレータCP1の出力に接続されたデコーダ11と、デコーダ11の出力をアナログ信号に変換するD/A変換器12とを有しており、D/A変換器12の出力信号(アナログ信号)によって各スイッチング素子SWをオンオフ制御するように構成される。しかして、コンパレータCP1において発光部2の電流値(平均値)が下限値を下回ると判断された場合には、オンするスイッチング素子SWの個数が電流値と下限値との差分に応じた個数だけ増加し、発光素子2aの点灯数が増加する。   In addition to the comparator CP1, the lighting control unit 9 includes a decoder 11 connected to the output of the comparator CP1, and a D / A converter 12 that converts the output of the decoder 11 into an analog signal. Each switching element SW is controlled to be turned on / off by an output signal (analog signal) of the converter 12. Therefore, when the comparator CP1 determines that the current value (average value) of the light emitting unit 2 is lower than the lower limit value, the number of switching elements SW to be turned on is the number corresponding to the difference between the current value and the lower limit value. The number of lighting of the light emitting element 2a increases.

本実施形態の構成によれば、発光部2の光量を直接検出するのではないから、発光部2の出力光以外の光(外乱光)が光検知部8へ入射することで光検知部8での検出光量が変化するということはなく、結果的に、外乱光(環境光)の影響を受けることなく発光部2の光量を検出することができるという利点がある。   According to the configuration of the present embodiment, since the light amount of the light emitting unit 2 is not directly detected, light (disturbance light) other than the output light of the light emitting unit 2 is incident on the light detecting unit 8 to detect the light detecting unit 8. In this case, there is no change in the detected light amount. As a result, there is an advantage that the light amount of the light emitting unit 2 can be detected without being affected by disturbance light (environmental light).

なお、他の例として、発光素子(LED)2aの温度特性から発光部2の光量を推定することも考えられるので、発光素子2aの温度を計測する温度センサを付加し、計測温度に基づいて発光部2の光量を推定する構成としてもよい。   As another example, since it is conceivable to estimate the light amount of the light emitting unit 2 from the temperature characteristics of the light emitting element (LED) 2a, a temperature sensor for measuring the temperature of the light emitting element 2a is added, and based on the measured temperature. It is good also as a structure which estimates the light quantity of the light emission part 2. FIG.

その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those of the first embodiment.

(実施形態3)
本実施形態の空間情報検出装置1は、受光部4を光検知部8の発光量検出手段8aに兼用している点が実施形態1の空間情報検出装置1と相違する。
(Embodiment 3)
The spatial information detection apparatus 1 of the present embodiment is different from the spatial information detection apparatus 1 of the first embodiment in that the light receiving unit 4 is also used as the light emission amount detection means 8a of the light detection unit 8.

本実施形態では、図6に示すように、CCD撮像素子からなる受光部4’の出力は評価演算部5(図6では図示を省略する)だけでなく、A/D変換器13にてデジタル信号に変換された後に点灯制御部9へも送られる。点灯制御部9は、受光部4’の出力を差分回路14にて下限値と比較し、差分回路14の出力を受けるデコーダ15によって各スイッチング素子SWをオンオフ制御する。したがって、差分回路14において発光部2の光量が下限値を下回ると判断された場合、オンするスイッチング素子SWの個数が発光部2の光量と下限値との差分に応じた個数だけ増加し、発光素子2aの点灯数が増加する。   In the present embodiment, as shown in FIG. 6, the output of the light receiving unit 4 ′ composed of a CCD image sensor is digitally output not only by the evaluation calculation unit 5 (not shown in FIG. 6) but also by the A / D converter 13. After being converted to a signal, it is also sent to the lighting control unit 9. The lighting control unit 9 compares the output of the light receiving unit 4 ′ with the lower limit value in the difference circuit 14, and performs on / off control of each switching element SW by the decoder 15 that receives the output of the difference circuit 14. Therefore, when the difference circuit 14 determines that the light amount of the light emitting unit 2 is below the lower limit value, the number of switching elements SW to be turned on increases by the number corresponding to the difference between the light amount of the light emitting unit 2 and the lower limit value. The number of lighting of the element 2a increases.

