JP2010002790A - Imaging lens, optical device provided therewith, and image blur correction method - Google Patents

Imaging lens, optical device provided therewith, and image blur correction method Download PDF

Info

Publication number
JP2010002790A
JP2010002790A JP2008162705A JP2008162705A JP2010002790A JP 2010002790 A JP2010002790 A JP 2010002790A JP 2008162705 A JP2008162705 A JP 2008162705A JP 2008162705 A JP2008162705 A JP 2008162705A JP 2010002790 A JP2010002790 A JP 2010002790A
Authority
JP
Japan
Prior art keywords
lens group
lens
negative lens
optical axis
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008162705A
Other languages
Japanese (ja)
Other versions
JP5229614B2 (en
Inventor
Haruo Sato
治夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2008162705A priority Critical patent/JP5229614B2/en
Priority to EP20080253863 priority patent/EP2083303A1/en
Priority to US12/328,257 priority patent/US8031409B2/en
Publication of JP2010002790A publication Critical patent/JP2010002790A/en
Application granted granted Critical
Publication of JP5229614B2 publication Critical patent/JP5229614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact and high-performance imaging lens reduced in aberration fluctuation, an optical device provided therewith, and image blur correction method. <P>SOLUTION: The imaging lens includes at least a positive lens group G1; a negative lens group G2 that moves during focusing; a positive lens group G3 that moves during focusing; a negative lens group G4 that is movable so as to have a moving component substantially vertical to an optical axis; and a positive lens group G5, which are disposed in order from an object along the optical axis. The imaging lens satisfies a condition of an expression: 1.21<VR<3.0 when vibration isolation coefficient VR is defined as VR=¾(1-Bvr)×Br¾, wherein BVr is the transverse magnification of the negative lens group G4 that is movable so as to have the moving component substantially vertical to the optical axis, and Br is the transverse magnification of the whole optical system closer to the image over the negative lens group G4 that is movable so as to have the moving component substantially vertical to the optical axis. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、デジタル一眼レフカメラ、フィルムカメラ、ビデオカメラなどに好適な撮影レンズ、これを搭載する光学装置および像ブレ補正方法に関する。   The present invention relates to a photographing lens suitable for a digital single-lens reflex camera, a film camera, a video camera, and the like, an optical device equipped with the same, and an image blur correction method.

従来、像ブレ補正機能を有する内焦式マクロレンズが提案されている(例えば、特許文献1を参照)。特許文献1に記載のレンズは、物体側より順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを有し、第4レンズ群は物体側から順に負の前群と正の後群とからなり、光学系が振動した際に前群を光軸に対してほぼ垂直な方向へシフトさせて像ブレ補正を行うように構成されている。   Conventionally, an in-focus macro lens having an image blur correction function has been proposed (see, for example, Patent Document 1). The lens described in Patent Document 1 includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, which are arranged in order from the object side. And a fourth lens group having a negative refractive power. The fourth lens group is composed of a negative front group and a positive rear group in order from the object side. When the optical system vibrates, the fourth lens group emits light. Image blur correction is performed by shifting in a direction substantially perpendicular to the axis.

特開2006−106112号公報JP 2006-106112 A

しかしながら、従来のレンズは、レンズ全系が比較的大きく、像ブレ補正のために移動させるレンズ群も比較的大きかった。また、防振のための移動量も大きく、全体の大型化を招いていた。また、収差補正上も更なる高性能化を望まれていた。   However, the conventional lens has a relatively large entire lens system, and the lens group moved for image blur correction is also relatively large. In addition, the amount of movement for vibration isolation is large, leading to an increase in overall size. Further, higher performance has been desired for aberration correction.

本発明は、このような問題に鑑みてなされたものであり、小型で、収差変動の少ない、高性能な撮影レンズ、これを搭載する光学装置および像ブレ補正方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object of the present invention is to provide a high-performance photographic lens that is small in size and has little aberration fluctuation, an optical device equipped with the photographic lens, and an image blur correction method. .

このような目的を達成するため、本発明の撮影レンズは、光軸に沿って物体側から順に並んだ、正レンズ群(本実施形態では正レンズ群G1もしくは1群)と、合焦時移動する負レンズ群(本実施形態では負レンズ群G2もしくは2群)と、合焦時移動する正レンズ群(本実施形態では正レンズ群G3もしくは3群)と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群(本実施形態では負レンズ群G4もしくは4群)と、正レンズ群(本実施形態では正レンズ群G5もしくは5群)とを少なくとも有し、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の横倍率をBvrとし、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群よりも像側の光学系全体の横倍率をBrとし、防振係数をVRとし、前記防振係数をVR=|(1−Bvr)×Br|と定義するとき、次式1.21<VR<3.0の条件を満足する。   In order to achieve such an object, the photographic lens of the present invention includes a positive lens group (in this embodiment, the positive lens group G1 or one group) arranged in order from the object side along the optical axis, and moved during focusing. Negative lens group (negative lens group G2 or 2 group in this embodiment), positive lens group (positive lens group G3 or 3 group in this embodiment) that moves during focusing, and substantially perpendicular to the optical axis. At least a negative lens group (negative lens group G4 or 4 group in this embodiment) and a positive lens group (positive lens group G5 or 5 group in this embodiment) that can move so as to have a moving component in the direction. The lateral magnification of the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis is Bvr, and the negative lens group is movable so as to have a moving component in a direction substantially perpendicular to the optical axis. The entire optical system on the image side of the negative lens group When the lateral magnification is Br, the image stabilization coefficient is VR, and the image stabilization coefficient is defined as VR = | (1−Bvr) × Br |, the following formula 1.21 <VR <3.0 is satisfied. .

なお、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の焦点距離をf4とし、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の物体側に位置するレンズ群内の最も像側にあるレンズ面と、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式1.0<(−f4)/d34<20.0の条件を満足することが好ましい。   Note that the focal length of the negative lens group that can move so as to have a moving component in a direction substantially perpendicular to the optical axis is f4, and the moving lens has a moving component in a direction substantially perpendicular to the optical axis. The most object of the negative lens group that is movable so as to have a moving component in a direction substantially perpendicular to the optical axis and the lens surface closest to the image side in the lens group located on the object side of the possible negative lens group When the air space on the optical axis at the time of focusing on infinity with the lens surface on the side is d34, it is preferable to satisfy the condition of the following expression 1.0 <(− f4) / d34 <20.0.

また、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群より像側に位置する正レンズ群の焦点距離をf5とし、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の物体側に位置するレンズ群内の最も像側にあるレンズ面と、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式1.0<f5/d34<40.0の条件を満足することが好ましい。   The focal length of the positive lens unit located on the image side of the negative lens unit movable so as to have a moving component in a direction substantially perpendicular to the optical axis is f5, and is substantially perpendicular to the optical axis. A lens surface located closest to the image side in the lens group located on the object side of the negative lens group movable so as to have a moving component in the direction, and having a moving component in a direction substantially perpendicular to the optical axis. When the air gap on the optical axis at the time of focusing on infinity with the lens surface closest to the object in the movable negative lens group is d34, the following condition is satisfied: 1.0 <f5 / d34 <40.0 Is preferably satisfied.

また、前記合焦時移動する正レンズ群の焦点距離をf3とし、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の物体側に位置するレンズ群内の最も像側にあるレンズ面と、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式1.0<f3/d34<18.0の条件を満足することが好ましい。   The focal length of the positive lens group that moves during focusing is f3, and the lens group located on the object side of the negative lens group that can move so as to have a moving component in a direction substantially perpendicular to the optical axis. At the infinite focus between the lens surface closest to the image side and the lens surface closest to the object in the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis. When the air space on the optical axis is d34, it is preferable to satisfy the condition of the following expression 1.0 <f3 / d34 <18.0.

また、前記合焦時移動する負レンズ群の焦点距離をf2とし、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の物体側に位置するレンズ群内の最も像側にあるレンズ面と、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式1.0<(−f2)/d34<17.0の条件を満足することが好ましい。   Further, the focal length of the negative lens group that moves during focusing is set to f2, and the inside of the lens group located on the object side of the negative lens group that can move so as to have a moving component in a direction substantially perpendicular to the optical axis. At the infinite focus between the lens surface closest to the image side and the lens surface closest to the object in the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis. It is preferable that the following formula 1.0 <(− f2) / d34 <17.0 is satisfied, where d34 is the air spacing on the optical axis.

また、最も物体側に位置する前記正レンズ群の焦点距離をf1とし、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の物体側に位置するレンズ群内の最も像側にあるレンズ面と、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式1.0<f1/d34<20.0の条件を満足することが好ましい。   Further, the lens group located on the object side of the negative lens group movable so that the focal length of the positive lens group located closest to the object side is f1 and has a moving component in a direction substantially perpendicular to the optical axis. When focusing at infinity between the lens surface closest to the image side of the lens and the lens surface closest to the object in the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis It is preferable to satisfy the condition of the following expression 1.0 <f1 / d34 <20.0, where d34 is the air spacing on the optical axis.

また、前記合焦時移動する負レンズ群は、物体側から順に並んだ、負レンズと、負レンズと正レンズとからなる接合レンズとを有することが好ましい。   In addition, it is preferable that the negative lens group that moves at the time of focusing has a negative lens and a cemented lens composed of a negative lens and a positive lens arranged in order from the object side.

また、前記合焦時移動する負レンズ群は、物体側から順に並んだ、負レンズL21と、負レンズL22と正レンズL23とからなる接合レンズとを有し、前記負レンズL21の物体側の面の曲率半径をraとし、該負レンズL21の像側の面の曲率半径をrbとしたとき、次式−1.0<(rb+ra)/(rb−ra)≦0の条件を満足することが好ましい。   The negative lens group that moves during focusing includes a negative lens L21 and a cemented lens including a negative lens L22 and a positive lens L23 arranged in order from the object side. When the radius of curvature of the surface is ra and the radius of curvature of the image side surface of the negative lens L21 is rb, the following condition −1.0 <(rb + ra) / (rb−ra) ≦ 0 is satisfied. Is preferred.

また、最も物体側に位置する前記正レンズ群は、物体側から順に並んだ、正レンズ部分群G1aと、負レンズ部分群G1bとを有し、前記正レンズ部分群G1aと前記負レンズ部分群G1bとの光軸上の空気間隔をDaとし、光学系全系の無限遠合焦時の焦点距離をFoとしたとき、次式0.005<Da/Fo<0.09の条件を満足することが好ましい。   The positive lens group located closest to the object side includes a positive lens part group G1a and a negative lens part group G1b arranged in order from the object side, and the positive lens part group G1a and the negative lens part group. When the air space on the optical axis with G1b is Da and the focal length of the entire optical system when focusing on infinity is Fo, the following expression 0.005 <Da / Fo <0.09 is satisfied. It is preferable.

また、前記合焦時移動する負レンズ群は、物体側から順に並んだ、負レンズ部分群G2aと、負レンズ部分群G2bとを有し、前記負レンズ部分群G2aと前記負レンズ部分群G2bとの光軸上の空気間隔をDbとし、光学系全系の無限遠合焦時の焦点距離をFoとしたとき、次式0.02<Db/Fo<0.08の条件を満足することが好ましい。   The negative lens group that moves during focusing includes a negative lens part group G2a and a negative lens part group G2b arranged in order from the object side, and the negative lens part group G2a and the negative lens part group G2b. If the air space on the optical axis is Db and the focal length of the entire optical system when focusing on infinity is Fo, the following condition 0.02 <Db / Fo <0.08 should be satisfied. Is preferred.

また、本発明の光学装置(本実施形態ではデジタル一眼レフカメラCAM)は、上記撮影レンズを搭載する。   Further, the optical device of the present invention (in this embodiment, a digital single-lens reflex camera CAM) is equipped with the photographing lens.

また、本発明は、光軸に沿って物体側から順に並んだ、正レンズ群と、合焦時移動する負レンズ群と、合焦時移動する正レンズ群と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群と、正レンズ群とを少なくとも有する撮影レンズを用いて、像面上の像ブレを補正する像ブレ補正方法であって、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の横倍率をBvrとし、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群よりも像側の光学系全体の横倍率をBrとし、防振係数をVRとし、前記防振係数をVR=|(1−Bvr)×Br|と定義するとき、次式1.21<VR<3.0の条件を満足する。   Further, the present invention provides a positive lens group, a negative lens group that moves when focused, a positive lens group that moves when focused, and substantially perpendicular to the optical axis, which are arranged in order from the object side along the optical axis. An image blur correction method for correcting image blur on an image plane using a photographic lens having at least a negative lens group movable so as to have a moving component in various directions, and a positive lens group, the optical axis A negative lens group movable so as to have a moving component in a direction substantially perpendicular to the horizontal axis is Bvr, and a negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis. When the lateral magnification of the entire optical system on the image side is Br, the image stabilization coefficient is VR, and the image stabilization coefficient is defined as VR = | (1−Bvr) × Br |, the following formula 1.21 <VR The condition of <3.0 is satisfied.

本発明によれば、防振性能の良い、小型で、収差変動(特に偏芯コマ収差)の少ない、高性能な撮影レンズ、これを搭載する光学装置および像ブレ補正方法を提供することができる。   According to the present invention, it is possible to provide a high-performance photographic lens having a good vibration-proof performance, a small size and a small aberration variation (particularly decentration coma aberration), an optical device including the same, and an image blur correction method. .

以下、好ましい実施形態について、図面を用いて説明する。図1に示すように、本実施形態に係る撮影レンズ1は、光軸に沿って物体側から順に並んだ、正レンズ群G1と、合焦時移動する負レンズ群G2と、合焦時移動する正レンズ群G3と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4と、正レンズ群G5とを少なくとも有して構成されている。   Hereinafter, preferred embodiments will be described with reference to the drawings. As shown in FIG. 1, the photographing lens 1 according to this embodiment includes a positive lens group G1, a negative lens group G2 that moves in focus, and a focus lens movement that are arranged in order from the object side along the optical axis. The positive lens group G3, a negative lens group G4 movable so as to have a moving component in a direction substantially perpendicular to the optical axis, and a positive lens group G5.

正レンズ群G1は、物体側から順に並んだ、両凸レンズと、物体側に凸面を向けた正メニスカスレンズと、両凹レンズと正メニスカスレンズとからなり負の屈折力を有する接合レンズとを有し、撮影距離が無限遠から最至近距離への合焦時は像面に対して固定されている。   The positive lens group G1 includes a biconvex lens arranged in order from the object side, a positive meniscus lens having a convex surface facing the object side, and a cemented lens including a biconcave lens and a positive meniscus lens and having negative refractive power. The imaging distance is fixed with respect to the image plane when focusing from infinity to the closest distance.

