JP2009294012A - Apparatus and method for measuring board thickness - Google Patents

Apparatus and method for measuring board thickness Download PDF

Info

Publication number
JP2009294012A
JP2009294012A JP2008146527A JP2008146527A JP2009294012A JP 2009294012 A JP2009294012 A JP 2009294012A JP 2008146527 A JP2008146527 A JP 2008146527A JP 2008146527 A JP2008146527 A JP 2008146527A JP 2009294012 A JP2009294012 A JP 2009294012A
Authority
JP
Japan
Prior art keywords
measured
ultrasonic
laser
oxide film
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008146527A
Other languages
Japanese (ja)
Inventor
Naoki Fuse
直紀 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2008146527A priority Critical patent/JP2009294012A/en
Publication of JP2009294012A publication Critical patent/JP2009294012A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for measuring a board thickness, capable of sensitively measuring a thickness value of a board, even in the case any oxide film is formed on a material to be measured. <P>SOLUTION: The method includes: an ultrasonic generating means 11 which irradiates the surface of the material to be measured 2 with a laser beam, thereby generating an ultrasonic wave and removing the oxide film; an ultrasonic detecting means 12 which is disposed on the downstream side in the conveying direction of the material to be measured 2; a material conveying means 14 for conveying the material to be measured 2; a control means 15 which carries out a control, thereby bringing the ultrasonic generating means 11 to irradiate a prescribed position of the material to be measured 2 with the laser beam and remove the oxide film, and after a movement of the prescribed position for a predetermined distance on the downstream side in the conveying direction of the material to be measured 2, which irradiates another prescribed position being positioned on the upstream side in the conveying direction on the basis of above prescribed position, with the laser beam to remove the oxide film, and further generates the ultrasonic wave and brings the ultrasonic detection means 12 to carry out a detection through the prescribed position; and an operation processing means 13 which calculates the board thickness of the material to be measured 2, based on a detection result of the ultrasonic detection means 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、板厚の測定装置および板厚の測定方法に関するものであり、特に好適には、被測定材にレーザを照射して被測定材の内部に超音波を発生させ、この超音波のエコーを検出することによって、被測定材の板厚を非接触で測定することができる板厚の測定装置および板厚の測定方法に関するものである。   The present invention relates to a plate thickness measuring apparatus and a plate thickness measuring method, and particularly preferably, irradiates a material to be measured with a laser to generate ultrasonic waves inside the material to be measured. The present invention relates to a plate thickness measuring apparatus and a plate thickness measuring method capable of measuring the plate thickness of a material to be measured in a non-contact manner by detecting an echo.

鋼材などの被測定材の板厚を、非接触で測定する装置および方法としては、たとえば、X線板厚計やγ線板厚計を用いた板厚の測定装置および板厚の測定方法が知られている。これらの板厚計は、発信部と受信部とを有し、これらが被測定材を挟んで対向するように設けられる。そして、発信部からX線やγ線を発射し、発射したX線やγ線を、被測定材を通して受信部で受信することによって、被測定材の板厚を測定することができる。   As a device and a method for measuring the thickness of a material to be measured such as a steel material in a non-contact manner, there are, for example, a plate thickness measuring device and a plate thickness measuring method using an X-ray plate thickness meter or a γ-ray plate thickness meter. Are known. These thickness gauges have a transmitter and a receiver, and are provided so as to face each other with a material to be measured interposed therebetween. And the board | substrate thickness of a to-be-measured material can be measured by emitting X-rays and (gamma) rays from a transmission part, and receiving the emitted X-rays and (gamma) rays in a receiving part through a to-be-measured material.

ただし、X線板厚計やγ線板厚計を備える板厚の測定装置は、一般的に高価である。また、X線板厚計やγ線板厚計は、放射性物質を内蔵していることから、それらの取り扱いには注意を要する。そこで、X線板厚計やγ線板厚計を備える板厚の測定装置に比較して、安価で取り扱いが容易なレーザ超音波方式の板厚計を備える板厚の測定装置を使用したいという要求がある。   However, a plate thickness measuring device including an X-ray plate thickness meter or a γ-ray plate thickness meter is generally expensive. In addition, since X-ray thickness gauges and γ-ray thickness gauges contain radioactive materials, they must be handled with care. Therefore, compared to a plate thickness measuring device equipped with an X-ray plate thickness meter or a γ-ray plate thickness meter, it is desired to use a plate thickness measuring device equipped with a laser ultrasonic thickness meter that is inexpensive and easy to handle. There is a request.

レーザ超音波方式の板厚計を用いた板厚の測定方法の概略は、次のとおりである。まず、被測定材の表面の所定の位置にパルスレーザを照射する。パルスレーザが照射されると、被測定材の表面が局所的な温度上昇により変形し、弾性波(超音波)が発生する。また、被測定材の表面でアブレーションが発生し、このアブレーションの反力により、被測定材の内部に超音波が発生する。このように、まず被測定材にレーザを照射して被測定材の内部に超音波を発生させる。発生した超音波は被測定材の内部を伝搬し、被測定材の表面に達する。これをレーザ干渉計などの超音波検出装置を用いて、非接触で検出する。検出した超音波に基づいて、被測定材の板厚を算出する。   The outline of the thickness measurement method using a laser ultrasonic thickness gauge is as follows. First, a pulse laser is irradiated to a predetermined position on the surface of the material to be measured. When the pulse laser is irradiated, the surface of the material to be measured is deformed by a local temperature rise, and an elastic wave (ultrasonic wave) is generated. Further, ablation occurs on the surface of the material to be measured, and ultrasonic waves are generated inside the material to be measured due to the reaction force of the ablation. In this way, first, a laser beam is irradiated on the material to be measured to generate ultrasonic waves inside the material to be measured. The generated ultrasonic wave propagates through the material to be measured and reaches the surface of the material to be measured. This is detected in a non-contact manner using an ultrasonic detection device such as a laser interferometer. Based on the detected ultrasonic wave, the thickness of the material to be measured is calculated.

ところで、鋼材などの熱間圧延において、圧延後の圧延材(鋼材など)の板厚を所定の寸法精度に維持するために、圧延後または圧延中の圧延材の板厚を測定し、圧延材が所定の板厚となるように、圧延ロールの圧下量などをフィードバックして調整する板厚の制御が行われることがある。たとえば、熱間圧延機の下流側(圧延材の出側)に板厚計を配設し、この板厚計で圧延材の板厚を測定する。そして、圧延材の実際の板厚と目標の板厚とを比較し、その差をフィードバックして、圧延ロールの圧下量を制御する構成が用いられることがある。このように、熱間圧延において、圧延材(鋼材など)の板厚を測定する必要性があることがある。   By the way, in hot rolling of steel materials, the thickness of the rolled material after rolling or during rolling is measured in order to maintain the thickness of the rolled material (steel material, etc.) after rolling with a predetermined dimensional accuracy. In some cases, the sheet thickness is controlled by feeding back and adjusting the amount of rolling of the rolling roll so that the sheet thickness becomes a predetermined sheet thickness. For example, a plate thickness meter is disposed on the downstream side (outside of the rolled material) of the hot rolling mill, and the plate thickness of the rolled material is measured with this plate thickness meter. And the structure which compares the actual board thickness of a rolling material with the target board thickness, feeds back the difference, and controls the amount of rolling reduction of a rolling roll may be used. Thus, in hot rolling, it may be necessary to measure the thickness of a rolled material (such as steel).