この構成によれば、受光部4’と別に発光量検出手段8aとしての光電変換素子を用いる必要はなく、また、発光素子2aの電流を検出する場合に比べてもアンプ(差動増幅器)が不要になるので、空間情報検出装置1の構成部品点数を低減することができる。   According to this configuration, it is not necessary to use a photoelectric conversion element as the light emission amount detecting means 8a separately from the light receiving unit 4 ′, and an amplifier (differential amplifier) is also provided as compared with the case of detecting the current of the light emitting element 2a. Since it becomes unnecessary, the number of components of the spatial information detecting device 1 can be reduced.

なお、その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those in the first embodiment.

(実施形態4)
本実施形態の空間情報検出装置1は、図7に示すように外乱光の光量を検出する外乱光検出手段8bを光検知部8に付加した点が実施形態1と相違する。
(Embodiment 4)
The spatial information detection apparatus 1 of this embodiment is different from that of Embodiment 1 in that disturbance light detection means 8b for detecting the amount of disturbance light is added to the light detection unit 8 as shown in FIG.

外乱光検出手段で検出される外乱光の光量は下限値を決定するために使用され、このように決まる下限値が、点灯制御部において発光量検出手段で検出された発光部の光量と比較される。すなわち、下限値は外乱光のレベル(ノイズレベル)に応じて変動するので、発光部の出力光が外乱光などのノイズに埋もれて空間情報の検出が困難となることを回避するために必要な発光部の光量を、下限値として設定することが可能になる。   The amount of disturbance light detected by the disturbance light detection means is used to determine the lower limit value, and the lower limit value determined in this way is compared with the light amount of the light emitting unit detected by the light emission amount detection means in the lighting control unit. The That is, since the lower limit value varies according to the level of disturbance light (noise level), it is necessary to avoid that the output light of the light emitting unit is buried in noise such as disturbance light and it becomes difficult to detect spatial information. It becomes possible to set the light quantity of the light emitting unit as a lower limit value.

具体的な構成としては、図8に示すようにフォトダイオードからなる外乱光検出手段8bと、外乱光検出手段8bの出力を平均化するローパスフィルタ16と、ローパスフィルタ16の出力をデジタル値に変換するA/D変換器17とを備え、A/D変換器17の出力(デジタル値)を点灯制御部9に出力する構成が考えられる。また、図8の例では、発光量検出手段8aとしてCCD撮像素子を用いており、発光量検出手段8aの出力はA/D変換器13を通して点灯制御部9に入力される。なお、実施形態3と同様にCCD撮像素子からなる受光部を発光量検出手段8aに兼用してもよい。   Specifically, as shown in FIG. 8, the ambient light detection means 8b made of a photodiode, the low pass filter 16 that averages the output of the ambient light detection means 8b, and the output of the low pass filter 16 are converted into digital values. The A / D converter 17 is provided, and the output (digital value) of the A / D converter 17 is output to the lighting control unit 9. In the example of FIG. 8, a CCD imaging device is used as the light emission amount detection means 8 a, and the output of the light emission amount detection means 8 a is input to the lighting control unit 9 through the A / D converter 13. As in the third embodiment, a light receiving unit composed of a CCD image sensor may also be used as the light emission amount detecting means 8a.

ここで、点灯制御部9は、外乱光検出手段8b側のA/D変換器17の出力に所定の基準値を加算し下限値として出力する加算器18を有しており、発光部2の光量を差分回路14にて加算器18の出力(下限値)と比較し、差分回路14の出力を受けるデコーダ15によって各スイッチング素子SWをオンオフ制御する。しかして、差分回路14において発光部2の光量が下限値を下回ると判断された場合、オンするスイッチング素子SWの個数が発光部2の光量と下限値との差分に応じた個数だけ増加し、発光素子2aの点灯数が増加する。なお、加算器18にてA/D変換器17の出力に加算される基準値は、外乱光の光量と発光部2の光量との関係を決めるための値であって、たとえばA/D変換器17の出力を1ビット増加させる値に設定される。   Here, the lighting control unit 9 includes an adder 18 that adds a predetermined reference value to the output of the A / D converter 17 on the disturbance light detection means 8b side and outputs the result as a lower limit value. The light amount is compared with the output (lower limit value) of the adder 18 by the difference circuit 14, and each switching element SW is turned on / off by the decoder 15 that receives the output of the difference circuit 14. Thus, when the difference circuit 14 determines that the light amount of the light emitting unit 2 is below the lower limit value, the number of switching elements SW to be turned on increases by the number corresponding to the difference between the light amount of the light emitting unit 2 and the lower limit value, The number of lighting of the light emitting element 2a increases. Note that the reference value added to the output of the A / D converter 17 by the adder 18 is a value for determining the relationship between the amount of disturbance light and the amount of light of the light emitting unit 2, for example, A / D conversion. Is set to a value that increases the output of the device 17 by 1 bit.