負レンズ群G2は、物体側から順に並んだ、両凹レンズと、両凹レンズと物体側に凸面を向けた正レンズとからなり負の屈折力を有する接合レンズとを有し、撮影距離が無限遠から最至近距離への合焦時は物体側から像側方向に移動する。   The negative lens group G2 includes a biconcave lens arranged in order from the object side, and a cemented lens including a biconcave lens and a positive lens having a convex surface directed toward the object side, and has a negative refractive power. When focusing on the closest distance, the lens moves from the object side to the image side.

正レンズ群G3は、物体側より順に並んだ、正レンズと、負レンズと正レンズとからなり正の屈折力を有する接合レンズとを有し、撮影距離が無限遠から最至近距離への合焦時は像側から物体側方向に移動する。   The positive lens group G3 includes a positive lens and a cemented lens that is composed of a negative lens and a positive lens and has a positive refractive power, which are arranged in order from the object side, and a focusing distance from infinity to the closest distance. When moving, it moves from the image side to the object side.

負レンズ群G4は、負レンズと正レンズとからなり負の屈折力を有する接合レンズを有し、光軸に対してほぼ垂直な方向の移動成分を持つように移動させることにより、手振れにより生じた像ブレの補正(防振)を行う防振群である。この構成により、負レンズ群G4は、防振時の偏芯コマ収差、像面湾曲および色収差の変化を抑えることができる。なお、負レンズ群G4の前記接合レンズが、全体で両凹形状である場合、防振時の偏芯コマ収差および像面湾曲の変化をより抑えることができるため、好ましい。   The negative lens group G4 has a cemented lens including a negative lens and a positive lens and has a negative refractive power. The negative lens group G4 is caused by camera shake by moving the lens so as to have a moving component in a direction substantially perpendicular to the optical axis. This is an anti-vibration group that corrects image blur (anti-vibration). With this configuration, the negative lens group G4 can suppress changes in decentering coma, field curvature, and chromatic aberration during image stabilization. In addition, it is preferable that the cemented lens of the negative lens group G4 has a biconcave shape as a whole because changes in decentering coma and field curvature during image stabilization can be further suppressed.

正レンズ群G5は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズと、両凸レンズとを有し、撮影距離が無限遠から最至近距離への合焦時は像面に対して固定されている。この構成により、球面収差を良好に保ちつつ、上方コマ収差を良好に補正することができる。   The positive lens group G5 has a negative meniscus lens with a concave surface facing the object side, arranged in order from the object side, and a biconvex lens. The focusing distance from the infinity to the closest distance is in focus with respect to the image plane. Is fixed. With this configuration, it is possible to satisfactorily correct the upper coma while keeping the spherical aberration good.

なお、本実施形態においては、開口絞りSが負レンズ群G2と正レンズ群G3との間に配置されており、撮影距離が無限遠から最至近距離への合焦時は像面に対して固定されている。この構成により、合焦時の像面湾曲の変動を抑え、かつ防振時の収差変動を最小にすることができる。   In the present embodiment, the aperture stop S is disposed between the negative lens group G2 and the positive lens group G3, and is fixed with respect to the image plane when the shooting distance is in focus from infinity to the closest distance. Has been. With this configuration, it is possible to suppress fluctuations in field curvature during focusing and minimize aberration fluctuations during image stabilization.

本撮影レンズ1のように、近距離撮影が可能なレンズに防振機能を持たせる場合、開口絞りSより後方の負レンズ群(本実施形態では負レンズ群G4)を防振群とすることが、防振時の偏芯コマ収差および像面湾曲の変動を少なく抑えるためにも有利である。また、この防振群後方に正レンズ群(本実施形態では正レンズ群G5)を設けることにより、防振係数をより最適な値に設定できるばかりか、防振時の偏芯コマ収差の改善に効果があり、好ましい。   When a lens capable of short-distance shooting, such as the main photographing lens 1, is provided with an anti-vibration function, the negative lens group behind the aperture stop S (the negative lens group G4 in this embodiment) is set as the anti-vibration group. However, it is also advantageous in order to suppress fluctuations in decentering coma and field curvature during image stabilization. In addition, by providing a positive lens group (positive lens group G5 in this embodiment) behind the image stabilization group, not only can the image stabilization coefficient be set to a more optimal value, but also the decentration coma during image stabilization can be improved. It is effective and preferable.

ここで、上記の防振係数について補足説明をする。防振のために、防振群(光軸に対してほぼ垂直な方向に移動可能なレンズ群)を光軸に対して垂直な方向にシフト(移動)させる場合、像面における像ブレ補正量は、次式で求められる。   Here, a supplementary explanation will be given of the above-mentioned image stabilization coefficient. For image stabilization, when the image stabilization group (a lens group movable in a direction substantially perpendicular to the optical axis) is shifted (moved) in a direction perpendicular to the optical axis, the amount of image blur correction on the image plane Is obtained by the following equation.

像ブレ補正量 = 防振補正光学系シフト量 × 防振係数   Image stabilization amount = Image stabilization optical system shift amount × Image stabilization coefficient

なお、防振係数は、防振補正光学系(防振群)の横倍率をBvrとし、防振補正光学系(防振群)よりも像側の光学系全体の横倍率をBrとしたとき、次式で定義される(但し、防振補正光学系(防振群)の像面側に光学要素が存在しないときは、Br=1とする)。   The image stabilization coefficient is obtained when the lateral magnification of the image stabilization optical system (anti-vibration group) is Bvr and the lateral magnification of the entire optical system closer to the image side than the image stabilization optical system (image stabilization group) is Br. , Defined by the following equation (provided that Br = 1 when there is no optical element on the image plane side of the image stabilization optical system (anti-vibration group)).

防振係数 = |(1−Bvr)×Br|   Anti-vibration coefficient = | (1-Bvr) × Br |

したがって、防振係数が1の場合は、像ブレ補正量は防振補正光学系シフト量と等しくなる。また、防振係数が1以上の場合は、防振群の少ないシフト量で十分な像面に対する像ブレ補正量を得ることができる。しかしながら、あまりに防振係数が大きい場合は、防振時の収差変動や組み立て時の敏感度が増して好ましくない。よって、現実的には最適な量がある。本実施形態においては、防振係数が下記条件式(1)の範囲を満足するように、各レンズ群の屈折力を決めることが望ましい。また、この範囲を満足すれば、本実施形態においては、光学系の大型化を招くことなく、防振時の偏芯コマ収差および像面湾曲の変化を抑えることが可能となる。   Therefore, when the image stabilization coefficient is 1, the image blur correction amount is equal to the image stabilization optical system shift amount. When the image stabilization coefficient is 1 or more, a sufficient image blur correction amount for the image plane can be obtained with a small shift amount of the image stabilization group. However, if the image stabilization coefficient is too large, aberration fluctuation during image stabilization and sensitivity during assembly increase, which is not preferable. Therefore, there is practically an optimum amount. In the present embodiment, it is desirable to determine the refractive power of each lens group so that the image stabilization coefficient satisfies the range of the following conditional expression (1). If this range is satisfied, in the present embodiment, it is possible to suppress changes in decentering coma and field curvature during image stabilization without increasing the size of the optical system.

以下、本実施形態に係る撮影レンズ1について、各条件式に沿って説明する。   Hereinafter, the photographing lens 1 according to the present embodiment will be described along each conditional expression.

撮影レンズ1は、上記構成の基に、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の横倍率をBvrとし、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群よりも像側の光学系全体の横倍率をBrとし、防振係数をVRとし、前記防振係数をVR=|(1−Bvr)×Br|と定義するとき、次式(1)の条件を満足する。   In the photographic lens 1, the lateral magnification of the negative lens group that can move so as to have a moving component in a direction substantially perpendicular to the optical axis based on the above configuration is Bvr, and the imaging lens 1 is substantially perpendicular to the optical axis. The lateral magnification of the entire optical system closer to the image side than the negative lens group movable so as to have a moving component in the direction is Br, the image stabilization coefficient is VR, and the image stabilization coefficient is VR = | (1−Bvr) × When defined as Br |, the condition of the following formula (1) is satisfied.

1.21<VR<3.0 …(1)   1.21 <VR <3.0 (1)

上記条件式(1)は、防振係数VRを最適化した条件式である。防振係数VRの大小は、防振時に発生する偏芯コマ収差や像面湾曲等の諸収差の良好な補正と、防振群の大きさと、防振機構の大型化とに密接な関係があるため、小型で良好な性能の防振機能付き撮影レンズを提供する上で、上記条件式(1)を最適な値に設定することが望まれる。   The conditional expression (1) is a conditional expression that optimizes the image stabilization coefficient VR. The magnitude of the anti-vibration coefficient VR is closely related to good correction of various aberrations such as decentering coma and curvature of field generated during anti-vibration, the size of the anti-vibration group, and the enlargement of the anti-vibration mechanism. For this reason, it is desirable to set the conditional expression (1) to an optimum value in order to provide a small-sized photographing lens with an anti-vibration function having good performance.

ここで、上記条件式(1)の上限値を上回る場合、所定の像ブレ補正量を確保しようとすると、防振係数VRが大きくなりすぎて、像ブレ補正のための防振補正光学系シフト量が非常に小さい値になる。したがって、防振の制御精度がシビアになり、精度良い制御ができなり好ましくない。また、防振群や他のレンズ群が結果的に強い屈折力を持つことになり、防振時の偏芯コマ収差と像面湾曲の変動が増して好ましくない。なお、条件式(1)の上限値を2.5に設定すると、偏芯コマ収差と像面湾曲の補正により良い効果があり好ましい。また、条件式(1)の上限値を2.0、さらに好ましくは1.8に設定することによって、本実施形態の効果を最大限に発揮することができる。   Here, if the upper limit value of the conditional expression (1) is exceeded, an attempt to secure a predetermined image blur correction amount results in the image blur correction coefficient VR becoming too large, and the image stabilization correction optical system shift for image blur correction. The amount is very small. Therefore, the control accuracy of image stabilization becomes severe, and it is not preferable because accurate control can be performed. In addition, the anti-vibration group and other lens groups have a strong refractive power as a result, which is not preferable because fluctuations in decentering coma and curvature of field at the time of anti-vibration increase. Note that it is preferable to set the upper limit value of conditional expression (1) to 2.5 because there is a better effect of correcting decentration coma and curvature of field. Further, by setting the upper limit value of conditional expression (1) to 2.0, more preferably 1.8, the effect of the present embodiment can be exhibited to the maximum.

一方、上記条件式(1)の下限値を下回る場合、防振係数VRが小さくなるため、ある所定の像ブレ補正量を確保しようとすると、防振補正光学系シフト量が著しく大きくなる。すると、防振群の大きさが大きくなり、結果的に防振機構の大型化を招いてレンズ鏡筒全体の大型化を招き好ましくない。また、収差補正においては正レンズ群と負レンズ群との屈折力のバランスが崩れ、結果的に球面収差の補正が悪化し、球面収差の波長による差が増大する傾向にあり、好ましくない。また、所定の像ブレ補正量を確保しようとすると、防振時の移動量が増すことで、偏芯コマ収差や像面湾曲の変動が悪化する可能性があり好ましくない。なお、条件式(1)の下限値を1.24、さらに好ましくは1.27に設定すると、防振時の光学性能、特に偏芯コマ収差の補正が有利になるため、より好ましい。また、条件式(1)の下限値を1.29、さらに好ましくは1.31に設定することによって、本実施形態の効果を最大限に発揮することができる。   On the other hand, if the lower limit value of the conditional expression (1) is not reached, the image stabilization coefficient VR becomes smaller. Therefore, if a predetermined image blur correction amount is to be ensured, the image stabilization optical system shift amount becomes extremely large. As a result, the size of the vibration-proof group becomes large, which results in an increase in the size of the vibration-proof mechanism and an increase in the size of the entire lens barrel. Further, in aberration correction, the balance of refractive power between the positive lens group and the negative lens group is lost. As a result, correction of spherical aberration deteriorates, and the difference due to the wavelength of spherical aberration tends to increase. In addition, if a predetermined image blur correction amount is to be ensured, the amount of movement during image stabilization increases, which may cause deterioration in eccentric coma and field curvature, which is not preferable. Note that it is more preferable to set the lower limit value of conditional expression (1) to 1.24, more preferably 1.27, since it is advantageous in correcting optical performance during image stabilization, particularly decentration coma. Further, by setting the lower limit value of the conditional expression (1) to 1.29, more preferably 1.31, it is possible to maximize the effects of the present embodiment.

なお、本実施形態においては、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4の焦点距離をf4とし、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4の物体側の直前に位置するレンズ群(本実施形態では正レンズ群G3)内の最も像側にあるレンズ面と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式(2)の条件を満足することが好ましい。   In the present embodiment, the focal length of the negative lens group G4 that can move so as to have a moving component in a direction substantially perpendicular to the optical axis is f4, and the moving component in a direction substantially perpendicular to the optical axis. The lens surface closest to the image side in the lens group (positive lens group G3 in the present embodiment) located immediately before the object side of the negative lens group G4 that can move so as to have a substantially perpendicular to the optical axis When the air space on the optical axis at the time of focusing on infinity with the lens surface closest to the object in the negative lens group G4 movable so as to have a moving component in the direction is d34, the following equation (2) It is preferable to satisfy the conditions.

1.0<(−f4)/d34<20.0 …(2)     1.0 <(-f4) / d34 <20.0 (2)

上記条件式(2)は、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4、いわゆる防振群G4の焦点距離f4を最適化した条件式であり、防振群G4の焦点距離の長短により、屈折力の大小を示している。また、防振群G4の焦点距離f4を長短させることは、結果的に上記防振係数VRの式より倍率を変化させることに他ならない。したがって、条件式(2)は、結果的に防振係数VRを最適な値に設定する要素になっている。   The conditional expression (2) is a conditional expression that optimizes the focal length f4 of the negative lens group G4 that can move so as to have a moving component in a direction substantially perpendicular to the optical axis, that is, a so-called anti-vibration group G4. The magnitude of the refractive power is indicated by the length of the focal length of the image stabilizing group G4. Further, increasing or decreasing the focal length f4 of the anti-vibration group G4 results in changing the magnification from the above-described equation of the anti-vibration coefficient VR. Therefore, the conditional expression (2) is an element for setting the image stabilization coefficient VR to an optimum value as a result.