しかしながら、レーザ超音波方式の板厚計を用いて、熱間圧延の圧延材の板厚を測定する場合には、次のような問題が生じることがある。熱間圧延の圧延材(すなわち高温の鋼材など)を空気中におくと、時間の経過にしたがって、その表面に酸化皮膜が形成される。また、熱間圧延の圧延材の表面に、酸化物が付着することがある。熱間圧延の圧延材の表面に、酸化皮膜が形成されたり酸化物が付着していたりすると、レーザ干渉計のような、圧延材の表面にレーザを照射して超音波エコーを検出する構成では、レーザが酸化皮膜や酸化物に吸収されるから、板厚の検出が困難となる。   However, the following problems may occur when measuring the thickness of a hot-rolled rolled material using a laser ultrasonic thickness gauge. When a hot-rolled rolled material (that is, a high-temperature steel material or the like) is placed in the air, an oxide film is formed on the surface as time passes. Moreover, an oxide may adhere to the surface of the rolling material of hot rolling. When an oxide film is formed or an oxide adheres to the surface of a hot-rolled rolled material, such as a laser interferometer, the surface of the rolled material is irradiated with a laser to detect ultrasonic echoes. Since the laser is absorbed by the oxide film or oxide, it is difficult to detect the plate thickness.

特開2002−213936号公報JP 2002-213936 A

前記実情に鑑み、本発明が解決しようとする課題は、被測定材の表面に酸化皮膜などが形成されている場合であっても、レーザ超音波方式の板厚計によって被測定材の板厚を測定することができる板厚の測定装置および板厚の測定方法を提供すること、または、熱間圧延において、圧延材の板厚を、レーザ超音波方式の板厚計により測定することができる板厚の測定装置および板厚の測定方法を提供することである。   In view of the above situation, the problem to be solved by the present invention is that the thickness of the material to be measured is measured by a laser ultrasonic thickness gauge even when an oxide film or the like is formed on the surface of the material to be measured. Can provide a thickness measuring device and a thickness measuring method, or in hot rolling, the thickness of a rolled material can be measured with a laser ultrasonic thickness gauge It is to provide a plate thickness measuring device and a plate thickness measuring method.

前記課題を解決するため、本発明は、被測定材を搬送しつつ該被測定材の板厚を非接触で測定できる板厚の測定装置であって、前記被測定材の表面にレーザを照射して超音波を発生させるとともにアブレーションして前記被測定材の表面に形成される酸化皮膜を除去する超音波発生手段と、該超音波発生手段から見て前記被測定材の搬送方向下流に配設され前記被測定材の表面にレーザを照射してその反射波を検出する超音波検出手段と、前記被測定材を搬送する被測定材搬送手段と、前記超音波発生手段と前記被測定材搬送手段と前記超音波検出手段とを同期的に制御するものであって、前記超音波発生手段に前記被測定材の所定の位置にレーザを照射させて酸化皮膜を除去し、前記所定の位置が前記被測定材の搬送方向下流側に所定の距離だけ移動した後に、前記超音波発生手段に前記所定の位置から見て前記被測定材の搬送方向上流側に位置する他の所定の位置にレーザを照射させて酸化皮膜を除去するとともに超音波を発生させて、該発生させた超音波を前記所定の位置を通じて前記超音波検出手段により検出させる制御を繰り返す制御手段と、前記超音波検出手段の検出結果に基づいて前記被測定材の板厚を算出する演算処理手段とを備えることを要旨とするものである。   In order to solve the above-described problems, the present invention provides a plate thickness measuring apparatus capable of measuring a plate thickness of a material to be measured in a non-contact manner while conveying the material to be measured, and irradiates the surface of the material to be measured with a laser. An ultrasonic wave generating means for generating an ultrasonic wave and ablating to remove an oxide film formed on the surface of the measured material; and a downstream side of the measured material in the conveying direction as viewed from the ultrasonic wave generating means. An ultrasonic detecting means for irradiating the surface of the measured material with a laser to detect the reflected wave; a measured material conveying means for conveying the measured material; the ultrasonic generating means; and the measured material The conveyance means and the ultrasonic detection means are controlled synchronously, and the ultrasonic wave generation means is irradiated with a laser at a predetermined position of the material to be measured to remove the oxide film, and the predetermined position Is a predetermined distance downstream in the conveyance direction of the material to be measured. After moving the laser beam, the ultrasonic wave generation means removes the oxide film and irradiates the ultrasonic wave by irradiating a laser to another predetermined position located upstream in the transport direction of the material to be measured as viewed from the predetermined position. And a control means for repeating the control for causing the ultrasonic detection means to detect the generated ultrasonic wave through the predetermined position, and the thickness of the material to be measured based on the detection result of the ultrasonic detection means. The gist of the present invention is to provide an arithmetic processing means for calculating.

また、本発明は、被測定材を搬送しつつ該被測定材の板厚を非接触で測定する板厚の測定方法であって、(1)前記被測定材の表面の所定の領域にレーザを照射してアブレーションし前記被測定材の表面に形成される酸化皮膜を除去するとともに超音波を発生させる段階と、(2)被測定材を所定の距離だけ搬送する段階と、(3)前記(1)の段階においてレーザを照射した領域の被測定材の搬送方向の上流側の他の所定の領域にレーザを照射してアブレーションし、前記被測定材の表面に形成される酸化皮膜を除去するとともに超音波を発生させる段階と、(4)発生した超音波のうち被測定材の底面に反射したエコーを前記(1)の段階においてレーザを照射した領域を通じて検出する段階と、を有し、前記(1)から(5)の段階を繰り返すことを要旨とするものである。   The present invention is also a plate thickness measurement method for measuring a plate thickness of a material to be measured in a non-contact manner while conveying the material to be measured, and (1) a laser is applied to a predetermined region on the surface of the material to be measured. A step of removing an oxide film formed on the surface of the material to be measured by ablating and generating ultrasonic waves, (2) a step of conveying the material to be measured by a predetermined distance, and (3) In step (1), the laser is irradiated to the other predetermined region upstream in the conveyance direction of the measured material in the region irradiated with the laser and ablated to remove the oxide film formed on the surface of the measured material. And (4) detecting an echo reflected on the bottom surface of the measured material through the region irradiated with the laser in the step (1). , The steps (1) to (5) It is an gist to return Ri.

本発明によれば、レーザ干渉計などで超音波を検出する場合において、レーザ干渉計のレーザを照射する位置に形成される酸化皮膜などを、あらかじめアブレーション(除去)しておくことになる。このため、超音波の検出のためにレーザ干渉計を用いた場合に、レーザ干渉計が照射したレーザが、酸化皮膜などに吸収されることを防止または抑制できる。したがって、熱間圧延の圧延材のように、被測定材の表面に酸化皮膜が形成されるような場合であっても、高い感度で超音波エコーを検出することが可能となり、被測定材の板厚を測定することが可能になる。   According to the present invention, when an ultrasonic wave is detected by a laser interferometer or the like, an oxide film or the like formed at a position where the laser of the laser interferometer is irradiated is previously ablated (removed). For this reason, when a laser interferometer is used for ultrasonic detection, it is possible to prevent or suppress the laser irradiated by the laser interferometer from being absorbed by an oxide film or the like. Therefore, even when an oxide film is formed on the surface of the material to be measured, such as a rolled material of hot rolling, it becomes possible to detect ultrasonic echoes with high sensitivity. The plate thickness can be measured.

以下に、本発明の実施形態について、図面を参照して詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to the drawings.

本発明の実施形態にかかる板厚の測定装置は、レーザ超音波方式により、被測定材の板厚を測定することができる。レーザ超音波方式による被測定材の板厚の測定方法については、公知であることから、以下簡単に説明し、詳細な説明は省略する。   The plate thickness measuring apparatus according to the embodiment of the present invention can measure the plate thickness of a material to be measured by a laser ultrasonic method. Since the method of measuring the thickness of the material to be measured by the laser ultrasonic method is known, it will be briefly described below, and detailed description thereof will be omitted.