この構成によれば、外乱光の光量に従って下限値が動的に決定されるので、外乱光が変動しやすい環境下で空間情報検出装置1を使用する場合であっても、下限値として最適な値をとることで、発光部2の出力光が外乱光などのノイズに埋もれて検出が困難になることを確実に回避することができるという利点がある。   According to this configuration, since the lower limit value is dynamically determined according to the amount of disturbance light, even when the spatial information detection device 1 is used in an environment where disturbance light is likely to fluctuate, the lower limit value is optimal. By taking the value, there is an advantage that it is possible to surely avoid that the output light of the light emitting unit 2 is buried in noise such as disturbance light and difficult to detect.

また、本実施形態の他の具体例として、図9に示すように、CCD撮像素子からなる受光部4’を発光量検出手段8aと外乱光検出手段8bとの両方に兼用することも考えられる。図9の構成では、発光部2からの直接光と、発光部2から投光され対象空間内の物体6で反射された反射光と、外乱光とが受光部4’に入射しており、受光部4’の出力は評価演算部5(図9では図示を省略する)だけでなく、A/D変換器13にてデジタル信号に変換された後に点灯制御部9にも送られる。   As another specific example of the present embodiment, as shown in FIG. 9, it is also conceivable to use the light receiving unit 4 ′ formed of a CCD image pickup device as both the light emission amount detecting means 8a and the disturbance light detecting means 8b. . In the configuration of FIG. 9, direct light from the light emitting unit 2, reflected light projected from the light emitting unit 2 and reflected by the object 6 in the target space, and disturbance light are incident on the light receiving unit 4 ′. The output of the light receiving unit 4 ′ is sent not only to the evaluation calculation unit 5 (not shown in FIG. 9) but also to the lighting control unit 9 after being converted into a digital signal by the A / D converter 13.

ここで、点灯制御部9は、発光量取得部9aにて、発光部2の点灯中に得られるA/D変換器13の出力を発光量検出手段8aの出力として差分回路14に与える一方で、外乱光取得部9bにて、発光部2の消灯中に得られるA/D変換器13の出力を外乱光検出手段8bの出力として加算器18に与えるように構成されている。   Here, the lighting control unit 9 gives the output of the A / D converter 13 obtained during the lighting of the light emitting unit 2 to the difference circuit 14 as the output of the light emitting amount detecting means 8a in the light emission amount acquiring unit 9a. The disturbance light acquisition unit 9b is configured to give the output of the A / D converter 13 obtained while the light emitting unit 2 is turned off to the adder 18 as the output of the disturbance light detection means 8b.

この構成によれば、CCD撮像素子(受光部4’)並びにA/D変換器13を発光量検出手段8aと外乱光検出手段8bとで共用することにより、空間情報検出装置1の構成部品点数を削減することができるという利点がある。   According to this configuration, the CCD image pickup device (light receiving unit 4 ′) and the A / D converter 13 are shared by the light emission amount detection means 8a and the disturbance light detection means 8b, so that the number of components of the spatial information detection device 1 is increased. There is an advantage that can be reduced.

なお、その他の構成および機能は実施形態1と同様である。   Other configurations and functions are the same as those in the first embodiment.