また、条件式(2)を、防振群G4の物体側に位置するレンズ群(正レンズ群G3)内の最も像側にあるレンズ面と防振群G4内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔d34で規格化した理由は、例えば、防振群G4より物体側に開口絞りSを配置する場合に、開口絞りSと防振群G4との距離を最適な値に保つためである。開口絞りSと防振群G4との距離が著しく近い場合は防振機構と絞り機構が機械的干渉をしてしまい、また、著しく離れた場合は近軸瞳光線が防振群G4の周辺を通るために特に防振時の像面湾曲の変動や偏芯コマ収差の増加を招いてしまい、いずれの場合も好ましくない。したがって、前記空気間隔d34を最適な値に設定することが必要であることが分かる。   Conditional expression (2) is expressed by the lens surface closest to the image side in the lens group (positive lens group G3) located on the object side of the image stabilization group G4 and the lens surface closest to the object side in the image stabilization group G4. For example, when the aperture stop S is disposed closer to the object side than the image stabilization group G4, the aperture stop S and the image stabilization group G4 This is to keep the distance at an optimal value. When the distance between the aperture stop S and the vibration isolation group G4 is extremely short, the vibration isolation mechanism and the diaphragm mechanism cause mechanical interference. When the distance between the aperture stop S and the vibration isolation group G4 is significantly far away, paraxial pupil rays travel around the vibration isolation group G4. In particular, it causes fluctuations in field curvature at the time of image stabilization and an increase in decentration coma, which is not preferable in either case. Therefore, it can be seen that it is necessary to set the air gap d34 to an optimum value.

ここで、上記条件式(2)の上限値を上回る場合、防振群G4の焦点距離f4に着目すると、著しく負の屈折力は弱くなり、結果的に防振係数VRが小さくなってしまい、所定の像ブレ補正量を得るためには防振群G4のシフト量を大きくすることが必要となり、防振機構の大型化を招いて好ましくない。また、防振時の収差変動、特に偏芯コマ収差の変動が増して好ましくない。次に、防振群G4の物体側にあるレンズ群(正レンズ群G3)内の最も像側にあるレンズ面と防振群G4内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔d34に着目すると、上記条件式(2)の上限値を上回る場合、該空気間隔d34が著しく小さくなることを意味するため、上記のように防振機構と絞り機構が機械的干渉をしてしまい、構成が困難となる。なお、条件式(2)の上限値を17.0に設定すると、コマ収差の補正と小型化に効果があるため、より好ましい。また、条件式(2)の上限値を15.0、さらに好ましくは10.0に設定することによって、本実施形態の効果を最大限に発揮することができる。   Here, if the upper limit value of the conditional expression (2) is exceeded, focusing on the focal length f4 of the image stabilization group G4, the negative refractive power is significantly weakened, resulting in a decrease in the image stabilization coefficient VR. In order to obtain a predetermined image blur correction amount, it is necessary to increase the shift amount of the image stabilization group G4, which is not preferable because the size of the image stabilization mechanism is increased. In addition, aberration fluctuations at the time of image stabilization, particularly fluctuations in eccentric coma aberration, are not preferable. Next, when focusing at infinity between the lens surface closest to the image side in the lens group (positive lens group G3) on the object side of the image stabilization group G4 and the lens surface closest to the object side in the image stabilization group G4 Focusing on the air gap d34 on the optical axis, if it exceeds the upper limit value of the conditional expression (2), it means that the air gap d34 becomes remarkably small. Mechanical interference will occur, making the configuration difficult. Note that it is more preferable to set the upper limit value of conditional expression (2) to 17.0 because it is effective in correcting coma and reducing the size. Further, by setting the upper limit of conditional expression (2) to 15.0, more preferably 10.0, the effect of the present embodiment can be exhibited to the maximum.

一方、上記条件式(2)の下限値を下回る場合、まず防振群G4の焦点距離f4に着目すると、著しく負の屈折力は強くなるため、防振時の偏芯コマ収差の増加や像面湾曲の変動を招き、性能が著しく劣化して好ましくない。次に、防振群G4の物体側にあるレンズ群(正レンズ群G3)内の最も像側にあるレンズ面と防振群G4内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔d34に着目すると、条件式(2)の下限値を下回る場合、該空気間隔d34が著しく大きくなることを意味するため、上記のように近軸瞳光線が防振群G4の周辺を通るため、特に防振時の像面湾曲の変動や偏芯コマ収差の増加を招いて好ましくない。なお、条件式(2)の下限値を2.0に設定すると、防振時の光学性能、特にコマ収差の補正が有利になるため、より好ましい。また、条件式(2)の下限値を4.0、さらに好ましくは5.0に設定することによって、本実施形態の効果を最大限に発揮することができる。   On the other hand, if the lower limit value of the conditional expression (2) is not reached, attention is first focused on the focal length f4 of the image stabilizing group G4. This is not preferable because it causes fluctuations in the surface curvature and the performance is significantly deteriorated. Next, when focusing at infinity between the lens surface closest to the image side in the lens group (positive lens group G3) on the object side of the image stabilization group G4 and the lens surface closest to the object side in the image stabilization group G4 Focusing on the air interval d34 on the optical axis, if it falls below the lower limit value of the conditional expression (2), it means that the air interval d34 becomes remarkably large. Since it passes through the periphery of G4, fluctuations in field curvature and an increase in decentering coma during vibration prevention are particularly undesirable. Note that it is more preferable to set the lower limit value of conditional expression (2) to 2.0 because it is advantageous to correct optical performance during vibration isolation, particularly coma. Further, by setting the lower limit value of the conditional expression (2) to 4.0, more preferably to 5.0, the effect of the present embodiment can be maximized.

また、本実施形態において、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4(防振群)より像側に位置する正レンズ群G5(但し、前記負レンズ群G4より像側に複数の正レンズ群がある場合は、最も物体側の正レンズ群)の焦点距離をf5とし、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4の物体側に位置するレンズ群(本実施形態では正レンズ群G3)内の最も像側にあるレンズ面と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式(3)の条件を満足することが好ましい。   In the present embodiment, the positive lens group G5 located on the image side of the negative lens group G4 (anti-vibration group) movable so as to have a moving component in a direction substantially perpendicular to the optical axis (however, the negative When there are a plurality of positive lens groups on the image side from the lens group G4, the focal length of the most positive lens group on the object side is f5, and the lens can be moved so as to have a moving component in a direction substantially perpendicular to the optical axis. The lens surface located on the object side of the negative lens group G4 (positive lens group G3 in this embodiment) has a moving component in a direction substantially perpendicular to the optical axis with respect to the lens surface closest to the image side. It is preferable that the condition of the following expression (3) is satisfied, where d34 is the air spacing on the optical axis when focusing on infinity with the lens surface closest to the object in the movable negative lens group G4.

1.0<f5/d34<40.0 …(3)   1.0 <f5 / d34 <40.0 (3)

上記条件式(3)は、防振群G4より像側に位置する正レンズ群G5の焦点距離f5を最適化した条件式である。なお、正レンズ群G5は、収差補正上は上方コマ収差、像面湾曲および倍率色収差の補正に関与し、防振時は防振係数の大小、ひいては防振時の偏芯コマ収差の変動および像面湾曲の変動に関与している。   The conditional expression (3) is a conditional expression in which the focal length f5 of the positive lens group G5 located on the image side from the image stabilizing group G4 is optimized. The positive lens group G5 is involved in correction of upward coma, curvature of field, and lateral chromatic aberration in terms of aberration correction, and the magnitude of the anti-vibration coefficient during anti-vibration, and hence fluctuations in eccentric coma during anti-vibration and It is involved in fluctuations in field curvature.

上記条件式(3)の上限値を上回る場合、正レンズ群G5の焦点距離f5が大きくなることを意味するため、負の屈折力を有する防振群G4との屈折力のバランスが崩れてしまい、結果的に上方コマ収差や像面湾曲が悪化して好ましくない。なお、条件式(3)の上限値を35.0に設定すると、上方コマ収差の補正が有利になるため、より好ましい。また、条件式(3)の上限値を29.0、さらに好ましくは26.0に設定することによって、本実施形態の効果を最大限に発揮できる。   If the upper limit value of the conditional expression (3) is exceeded, it means that the focal length f5 of the positive lens group G5 is increased, and the balance of the refractive power with the anti-vibration group G4 having negative refractive power is lost. As a result, upper coma and curvature of field deteriorate, which is not preferable. It is more preferable to set the upper limit value of conditional expression (3) to 35.0 because it is advantageous to correct upper coma. Further, by setting the upper limit value of conditional expression (3) to 29.0, more preferably 26.0, the effect of the present embodiment can be maximized.

一方、上記条件式(3)の下限値を下回る場合、正レンズ群G5の焦点距離f5が小さくなること、すなわち正レンズ群G5の屈折力が著しく強くなることを意味する。その場合、上方コマ収差や像面湾曲の補正が悪化し、また防振時の偏芯コマ収差および像面湾曲の変動も悪化して好ましくない。なお、条件式(3)の下限値を5.0に設定すると、防振時のコマ収差の補正に効果があり、より好ましい。また、条件式(3)の下限値を7.0、さらに好ましくは10.0に設定することによって、本実施形態の効果を最大限に発揮できる。   On the other hand, when the value falls below the lower limit value of the conditional expression (3), it means that the focal length f5 of the positive lens group G5 is decreased, that is, the refractive power of the positive lens group G5 is remarkably increased. In this case, the correction of the upper coma aberration and the field curvature is deteriorated, and the eccentric coma aberration and the fluctuation of the field curvature at the time of image stabilization are also deteriorated. Note that it is more preferable to set the lower limit of conditional expression (3) to 5.0, which is effective in correcting coma during image stabilization. Further, by setting the lower limit of conditional expression (3) to 7.0, more preferably 10.0, the effect of the present embodiment can be maximized.

また、本実施形態において、合焦時移動する正レンズ群G3の焦点距離をf3とし、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4(防振群)の物体側に位置するレンズ群(本実施形態では正レンズ群G3)内の最も像側にあるレンズ面と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式(4)の条件を満足することが好ましい。   In this embodiment, the focal length of the positive lens group G3 that moves at the time of focusing is f3, and the negative lens group G4 that can move so as to have a moving component in a direction substantially perpendicular to the optical axis (anti-vibration group). ) On the object side of the lens group (positive lens group G3 in the present embodiment), and a negative surface that can move so as to have a moving component in a direction substantially perpendicular to the optical axis with respect to the lens surface closest to the image side. It is preferable to satisfy the condition of the following expression (4), where d34 is the air space on the optical axis when focusing on infinity with the lens surface closest to the object side in the lens group G4.

1.0<f3/d34<18.0 …(4)   1.0 <f3 / d34 <18.0 (4)

上記条件式(4)は、合焦時に移動する正レンズ群G3の焦点距離f3を最適化した条件式である。なお、正レンズ群G3は、本実施形態のように、撮影距離が無限遠から撮影倍率等倍に至るまで合焦できる能力を備えた光学系の場合、近距離収差変動、特に像面湾曲の変動および球面収差の変動を抑えるために有効な役割を担っており、その効果は所定の屈折力を持った正レンズ群G3が無限遠物点から近距離物点に合焦する際に物体方向に移動することによって達成される。   The conditional expression (4) is a conditional expression that optimizes the focal length f3 of the positive lens group G3 that moves during focusing. In the case where the positive lens group G3 is an optical system having an ability to focus from an infinite distance to an equal magnification, as in the present embodiment, near-field aberration fluctuations, particularly field curvature fluctuations. It plays an effective role in suppressing fluctuations in spherical aberration, and the effect is that when the positive lens group G3 having a predetermined refractive power is focused from an infinite object point to a near object point, the object direction is increased. Achieved by moving.

ここで、上記条件式(4)の上限値を上回る場合、正レンズ群G3の焦点距離f3が大きくなり、最適値よりも著しく弱い屈折力となり、前後のレンズ群とのバランスを欠いてしまい、結果的に球面収差が過剰補正となり、像面湾曲も悪化して好ましくない。なお、条件式(4)の上限値を13.7に設定すると、球面収差補正が有利になり、より好ましい。また、条件式(4)の上限値を13.0、さらに好ましくは12.0に設定することによって、本実施形態の効果を最大限に発揮できる。   Here, when the upper limit value of the conditional expression (4) is exceeded, the focal length f3 of the positive lens group G3 is increased, the refractive power is significantly weaker than the optimum value, and the balance with the front and rear lens groups is lost. As a result, the spherical aberration is excessively corrected, and the field curvature is also deteriorated. If the upper limit value of conditional expression (4) is set to 13.7, spherical aberration correction is advantageous, which is more preferable. Further, by setting the upper limit of conditional expression (4) to 13.0, more preferably 12.0, the effect of the present embodiment can be maximized.

一方、上記条件式(4)の下限値を下回る場合、正レンズG3の焦点距離f3が小さくなり、最適値よりも著しく強い屈折力になる。その場合、前後のレンズ群に対するバランスを欠くことになり、結果的に球面収差が補正不足に変位し、レンズ全系の収差補正が悪化する。なお、条件式(4)の下限値を2.0に設定すると、球面収差の補正が良好になり、より好ましい。また、条件式(4)の下限値を4.0、さらに好ましくは7.0に設定することによって、本実施形態の効果を最大限に発揮できる。   On the other hand, when the value falls below the lower limit value of the conditional expression (4), the focal length f3 of the positive lens G3 becomes small, and the refractive power is significantly stronger than the optimum value. In this case, the balance between the front and rear lens groups is lost, and as a result, the spherical aberration is displaced undercorrection, and the aberration correction of the entire lens system is deteriorated. Note that it is more preferable to set the lower limit value of conditional expression (4) to 2.0 because spherical aberration correction is improved. Further, by setting the lower limit of conditional expression (4) to 4.0, more preferably 7.0, the effect of the present embodiment can be maximized.

また、本実施形態において、合焦時移動する負レンズ群G2の焦点距離をf2とし、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4(防振群)の物体側に位置するレンズ群(本実施形態では正レンズ群G3)内の最も像側にあるレンズ面と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式(5)の条件を満足することが好ましい。   In this embodiment, the negative lens group G2 (anti-vibration group) is movable so as to have a moving component in a direction substantially perpendicular to the optical axis, where f2 is the focal length of the negative lens group G2 that moves during focusing. ) On the object side of the lens group (positive lens group G3 in the present embodiment), and a negative surface that can move so as to have a moving component in a direction substantially perpendicular to the optical axis with respect to the lens surface closest to the image side. It is preferable that the condition of the following expression (5) is satisfied, where d34 is the air space on the optical axis when focusing on infinity with the lens surface closest to the object side in the lens group G4.