図1は、本発明の実施形態にかかる板厚の測定装置1の構成の概略を、模式的に示した図である。図1に示すように、本発明の実施形態にかかる板厚の測定装置1は、超音波発生手段11と、超音波検出装置12と、演算処理手段13と、被測定材搬送手段14と、制御手段15とを備える。超音波発生手段11は、所定の出力で所定の波長のパルスレーザを発生させることができる。そして発生させたパルスレーザを、被測定材2の表面に照射することができる。この超音波発生手段11には、公知の各種レーザ発生装置が適用できる。   FIG. 1 is a diagram schematically showing an outline of a configuration of a plate thickness measuring apparatus 1 according to an embodiment of the present invention. As shown in FIG. 1, a plate thickness measuring apparatus 1 according to an embodiment of the present invention includes an ultrasonic wave generating unit 11, an ultrasonic wave detecting device 12, an arithmetic processing unit 13, a measured material conveying unit 14, And control means 15. The ultrasonic wave generation means 11 can generate a pulse laser having a predetermined wavelength with a predetermined output. Then, the generated pulse laser can be irradiated on the surface of the material 2 to be measured. Various known laser generators can be applied to the ultrasonic generator 11.

超音波検出装置12は、被測定材2の表面の微小な振動(換言すると微小な変位)を測定することができる。この超音波検出装置12には、たとえば、レーザ干渉計など、公知の各種変位計が適用できる。たとえばレーザ干渉計は、レーザ発振器と、光干渉計とを備える。レーザ発振器は、所定の出力で所定の波長のレーザを、被測定材2の表面に連続的に照射することができる。光干渉計は、レーザ発振器が被測定材2の表面に照射したレーザの反射波(被測定材の表面で反射したレーザ)を検出することができる。そして、被測定材2の表面で反射したレーザを検出することによって、被測定材2の表面の微小な振動(微小な変位)の絶対量を測定することができる。   The ultrasonic detector 12 can measure minute vibrations (in other words, minute displacements) on the surface of the measurement target material 2. Various known displacement meters such as a laser interferometer can be applied to the ultrasonic detection device 12. For example, the laser interferometer includes a laser oscillator and an optical interferometer. The laser oscillator can continuously irradiate the surface of the material 2 to be measured with a laser having a predetermined output and a predetermined wavelength. The optical interferometer can detect a reflected wave of a laser (laser reflected on the surface of the material to be measured) irradiated by the laser oscillator on the surface of the material to be measured 2. Then, by detecting the laser reflected on the surface of the material to be measured 2, the absolute amount of minute vibration (minute displacement) on the surface of the material to be measured 2 can be measured.

被測定材搬送手段14は、被測定材2を所定の方向に搬送させることができる。図中の矢印aは、被測定材2の搬送方向を示す。そして、被測定材搬送手段14が被測定材2を搬送することによって、被測定2材と、超音波発生手段11および超音波検出装置12とを相対移動させることができる。この被測定材搬送手段14には、ローラコンベアなど、公知の各種搬送手段を適用することができる。   The measured material conveying means 14 can convey the measured material 2 in a predetermined direction. An arrow a in the figure indicates the conveyance direction of the material 2 to be measured. Then, the material to be measured 14 conveys the material 2 to be measured, so that the two materials to be measured can be moved relative to the ultrasonic wave generator 11 and the ultrasonic detector 12. Various known conveying means such as a roller conveyor can be applied to the measured material conveying means 14.

制御手段15は、超音波発生手段11と超音波検出手段12と被測定材搬送手段とを、同期的に制御することができる。これにより超音波発生手段は、搬送される(移動する)被測定材2の表面の所定の位置にパルスレーザを照射して当該書低の位置を起点として超音波を発生させることができる。また、超音波検出手段12は、搬送される(移動する)被測定材2の表面の所定の位置における微小な振動(微小な変位)の絶対量を測定することができる。なおこの制御手段15には、パーソナルコンピュータやワークステーションなどが適用できる。   The control means 15 can synchronously control the ultrasonic wave generation means 11, the ultrasonic wave detection means 12, and the measured material conveying means. As a result, the ultrasonic wave generation means can irradiate a predetermined position on the surface of the workpiece 2 to be conveyed (moved) with a pulse laser to generate an ultrasonic wave starting from the position of the writing height. Further, the ultrasonic detection means 12 can measure the absolute amount of minute vibration (minute displacement) at a predetermined position on the surface of the measured material 2 being conveyed (moved). The control means 15 can be a personal computer or a workstation.

演算処理手段13は、超音波検出装置12による被測定材2の表面の微小な振動の検出結果に基づいて、超音波発生手段11が被測定材2の表面にレーザを照射してから、超音波エコーを検出するまでの時間(すなわち、超音波の伝搬時間)を計測する。そして、計測した超音波の伝搬時間に基づいて、被測定材2の板厚を算出する。この演算処理手段13には、制御手段15と同じパーソナルコンピュータやワークステーションなどが適用できる。   Based on the detection result of minute vibrations on the surface of the material to be measured 2 by the ultrasonic detector 12, the arithmetic processing means 13 irradiates the surface of the material to be measured 2 with a laser, The time until the sound echo is detected (that is, the propagation time of the ultrasonic wave) is measured. Based on the measured propagation time of the ultrasonic wave, the plate thickness of the material 2 to be measured is calculated. The same personal computer and workstation as the control means 15 can be applied to the arithmetic processing means 13.

図1に示すように、超音波発生手段11と超音波検出装置(レーザ干渉計)12とは、被測定材2の同じ側の表面にレーザを照射できるように配設される。また、図1に示すように、超音波検出装置(レーザ干渉計)12は、超音波発生手段11から見て被測定材2の搬送方向の下流側に配設される。そして、超音波検出装置(レーザ干渉計)12は、超音波発生手段11がレーザを照射した領域と同じ領域に対して、超音波検出用のレーザを照射して、超音波を検出することができる。   As shown in FIG. 1, the ultrasonic generator 11 and the ultrasonic detector (laser interferometer) 12 are arranged so as to irradiate the same surface of the material to be measured 2 with a laser. As shown in FIG. 1, the ultrasonic detection device (laser interferometer) 12 is disposed on the downstream side in the transport direction of the measurement target material 2 when viewed from the ultrasonic wave generation means 11. The ultrasonic detection device (laser interferometer) 12 can detect an ultrasonic wave by irradiating an ultrasonic detection laser to the same region as the region irradiated with the laser by the ultrasonic wave generation unit 11. it can.

すなわち、被測定材搬送手段14が被測定材2を搬送すると、超音波発生手段11がある瞬間にレーザを照射した被測定材2上の領域は、時間の経過にともなって被測定材2の搬送方向の下流側に移動する。そして、超音波検出装置12は被測定材2の搬送方向の下流側に配設されているから、被測定材2がその搬送方向の下流側に移動すると、超音波検出装置12は、超音波発生手段11がレーザを照射した領域と同じ領域に、超音波検出用のレーザを照射することができる。   That is, when the measured material conveying means 14 conveys the measured material 2, the region on the measured material 2 irradiated with the laser at the moment when the ultrasonic wave generating means 11 is located is that of the measured material 2 over time. Move downstream in the transport direction. Since the ultrasonic detection device 12 is disposed on the downstream side in the conveyance direction of the material to be measured 2, when the measurement material 2 moves to the downstream side in the conveyance direction, the ultrasonic detection device 12 A laser for ultrasonic detection can be irradiated to the same region as the region where the generating means 11 has irradiated the laser.

次に、本発明の実施形態にかかる板厚の測定装置1を用いた被測定材の板厚の測定方法について説明する。図2は、本発明の実施形態にかかる板厚の測定方法の流れの概略を示したフローチャートである。図3および図4は、本発明の実施形態にかかる板厚の測定方法の流れの概略を、模式的に示した図である。   Next, a method for measuring the thickness of the material to be measured using the thickness measuring apparatus 1 according to the embodiment of the present invention will be described. FIG. 2 is a flowchart showing an outline of the flow of the plate thickness measuring method according to the embodiment of the present invention. 3 and 4 are diagrams schematically showing an outline of the flow of the plate thickness measuring method according to the embodiment of the present invention.