本発明の実施形態1の構成を示す概略回路図である。It is a schematic circuit diagram which shows the structure of Embodiment 1 of this invention. 同上の概略ブロック図である。It is a schematic block diagram same as the above. 同上の動作を示す波形図である。It is a wave form diagram which shows operation | movement same as the above. 同上の動作を示すタイムチャートである。It is a time chart which shows operation | movement same as the above. 本発明の実施形態2の構成を示す概略回路図である。It is a schematic circuit diagram which shows the structure of Embodiment 2 of this invention. 本発明の実施形態3の構成を示す概略回路図である。It is a schematic circuit diagram which shows the structure of Embodiment 3 of this invention. 本発明の実施形態4の構成を示す概略回路図である。It is a schematic circuit diagram which shows the structure of Embodiment 4 of this invention. 同上の具体例を示す概略回路図である。It is a schematic circuit diagram which shows the specific example same as the above. 同上の他の構成例を示す概略回路図である。It is a schematic circuit diagram which shows the other structural example same as the above. 従来例を示す概略回路図である。It is a schematic circuit diagram which shows a prior art example.

符号の説明Explanation of symbols

1 空間情報検出装置
2 発光部
2a 発光素子
3 発光駆動回路
4 受光部
5 評価演算部
8 光検知部
8a 発光量検出手段
8b 外乱光検出手段
9 点灯制御部
RL 抵抗
SW スイッチング素子
DESCRIPTION OF SYMBOLS 1 Spatial information detection apparatus 2 Light emission part 2a Light emission element 3 Light emission drive circuit 4 Light reception part 5 Evaluation calculating part 8 Light detection part 8a Light emission amount detection means 8b Disturbance light detection means 9 Lighting control part RL Resistance SW Switching element

Claims (6)

複数の発光素子を有し対象空間に光を投光する発光部と、発光部に定電圧を印加した状態で発光素子に流れる電流の大きさを制御する発光駆動回路と、対象空間からの光を受光する受光部と、受光部の出力を用いて対象空間の空間情報を検出する評価演算部と、少なくとも発光部の光量を検知する光検知部と、光検知部で検知された光量に基づいて、発光部の光量が所定範囲内となるように、点灯させる発光素子の個数を制御する点灯制御部とを備えることを特徴とする空間情報検出装置。   A light emitting unit that has a plurality of light emitting elements and projects light into the target space, a light emission driving circuit that controls the magnitude of a current flowing through the light emitting element in a state where a constant voltage is applied to the light emitting unit, and light from the target space A light receiving unit that receives light, an evaluation calculation unit that detects spatial information of the target space using the output of the light receiving unit, a light detection unit that detects at least the light amount of the light emitting unit, and a light amount detected by the light detection unit And a lighting control unit that controls the number of light emitting elements to be lit so that the light quantity of the light emitting unit is within a predetermined range. 前記発光駆動回路は、前記発光素子に流れる電流を周期的に変化させることで前記発光部から強度が周期的に変化する強度変調光を投光させ、前記評価演算部は、発光部からの強度変調光と前記受光部により受光した光との位相の関係を用いて前記対象空間の前記空間情報を検出することを特徴とする請求項1記載の空間情報検出装置。   The light emission driving circuit emits intensity-modulated light whose intensity periodically changes from the light emitting unit by periodically changing a current flowing through the light emitting element, and the evaluation calculation unit has an intensity from the light emitting unit. The spatial information detection apparatus according to claim 1, wherein the spatial information of the target space is detected using a phase relationship between modulated light and light received by the light receiving unit. 前記発光駆動回路は、前記発光部を点灯させる点灯期間と消灯させる消灯期間とを交互に繰り返し、前記評価演算部は、前記受光部での点灯期間の受光量と消灯期間の受光量との差分を用いて前記対象空間の前記空間情報を検出することを特徴とする請求項1記載の空間情報検出装置。   The light emission drive circuit alternately repeats a lighting period during which the light emitting unit is turned on and a light extinguishing period during which the light emitting unit is turned off, and the evaluation calculation unit calculates a difference between a light receiving amount during the lighting period and a light receiving amount during the light extinguishing period. The spatial information detection apparatus according to claim 1, wherein the spatial information of the target space is detected using a computer. 前記光検知部は、前記発光部の光量を検知する発光量検知手段に前記受光部を兼用していることを特徴とする請求項1ないし請求項3のいずれか1項に記載の空間情報検出装置。   4. The spatial information detection according to claim 1, wherein the light detection unit also serves as the light reception unit for a light emission amount detection unit that detects a light amount of the light emission unit. 5. apparatus. 前記光検知部は外乱光の光量を検知する外乱光検出手段を有しており、前記所定範囲は、外乱光の光量に基づいて下限値が決定されることを特徴とする請求項1ないし請求項4のいずれか1項に記載の空間情報検出装置。   The said light detection part has a disturbance light detection means which detects the light quantity of disturbance light, and the said lower limit is determined for the said predetermined range based on the light quantity of disturbance light. Item 5. The spatial information detection device according to any one of items 4 to 6. 前記光検知部は、前記外乱光検出手段に前記受光部を兼用していることを特徴とする請求項5記載の空間情報検出装置。
6. The spatial information detection device according to claim 5, wherein the light detection unit also serves as the light reception unit for the disturbance light detection unit.
JP2008164680A 2008-06-24 2008-06-24 Spatial information detection device Pending JP2010008088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008164680A JP2010008088A (en) 2008-06-24 2008-06-24 Spatial information detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008164680A JP2010008088A (en) 2008-06-24 2008-06-24 Spatial information detection device