1.0<(−f2)/d34<17.0 …(5)   1.0 <(-f2) / d34 <17.0 (5)

上記条件式(5)は、合焦時に移動する負レンズ群G2の焦点距離f2を最適化した条件式である。なお、負レンズ群G2は、本実施形態のように、撮影距離が無限遠から撮影倍率等倍に至るまで合焦できる能力を備えた光学系の場合、近距離収差変動、特に像面湾曲の変動、球面収差の変動を抑えるために有効な役割を担っており、その効果は所定の屈折力を持った負レンズ群G2が無限遠物点から近距離物点に合焦する際に、像方向に移動することによって達成される。   The conditional expression (5) is a conditional expression that optimizes the focal length f2 of the negative lens group G2 that moves during focusing. Note that the negative lens group G2, as in this embodiment, is an optical system having an ability to focus from an infinite distance to an equal magnification of the photographing magnification, as in the case of this embodiment, near-field aberration fluctuations, particularly field curvature fluctuations. It plays an effective role in suppressing fluctuations in spherical aberration, and its effect is that when the negative lens group G2 having a predetermined refractive power is focused from an infinite object point to a close object point, the image direction Achieved by moving to.

ここで、上記条件式(5)の上限値を上回る場合、負レンズ群G2の負の屈折力は弱くなる。すると、球面収差が近距離で補正不足に変位し、結果的に近距離変動が増加して好ましくない。また、バックフォーカスが短くなるので好ましくない。なお、条件式(5)の上限値を16.0に設定すると、球面収差の補正が良好にでき、より好ましい。また、条件式4の上限値を15.5、さらに好ましくは15.0に設定することによって、本実施形態の効果を最大限に発揮できる。   Here, when the upper limit value of the conditional expression (5) is exceeded, the negative refractive power of the negative lens group G2 becomes weak. As a result, the spherical aberration is displaced undercorrection at a short distance, resulting in an increase in short distance fluctuation, which is not preferable. In addition, the back focus is shortened, which is not preferable. Note that it is more preferable to set the upper limit of conditional expression (5) to 16.0 because spherical aberration can be corrected satisfactorily. Further, by setting the upper limit of conditional expression 4 to 15.5, more preferably 15.0, the effect of the present embodiment can be maximized.

一方、上記条件式(5)の下限値を下回る場合、負レンズ群G2の負の屈折力は強くなり、球面収差が近距離で補正過剰に変位するとともに像面湾曲も変動し、結果的に近距離変動が増加して好ましくない。また、バックフォーカスが著しく長くなり、レンズ全系の大型化を招いて好ましくない。なお、条件式(5)の下限値を2.0に設定すると、球面収差の収差補正と像面湾曲の補正が有利になり、より好ましい。また、条件式(5)の下限値を4.0、さらに好ましくは5.0に設定することによって、本実施形態の効果を最大限に発揮できる。   On the other hand, when the lower limit value of the conditional expression (5) is not reached, the negative refractive power of the negative lens group G2 becomes strong, the spherical aberration is over-corrected at a short distance, and the field curvature also fluctuates. Short-distance fluctuations increase, which is not preferable. Further, the back focus is remarkably long, which leads to an increase in the size of the entire lens system. Note that it is more preferable to set the lower limit value of conditional expression (5) to 2.0 because it is advantageous to correct spherical aberration and field curvature. Further, by setting the lower limit of conditional expression (5) to 4.0, more preferably to 5.0, the effect of the present embodiment can be maximized.

また、本実施形態において、最も物体側に位置する正レンズ群G1の焦点距離をf1とし、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4(防振群)の物体側に位置するレンズ群(本実施形態では正レンズ群G3)内の最も像側にあるレンズ面と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式(6)の条件を満足することが好ましい。   In this embodiment, the negative lens group G4 (vibration-proof) is movable so that the focal length of the positive lens group G1 located closest to the object side is f1, and has a moving component in a direction substantially perpendicular to the optical axis. The lens surface (the positive lens group G3 in this embodiment) located on the object side of the lens group is movable so as to have a moving component in a direction substantially perpendicular to the optical axis. It is preferable to satisfy the condition of the following expression (6), where d34 is the air spacing on the optical axis when focusing on infinity with the lens surface closest to the object in the negative lens group G4.

1.0<f1/d34<20.0 …(6)   1.0 <f1 / d34 <20.0 (6)

上記条件式(6)は、最も物体側の正レンズ群G1の焦点距離f1を最適化した条件式である。なお、正レンズ群G1は、合焦時に固定され、全域にわたり球面収差、下方コマ収差を良好に補正する役目を担っている。   The conditional expression (6) is a conditional expression that optimizes the focal length f1 of the positive lens group G1 closest to the object side. The positive lens group G1 is fixed at the time of focusing, and has a role of satisfactorily correcting spherical aberration and downward coma aberration over the entire area.

ここで、上記条件式(6)の上限値を上回る場合、正レンズ群G1の焦点距離f1が大きくなり、屈折力が弱まることを意味するため、球面収差が補正過剰に変位して好ましくない。また、バックフォーカスが大きくなり、所定のFナンバーを得るためにレンズ外径の増大を招き、結果的に大型化するので好ましくない。なお、条件式(6)の上限値を16.5に設定すると、球面収差が良好に補正でき、より好ましい。また、条件式(6)の上限値を16.0、さらに好ましくは13.0に設定することによって、本実施形態の効果を最大限に発揮できる。   Here, when the value exceeds the upper limit value of the conditional expression (6), it means that the focal length f1 of the positive lens group G1 is increased and the refractive power is weakened, which is not preferable because the spherical aberration is excessively displaced. In addition, the back focus is increased, and the outer diameter of the lens is increased in order to obtain a predetermined F number. If the upper limit value of conditional expression (6) is set to 16.5, spherical aberration can be corrected well, which is more preferable. Further, by setting the upper limit of conditional expression (6) to 16.0, more preferably 13.0, the effect of the present embodiment can be maximized.

一方、上記条件式(6)の下限値を下回る場合、正レンズ群G1の焦点距離f1が小さくなり、屈折力が著しく強くなることを意味するため、球面収差が補正不足に変位してしまい、さらに像面湾曲も変動するため好ましくない。また、バックフォーカスが短くなり、好ましくない。なお、条件式(6)の下限値を2.0に設定すると、球面収差および像面湾曲の補正が有利となり、より好ましい。また、条件式(6)の下限値を4.0、さらに好ましくは7.0に設定することによって、本実施形態の効果を最大限に発揮できる。   On the other hand, if the lower limit value of the conditional expression (6) is not reached, it means that the focal length f1 of the positive lens group G1 becomes small and the refractive power becomes remarkably strong. Furthermore, the field curvature also varies, which is not preferable. In addition, the back focus is shortened, which is not preferable. If the lower limit value of conditional expression (6) is set to 2.0, correction of spherical aberration and field curvature is advantageous and more preferable. Further, by setting the lower limit of conditional expression (6) to 4.0, more preferably 7.0, the effect of the present embodiment can be maximized.

また、本実施形態において、合焦時移動する負レンズ群G2は、物体側から順に並んだ、負レンズL21と、負レンズL22と正レンズL23とからなる接合レンズとを有し、負レンズL21の物体側の面の曲率半径をraとし、該負レンズL21の像側の面の曲率半径をrbとしたとき、次式(7)の条件を満足することが好ましい。   Further, in the present embodiment, the negative lens group G2 that moves at the time of focusing has a negative lens L21 and a cemented lens composed of a negative lens L22 and a positive lens L23 arranged in order from the object side, and the negative lens L21. When the radius of curvature of the object side surface of the lens is denoted by ra and the radius of curvature of the image side surface of the negative lens L21 is denoted by rb, it is preferable that the condition of the following expression (7) is satisfied.

−1.0<(rb+ra)/(rb−ra)≦0 …(7)   −1.0 <(rb + ra) / (rb−ra) ≦ 0 (7)

上記条件式(7)は、合焦時移動する負レンズ群G2中の負レンズL21の形状因子(qファクター)に関する条件式である。なお、負レンズ群G2は、物体側から順に並んだ、負レンズL21と、負レンズL22と正レンズL23とからなる接合レンズとを有することが、合焦時の収差変動、特に球面収差、下方コマ収差および像面湾曲の変動を抑えるために有効である。また、負レンズ群G2内の最も物体側に位置する負レンズ(本実施形態では負レンズL21)の形状は、球面収差に対して有効な形状にすることが望ましい。   The conditional expression (7) is a conditional expression related to the shape factor (q factor) of the negative lens L21 in the negative lens group G2 that moves during focusing. Note that the negative lens group G2 includes a negative lens L21 and a cemented lens composed of the negative lens L22 and the positive lens L23 arranged in order from the object side. This is effective for suppressing fluctuations in coma and field curvature. In addition, it is desirable that the shape of the negative lens (in this embodiment, the negative lens L21) located closest to the object in the negative lens group G2 is a shape effective for spherical aberration.

上記条件式(7)の上限値を上回る場合、形状因子(qファクター)の値が正となり、負レンズL21が、像側に平面から凸面に変位した、平凹レンズ、メニスカス凹レンズの形状になることを意味し、画角に対して物体側の面が大きな偏角を持つ形状になるため、下方コマ収差および像面湾曲の近距離変動が増して好ましくない。なお、条件式(7)の上限値を−0.05に設定すると、下方コマ収差が良好に補正でき、より好ましい。また、条件式(6)の上限値を−0.1、さらに好ましくは−0.2に設定することによって、本実施形態の効果を最大限に発揮できる。   When the upper limit value of the conditional expression (7) is exceeded, the value of the shape factor (q factor) becomes positive, and the negative lens L21 has the shape of a plano-concave lens or a meniscus concave lens displaced from the plane to the convex surface on the image side. This means that the object-side surface has a large declination with respect to the angle of view, which is not preferable because the short coma aberration and the near field fluctuation of the field curvature increase. Note that it is more preferable to set the upper limit value of conditional expression (7) to −0.05 because the lower coma can be corrected well. Further, by setting the upper limit value of conditional expression (6) to −0.1, more preferably to −0.2, the effect of the present embodiment can be maximized.

一方、上記条件式(7)の下限値を下回る場合、形状が物体側に凸面を向けたメニスカス形状になることを意味する。したがって、Fナンバーを決定する光線に対する偏角が著しく変位するため、球面収差が悪化し好ましくない。なお、条件式(7)の下限値を−0.95に設定すると、球面収差の補正が有利となり、より好ましい。また、条件式(7)の下限値を−0.9、さらに好ましくは−0.85に設定することによって、本実施形態の効果を最大限に発揮できる。   On the other hand, when the value falls below the lower limit value of the conditional expression (7), it means that the shape becomes a meniscus shape with a convex surface facing the object side. Accordingly, since the declination with respect to the light beam that determines the F number is significantly displaced, the spherical aberration is deteriorated, which is not preferable. If the lower limit value of conditional expression (7) is set to -0.95, correction of spherical aberration is advantageous and more preferable. Further, by setting the lower limit value of conditional expression (7) to −0.9, more preferably to −0.85, the effect of the present embodiment can be maximized.

また、本実施形態において、最も物体側に位置する正レンズ群(本実施形態では正レンズ群G1)は、物体側から順に並んだ、正レンズ部分群G1aと、負レンズ部分群G1bとを有し、前記正レンズ部分群G1aと前記負レンズ部分群G1bとの光軸上の空気間隔をDaとし、光学系全系の無限遠合焦時の焦点距離をFoとしたとき、次式(8)の条件を満足することが好ましい。   Further, in the present embodiment, the positive lens group closest to the object side (positive lens group G1 in the present embodiment) has a positive lens part group G1a and a negative lens part group G1b arranged in order from the object side. When the air space on the optical axis between the positive lens portion group G1a and the negative lens portion group G1b is Da, and the focal length at the time of focusing on the entire optical system at infinity is Fo, the following equation (8 It is preferable to satisfy the condition of

0.005 <Da/Fo<0.09 …(8)   0.005 <Da / Fo <0.09 (8)

上記条件式(8)は、最も物体側に位置する固定の正レンズ群G1における、正レンズ部分群G1aと負レンズ部分群G1bとの間の空気間隔Daを最適な値に設定する条件式である。   The conditional expression (8) is a conditional expression for setting the air interval Da between the positive lens portion group G1a and the negative lens portion group G1b in the fixed positive lens group G1 located closest to the object side to an optimum value. is there.

ここで、上記条件式(8)の上限値を上回る場合、正レンズ部分群G1aと負レンズ部分群G1bとの間の空気間隔が著しく広がることになり、合焦群G2との間のディッドスペースがなくなり、合焦が困難になる。したがって、結果的に大型化して好ましくない。また、無理な小型化を図ると、他のレンズ群に強い屈折力を持たせることになり、結果的に球面収差やコマ収差が悪化するので好ましくない。なお、条件式(8)の上限値を0.08に設定すると、球面収差の補正が良好になり、より好ましい。また、条件式(8)の上限値を0.06、さらに好ましくは0.04に設定することにより、本実施形態の効果を最大限に発揮できる。   Here, when the upper limit value of the conditional expression (8) is exceeded, the air space between the positive lens portion group G1a and the negative lens portion group G1b is remarkably widened, and the dead space between the focusing group G2 is increased. , And focusing becomes difficult. As a result, the size is increased, which is not preferable. In addition, if the lens is forcibly reduced in size, it is not preferable because the other lens groups are given strong refractive power, resulting in deterioration of spherical aberration and coma. Note that it is more preferable to set the upper limit value of conditional expression (8) to 0.08, since the correction of spherical aberration becomes good. Further, by setting the upper limit value of conditional expression (8) to 0.06, more preferably 0.04, the effect of the present embodiment can be maximized.

一方、上記条件式(8)の下限値を下回る場合、正レンズ部分群G1aと負レンズ部分群G1bとの間の空気間隔が著しく狭くなり、レンズ当て(レンズの縁同士を当接させて保持すること)をしようとすると、面の曲率に限界があるため、正レンズ部分群G1aも負レンズ部分群G1bも互いに対向するレンズ面の曲率に制約が発生する。その結果、この制約により、良好な球面収差と下方コマ収差の補正が困難になる。また、軸上色収差の補正にも悪影響を及ぼし好ましくない。なお、条件式(8)の下限値を0.008に設定すると、球面収差の補正が有利となり、より好ましい。また、条件式(8)の下限値を0.01、さらに好ましくは0.015に設定することによって、本実施形態の効果を最大限に発揮できる。   On the other hand, if the lower limit value of the conditional expression (8) is not reached, the air space between the positive lens portion group G1a and the negative lens portion group G1b becomes remarkably narrow, and the lens contact (the lens edges are held in contact with each other). If there is a limit to the curvature of the surface, there is a restriction on the curvature of the lens surfaces of the positive lens portion group G1a and the negative lens portion group G1b facing each other. As a result, this restriction makes it difficult to correct good spherical aberration and downward coma. In addition, it also adversely affects the correction of axial chromatic aberration, which is not preferable. If the lower limit value of conditional expression (8) is set to 0.008, correction of spherical aberration is advantageous and more preferable. Further, by setting the lower limit value of conditional expression (8) to 0.01, more preferably 0.015, the effect of the present embodiment can be maximized.