ステップS1からステップS4にかけては、制御手段15が、超音波発生手段11と超音波検出手段12と被測定材搬送手段14とを同期的に制御することにより実行される。図2に示すように、ステップS1において、被測定材搬送手段14に被測定材2を載置し、被測定材2の搬送を開始する。図中の矢印aは、被測定材の搬送の向きを示す。被測定材2を被測定材搬送手段14により搬送すると、被測定材2と、超音波発生手段11および超音波検出装置12とが相対的に移動する。この相対移動の方向は特に限定されるものではないが、被測定材2の板厚に直角の方向であることが好ましい。   From step S1 to step S4, the control means 15 is executed by synchronously controlling the ultrasonic wave generation means 11, the ultrasonic wave detection means 12, and the measured material conveying means 14. As shown in FIG. 2, in step S <b> 1, the measured material 2 is placed on the measured material conveying means 14, and the conveyance of the measured material 2 is started. An arrow a in the figure indicates the direction of conveyance of the material to be measured. When the measured material 2 is conveyed by the measured material conveying means 14, the measured material 2, the ultrasonic wave generating means 11 and the ultrasonic detection device 12 move relatively. The direction of this relative movement is not particularly limited, but is preferably a direction perpendicular to the thickness of the material 2 to be measured.

ステップS2において、超音波発生手段11は、制御手段15の制御により被測定材2の表面の特定の領域に、パルスレーザを照射する。被測定材の表面にパルスレーザが照射されると、アブレーション機構により、レーザが照射された領域においては、その表面に形成される酸化皮膜が除去される(図3(a)参照)。   In step S <b> 2, the ultrasonic wave generation unit 11 irradiates a specific region on the surface of the measurement target material 2 with a pulse laser under the control of the control unit 15. When the surface of the material to be measured is irradiated with a pulse laser, the oxide film formed on the surface of the region irradiated with the laser is removed by the ablation mechanism (see FIG. 3A).

ステップS3において、被測定材2がステップS1の位置から所定の距離だけ搬送された後に(換言すると、被測定材2と、超音波発生手段11および超音波検出装置12とが所定の距離だけ相対移動した後に)、超音波発生手段11は、再度、制御手段15の制御により、被測定材2の表面の特定の領域に、パルスレーザを照射する。具体的には、図3(b)に示すように、被測定材2が被測定材搬送手段14により搬送されて、超音波検出装置12のレーザ干渉計が、超音波発生手段11がレーザを照射した領域を検出できる位置に達したときに、被測定材2の表面にパルスレーザを照射する。   In step S3, after the material 2 to be measured is conveyed by a predetermined distance from the position of step S1 (in other words, the material 2 to be measured, the ultrasonic wave generating means 11 and the ultrasonic detector 12 are relative to each other by a predetermined distance. After the movement), the ultrasonic wave generation means 11 again irradiates a specific region on the surface of the material to be measured 2 with a pulse laser under the control of the control means 15. Specifically, as shown in FIG. 3B, the material to be measured 2 is conveyed by the material-to-be-measured conveying means 14, and the laser interferometer of the ultrasonic detection device 12 is operated by the ultrasonic wave generating means 11 and the laser is generated by the ultrasonic wave generating means 11. When reaching the position where the irradiated region can be detected, the surface of the material to be measured 2 is irradiated with a pulse laser.

超音波発生手段11がステップS2においてレーザを照射してから、ステップS3において、再度、レーザを照射するまでの間に、被測定材2は、被測定材搬送手段14により搬送されるから、超音波発生手段11がレーザを照射する領域は、ステップS2とステップS3とで相違する。すなわち、ステップS2においてレーザが照射される領域は、ステップS3においてレーザが照射される領域の、被測定材2の搬送方向の下流側となる。   Since the material to be measured 2 is transported by the material to be measured transporting means 14 between the time when the ultrasonic wave generating means 11 irradiates the laser at step S2 and the time when the laser is again irradiated at step S3. The region where the sound wave generating means 11 irradiates the laser is different between step S2 and step S3. That is, the region irradiated with the laser in step S2 is downstream of the region irradiated with the laser in step S3 in the conveyance direction of the measurement target material 2.

ステップS3において、被測定材2の表面の所定の領域にレーザが照射されると、アブレーション機構により、被測定材2の表面に形成される酸化皮膜が除去される。それと同時に、アブレーション機構および熱弾性効果により、当該レーザが照射された領域を起点として超音波が発生する。発生した超音波は、被測定材2の内部を伝搬し、被測定材2の底面(レーザが照射された側の表面とは反対側の表面)において反射する。そして反射した超音波の一部は、ステップS2においてレーザが照射されて酸化皮膜が除去された領域に到達する。   In step S3, when a predetermined region on the surface of the material to be measured 2 is irradiated with a laser, the oxide film formed on the surface of the material to be measured 2 is removed by the ablation mechanism. At the same time, due to the ablation mechanism and the thermoelastic effect, ultrasonic waves are generated starting from the region irradiated with the laser. The generated ultrasonic wave propagates inside the material to be measured 2 and is reflected on the bottom surface of the material to be measured 2 (the surface opposite to the surface irradiated with the laser). A part of the reflected ultrasonic wave reaches the region where the laser beam is irradiated and the oxide film is removed in step S2.

そしてステップS4において、超音波検出装置12は、ステップS2においてレーザが照射されて酸化皮膜が除去された領域の微小な振動(微小な変位)を検出する。前記のように、超音波検出装置12のレーザ干渉計が、ステップS2において超音波発生手段11がレーザを照射した領域の微小変位(微小振動)を検出できるタイミングで、超音波発生手段11は特定の領域にレーザを照射する。したがって、超音波検出装置12は、酸化皮膜が除去された領域を通じて、超音波エコーを検出することができる。   In step S4, the ultrasonic detection device 12 detects minute vibrations (minute displacement) in the region where the laser beam is irradiated and the oxide film is removed in step S2. As described above, the ultrasonic wave generation unit 11 is identified at a timing when the laser interferometer of the ultrasonic wave detection device 12 can detect the minute displacement (microvibration) of the region irradiated with the laser beam in step S2. The laser is irradiated to the area. Therefore, the ultrasonic detection device 12 can detect an ultrasonic echo through the region from which the oxide film has been removed.

ステップS5において、演算処理手段13は、超音波検出装置12による超音波エコーの検出結果に基づいて、超音波発生手段11が被測定材の表面にレーザを照射してから、当該レーザのアブレーション機構および熱弾性効果により発生した超音波の底面エコーを検出するまでの時間(すなわち、超音波の伝搬時間)を計測する。すなわち、ステップS3において、超音波発生手段11が被測定材2の表面の特定の領域にレーザを照射してから、ステップS4において、超音波検出装置12が超音波の底面エコーを検出するまでの時間を計測する。そして演算処理手段13は、計測した超音波の伝搬時間に基づいて、被測定材2の板厚を算出する。   In step S5, the arithmetic processing means 13 determines the ablation mechanism of the laser after the ultrasonic wave generation means 11 irradiates the surface of the material to be measured based on the detection result of the ultrasonic echo by the ultrasonic detection device 12. And the time until the bottom echo of the ultrasonic wave generated by the thermoelastic effect is detected (that is, the propagation time of the ultrasonic wave) is measured. That is, in step S3, after the ultrasonic wave generation means 11 irradiates a specific area on the surface of the measurement object 2 with a laser, in step S4, the ultrasonic detection device 12 detects the bottom echo of the ultrasonic wave. Measure time. And the arithmetic processing means 13 calculates the plate | board thickness of the to-be-measured material 2 based on the measured propagation time of the ultrasonic wave.

被測定材2の板厚の測定を継続する場合には(すなわち、複数の箇所において板厚を測定する場合には)(ステップS6において「Yes」)、ステップS3に戻る。   When the measurement of the plate thickness of the material 2 to be measured is continued (that is, when the plate thickness is measured at a plurality of locations) (“Yes” in step S6), the process returns to step S3.