Publications (1)

Publication Number Publication Date
JP2010008088A true JP2010008088A (en) 2010-01-14

Family

ID=41588789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008164680A Pending JP2010008088A (en) 2008-06-24 2008-06-24 Spatial information detection device

Country Status (1)

Country Link
JP (1) JP2010008088A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013519092A (en) * 2010-02-01 2013-05-23 マイクロソフト コーポレーション Multiple synchronized light sources for time-of-flight range detection systems
JP2013213984A (en) * 2012-04-03 2013-10-17 Mitsubishi Electric Corp Instruction device, illumination system, and photographing system
JP2014153288A (en) * 2013-02-13 2014-08-25 Omron Corp Imaging device
JP2016191630A (en) * 2015-03-31 2016-11-10 株式会社トプコン Light wave range finder
JP2018077071A (en) * 2016-11-08 2018-05-17 株式会社リコー Distance measuring device, monitoring camera, three-dimensional measurement device, moving body, robot, method for setting condition of driving light source, and method for measuring distance
JP2019512706A (en) * 2016-03-21 2019-05-16 ベロダイン ライダー, インク. Three-dimensional imaging based on LIDAR with variable irradiation field density
WO2019142852A1 (en) * 2018-01-18 2019-07-25 株式会社デンソー System for detecting vehicle occupant, and system for controlling lighting of cabin
WO2020196257A1 (en) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 Distance measurement method, distance measurement device, and program
WO2022059397A1 (en) * 2020-09-15 2022-03-24 ソニーセミコンダクタソリューションズ株式会社 Ranging system and light detection device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637376U (en) * 1986-07-01 1988-01-19
JPH0342582U (en) * 1989-08-31 1991-04-22
JPH0552957A (en) * 1991-08-22 1993-03-02 Olympus Optical Co Ltd Distance-measuring device
JPH06160082A (en) * 1992-11-25 1994-06-07 Matsushita Electric Works Ltd Optical distance measuring apparatus
JPH06196784A (en) * 1992-12-22 1994-07-15 Matsushita Electric Works Ltd Laser emission equipment
JPH08159737A (en) * 1994-12-08 1996-06-21 Alps Electric Co Ltd Relative angle detection device
JPH1125262A (en) * 1997-07-04 1999-01-29 Omron Corp Image processor
JP2004247461A (en) * 2003-02-13 2004-09-02 Toyota Central Res & Dev Lab Inc Monitor device and method
JP2005164482A (en) * 2003-12-04 2005-06-23 Nissan Motor Co Ltd Led lamp device with distance measurement function
JP2007095849A (en) * 2005-09-27 2007-04-12 Matsushita Electric Works Ltd Photodetector and control method thereof, and space information detector
JP2007155829A (en) * 2005-11-30 2007-06-21 Aiphone Co Ltd Liquid crystal module