また、本実施形態において、合焦時移動する負レンズ群(本実施形態では負レンズ群G2)は、物体側から順に並んだ、負レンズ部分群G2aと、負レンズ部分群G2bとを有し、前記負レンズ部分群G2aと前記負レンズ部分群G2bとの光軸上の空気間隔をDbとし、光学系全系の無限遠合焦時の焦点距離をFoとしたとき、次式(9)の条件を満足することが好ましい。   In the present embodiment, the negative lens group (in this embodiment, the negative lens group G2) that moves at the time of focusing has a negative lens part group G2a and a negative lens part group G2b that are arranged in order from the object side. When the air space on the optical axis between the negative lens portion group G2a and the negative lens portion group G2b is Db, and the focal length at the time of infinity focusing of the entire optical system is Fo, the following equation (9) It is preferable to satisfy the following conditions.

0.02<Db/Fo<0.08 …(9)   0.02 <Db / Fo <0.08 (9)

上記条件式(9)は、合焦で移動する負レンズ群G2における、負レンズ部分群G2aと負レンズ部分群G2bとの間の空気間隔Dbを最適な値に設定する条件式である。   The conditional expression (9) is a conditional expression for setting the air distance Db between the negative lens part group G2a and the negative lens part group G2b in the negative lens group G2 moving in focus to an optimum value.

ここで、上記条件式(9)の上限値を上回る場合、負レンズ部分群G2aと負レンズ部分群G2bとの間の空気間隔が著しく広がることになり、負レンズ群G2の全長が著しく長くなり、合焦で移動するためのディッドスペースがなくなり、結果的に大型化してしまい好ましくない。また、無理な小型化を図ると、他のレンズ群を強い屈折力を持たせることになり、結果的に球面収差やコマ収差が悪化するため好ましくない。なお、条件式(9)の上限値を0.07に設定すると、球面収差の補正が良好になり、より好ましい。また、条件式(9)の上限値を0.06、さらに好ましくは0.05に設定することにより、本実施形態の効果を最大限に発揮できる。   Here, when the upper limit value of the conditional expression (9) is exceeded, the air gap between the negative lens portion group G2a and the negative lens portion group G2b is remarkably widened, and the total length of the negative lens group G2 is remarkably increased. This is not preferable because there is no dead space for moving in focus, resulting in an increase in size. In addition, if the lens is forcibly reduced in size, the other lens groups have a strong refractive power, and as a result, spherical aberration and coma aberration are deteriorated. Note that it is more preferable to set the upper limit value of conditional expression (9) to 0.07, since the correction of spherical aberration becomes good. Further, by setting the upper limit value of conditional expression (9) to 0.06, more preferably 0.05, the effect of the present embodiment can be maximized.

一方、上記条件式(9)の下限値を下回る場合、負レンズ部分群G2aと負レンズ部分群G2bとの間の空気間隔が著しく狭くなり、レンズ当てをしようとすると、向かい合う面の曲率に限界があるため、負レンズ部分群G2aの最も像側のレンズ面と負レンズ部分群G2bの最も物体側のレンズ面の曲率に制約が発生する。その結果、この制約により、良好な球面収差とコマ収差の近距離変動の補正が困難になる。なお、条件式(9)の下限値を0.025に設定すると、球面収差の補正が有利となり、より好ましい。また、条件式(9)の下限値を0.028、さらには0.03に設定することによって、本実施形態の効果を最大限に発揮できる。   On the other hand, if the lower limit value of the conditional expression (9) is not reached, the air space between the negative lens portion group G2a and the negative lens portion group G2b becomes remarkably narrow. Therefore, there is a restriction on the curvature of the lens surface closest to the image side of the negative lens portion group G2a and the lens surface closest to the object side of the negative lens portion group G2b. As a result, this restriction makes it difficult to correct good short-range fluctuations in spherical aberration and coma. If the lower limit value of conditional expression (9) is set to 0.025, it is more preferable to correct spherical aberration. Further, by setting the lower limit value of the conditional expression (9) to 0.028, further 0.03, the effect of the present embodiment can be maximized.

図9に、上記構成の撮影レンズを備えたデジタル一眼レフカメラCAM(光学機器)の概略断面図を示す。この図9に示すデジタル一眼レフカメラCAMにおいて、不図示の物体(被写体)からの光は、撮影レンズ1で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。   FIG. 9 is a schematic cross-sectional view of a digital single-lens reflex camera CAM (optical apparatus) provided with the photographing lens having the above-described configuration. In the digital single-lens reflex camera CAM shown in FIG. 9, light from an object (subject) (not shown) is collected by the photographing lens 1 and focused on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6. Thus, the photographer can observe the object (subject) image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ1で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラCAMによる物体(被写体)の撮影を行うことができる。なお、図9に記載のカメラCAMは、撮影レンズ1を着脱可能に保持するものでもよく、撮影レンズ1と一体に成形されるものでもよい。また、カメラCAMは、いわゆる一眼レフカメラでもよく、クイックリターンミラー等を有さないカメラでもよい。   Further, when a release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light of an object (subject) (not shown) condensed by the photographing lens 1 is captured on the image sensor 7. Form an image. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can photograph an object (subject) with the camera CAM. The camera CAM described in FIG. 9 may be one that holds the photographing lens 1 in a detachable manner or may be molded integrally with the photographing lens 1. The camera CAM may be a so-called single-lens reflex camera or a camera that does not have a quick return mirror or the like.

以下、各実施例について、図面に基づき説明する。   Hereinafter, each embodiment will be described with reference to the drawings.

(第1実施例)
第1実施例について、図1〜図4および表1を用いて説明する。図1は、第1実施例に係る撮影レンズ1の構成を示している。第1実施例に係る撮影レンズ1は、光軸に沿って物体側から順に並んだ、正レンズ群G1と、合焦時移動する負レンズ群G2と、開口絞りSと、合焦時移動する正レンズ群G3と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4と、正レンズ群G5と、オプティカルローパスフィルタOとを有する。なお、像面Iは、図9の撮像素子7上に形成され、該撮像素子はCCDやCMOS等から構成されている。また、本実施例では、オプティカルローパスフィルタOが像面Iの直前に配置されているが、実際は図9の撮像素子7とセットで構成される。
(First embodiment)
A first embodiment will be described with reference to FIGS. FIG. 1 shows the configuration of the taking lens 1 according to the first embodiment. The photographic lens 1 according to the first example moves in order from the positive lens group G1, the negative lens group G2 that moves in focus, the aperture stop S, and the aperture stop S that are arranged in order from the object side along the optical axis. It has a positive lens group G3, a negative lens group G4 that can move so as to have a moving component in a direction substantially perpendicular to the optical axis, a positive lens group G5, and an optical low-pass filter O. The image plane I is formed on the image sensor 7 in FIG. 9, and the image sensor is composed of a CCD, a CMOS, or the like. In this embodiment, the optical low-pass filter O is disposed immediately before the image plane I, but actually includes the image pickup device 7 of FIG.

正レンズ群G1は、物体側から順に並んだ、正レンズ部分群G1aと、負レンズ部分群G1bとを有する。正レンズ部分群G1aは、物体側から順に並んだ、両凸形状の正レンズL11と、物体側に凸面を向けた正メニスカスレンズL12とを有する。また、負レンズ部分群G1bは、物体側から順に並んだ、両凹形状を持った負レンズL13と物体側に凸面を向けた正メニスカスレンズL14とからなる接合負レンズを有する。このような正レンズ群G1は、全体で正の屈折力を有しており、無限遠物点から近距離物点に合焦する時(以下、合焦時)は像面Iに対して固定される。   The positive lens group G1 includes a positive lens part group G1a and a negative lens part group G1b arranged in order from the object side. The positive lens portion group G1a includes a biconvex positive lens L11 arranged in order from the object side, and a positive meniscus lens L12 having a convex surface facing the object side. The negative lens portion group G1b has a cemented negative lens composed of a negative lens L13 having a biconcave shape and a positive meniscus lens L14 having a convex surface facing the object side, which are arranged in order from the object side. Such a positive lens group G1 has a positive refractive power as a whole, and is fixed with respect to the image plane I when focusing from an infinite object point to a short-distance object point (hereinafter referred to as in-focus). Is done.

負レンズ群G2は、物体側から順に並んだ、負レンズ部分群G2aと、負レンズ部分群G2bとを有する。負レンズ部分群G2aは、物体側から順に並んだ、両凹レンズL21を有する。また、負レンズ部分群G2bは、物体側から順に並んだ、両凹形状を持った負レンズL22と物体側に凸面を向けた正メニスカスレンズL23とからなる接合負レンズを有する。このような負レンズ群G2は、全体で負の屈折力を有しており、合焦時は物体側から像側に移動する。   The negative lens group G2 includes a negative lens part group G2a and a negative lens part group G2b arranged in order from the object side. The negative lens portion group G2a includes biconcave lenses L21 arranged in order from the object side. The negative lens portion group G2b has a cemented negative lens composed of a negative lens L22 having a biconcave shape and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. Such a negative lens group G2 has a negative refractive power as a whole, and moves from the object side to the image side during focusing.

開口絞りSは、Fナンバーを決定し、合焦時は像面Iに対して固定される。   The aperture stop S determines the F number and is fixed with respect to the image plane I at the time of focusing.

正レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と両凸形状の正レンズL33とからなる接合正レンズとを有し、全体で正の屈折力を有しており、合焦時は像側から物体側に移動する。   The positive lens group G3 includes a biconvex positive lens L31 arranged in order from the object side, and a cemented positive lens including a negative meniscus lens L32 having a convex surface facing the object side and a biconvex positive lens L33. However, it has a positive refractive power as a whole, and moves from the image side to the object side during focusing.

負レンズ群G4は、物体側から順に並んだ、両凹形状の負レンズL41と物体側に凸面を向けた正メニスカスレンズL42とからなる接合負レンズを有し、全体で負の屈折力を有しており、光軸に対してほぼ垂直な方向の移動成分を持つように移動させて像ブレ補正を行う、いわゆる防振群である。   The negative lens group G4 has a cemented negative lens composed of a biconcave negative lens L41 arranged in order from the object side and a positive meniscus lens L42 having a convex surface directed toward the object side, and has a negative refractive power as a whole. This is a so-called anti-vibration group that performs image blur correction by moving it so as to have a moving component in a direction substantially perpendicular to the optical axis.

正レンズ群G5は、物体側から順に並んだ、像側に凸面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52とを有し、全体で正の屈折力を有しており、合焦時は像面Iに対して固定される。   The positive lens group G5 includes, in order from the object side, a negative meniscus lens L51 having a convex surface facing the image side and a biconvex positive lens L52, and has a positive refractive power as a whole. It is fixed with respect to the image plane I during focusing.

表1は、第1実施例における各諸元を示す。表1において、fはレンズ全系の焦点距離、2ωは画角(包括角)、FnoはFナンバー、BFはバックフォーカス、βは撮影倍率、f1は正レンズ群G1の焦点距離、f2は負レンズ群G2の焦点距離、f3は正レンズ群G3の焦点距離、f4は負レンズ群G4の焦点距離、f5は正レンズ群G5の焦点距離をそれぞれ示す。   Table 1 shows each item in the first embodiment. In Table 1, f is the focal length of the entire lens system, 2ω is the angle of view (inclusive angle), Fno is the F number, BF is the back focus, β is the shooting magnification, f1 is the focal length of the positive lens group G1, and f2 is negative. The focal length of the lens group G2, f3 is the focal length of the positive lens group G3, f4 is the focal length of the negative lens group G4, and f5 is the focal length of the positive lens group G5.

また、表中において、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序、rは各レンズ面の曲率半径、dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、νdはd線を基準とするアッベ数、ndはd線(波長587.6nm)に対する屈折率をそれぞれ示す。なお、表1における面番号1〜27は、図1に示す面1〜27に対応している。また、表1において、物体面(不図示)と正レンズ群G1との軸上空気間隔をd0とし、正レンズ群G1と負レンズ群G2との軸上空気間隔をd7とし、負レンズ群G2と開口絞りSとの軸上空気間隔をd12とし、開口絞りSと正レンズ群G3との軸上空気間隔をd13とし、正レンズ群G3とと負レンズ群G4との軸上空気間隔をd18(無限遠合焦時の値が条件式(1)のd34に相当)とし、負レンズ群G4と正レンズ群G5との軸上空気間隔をd21とし、正レンズ群G5とオプティカルローパスフィルタOとの軸上空気間隔をd25としている。さらに、表中において、上記の条件式(1)〜(9)に対応する値も示している。   In the table, the surface number is the order of the lens surfaces from the object side along the direction in which the light beam travels, r is the radius of curvature of each lens surface, and d is the next optical surface (or image surface) from each optical surface. Is the distance on the optical axis, νd is the Abbe number with respect to the d-line, and nd is the refractive index with respect to the d-line (wavelength 587.6 nm). In addition, the surface numbers 1-27 in Table 1 respond | correspond to the surfaces 1-27 shown in FIG. In Table 1, the axial air distance between the object plane (not shown) and the positive lens group G1 is d0, the axial air distance between the positive lens group G1 and the negative lens group G2 is d7, and the negative lens group G2 And the axial air space between the aperture stop S and the positive lens group G3 is d13, and the axial air space between the positive lens group G3 and the negative lens group G4 is d18. (The value at the time of focusing on infinity corresponds to d34 in the conditional expression (1)), the axial air space between the negative lens group G4 and the positive lens group G5 is d21, and the positive lens group G5 and the optical low-pass filter O The on-axis air interval is d25. Further, in the table, values corresponding to the conditional expressions (1) to (9) are also shown.

なお、表中において、焦点距離f、曲率半径r、面間隔d、その他の長さの単位は、一般に「mm」が使われている。但し、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。以上、表についての説明は、他の実施例においても同様とし、その説明を省略する。   In the table, “mm” is generally used as the unit of focal length f, radius of curvature r, surface interval d, and other lengths. However, since the optical system can obtain the same optical performance even when proportionally enlarged or reduced, the unit is not limited to “mm”, and other appropriate units can be used. The description about the table is the same in the other examples, and the description is omitted.