被測定材2が所定の距離だけ搬送された後に、超音波発生手段11は、制御手段15の制御により、被測定材の表面の特定の領域に、パルスレーザを照射する。具体的には、図4に示すように、前回のステップS3においてレーザが照射された領域が、被測定材2の搬送にともなって移動し、超音波検出装置12のレーザ干渉計が発射するレーザが当該領域に照射されるタイミングで、超音波発生手段11がレーザを照射する。したがって、今回のステップS3においてレーザが照射される領域は、前回のステップS3においてレーザが照射される領域とは異なる。   After the material to be measured 2 is conveyed by a predetermined distance, the ultrasonic wave generation unit 11 irradiates a specific region on the surface of the material to be measured with a pulse laser under the control of the control unit 15. Specifically, as shown in FIG. 4, the laser irradiated region in the previous step S <b> 3 moves as the material to be measured 2 moves, and is emitted by the laser interferometer of the ultrasonic detector 12. The ultrasonic wave generation means 11 irradiates the laser at the timing when the region is irradiated. Therefore, the region irradiated with the laser in the current step S3 is different from the region irradiated with the laser in the previous step S3.

今回のステップS3において、被測定材2の所定の領域にレーザが照射されると、アブレーション機構により、被測定材2の表面に形成される酸化皮膜が除去される。それと同時に、アブレーション機構および熱弾性効果により、当該レーザが照射された領域を起点として、超音波が発生する。発生した超音波は、被測定材2の内部を伝搬し、被測定材2の底面で反射する。そして、反射した超音波の一部は、前回のステップS3においてレーザが照射されて酸化皮膜が除去された領域に到達する。   In this step S3, when a predetermined region of the material to be measured 2 is irradiated with laser, the oxide film formed on the surface of the material to be measured 2 is removed by the ablation mechanism. At the same time, due to the ablation mechanism and the thermoelastic effect, ultrasonic waves are generated starting from the region irradiated with the laser. The generated ultrasonic wave propagates inside the material to be measured 2 and is reflected by the bottom surface of the material to be measured 2. A part of the reflected ultrasonic waves reaches the region where the laser beam was irradiated and the oxide film was removed in the previous step S3.

今回のステップS4において、超音波検出装置12は、前回のステップS3においてレーザが照射されて酸化皮膜が除去された領域の微小な振動(微小な変位)を検出する。超音波検出装置12のレーザ干渉計が発するレーザが、前回ステップS3において超音波発生手段11がレーザした領域に対してレーザを照射するタイミングで、超音波発生手段11は特定の領域にレーザを照射する。このタイミングは、制御手段15により制御される。したがって、超音波検出装置12は、酸化皮膜が除去された領域を通じて、超音波エコーを検出することができる。   In this step S4, the ultrasonic detection device 12 detects minute vibrations (minute displacements) in the region where the laser beam was irradiated and the oxide film was removed in the previous step S3. At a timing when the laser emitted from the laser interferometer of the ultrasonic detection device 12 irradiates the laser to the region that the ultrasonic generation unit 11 has lasered in the previous step S3, the ultrasonic generation unit 11 irradiates the specific region with the laser. To do. This timing is controlled by the control means 15. Therefore, the ultrasonic detection device 12 can detect an ultrasonic echo through the region from which the oxide film has been removed.

今回のステップS5において、演算処理手段13は、超音波検出装置12による超音波エコーの検出結果に基づいて、超音波発生手段11が被測定材2の表面にレーザを照射してから、当該レーザのアブレーション機構および熱弾性効果により発生した超音波の底面エコーを検出するまでの時間(すなわち、超音波の伝搬時間)を計測する。すなわち、今回のステップS3において、超音波発生手段11が被測定材2の表面の特定の領域にレーザを照射してから、今回のステップS4において、超音波検出装置12が超音波の底面エコーを検出するまでの時間を計測する。そして演算処理手段13は、計測した超音波の伝搬時間に基づいて、被測定材2の板厚を算出する。   In this step S5, the arithmetic processing means 13 irradiates the laser after the ultrasonic wave generating means 11 irradiates the surface of the material 2 to be measured based on the detection result of the ultrasonic echo by the ultrasonic detecting device 12. The time until the bottom echo of the ultrasonic wave generated by the ablation mechanism and the thermoelastic effect is detected (that is, the propagation time of the ultrasonic wave) is measured. That is, after the ultrasonic wave generation means 11 irradiates a specific area on the surface of the material 2 to be measured in step S3 this time, the ultrasonic detection device 12 generates the bottom echo of the ultrasonic wave in step S4. Measure the time until detection. And the arithmetic processing means 13 calculates the plate | board thickness of the to-be-measured material 2 based on the measured propagation time of the ultrasonic wave.

このように、連続的に被測定材2の複数の箇所の板厚を測定する場合には、ステップS3〜ステップS5の動作を繰り返す。この際に、ある回のステップS4において、超音波検出装置12がレーザを照射する領域は、当該回の前の回におけるステップS3において、超音波発生手段11がレーザを照射した領域とする。   Thus, when measuring the plate | board thickness of the several location of the to-be-measured material 2 continuously, operation | movement of step S3-step S5 is repeated. At this time, a region where the ultrasonic detection device 12 irradiates the laser in a certain step S4 is a region where the ultrasonic wave generation means 11 irradiates the laser in step S3 in the previous step.

すなわち、当該回の前の回におけるステップS3においては、超音波を発生させるために、被測定材2の所定の領域にレーザを照射し、アブレーション機構および熱弾性効果により超音波を発生させる。この際、アブレーション機構により、レーザを照射した領域の表面に形成される酸化皮膜を除去する。この、アブレーション機構により酸化皮膜が除去された領域を、次の回において、超音波検出装置12が超音波の底面エコーを検出する検出領域とする。そしてこのような動作を繰り返す。   That is, in step S3 in the previous round, in order to generate ultrasonic waves, a predetermined region of the material to be measured 2 is irradiated with laser, and ultrasonic waves are generated by an ablation mechanism and a thermoelastic effect. At this time, the oxide film formed on the surface of the region irradiated with the laser is removed by an ablation mechanism. The region where the oxide film is removed by the ablation mechanism is set as a detection region in which the ultrasonic detection device 12 detects the bottom echo of the ultrasonic wave in the next round. Such an operation is repeated.

このような構成によれば、被測定材2の表面に形成される酸化皮膜をアブレーション(除去)した領域を通じて超音波エコーを検出することができる。このため、超音波エコーの検出のためにレーザ干渉計を用いた場合に、レーザ干渉計が照射したレーザが酸化皮膜に吸収されることを防止または抑制できる。したがって、熱間圧延のように被測定材2の表面に酸化皮膜が形成されるような場合であっても、高い感度で超音波エコーを検出することが可能となり、被測定材2の板厚を測定することが可能となる。   According to such a configuration, it is possible to detect an ultrasonic echo through a region where the oxide film formed on the surface of the measurement target material 2 is ablated (removed). For this reason, when a laser interferometer is used for the detection of an ultrasonic echo, it can prevent or suppress that the laser which the laser interferometer irradiated is absorbed by an oxide film. Accordingly, even when an oxide film is formed on the surface of the material to be measured 2 as in hot rolling, it is possible to detect ultrasonic echoes with high sensitivity, and the plate thickness of the material to be measured 2 Can be measured.