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637376U (en) * 1986-07-01 1988-01-19
JPH0342582U (en) * 1989-08-31 1991-04-22
JPH0552957A (en) * 1991-08-22 1993-03-02 Olympus Optical Co Ltd Distance-measuring device
JPH06160082A (en) * 1992-11-25 1994-06-07 Matsushita Electric Works Ltd Optical distance measuring apparatus
JPH06196784A (en) * 1992-12-22 1994-07-15 Matsushita Electric Works Ltd Laser emission equipment
JPH08159737A (en) * 1994-12-08 1996-06-21 Alps Electric Co Ltd Relative angle detection device
JPH1125262A (en) * 1997-07-04 1999-01-29 Omron Corp Image processor
JP2004247461A (en) * 2003-02-13 2004-09-02 Toyota Central Res & Dev Lab Inc Monitor device and method
JP2005164482A (en) * 2003-12-04 2005-06-23 Nissan Motor Co Ltd Led lamp device with distance measurement function
JP2007095849A (en) * 2005-09-27 2007-04-12 Matsushita Electric Works Ltd Photodetector and control method thereof, and space information detector
JP2007155829A (en) * 2005-11-30 2007-06-21 Aiphone Co Ltd Liquid crystal module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10113868B2 (en) 2010-02-01 2018-10-30 Microsoft Technology Licensing, Llc Multiple synchronized optical sources for time-of-flight range finding systems
JP2013519092A (en) * 2010-02-01 2013-05-23 マイクロソフト コーポレーション Multiple synchronized light sources for time-of-flight range detection systems
JP2013213984A (en) * 2012-04-03 2013-10-17 Mitsubishi Electric Corp Instruction device, illumination system, and photographing system
JP2014153288A (en) * 2013-02-13 2014-08-25 Omron Corp Imaging device
JP2016191630A (en) * 2015-03-31 2016-11-10 株式会社トプコン Light wave range finder
JP2019512706A (en) * 2016-03-21 2019-05-16 ベロダイン ライダー, インク. Three-dimensional imaging based on LIDAR with variable irradiation field density
JP7258554B2 (en) 2016-03-21 2023-04-17 ベロダイン ライダー ユーエスエー,インコーポレイテッド Three-dimensional imaging based on LIDAR with variable irradiation field density
JP2018077071A (en) * 2016-11-08 2018-05-17 株式会社リコー Distance measuring device, monitoring camera, three-dimensional measurement device, moving body, robot, method for setting condition of driving light source, and method for measuring distance
WO2019142852A1 (en) * 2018-01-18 2019-07-25 株式会社デンソー System for detecting vehicle occupant, and system for controlling lighting of cabin
WO2020196257A1 (en) * 2019-03-27 2020-10-01 パナソニックIpマネジメント株式会社 Distance measurement method, distance measurement device, and program
JPWO2020196257A1 (en) * 2019-03-27 2021-12-02 パナソニックIpマネジメント株式会社 Distance measuring method, distance measuring device, and program
JP7149505B2 (en) 2019-03-27 2022-10-07 パナソニックIpマネジメント株式会社 Ranging method, ranging device, and program
WO2022059397A1 (en) * 2020-09-15 2022-03-24 ソニーセミコンダクタソリューションズ株式会社 Ranging system and light detection device

Similar Documents

Publication Publication Date Title
JP2010008088A (en) Spatial information detection device
USRE49950E1 (en) Distance detection method and system
JP5308088B2 (en) Distance image sensor
JP5098331B2 (en) Measuring device
JP4971744B2 (en) Spatial information detector using intensity-modulated light
TWI734677B (en) Precision estimation for optical proximity detectors
US8384289B2 (en) Method and system for a light sensing headlight modulator
US20120050716A1 (en) Distance measuring device
USRE46930E1 (en) Distance detection method and system
JP2011053216A (en) Method and system for measuring distance, and distance sensor
JP2010504509A (en) Method and system for capturing a 3D image of a scene
JPWO2012115083A1 (en) Spatial information detector
JP2009192499A (en) Apparatus for generating distance image
JP2007132848A (en) Optical range finder
JP2018009917A (en) Distance measurement device, mobile body, robot, three-dimensional measurement device, and distance measurement method
JP2013164263A (en) Photo-receiving device, distance measurement device and shape measurement device
TW200939628A (en) Photoelectric sensor
US10189399B2 (en) Integration of depth map device for adaptive lighting control
JP5215547B2 (en) Spatial information detection device
JP2003296848A (en) Flame detector
JP2012093131A (en) Distance image sensor
JPH1073538A (en) Method and apparatus for detection of road-surface state
JPH10267648A (en) Optical displacement gauge
JP2019007950A (en) Optical distance measuring device
JP7037770B2 (en) Optical sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100809

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140325