(表1)
[全体諸元]
f= 85.04mm、2ω=19.2゜、Fno=3.6
[レンズ諸元]
面番号 r d νd nd
1 153.8926 3.5000 49.60 1.772499
2 -154.5706 0.1000
3 42.5523 3.7000 55.53 1.696797
4 1245.9823 2.4500
5 -320.8002 1.3000 29.52 1.717362
6 26.6125 4.2000 48.08 1.699998
7 212.0823 d7
8 -167.4791 1.3000 55.52 1.696800
9 28.3094 2.9500
10 -216.2226 1.2000 64.12 1.516800
11 26.8641 2.0000 23.78 1.846660
12 61.2228 d12
13 開口絞りS d13
14 56.9717 3.0000 65.47 1.603000
15 -66.1004 0.1000
16 40.1755 1.3000 27.51 1.755199
17 21.4606 4.0000 82.56 1.497820
18 -780.3046 d18
19 -364.6586 1.3000 40.77 1.883000
20 25.5565 2.0000 23.78 1.846660
21 40.2512 d21
22 -22.6638 1.5000 38.00 1.603420
23 -31.5953 0.1000
24 115.8240 3.0000 40.77 1.883000
25 -70.6649 d25
26 0.0000 2.0000 64.12 1.516800
27 0.0000 BF
[合焦時における可変間隔]
無限遠 近距離
f,β 85.04034 -0.50000 -1.00000
d0 0.0000 218.1695 145.3622
d7 2.30155 11.45995 18.06206
d12 18.53991 9.38151 2.77940
d13 16.15212 9.92441 2.28287
d18 5.01212 11.23983 18.88137
d21 7.58025 7.58025 7.58025
d25 50.08457 50.08457 50.08457
BF 0.68142 0.68142 0.68142
[撮影レンズ群データ]
群番号 群初面 群焦点距離
G1 1 48.7258(=f1)
G2 8 -29.8989(=f2)
G3 14 36.9275(=f3)
G4 19 -39.9953(=f4)
G5 22 73.7000(=f5)
[条件式]
条件式(1)VR= 1.353
条件式(2)(−f4)/d34= 7.98(d34=5.01)
条件式(3)f5/d34= 14.70
条件式(4)f3/d34= 7.37
条件式(5)(−f2)/d34= 5.97
条件式(6)f1/d34= 9.72
条件式(7)(rb+ra)/(rb−ra)= -0.7108
条件式(8)Da/Fo= 0.0288
条件式(9)Db/Fo= 0.0347
(Table 1)
[Overall specifications]
f = 85.04mm, 2ω = 19.2 °, Fno = 3.6
[Lens specifications]
Surface number r d νd nd
1 153.8926 3.5000 49.60 1.772499
2 -154.5706 0.1000
3 42.5523 3.7000 55.53 1.696797
4 1245.9823 2.4500
5 -320.8002 1.3000 29.52 1.717362
6 26.6125 4.2000 48.08 1.699998
7 212.0823 d7
8 -167.4791 1.3000 55.52 1.696800
9 28.3094 2.9500
10 -216.2226 1.2000 64.12 1.516800
11 26.8641 2.0000 23.78 1.846660
12 61.2228 d12
13 Aperture stop S d13
14 56.9717 3.0000 65.47 1.603000
15 -66.1004 0.1000
16 40.1755 1.3000 27.51 1.755199
17 21.4606 4.0000 82.56 1.497820
18 -780.3046 d18
19 -364.6586 1.3000 40.77 1.883000
20 25.5565 2.0000 23.78 1.846660
21 40.2512 d21
22 -22.6638 1.5000 38.00 1.603420
23 -31.5953 0.1000
24 115.8240 3.0000 40.77 1.883000
25 -70.6649 d25
26 0.0000 2.0000 64.12 1.516800
27 0.0000 BF
[Variable interval during focusing]
Infinity short distance
f, β 85.04034 -0.50000 -1.00000
d0 0.0000 218.1695 145.3622
d7 2.30155 11.45995 18.06206
d12 18.53991 9.38151 2.77940
d13 16.15212 9.92441 2.28287
d18 5.01212 11.23983 18.88137
d21 7.58025 7.58025 7.58025
d25 50.08457 50.08457 50.08457
BF 0.68142 0.68142 0.68142
[Photographing lens group data]
Group number Group first surface Group focal length G1 1 48.7258 (= f1)
G2 8 -29.8989 (= f2)
G3 14 36.9275 (= f3)
G4 19 -39.9953 (= f4)
G5 22 73.7000 (= f5)
[Conditional expression]
Conditional expression (1) VR = 1.353
Conditional expression (2) (-f4) /d34=7.98 (d34 = 0.01)
Conditional expression (3) f5 / d34 = 14.70
Conditional expression (4) f3 / d34 = 7.37
Conditional expression (5) (-f2) /d34=5.97
Conditional expression (6) f1 / d34 = 9.72
Conditional expression (7) (rb + ra) / (rb−ra) = − 0.7108
Conditional expression (8) Da / Fo = 0.0288
Conditional expression (9) Db / Fo = 0.0347

表1に示す諸元の表から、本実施例に係る撮影レンズ1では、上記条件式(1)〜(9)を全て満たすことが分かる。   From the table of specifications shown in Table 1, it can be seen that the photographing lens 1 according to the present example satisfies all the conditional expressions (1) to (9).

図2(a)は第1実施例の無限遠合焦時における諸収差図であり、図2(b)は第1実施例の無限遠合焦時に像ブレ補正(防振群G4のシフト量=-0.376)を行った時の横収差図である。図3(a)は第1実施例の近距離合焦時(撮影倍率-0.5倍)の諸収差図であり、図3(b)は第1実施例の近距離合焦時に像ブレ補正(防振群G4のシフト量=-0.546)を行った時の横収差図である。図4(a)は第1実施例の近距離合焦時(撮影倍率1.0倍)の諸収差図であり、図4(b)は第1実施例の近距離合焦時(撮影倍率1.0倍)で像ブレ補正(防振群G4のシフト量=-0.689)を行った時の横収差図である。   FIG. 2A is a diagram showing various aberrations when focusing on infinity according to the first embodiment, and FIG. 2B is a diagram illustrating image blur correction (shift amount of the image stabilizing group G4) when focusing on infinity according to the first embodiment. = -0.376) is a lateral aberration diagram when performing. FIG. 3A is a diagram showing various aberrations when focusing at a short distance (imaging magnification: −0.5 times) in the first embodiment, and FIG. 3B is an image blur correction (when focusing at a short distance in the first embodiment). It is a lateral aberration diagram when performing the shift amount of the image stabilizing group G4 = −0.546). FIG. 4A is a diagram showing various aberrations when focusing on a short distance (capturing magnification of 1.0 times) in the first embodiment, and FIG. 4B is a diagram showing aberrations when focusing on a short distance of the first embodiment (capturing magnification of 1.0 times). ) Is a lateral aberration diagram when image blur correction (shift amount of image stabilizing group G4 = −0.689) is performed.

各収差図において、FNOはFナンバー、Yは像高、dはd線(波長587.6nm)の収差曲線、gはg線(波長435.6nm)の収差曲線をそれぞれ示す。なお、非点収差を示す収差図において、実線はサジタル像面を示し、破線はメリジオナル像面を示す。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。   In each aberration diagram, FNO is an F number, Y is an image height, d is an aberration curve of a d-line (wavelength 587.6 nm), and g is an aberration curve of a g-line (wavelength 435.6 nm). In the aberration diagrams showing astigmatism, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. The explanation of the above aberration diagrams is the same in the other examples, and the explanation is omitted.

各収差図から明らかなように、第1実施例に係る撮影レンズ1では、諸収差が良好に補正され、優れた結像性能を有することが分かる。また、第1実施例の撮影レンズ1を搭載することにより、デジタル一眼レフカメラCAM(光学装置。図9参照)においても、優れた光学性能を確保することができる。   As is apparent from the respective aberration diagrams, it is understood that the photographic lens 1 according to the first example corrects various aberrations well and has excellent imaging performance. Further, by mounting the photographing lens 1 of the first embodiment, excellent optical performance can be ensured also in the digital single-lens reflex camera CAM (optical device, see FIG. 9).

(第2実施例)
第2実施例について、図5〜図8および表2を用いて説明する。図5は、第2実施例に係る撮影レンズ1の構成を示している。第2実施例に係る撮影レンズ1は、光軸に沿って物体側から順に並んだ、正レンズ群G1と、合焦時移動する負レンズ群G2と、開口絞りSと、合焦時移動する正レンズ群G3と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群G4と、正レンズ群G5とを有する。なお、像面Iは、図9の撮像素子7上に形成され、該撮像素子7はCCDやCMOS等から構成されている。
(Second embodiment)
A second embodiment will be described with reference to FIGS. FIG. 5 shows the configuration of the taking lens 1 according to the second embodiment. The photographic lens 1 according to the second example moves in order from the positive lens group G1, the negative lens group G2 that moves when in focus, the aperture stop S, and the aperture lens S that are arranged in order from the object side along the optical axis. It has a positive lens group G3, a negative lens group G4 that can move so as to have a moving component in a direction substantially perpendicular to the optical axis, and a positive lens group G5. The image plane I is formed on the image sensor 7 in FIG. 9, and the image sensor 7 is composed of a CCD, a CMOS, or the like.

正レンズ群G1は、物体側から順に並んだ、正レンズ部分群G1aと負レンズ部分群G1bを有する。正レンズ部分群G1aは、物体側から順に並んだ、両凸形状の正レンズL11と、物体側に凸面を向けた正メニスカスレンズL12とを有する。また、負レンズ部分群G1bは、物体側から順に並んだ、両凹形状を持った負レンズL13と物体側に凸面を向けた正メニスカスレンズL14とからなる接合負レンズとを有する。このような正レンズ群G1は、全体で正の屈折力を有しており、合焦時は像面Iに対して固定される。   The positive lens group G1 includes a positive lens portion group G1a and a negative lens portion group G1b arranged in order from the object side. The positive lens portion group G1a includes a biconvex positive lens L11 arranged in order from the object side, and a positive meniscus lens L12 having a convex surface facing the object side. The negative lens portion group G1b has a cemented negative lens composed of a negative lens L13 having a biconcave shape and a positive meniscus lens L14 having a convex surface facing the object side, which are arranged in order from the object side. Such a positive lens group G1 has a positive refractive power as a whole, and is fixed with respect to the image plane I at the time of focusing.

負レンズ群G2は、物体側から順に並んだ、負レンズ部分群G2aと、負レンズ部分群G2bとを有する。負レンズ部分群G2aは、物体側から順に並んだ、両凹レンズL21を有する。また、負レンズ部分群G2bは、物体側から順に並んだ、両凹形状を持った負レンズL22と物体側に凸面を向けた正メニスカスレンズL23とからなる接合負レンズを有する。このような負レンズ群G2は、全体で負の屈折力を有しており、合焦時は物体側から像側に移動する。   The negative lens group G2 includes a negative lens part group G2a and a negative lens part group G2b arranged in order from the object side. The negative lens portion group G2a includes biconcave lenses L21 arranged in order from the object side. The negative lens portion group G2b has a cemented negative lens composed of a negative lens L22 having a biconcave shape and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. Such a negative lens group G2 has a negative refractive power as a whole, and moves from the object side to the image side during focusing.

開口絞りSは、Fナンバーを決定し、合焦時は像面Iに対して固定される。   The aperture stop S determines the F number and is fixed with respect to the image plane I at the time of focusing.

正レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と両凸形状の正レンズL33とからなる接合正レンズとを有し、全体で正の屈折力を有しており、合焦時は像側から物体側に移動する。   The positive lens group G3 includes a biconvex positive lens L31 arranged in order from the object side, and a cemented positive lens including a negative meniscus lens L32 having a convex surface facing the object side and a biconvex positive lens L33. However, it has a positive refractive power as a whole, and moves from the image side to the object side during focusing.

負レンズ群G4は、物体側から順に並んだ、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42とからなる接合負レンズを有し、全体で負の屈折力を有しており、光軸に対してほぼ垂直な方向の移動成分を持つように移動させることにより像ブレ補正を行う、いわゆる防振群である。   The negative lens group G4 includes a cemented negative lens composed of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, which are arranged in order from the object side, and has a negative refractive power as a whole. This is a so-called anti-vibration group that performs image blur correction by moving so as to have a moving component in a direction substantially perpendicular to the optical axis.

正レンズ群G5は、物体側から順に並んだ、像側に凸面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52とを有し、全体で正の屈折力を有しおり、合焦時は像面Iに対して固定される。   The positive lens group G5 includes a negative meniscus lens L51 arranged in order from the object side and having a convex surface facing the image side, and a biconvex positive lens L52. The positive lens group G5 has a positive refractive power as a whole, and is in focus. The time is fixed relative to the image plane I.

表2は、第2実施例における各諸元を示す。なお、表2における面番号1〜25は、図5に示す面1〜25に対応している。また、表2において、正レンズ群G1と負レンズ群G2との軸上空気間隔をd7とし、負レンズ群G2と開口絞りSとの軸上空気間隔をd12とし、開口絞りSと正レンズ群G3との軸上空気間隔をd13とし、正レンズ群G3と負レンズ群G4との軸上空気間隔をd18(無限遠合焦時の値が条件式(1)のd34に相当)とし、負レンズ群G4と正レンズ群G5との軸上空気間隔をd21としている。さらに、表中において、上記の条件式(1)〜(9)に対応する値も示している。   Table 2 shows each item in the second embodiment. Note that surface numbers 1 to 25 in Table 2 correspond to surfaces 1 to 25 shown in FIG. In Table 2, the on-axis air distance between the positive lens group G1 and the negative lens group G2 is d7, the on-axis air distance between the negative lens group G2 and the aperture stop S is d12, and the aperture stop S and the positive lens group. The axial air gap between G3 and d3 is d13, and the axial air gap between the positive lens group G3 and the negative lens group G4 is d18 (the value at the time of focusing on infinity corresponds to d34 in the conditional expression (1)). The axial air space between the lens group G4 and the positive lens group G5 is d21. Further, in the table, values corresponding to the conditional expressions (1) to (9) are also shown.