そして、本発明の実施形態にかかる板厚の測定装置1および板厚の測定方法を、熱間圧延に適用すれば、インラインで被測定材2の板厚を測定することができる。したがって、熱間圧延における圧延材の板厚の制御に適用することができる。ここで、本発明の実施形態にかかる板厚の測定装置1は、構成が簡単であり、また、放射性物質を使用しないことから、安価で取り扱いが容易である。したがって、たとえば製造ラインのコスト削減を図ることができる。   And if the plate | board thickness measuring apparatus 1 and the plate | board thickness measuring method concerning embodiment of this invention are applied to hot rolling, the plate | board thickness of the to-be-measured material 2 can be measured in-line. Therefore, it can be applied to the control of the thickness of the rolled material in hot rolling. Here, the plate thickness measuring apparatus 1 according to the embodiment of the present invention has a simple configuration and does not use a radioactive substance, so that it is inexpensive and easy to handle. Therefore, for example, the cost of the production line can be reduced.

なお、図2に示すステップS1からS5の動作を一回だけ行うことにより、被測定材2の特定の位置の板厚を測定することができる。また、図2に示すステップS3〜ステップS5を繰り返すことにより、被測定材2の搬送方向の全長にわたって、板厚の測定を行うこともできる。   In addition, the plate | thickness of the specific position of the to-be-measured material 2 can be measured by performing operation | movement of step S1 to S5 shown in FIG. 2 only once. Further, by repeating step S3 to step S5 shown in FIG. 2, the plate thickness can be measured over the entire length of the workpiece 2 in the transport direction.

なお、ある回のステップS3において、被測定材2の表面にレーザが照射される領域(すなわち、次の回において超音波検出装置12が底面エコーを検出する領域)と、次の回のステップS3において超音波を発生するためにレーザが照射される領域との間隔(以下、単に「レーザの照射間隔」と称する)は、次のとおりであることが好ましい。   It should be noted that in a certain step S3, a region where the laser is irradiated on the surface of the material 2 to be measured (that is, a region where the ultrasonic detection device 12 detects the bottom echo in the next round) and a next step S3. It is preferable that the distance from the region irradiated with the laser to generate the ultrasonic wave (hereinafter simply referred to as “laser irradiation interval”) is as follows.

すなわち、次の回のステップS3において超音波を発生するためにレーザが照射される領域から、ある回のステップS3において被測定材2の表面にレーザが照射される領域に到達する超音波には、被測定材2の表面を伝搬して到達するものと、被測定材2の内部を伝搬し底面に反射して到達するものがある。本発明においては、被測定材2の内部を伝搬し底面に反射して到達する超音波を検出する必要があるため、この超音波に被測定材2の表面を伝搬して到達する超音波が重ならないようにすることが好ましい。   That is, the ultrasonic wave that reaches the region where the surface of the material 2 to be measured is irradiated with the laser beam in one step S3 from the region irradiated with the laser beam in the next step S3 is generated. There are those that propagate by reaching the surface of the material 2 to be measured and those that propagate inside the material 2 to be measured and reflected by the bottom surface. In the present invention, since it is necessary to detect an ultrasonic wave that propagates inside the material to be measured 2 and is reflected by the bottom surface, the ultrasonic wave that propagates through the surface of the material to be measured 2 and reaches the ultrasonic wave is detected. It is preferable not to overlap.

被測定材2の表面を伝搬する超音波の伝搬速度は、被測定材2の内部を伝搬する超音波の伝搬速度より小さいことが知られている。また、被測定材2の表面を伝搬する超音波の経路は、被測定材2の内部を伝搬し底面に反射する超音波の経路よりも短い。このため、被測定材2の板厚の値とレーザの照射間隔の値によっては、被測定材2の表面を伝搬する超音波と、被測定材2の内部を伝搬する超音波とが、略同時に次の回において超音波検出装置がレーザを照射して超音波の底面エコーを検出する領域に到達することがある。そうすると、底面エコーと表面を伝搬する超音波とが合成された状態で検出されるため、底面エコーを識別することが困難となることがある。   It is known that the propagation speed of the ultrasonic wave propagating through the surface of the material to be measured 2 is smaller than the propagation speed of the ultrasonic wave propagating through the inside of the material to be measured 2. Further, the path of the ultrasonic wave propagating through the surface of the material to be measured 2 is shorter than the path of the ultrasonic wave propagating through the inside of the material to be measured 2 and reflected to the bottom surface. For this reason, depending on the value of the thickness of the material to be measured 2 and the value of the laser irradiation interval, the ultrasonic wave propagating through the surface of the material to be measured 2 and the ultrasonic wave propagating through the inside of the material to be measured 2 are approximately. At the same time, the ultrasonic detector may irradiate the laser and reach an area where the bottom echo of the ultrasonic wave is detected. Then, since the bottom echo and the ultrasonic wave propagating on the surface are detected in a combined state, it may be difficult to identify the bottom echo.

このため、レーザの照射間隔は、被測定材2の表面を伝搬する超音波が到達する時間と、被測定材の内部を伝搬する超音波が到達する時間とが異なるようにすることが好ましい。具体的には、d=2×(v’/v)×(T+(d/2)(1/2)を充足しないようにすることが好ましい。ここで、dはレーザの照射間隔、v’は被測定材2の表面を伝搬する超音波の伝搬速度、vは被測定材2の内部を伝搬する超音波の伝搬速度、Tは被測定材の板厚である。このような条件を充足しないようにすれば、被測定材2の表面を伝搬する超音波と、被測定材の内部を伝搬する超音波とが重ならないようにすることができる。したがって、被測定材2の表面を伝搬する超音波と、被測定材2の内部を伝搬する超音波とが別々に検出されるから、底面エコーを感度良く検出することができる。 For this reason, it is preferable that the irradiation interval of the laser is set so that the time for the ultrasonic wave propagating through the surface of the material to be measured 2 to be different from the time for the ultrasonic wave propagating inside the material to be measured to arrive. Specifically, it is preferable not to satisfy d = 2 × (v ′ / v) × (T 2 + (d / 2) 2 ) (1/2) . Here, d is the laser irradiation interval, v ′ is the propagation speed of the ultrasonic wave propagating through the surface of the material to be measured 2, v is the propagation speed of the ultrasonic wave propagating inside the material to be measured 2, and T is the material to be measured. The plate thickness. If such a condition is not satisfied, the ultrasonic wave propagating through the surface of the material to be measured 2 and the ultrasonic wave propagating through the inside of the material to be measured can be prevented from overlapping. Therefore, since the ultrasonic wave propagating through the surface of the material to be measured 2 and the ultrasonic wave propagating through the inside of the material to be measured 2 are detected separately, the bottom surface echo can be detected with high sensitivity.

次に、本発明の実施例について説明する。表1は、本発明の実施例における実施条件を示したものである。   Next, examples of the present invention will be described. Table 1 shows the implementation conditions in the examples of the present invention.

Figure 2009294012
Figure 2009294012

超音波を発生するための励起レーザは、発信波長が1064nm、発信出力が最大で430mJ、パルス幅は8nsec、発信周期は10Hz、ビーム径はφ3mmである。超音波検出装置のレーザ干渉計が発するレーザは、発信波長が532nm、発信出力が200mJ、ビーム径はφ50μmである。被測定材は、S50C炭素鋼であり、板厚は10mm、板の幅は100mmである。表面は光沢圧延肌である。そして加熱炉により1000℃に加熱して用いている。被測定材と励起レーザとの距離は450mmである。   The excitation laser for generating ultrasonic waves has a transmission wavelength of 1064 nm, a maximum transmission output of 430 mJ, a pulse width of 8 nsec, a transmission period of 10 Hz, and a beam diameter of 3 mm. The laser emitted from the laser interferometer of the ultrasonic detection apparatus has a transmission wavelength of 532 nm, a transmission output of 200 mJ, and a beam diameter of 50 μm. The material to be measured is S50C carbon steel, the plate thickness is 10 mm, and the plate width is 100 mm. The surface is glossy rolled skin. And it heats and uses at 1000 degreeC with a heating furnace. The distance between the material to be measured and the excitation laser is 450 mm.

まず、被測定材の表面の所定の領域に励起レーザを照射し、アブレーション機構によって、表面の酸化膜を除去した。次に前記酸化膜を除去した領域とは異なる領域に励起レーザを照射し、アブレーション機構および熱弾性効果により、被測定材の内部に超音波を発生させた。そして、前記表面の酸化膜を除去した領域にレーザ干渉計のレーザを照射し、超音波エコーを検出した。   First, a predetermined region on the surface of the material to be measured was irradiated with an excitation laser, and the oxide film on the surface was removed by an ablation mechanism. Next, an excitation laser was irradiated to a region different from the region where the oxide film was removed, and ultrasonic waves were generated inside the material to be measured by an ablation mechanism and a thermoelastic effect. And the laser interferometer laser was irradiated to the area | region where the oxide film of the surface was removed, and the ultrasonic echo was detected.

図5は、本発明の実施例にかかる超音波エコーの検出結果を示したグラフである。図6および図7は、比較例にかかる超音波エコーの検出結果を示したグラフである。具体的には、本発明の実施例においては、アブレーション機構によって表面の酸化膜を除去した後、ただちに前記酸化膜を除去した領域とは異なる領域に励起レーザを照射し、超音波エコーを測定した。図6に示す比較例は、アブレーション機構によって表面の酸化膜を除去した後、被測定材を20秒間大気中に放置してから前記酸化膜を除去した領域とは異なる領域に励起レーザを照射し、超音波エコーを測定した。図7に示す比較例は、アブレーション機構によって表面の酸化膜を除去した後、被測定材を30秒間大気中に放置してから前記酸化膜を除去した領域とは異なる領域に励起レーザを照射し、超音波エコーを測定した。比較例においては、被測定材を所定の時間だけ大気中に放置することにより、被測定材の表面に酸化皮膜が形成されるものと考えられる。   FIG. 5 is a graph showing the detection result of the ultrasonic echo according to the example of the present invention. 6 and 7 are graphs showing detection results of ultrasonic echoes according to the comparative example. Specifically, in the embodiment of the present invention, after removing the oxide film on the surface by the ablation mechanism, the excitation laser was irradiated to the area different from the area where the oxide film was removed, and the ultrasonic echo was measured. . In the comparative example shown in FIG. 6, after removing the oxide film on the surface by the ablation mechanism, the material to be measured is left in the atmosphere for 20 seconds, and then the excitation laser is irradiated to a region different from the region where the oxide film is removed. Ultrasonic echoes were measured. In the comparative example shown in FIG. 7, after removing the oxide film on the surface by the ablation mechanism, the material to be measured is left in the atmosphere for 30 seconds, and then an excitation laser is irradiated to a region different from the region where the oxide film is removed. Ultrasonic echoes were measured. In the comparative example, it is considered that an oxide film is formed on the surface of the material to be measured by leaving the material to be measured in the atmosphere for a predetermined time.

図5、図6については底面エコーを楕円で囲んである(図7は判別ができないためしるしを付していない)。図5に示すように、本発明の実施例においては、底面エコーがはっきりと検出された。これに対して、図6に示す比較例においては、検出される底面エコーのピーク値が小さくなり、底面エコーの検出感度が低くなった。また、図7に示す比較例においては、底面エコーのピーク値はほとんど検出できなかった。このように、本発明によれば、底面エコーを感度良く測定できることが確認された。   5 and 6, the bottom echo is surrounded by an ellipse (in FIG. 7, no indication is given because it cannot be distinguished). As shown in FIG. 5, in the embodiment of the present invention, the bottom echo was clearly detected. On the other hand, in the comparative example shown in FIG. 6, the peak value of the bottom echo detected is small, and the detection sensitivity of the bottom echo is low. Moreover, in the comparative example shown in FIG. 7, the peak value of the bottom echo was hardly detected. Thus, according to the present invention, it was confirmed that the bottom surface echo can be measured with high sensitivity.

以上、本発明の各種実施形態および実施例について説明したが、本発明は、前記実施形態または実施例に何ら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の改変が可能であることはいうまでもない。   While various embodiments and examples of the present invention have been described above, the present invention is not limited to the above-described embodiments or examples, and various modifications can be made without departing from the spirit of the invention. Needless to say.

たとえば、前記実施形態においては、被測定材の表面に酸化皮膜が形成された場合に、レーザの照射によってこの酸化皮膜を除去する構成を示したが、被測定材の表面には、膜厚の厚い異物(たとえば酸化物)が付着することがある。このような場合には、被測定材の表面に向けて高圧の気体(空気など)や液体(水など)を噴射することによって、これら異物を除去し、被測定材の表面に形成される酸化皮膜をレーザの照射によって除去する構成であっても良い。   For example, in the above-described embodiment, when an oxide film is formed on the surface of the material to be measured, the oxide film is removed by laser irradiation. Thick foreign matter (for example, oxide) may adhere. In such a case, these foreign substances are removed by injecting high-pressure gas (such as air) or liquid (such as water) toward the surface of the material to be measured, and the oxidation formed on the surface of the material to be measured. The structure which removes a film | membrane by laser irradiation may be sufficient.

また、被測定材の表面に形成される酸化皮膜が厚いため、レーザを照射した場合に、アブレーション機構によって酸化皮膜は除去されるが、超音波が発生しない(または振幅が小さい超音波しか発生しない)ことがある。このような場合には、たとえば、二回連続してレーザを照射し、一回目のレーザの照射によって酸化皮膜を除去し、二回目のレーザの照射によって超音波を発生させる構成であっても良い。なお、レーザを照射する回数は二回に限定されるものではなく、三回以上であっても良い。この場合には、最後の一回のレーザの照射により超音波を発生させ、それ以外のレーザの照射によって酸化皮膜を除去する構成が適用できる。   In addition, since the oxide film formed on the surface of the material to be measured is thick, when the laser is irradiated, the oxide film is removed by the ablation mechanism, but no ultrasonic wave is generated (or only an ultrasonic wave with a small amplitude is generated). )Sometimes. In such a case, for example, it may be configured to irradiate the laser twice continuously, remove the oxide film by the first laser irradiation, and generate an ultrasonic wave by the second laser irradiation. . Note that the number of times of laser irradiation is not limited to two, but may be three or more. In this case, a configuration in which ultrasonic waves are generated by the last laser irradiation and the oxide film is removed by other laser irradiations can be applied.

本発明の実施形態にかかる板厚の測定装置の概略構成を、模式的に示した図である。It is the figure which showed typically schematic structure of the plate | board thickness measuring apparatus concerning embodiment of this invention. 本発明の実施形態にかかる板厚の測定方法の流れを、模式的に示したフローチャートである。It is the flowchart which showed typically the flow of the measuring method of the board thickness concerning embodiment of this invention. 本発明の実施形態にかかる板厚の測定方法のプロセスを、模式的に示した図である。It is the figure which showed typically the process of the measuring method of the board thickness concerning embodiment of this invention. 本発明の実施形態にかかる板厚の測定方法のプロセスを、模式的に示した図である。It is the figure which showed typically the process of the measuring method of the board thickness concerning embodiment of this invention. 本発明の実施例にかかる板厚の測定結果を示したグラフであり、超音波エコーの検出結果を示す。It is the graph which showed the measurement result of the board thickness concerning the Example of this invention, and shows the detection result of an ultrasonic echo. 比較例にかかる板厚の測定結果を示したグラフであり、超音波エコーの検出結果を示す。It is the graph which showed the measurement result of the board thickness concerning a comparative example, and shows the detection result of an ultrasonic echo. 比較例にかかる板厚の測定結果を示したグラフであり、超音波エコーの検出結果を示す。It is the graph which showed the measurement result of the board thickness concerning a comparative example, and shows the detection result of an ultrasonic echo.