(表2)
[全体諸元]
f= 85.04mm、2ω=19.2゜、Fno=3.6
[レンズ諸元]
面番号 r d νd nd
1 76.3604 4.5000 49.60 1.772499
2 -148.8912 0.1000
3 47.5894 3.0000 55.53 1.696797
4 156.5583 1.3000
5 -295.4947 1.3000 29.52 1.717362
6 29.2740 4.2000 48.08 1.699998
7 268.6211 d7
8 -257.6864 1.3000 64.12 1.516800
9 25.1073 3.5000
10 -81.4668 1.3000 64.12 1.516800
11 29.1916 1.8000 23.78 1.846660
12 58.9804 d12
13 開口絞りS d13
14 48.3475 3.0000 63.38 1.618000
15 -105.1379 0.1000
16 45.0100 1.3000 27.51 1.755199
17 20.9466 4.5000 82.56 1.497820
18 -113.1907 dd18
19 -163.2115 1.3000 37.16 1.834000
20 19.3875 2.3000 23.78 1.846660
21 41.5812 d21
22 -22.7307 1.5000 58.90 1.518229
23 -30.7407 0.1000
24 117.2261 3.0000 45.30 1.795000
25 -66.5666 BF
[合焦時における可変間隔]
無限遠 近距離
f,β 85.04034 -0.70000 -1.00000
d0 0.0000 173.6938 144.9021
d7 2.48485 14.40920 17.88657
d12 17.79213 5.86779 2.39042
d13 15.77190 6.23243 1.44831
d18 4.95458 14.49406 19.27818
d21 7.56351 7.56351 7.56351
BF 50.60784 50.60784 50.60784
[撮影レンズ群データ]
群番号 群初面 群焦点距離
G1 1 48.7258(=f1)
G2 8 -30.2128(=f2)
G3 14 36.9275(=f3)
G4 19 -39.9953(=f4)
G5 22 73.7000(=f5)
[条件式]
条件式(1)VR= 1.328
条件式(2)(−f4)/d34= 8.07(d34=4.955)
条件式(3)f5/d34= 14.87
条件式(4)f3/d34= 7.45
条件式(5)(−f2)/d34= 6.10
条件式(6)f1/d34= 9.83
条件式(7)(rb+ra)/(rb−ra)= -0.8224
条件式(8)Da/Fo= 0.0153
条件式(9)Db/Fo= 0.0412
(Table 2)
[Overall specifications]
f = 85.04mm, 2ω = 19.2 °, Fno = 3.6
[Lens specifications]
Surface number r d νd nd
1 76.3604 4.5000 49.60 1.772499
2 -148.8912 0.1000
3 47.5894 3.0000 55.53 1.696797
4 156.5583 1.3000
5 -295.4947 1.3000 29.52 1.717362
6 29.2740 4.2000 48.08 1.699998
7 268.6211 d7
8 -257.6864 1.3000 64.12 1.516800
9 25.1073 3.5000
10 -81.4668 1.3000 64.12 1.516800
11 29.1916 1.8000 23.78 1.846660
12 58.9804 d12
13 Aperture stop S d13
14 48.3475 3.0000 63.38 1.618000
15 -105.1379 0.1000
16 45.0100 1.3000 27.51 1.755199
17 20.9466 4.5000 82.56 1.497820
18 -113.1907 dd18
19 -163.2115 1.3000 37.16 1.834000
20 19.3875 2.3000 23.78 1.846660
21 41.5812 d21
22 -22.7307 1.5000 58.90 1.518229
23 -30.7407 0.1000
24 117.2261 3.0000 45.30 1.795000
25 -66.5666 BF
[Variable interval during focusing]
Infinity Near distance f, β 85.04034 -0.70000 -1.00000
d0 0.0000 173.6938 144.9021
d7 2.48485 14.40920 17.88657
d12 17.79213 5.86779 2.39042
d13 15.77190 6.23243 1.44831
d18 4.95458 14.49406 19.27818
d21 7.56351 7.56351 7.56351
BF 50.60784 50.60784 50.60784
[Photographing lens group data]
Group number Group first surface Group focal length G1 1 48.7258 (= f1)
G2 8 -30.2128 (= f2)
G3 14 36.9275 (= f3)
G4 19 -39.9953 (= f4)
G5 22 73.7000 (= f5)
[Conditional expression]
Conditional expression (1) VR = 1.328
Conditional expression (2) (-f4) / d34 = 8.07 (d34 = 4.955)
Conditional expression (3) f5 / d34 = 14.87
Conditional expression (4) f3 / d34 = 7.45
Conditional expression (5) (-f2) / d34 = 6.10
Conditional expression (6) f1 / d34 = 9.83
Conditional expression (7) (rb + ra) / (rb−ra) = − 0.8224
Conditional expression (8) Da / Fo = 0.0153
Conditional expression (9) Db / Fo = 0.0412

表2に示す諸元の表から、本実施例に係る撮影レンズ1では、上記条件式(1)〜(9)を全て満たすことが分かる。   It can be seen from the table of specifications shown in Table 2 that the photographic lens 1 according to the present example satisfies all the conditional expressions (1) to (9).

図6(a)は第2実施例の無限遠合焦時における諸収差図であり、図6(b)は第2実施例の無限遠合焦時に像ブレ補正(防振群G4のシフト量=-0.383)を行った時の横収差図である。図7(a)は第2実施例の近距離合焦時(撮影倍率-0.7倍)の諸収差図であり、図7(b)は第2実施例の近距離合焦時に像ブレ補正(防振群G4のシフト量=-0.553)を行った時の横収差図である。図8(a)は第2実施例の近距離合焦時(撮影倍率1.0倍)の諸収差図であり、図8(b)は第2実施例の近距離合焦時(撮影倍率1.0倍)で像ブレ補正(防振群G4のシフト量=-0.700)を行った時の横収差図である。   FIG. 6A is a diagram of various aberrations when focusing on infinity according to the second embodiment. FIG. 6B is a diagram illustrating image blur correction (shift amount of the image stabilizing group G4) when focusing on infinity according to the second embodiment. = -0.383) is a lateral aberration diagram when performing. FIG. 7A is a diagram showing various aberrations when focusing at a short distance (imaging magnification: -0.7 times) in the second embodiment, and FIG. 7B is an image blur correction (when focusing at a short distance according to the second embodiment). It is a lateral aberration diagram when performing the shift amount of the image stabilizing group G4 = −0.553). FIG. 8A is a diagram showing various aberrations when focusing at a short distance (imaging magnification: 1.0) in the second embodiment, and FIG. 8 (b) is a graph showing various aberrations when focusing at a short distance in the second embodiment (imaging magnification: 1.0). ) Is a lateral aberration diagram when image blur correction is performed (shift amount of the image stabilizing group G4 = 0.700).

各収差図から明らかなように、第2実施例に係る撮影レンズ1では、諸収差が良好に補正され、優れた結像性能を有することが分かる。また、第2実施例の撮影レンズ1を搭載することにより、デジタル一眼レフカメラCAM(光学装置。図9参照)においても、優れた光学性能を確保することができる。   As can be seen from the respective aberration diagrams, in the taking lens 1 according to the second example, various aberrations are favorably corrected and it has excellent imaging performance. Further, by mounting the photographing lens 1 of the second embodiment, excellent optical performance can be ensured also in the digital single-lens reflex camera CAM (optical device, see FIG. 9).

なお、上記の実施形態において以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   In the above-described embodiment, the following description can be appropriately adopted as long as the optical performance is not impaired.

各実施例では、5群構成を示したが、6群、7群等の他の群構成にも適用可能である。具体的には、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、3群(正レンズ群G3)と4群(負レンズ群G4)との間にレンズまたはレンズ群を追加した構成でも構わないが、その場合、d34は、4群の物体側の直前に配置されたレンズ群内の最も像側のレンズ面と、4群の最も物体側のレンズ面との間の距離が最も小さい値とする。また、4群と5群(正レンズ群G5)との間に防振性能向上のため、負レンズ群を追加してもよい。   In each embodiment, the five-group configuration is shown, but the present invention can also be applied to other group configurations such as the sixth group and the seventh group. Specifically, a configuration in which a lens or a lens group is added closest to the object side or a configuration in which a lens or a lens group is added closest to the image side may be used. Further, a configuration in which a lens or a lens group is added between the third group (positive lens group G3) and the fourth group (negative lens group G4) may be used. In this case, d34 is set immediately before the object side of the fourth group. The distance between the lens surface closest to the image side in the arranged lens group and the lens surface closest to the object side of the fourth group is set to the smallest value. Further, a negative lens group may be added between the fourth group and the fifth group (positive lens group G5) in order to improve the image stabilization performance.

また、本実施形態において、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。なお、前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。   Further, in the present embodiment, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. The focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).

また、本実施形態において、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群は、光軸に対して垂直方向に移動する他、光軸に対して斜め方向に移動したり、光軸上の一点を回転中心として揺動することとしてもよい。   In the present embodiment, the negative lens group that can move so as to have a moving component in a direction substantially perpendicular to the optical axis moves in a direction perpendicular to the optical axis, and is also oblique to the optical axis. Or may be swung around a point on the optical axis.

また、本実施形態において、レンズ面を非球面としても構わない。また、非球面は研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   In the present embodiment, the lens surface may be an aspherical surface. The aspheric surface may be any one of an aspheric surface by grinding, a glass mold aspheric surface in which glass is formed into an aspheric shape, and a composite aspheric surface in which resin is formed in an aspheric shape on the surface of the glass. . The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本実施形態において、開口絞りSは、2群(負レンズ群G2)と3群(正レンズ群G3)の間に合焦時は像面Iに対して固定して配置されるのが好ましいが、開口絞りとしての部材を設けずにレンズ枠でその役割を代用してもよい。   In the present embodiment, the aperture stop S is fixedly disposed between the second group (negative lens group G2) and the third group (positive lens group G3) with respect to the image plane I during focusing. Although it is preferable, the role may be substituted with a lens frame without providing a member as an aperture stop.

また、本実施形態において、各レンズ面には、フレアやゴーストを軽減して高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。   In this embodiment, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

また、本実施形態の撮影レンズ1は、35mmフィルムサイズ換算での焦点距離が100〜135mm程度である。   The photographing lens 1 of the present embodiment has a focal length in terms of 35 mm film size of about 100 to 135 mm.

本実施形態において、1群(正レンズ群G1)が正のレンズ成分を2つと、負のレンズ成分を1つ有するのが好ましい。また、1群は、物体側から順に、正・正・負の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。なお、前記負のレンズ成分には、接合レンズを用いることがより好ましい。   In the present embodiment, it is preferable that one group (positive lens group G1) has two positive lens components and one negative lens component. Further, in the first group, it is preferable that lens components are arranged in order of positive, positive, and negative in order from the object side with an air gap interposed therebetween. It is more preferable to use a cemented lens for the negative lens component.

また、本実施形態において、3群(正レンズ群G3)が正レンズ成分を2つ有するのが好ましい。また、3群は、物体側から順に、正・正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。なお、2番目の前記正レンズ成分には、接合レンズを用いることがより好ましい。   In the present embodiment, it is preferable that the third group (positive lens group G3) has two positive lens components. In the third group, it is preferable to arrange the lens components in order of positive / positive in order from the object side with an air gap interposed therebetween. It is more preferable to use a cemented lens for the second positive lens component.

また、本実施形態において、5群(正レンズ群G5)が正のレンズ成分を1つと、負のレンズ成分を1つ有するのが好ましい。また、5群は、物体側から順に、負・正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。   In the present embodiment, it is preferable that the fifth group (positive lens group G5) has one positive lens component and one negative lens component. In the fifth group, it is preferable that lens components are arranged in order of negative / positive in order from the object side with an air gap interposed therebetween.

また、本実施形態において、4群(負レンズ群G4)が1つのレンズ成分からなるのが好ましい。なお、そのレンズ成分には、接合レンズを用いることがより好ましい。   In the present embodiment, it is preferable that the fourth group (negative lens group G4) is composed of one lens component. It is more preferable to use a cemented lens as the lens component.

なお、本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。   In addition, in order to make this invention intelligible, although demonstrated with the component requirement of embodiment, it cannot be overemphasized that this invention is not limited to this.

第1実施例に係る撮影レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the imaging lens which concerns on 1st Example. (a)は第1実施例の無限遠合焦状態における諸収差図であり、(b)は第1実施例の無限遠合焦時に像ブレ補正を行った時の横収差図である。(A) is an aberration diagram in the infinite focus state of the first embodiment, and (b) is a lateral aberration diagram when image blur correction is performed in the infinite focus state of the first embodiment. (a)は第1実施例の近距離合焦時(撮影倍率-0.5倍)の諸収差図であり、(b)は第1実施例の近距離合焦時に像ブレ補正を行った時の横収差図である。FIG. 6A is a diagram illustrating various aberrations when focusing on a short distance in the first embodiment (imaging magnification: −0.5 times), and FIG. 5B is a diagram when image blur correction is performed when focusing on a short distance according to the first embodiment. It is a lateral aberration diagram. (a)は第1実施例の近距離合焦時(撮影倍率-1.0倍)の諸収差図であり、(b)は第1実施例の近距離合焦時に像ブレ補正を行った時の横収差図である。FIG. 5A is a diagram illustrating various aberrations when focusing on a short distance (imaging magnification: −1.0 times) according to the first embodiment, and FIG. 5B is a diagram when image blur correction is performed when focusing on a short distance according to the first embodiment. It is a lateral aberration diagram. 第2実施例に係る撮影レンズの構成を示す断面図である。It is sectional drawing which shows the structure of the photographic lens which concerns on 2nd Example. (a)は第2実施例の無限遠合焦状態における諸収差図であり、(b)は第2実施例の無限遠合焦時に像ブレ補正を行った時の横収差図である。(A) is an aberration diagram in the infinite focus state of the second embodiment, and (b) is a lateral aberration diagram when image blur correction is performed in the infinite focus state of the second embodiment. (a)は第2実施例の近距離合焦時(撮影倍率-0.7倍)の諸収差図であり、(b)は第2実施例の近距離合焦時に像ブレ補正を行った時の横収差図である。FIG. 6A is a diagram illustrating various aberrations when focusing on a short distance in the second embodiment (shooting magnification: −0.7 times), and FIG. 5B is a diagram when image blur correction is performed when focusing on a short distance according to the second embodiment. It is a lateral aberration diagram. (a)は第2実施例の近距離合焦時(撮影倍率-1.0倍)の諸収差図であり、(b)は第2実施例の近距離合焦時に像ブレ補正を行った時の横収差図である。FIG. 6A is a diagram illustrating various aberrations when focusing on a short distance in the second embodiment (imaging magnification: −1.0 times), and FIG. 5B is a diagram when image blur correction is performed when focusing on a short distance according to the second embodiment. It is a lateral aberration diagram. は本実施形態の撮影レンズを搭載したデジタル一眼レフカメラの概略断面図である。FIG. 2 is a schematic cross-sectional view of a digital single-lens reflex camera equipped with the photographing lens of the present embodiment.

符号の説明Explanation of symbols

1 撮影レンズ
G1 1群(正レンズ群)
G2 2群(合焦時移動する負レンズ群)
G3 3群(合焦時移動する正レンズ群)
G4 4群(光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群(防振群))
G5 5群(正レンズ群)
S 開口絞り
I 像面
CAM デジタル一眼レフカメラ(光学装置)
1 Shooting lens G1 1 group (positive lens group)
G2 2 group (negative lens group that moves when focused)
G3 Group 3 (positive lens group that moves when focused)
G4 4 group (negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis (anti-vibration group))
G5 Group 5 (positive lens group)
S aperture stop I image plane CAM digital single lens reflex camera (optical device)

Claims (12)

光軸に沿って物体側から順に並んだ、正レンズ群と、合焦時移動する負レンズ群と、合焦時移動する正レンズ群と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群と、正レンズ群とを少なくとも有し、
前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の横倍率をBvrとし、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群よりも像側の光学系全体の横倍率をBrとし、防振係数をVRとし、前記防振係数をVR=|(1−Bvr)×Br|と定義するとき、次式
1.21<VR<3.0
の条件を満足することを特徴とする撮影レンズ。
A positive lens group, a negative lens group that moves when focused, a positive lens group that moves when focused, and a moving component in a direction substantially perpendicular to the optical axis, arranged in order from the object side along the optical axis. Having at least a negative lens group movable so as to have a positive lens group,
The lateral magnification of the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis is Bvr, and the movable lens can move so as to have a moving component in a direction substantially perpendicular to the optical axis. When the lateral magnification of the entire optical system closer to the image side than the negative lens group is Br, the image stabilization coefficient is VR, and the image stabilization coefficient is defined as VR = | (1-Bvr) × Br | 21 <VR <3.0
A photographic lens characterized by satisfying the above conditions.
前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の焦点距離をf4とし、
前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の物体側に位置するレンズ群内の最も像側にあるレンズ面と、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式
1.0< (−f4)/d34<20.0
の条件を満足することを特徴とする請求項1に記載の撮影レンズ。
The focal length of the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis is f4,
The lens surface closest to the image side in the lens group located on the object side of the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis, and substantially perpendicular to the optical axis When the air gap on the optical axis at the time of focusing at infinity with the lens surface closest to the object side of the negative lens group that can move so as to have a moving component in any direction is d34, the following expression 1.0 <( -F4) / d34 <20.0
The photographic lens according to claim 1, wherein the following condition is satisfied.
前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群より像側に位置する正レンズ群の焦点距離をf5とし、
前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の物体側に位置するレンズ群内の最も像側にあるレンズ面と、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式
1.0<f5/d34<40.0
の条件を満足することを特徴とする請求項1又は2に記載の撮影レンズ。
The focal length of the positive lens group located on the image side from the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis is f5,
The lens surface closest to the image side in the lens group located on the object side of the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis, and substantially perpendicular to the optical axis When the air gap on the optical axis at the time of focusing at infinity with the lens surface closest to the object in the negative lens group movable so as to have a moving component in a specific direction is d34, the following expression 1.0 < f5 / d34 <40.0
The photographic lens according to claim 1, wherein the following condition is satisfied.
前記合焦時移動する正レンズ群の焦点距離をf3とし、
前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の物体側に位置するレンズ群内の最も像側にあるレンズ面と、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式
1.0<f3/d34<18.0
の条件を満足することを特徴とする請求項1〜3のいずれか一項に記載の撮影レンズ。
The focal length of the positive lens group that moves during focusing is f3,
The lens surface closest to the image side in the lens group located on the object side of the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis, and substantially perpendicular to the optical axis When the air gap on the optical axis at the time of focusing at infinity with the lens surface closest to the object in the negative lens group movable so as to have a moving component in a specific direction is d34, the following expression 1.0 < f3 / d34 <18.0
The photographic lens according to claim 1, wherein the following condition is satisfied.
前記合焦時移動する負レンズ群の焦点距離をf2とし、
前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の物体側に位置するレンズ群内の最も像側にあるレンズ面と、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式
1.0<(−f2)/d34<17.0
の条件を満足することを特徴とする請求項1〜4のいずれか一項に記載の撮影レンズ。
The focal length of the negative lens group that moves at the time of focusing is f2,
The lens surface closest to the image side in the lens group located on the object side of the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis, and substantially perpendicular to the optical axis When the air gap on the optical axis at the time of focusing at infinity with the lens surface closest to the object in the negative lens group movable so as to have a moving component in a specific direction is d34, the following expression 1.0 < (-F2) / d34 <17.0
The photographic lens according to claim 1, wherein the following condition is satisfied.
最も物体側に位置する前記正レンズ群の焦点距離をf1とし、
前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の物体側に位置するレンズ群内の最も像側にあるレンズ面と、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群内の最も物体側にあるレンズ面との無限遠合焦時の光軸上の空気間隔をd34としたとき、次式
1.0<f1/d34<20.0
の条件を満足することを特徴とする請求項1〜5のいずれか一項に記載の撮影レンズ。
The focal length of the positive lens group located closest to the object side is f1,
The lens surface closest to the image side in the lens group located on the object side of the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis, and substantially perpendicular to the optical axis When the air gap on the optical axis at the time of focusing at infinity with the lens surface closest to the object in the negative lens group movable so as to have a moving component in a specific direction is d34, the following expression 1.0 < f1 / d34 <20.0
The photographic lens according to claim 1, wherein the following condition is satisfied.
前記合焦時移動する負レンズ群は、物体側から順に並んだ、負レンズと、負レンズと正レンズとからなる接合レンズとを有することを特徴とする請求項1〜6のいずれか一項に記載の撮影レンズ。   The negative lens group that moves at the time of focusing includes a negative lens and a cemented lens including a negative lens and a positive lens, which are arranged in order from the object side. The taking lens described in 1. 前記合焦時移動する負レンズ群は、物体側から順に並んだ、負レンズL21と、負レンズL22と正レンズL23とからなる接合レンズとを有し、
前記負レンズL21の物体側の面の曲率半径をraとし、該負レンズL21の像側の面の曲率半径をrbとしたとき、次式
−1.0<(rb+ra)/(rb−ra)≦0
の条件を満足することを特徴とする請求項1〜7のいずれか一項に記載の撮影レンズ。
The negative lens group that moves at the time of focusing has a negative lens L21, and a cemented lens composed of a negative lens L22 and a positive lens L23 arranged in order from the object side.
When the radius of curvature of the object side surface of the negative lens L21 is ra and the radius of curvature of the image side surface of the negative lens L21 is rb, the following equation −1.0 <(rb + ra) / (rb−ra) ≦ 0
The photographic lens according to claim 1, wherein the following condition is satisfied.
最も物体側に位置する前記正レンズ群は、物体側から順に並んだ、正レンズ部分群G1aと、負レンズ部分群G1bとを有し、
前記正レンズ部分群G1aと前記負レンズ部分群G1bとの光軸上の空気間隔をDaとし、光学系全系の無限遠合焦時の焦点距離をFoとしたとき、次式
0.005 <Da/Fo<0.09
の条件を満足することを特徴とする請求項1〜8のいずれか一項に記載の撮影レンズ。
The positive lens group located closest to the object side includes a positive lens part group G1a and a negative lens part group G1b arranged in order from the object side,
When the air distance on the optical axis between the positive lens portion group G1a and the negative lens portion group G1b is Da, and the focal length at the time of focusing on the infinity of the entire optical system is Fo, the following expression 0.005 < Da / Fo <0.09
The photographic lens according to claim 1, wherein the following condition is satisfied.
前記合焦時移動する負レンズ群は、物体側から順に並んだ、負レンズ部分群G2aと、負レンズ部分群G2bとを有し、
前記負レンズ部分群G2aと前記負レンズ部分群G2bとの光軸上の空気間隔をDbとし、光学系全系の無限遠合焦時の焦点距離をFoとしたとき、次式
0.02<Db/Fo<0.08
の条件を満足することを特徴とする請求項1〜9のいずれか一項に記載の撮影レンズ。
The negative lens group that moves at the time of focusing has a negative lens part group G2a and a negative lens part group G2b arranged in order from the object side,
When the air space on the optical axis between the negative lens portion group G2a and the negative lens portion group G2b is Db, and the focal length at the time of focusing on infinity of the entire optical system is Fo, the following expression 0.02 < Db / Fo <0.08
The imaging lens according to claim 1, wherein the following condition is satisfied.
請求項1〜10のいずれか一項に記載の撮影レンズを搭載することを特徴とする光学装置。   An optical apparatus comprising the photographing lens according to any one of claims 1 to 10. 光軸に沿って物体側から順に並んだ、正レンズ群と、合焦時移動する負レンズ群と、合焦時移動する正レンズ群と、光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群と、正レンズ群とを少なくとも有する撮影レンズを用いて、像面上の像ブレを補正する像ブレ補正方法であって、
前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群の横倍率をBvrとし、前記光軸に対してほぼ垂直な方向の移動成分を持つように移動可能な負レンズ群よりも像側の光学系全体の横倍率をBrとし、防振係数をVRとし、前記防振係数をVR=|(1−Bvr)×Br|と定義するとき、次式
1.21<VR<3.0
の条件を満足することを特徴とする像ブレ補正方法。
A positive lens group, a negative lens group that moves when focused, a positive lens group that moves when focused, and a moving component in a direction substantially perpendicular to the optical axis, arranged in order from the object side along the optical axis. An image blur correction method for correcting image blur on an image plane by using a photographing lens having at least a negative lens group movable so as to have a positive lens group,
The lateral magnification of the negative lens group movable so as to have a moving component in a direction substantially perpendicular to the optical axis is Bvr, and the movable lens can move so as to have a moving component in a direction substantially perpendicular to the optical axis. When the lateral magnification of the entire optical system closer to the image side than the negative lens group is Br, the image stabilization coefficient is VR, and the image stabilization coefficient is defined as VR = | (1-Bvr) × Br | 21 <VR <3.0
An image blur correction method characterized by satisfying the following condition.
JP2008162705A 2008-01-22 2008-06-23 Photographic lens, optical device including the same, and image blur correction method Active JP5229614B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008162705A JP5229614B2 (en) 2008-06-23 2008-06-23 Photographic lens, optical device including the same, and image blur correction method
EP20080253863 EP2083303A1 (en) 2008-01-22 2008-12-03 Imaging lens, optical device thereof, and optical method for manufacturing imaging lens
US12/328,257 US8031409B2 (en) 2008-01-22 2008-12-04 Imaging lens, optical device thereof, and method for manufacturing imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008162705A JP5229614B2 (en) 2008-06-23 2008-06-23 Photographic lens, optical device including the same, and image blur correction method

Publications (2)

Publication Number Publication Date
JP2010002790A true JP2010002790A (en) 2010-01-07
JP5229614B2 JP5229614B2 (en) 2013-07-03

Family

ID=41584557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162705A Active JP5229614B2 (en) 2008-01-22 2008-06-23 Photographic lens, optical device including the same, and image blur correction method

Country Status (1)

Country Link
JP (1) JP5229614B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013357A (en) * 2009-06-30 2011-01-20 Sigma Corp Inner focus type macro lens having vibration-proof function
JP2011013358A (en) * 2009-06-30 2011-01-20 Sigma Corp Inner focus type macro lens having vibration-proof function
JP2012063403A (en) * 2010-09-14 2012-03-29 Sigma Corp Inner focus type macro lens with vibration isolating function
WO2012070559A1 (en) * 2010-11-26 2012-05-31 株式会社ニコン Variable power optical system, optical device, and method for manufacturing variable power optical system
CN103370647A (en) * 2010-12-17 2013-10-23 株式会社尼康 Optical system, image pickup device, and method for manufacturing optical system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110811A (en) * 1990-08-31 1992-04-13 Sigma Corp Inner focus type macrolens
JP2001272601A (en) * 2000-03-27 2001-10-05 Canon Inc Optical system and optical equipment using the same
JP2006106112A (en) * 2004-09-30 2006-04-20 Nikon Corp Interchangeable lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04110811A (en) * 1990-08-31 1992-04-13 Sigma Corp Inner focus type macrolens
JP2001272601A (en) * 2000-03-27 2001-10-05 Canon Inc Optical system and optical equipment using the same
JP2006106112A (en) * 2004-09-30 2006-04-20 Nikon Corp Interchangeable lens

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011013357A (en) * 2009-06-30 2011-01-20 Sigma Corp Inner focus type macro lens having vibration-proof function
JP2011013358A (en) * 2009-06-30 2011-01-20 Sigma Corp Inner focus type macro lens having vibration-proof function
JP2012063403A (en) * 2010-09-14 2012-03-29 Sigma Corp Inner focus type macro lens with vibration isolating function
WO2012070559A1 (en) * 2010-11-26 2012-05-31 株式会社ニコン Variable power optical system, optical device, and method for manufacturing variable power optical system
US9176307B2 (en) 2010-11-26 2015-11-03 Nikon Corporation Zoom lens system, optical apparatus, and method for manufacturing zoom lens system
CN103370647A (en) * 2010-12-17 2013-10-23 株式会社尼康 Optical system, image pickup device, and method for manufacturing optical system

Also Published As

Publication number Publication date
JP5229614B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5498259B2 (en) High magnification zoom lens
JP5544959B2 (en) Variable-magnification optical system, optical apparatus, and variable-magnification optical system manufacturing method
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5292756B2 (en) Zoom lens and optical apparatus having the same
JP5126668B2 (en) Photographic lens, optical device including the same, and image blur correction method
JP5498260B2 (en) Zoom lens unit
JP2008003511A (en) Zoom lens with vibration-proof function, imaging apparatus, vibration preventing method for zoom lens, and power varying method for zoom lens
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
JP5448574B2 (en) Zoom lens and imaging apparatus having the same
JP6331673B2 (en) Optical system, optical device
JP5229614B2 (en) Photographic lens, optical device including the same, and image blur correction method
JP2015215557A (en) Optical system, optical device, and method for manufacturing the optical system
JP6354257B2 (en) Variable magnification optical system and imaging apparatus
JP6784952B2 (en) Optical system and optical equipment
JP2015031951A (en) Zoom lens, optical device and method for manufacturing zoom lens
JP2009145588A (en) Macro lens, optical apparatus, method for focusing macro lens, and method for vibration reduction of macro lens
JP6354256B2 (en) Variable magnification optical system and imaging apparatus
JP5292894B2 (en) Optical system, optical system focusing method, and imaging apparatus having these
JP5900764B2 (en) High magnification zoom lens
JP6337565B2 (en) Variable magnification optical system and imaging apparatus
JP2014235283A (en) Zoom optical system, imaging apparatus, and method for manufacturing the zoom optical system
JP6264916B2 (en) Optical system, optical device
JP5740965B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP5861972B2 (en) High magnification zoom lens
JP6492416B2 (en) Optical system, optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250