符号の説明Explanation of symbols

1 板厚の測定装置
11 超音波発生手段
12 超音波検出手段
13 演算処理手段
14 被測定材搬送手段
15 制御手段
2 被測定材
DESCRIPTION OF SYMBOLS 1 Plate | board thickness measuring apparatus 11 Ultrasonic wave generation means 12 Ultrasonic wave detection means 13 Operation processing means 14 Measured material conveyance means 15 Control means 2 Measured material

Claims (2)

被測定材を搬送しつつ該被測定材の板厚を非接触で測定できる板厚の測定装置であって、
前記被測定材の表面にレーザを照射して超音波を発生させるとともにアブレーションして前記被測定材の表面に形成される酸化皮膜を除去する超音波発生手段と、
該超音波発生手段から見て前記被測定材の搬送方向下流に配設され前記被測定材の表面にレーザを照射してその反射波を検出する超音波検出手段と、
前記被測定材を搬送する被測定材搬送手段と、
前記超音波発生手段と前記被測定材搬送手段と前記超音波検出手段とを同期的に制御するものであって、前記超音波発生手段に前記被測定材の所定の位置にレーザを照射させて酸化皮膜を除去し、前記所定の位置が前記被測定材の搬送方向下流側に所定の距離だけ移動した後に、前記超音波発生手段に前記所定の位置から見て前記被測定材の搬送方向上流側に位置する他の所定の位置にレーザを照射させて酸化皮膜を除去するとともに超音波を発生させて、該発生させた超音波を前記所定の位置を通じて前記超音波検出手段により検出させる制御を繰り返す制御手段と、
前記超音波検出手段の検出結果に基づいて前記被測定材の板厚を算出する演算処理手段と、
を備えることを特徴とする板厚の測定装置。
A thickness measuring device capable of measuring the thickness of the material to be measured in a non-contact manner while conveying the material to be measured,
An ultrasonic generator for irradiating the surface of the material to be measured with a laser to generate ultrasonic waves and ablating to remove an oxide film formed on the surface of the material to be measured;
Ultrasonic detection means for irradiating the surface of the material to be measured, which is disposed downstream in the conveying direction of the material to be measured as viewed from the ultrasonic wave generation means, and detecting the reflected wave;
A measured material conveying means for conveying the measured material;
The ultrasonic generation means, the measured material conveying means, and the ultrasonic detection means are controlled synchronously, and the ultrasonic generation means is irradiated with a laser at a predetermined position of the measured material. After the oxide film is removed and the predetermined position moves a predetermined distance downstream in the conveyance direction of the material to be measured, the ultrasonic wave generation unit is upstream of the measurement material in the conveyance direction when viewed from the predetermined position. Control is performed by irradiating a laser to another predetermined position located on the side to remove the oxide film and generating an ultrasonic wave, and detecting the generated ultrasonic wave through the predetermined position by the ultrasonic detection means. Repetitive control means;
Arithmetic processing means for calculating the plate thickness of the material to be measured based on the detection result of the ultrasonic detection means;
A plate thickness measuring apparatus comprising:
被測定材を搬送しつつ該被測定材の板厚を非接触で測定する板厚の測定方法であって、
(1)前記被測定材の表面の所定の領域にレーザを照射してアブレーションし前記被測定材の表面に形成される酸化皮膜を除去するとともに超音波を発生させる段階と、
(2)被測定材を所定の距離だけ搬送する段階と、
(3)前記(1)の段階においてレーザを照射した領域の被測定材の搬送方向の上流側の他の所定の領域にレーザを照射してアブレーションし、前記被測定材の表面に形成される酸化皮膜を除去するとともに超音波を発生させる段階と、
(4)発生した超音波のうち被測定材の底面に反射したエコーを前記(1)の段階においてレーザを照射した領域を通じて検出する段階と、
を有し、前記(1)から(5)の段階を繰り返すことを特徴とする板厚の測定方法。
A thickness measuring method for measuring the thickness of the material to be measured in a non-contact manner while conveying the material to be measured,
(1) irradiating a predetermined region on the surface of the material to be measured with laser to remove the oxide film formed on the surface of the material to be measured and generating ultrasonic waves;
(2) conveying the material to be measured by a predetermined distance;
(3) Ablation is performed by irradiating a laser to another predetermined region on the upstream side in the conveyance direction of the material to be measured in the region irradiated with laser in the step (1), and is formed on the surface of the material to be measured. Removing the oxide film and generating ultrasonic waves;
(4) detecting an echo reflected from the bottom surface of the material to be measured among the generated ultrasonic waves through a region irradiated with the laser in the step (1);
A method for measuring a plate thickness, comprising repeating steps (1) to (5).
JP2008146527A 2008-06-04 2008-06-04 Apparatus and method for measuring board thickness Pending JP2009294012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008146527A JP2009294012A (en) 2008-06-04 2008-06-04 Apparatus and method for measuring board thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008146527A JP2009294012A (en) 2008-06-04 2008-06-04 Apparatus and method for measuring board thickness

Publications (1)

Publication Number Publication Date
JP2009294012A true JP2009294012A (en) 2009-12-17

Family

ID=41542321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008146527A Pending JP2009294012A (en) 2008-06-04 2008-06-04 Apparatus and method for measuring board thickness

Country Status (1)

Country Link
JP (1) JP2009294012A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020192057A1 (en) * 2019-03-27 2020-10-01 大连理工大学 Large wall plate ultrasonic on-machine non-contact scanning thickness measuring device and method
CN112362002A (en) * 2020-10-23 2021-02-12 中旗(湖北)新材料有限公司 Quartz stone plate detection device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020192057A1 (en) * 2019-03-27 2020-10-01 大连理工大学 Large wall plate ultrasonic on-machine non-contact scanning thickness measuring device and method
US11287400B2 (en) 2019-03-27 2022-03-29 Dalian University Of Technology Large-panel ultrasonic on-machine non-contact scanning thickness measurement equipment and thickness measurement method
CN112362002A (en) * 2020-10-23 2021-02-12 中旗(湖北)新材料有限公司 Quartz stone plate detection device and method

Similar Documents

Publication Publication Date Title
JP4321190B2 (en) Material thickness measuring method and apparatus
JP2010117170A5 (en)
JP4960466B2 (en) Paper sheet processing equipment
JP2010117172A5 (en)
US20110284508A1 (en) Welding system and welding method
TWI360654B (en) Apparatus and method for measuring material qualit
JP4588707B2 (en) X-ray foreign object detection device
CN102506781B (en) Laser ultrasonic thickness measuring method and laser ultrasonic thickness measuring device capable of being used for field detection
JP2010117172A (en) Radiation detector, radiation image acquiring system, and radiation detecting method
JP2009294012A (en) Apparatus and method for measuring board thickness
JP2001194137A (en) Non-contact measuring method and apparatus for material thickness
JP5058109B2 (en) Method and apparatus for measuring longitudinal and transverse sound velocities in materials by laser ultrasonic method
KR20180004051A (en) Measuring method for measuring laser
JP5558666B2 (en) Surface defect evaluation apparatus and method for round bar steel by water immersion ultrasonic flaw detection using an electronic scanning array probe
JP5072789B2 (en) Method and apparatus for measuring longitudinal and transverse sound velocities in materials by laser ultrasonic method
JP2006200970A (en) Laser ultrasonic flaw detection method and laser ultrasonic flaw detector
JP2008151763A (en) Welded part measuring method and welded part measuring instrument
JP2003270224A (en) Probe holder, method and apparatus for ultrasonic flaw detection
JP5528395B2 (en) Thin plate stress measuring method and measuring apparatus
JP2011163971A (en) Laser ultrasonic flaw detection method for rotor
JP2010096703A (en) Measuring device with use of electromagnetic ultrasonic wave method, and measuring method
JP2010237198A (en) Generating method of sh wave, detection method of sh wave, and ultrasonic measuring method
KR101253909B1 (en) Method and apparatus for measuring plastic deformation ratio using laser ultrasonic
JP2005315722A (en) Outer circumferential length measuring method of spiral steel pipe and its device, and manufacturing method of spiral steel pipe and its equipment
TW201531360A (en) Apparatus and method for processing laser