JP2009283531A - Wavelength-variable light source - Google Patents

Wavelength-variable light source Download PDF

Info

Publication number
JP2009283531A
JP2009283531A JP2008131692A JP2008131692A JP2009283531A JP 2009283531 A JP2009283531 A JP 2009283531A JP 2008131692 A JP2008131692 A JP 2008131692A JP 2008131692 A JP2008131692 A JP 2008131692A JP 2009283531 A JP2009283531 A JP 2009283531A
Authority
JP
Japan
Prior art keywords
wavelength
light
semiconductor laser
diffraction grating
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008131692A
Other languages
Japanese (ja)
Other versions
JP5228616B2 (en
Inventor
Keisuke Asami
圭助 浅見
Akinari Ito
昭成 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2008131692A priority Critical patent/JP5228616B2/en
Publication of JP2009283531A publication Critical patent/JP2009283531A/en
Application granted granted Critical
Publication of JP5228616B2 publication Critical patent/JP5228616B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an external resonator-type wavelength-variable light source capable of securing excellent wavelength selectivity with a small number of parts and taking out light output efficiently over a wide wavelength band range even when using a semiconductor laser having a far field pattern narrow in a horizontal direction. <P>SOLUTION: The external resonator-type wavelength-variable light source selecting the wavelength of light from a semiconductor laser using a diffraction grating is characterized in that an achromatic prism produced by laminating two types of glass materials with Abbe numbers different from each other, is provided between the semiconductor laser and the diffraction grating. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は波長可変光源に関し、詳しくは、半導体レーザからの光を回折格子を用いて波長選択するリトロー配置やリットマン配置などの外部共振器型の波長可変光源の波長選択性を改善するとともに出力光を効率よく出力する波長可変光源に関するものである。   The present invention relates to a wavelength tunable light source, and more particularly, to improve the wavelength selectivity of an external resonator type wavelength tunable light source such as a Littrow arrangement or a Littman arrangement that uses a diffraction grating to select light from a semiconductor laser and output light. The present invention relates to a wavelength tunable light source that efficiently outputs light.

外部共振器型の波長可変光源は、半導体レーザからの光を回折格子で波長分散・波長選択し、波長選択した光を半導体レーザに帰還させて、所望の波長でレーザ発振させる。外部共振器型の波長可変光源としては、たとえば、リトロー配置の波長可変光源、リットマン配置の波長可変光源などがある。   The external resonator type wavelength tunable light source performs wavelength dispersion and wavelength selection of light from a semiconductor laser with a diffraction grating, and feeds back the wavelength-selected light to the semiconductor laser to cause laser oscillation at a desired wavelength. Examples of the external resonator type tunable light source include a Littrow-arranged tunable light source and a Littman-arranged tunable light source.

このような外部共振器型の負帰還増幅器に用いられる半導体レーザから出射される光のファーフィールドパターンは、ほぼ真円が一般的であるが、たとえば端面反射を極力落とした特殊な半導体レーザでは楕円状の平行光で、回折格子の溝の配列方向(波長の分散方向であり、以下水平方向という)に対して短くて溝方向に対して長いビーム形状のものが用いられることがある。   The far-field pattern of light emitted from a semiconductor laser used in such an external resonator type negative feedback amplifier is generally a perfect circle, but for example a special semiconductor laser with as little end-face reflection as an elliptical pattern. In some cases, a beam having a beam shape that is short with respect to the groove arrangement direction (wavelength dispersion direction, hereinafter referred to as the horizontal direction) and long with respect to the groove direction is used.

ところで、回折格子による波長分散の大きさは主に回折格子の溝本数で決まり、回折格子の水平方向に対する光の照射幅が大きい(照射される溝本数が多い)ほど波長分解能(波長選択性)も高くなる。そこで、半導体レーザから出射された光のビーム形状を楕円状から円形に整形し、回折格子の波長選択性を改善している。   By the way, the magnitude of the chromatic dispersion by the diffraction grating is mainly determined by the number of grooves of the diffraction grating, and the wavelength resolution (wavelength selectivity) becomes larger as the irradiation width of light in the horizontal direction of the diffraction grating is larger (the number of irradiated grooves is larger). Also gets higher. Therefore, the beam shape of light emitted from the semiconductor laser is shaped from an ellipse to a circle to improve the wavelength selectivity of the diffraction grating.

図7は、従来の外部共振器型の波長可変光源の構成例図である(特許文献1参照)。図7において、半導体レーザ1は、一方の端面1aが無反射処理(たとえばARコート)され、このARコートされた端面1aから光が出射される。   FIG. 7 is a configuration example of a conventional wavelength variable light source of an external resonator type (see Patent Document 1). In FIG. 7, in the semiconductor laser 1, one end face 1a is subjected to non-reflection treatment (for example, AR coating), and light is emitted from the AR-coated end face 1a.

レンズ2は、半導体レーザ1の出力光を平行光にして出射したり、帰還された光(以下戻り光ともいう)を半導体レーザ1のARコートされた端面1aに集光させる。   The lens 2 emits the output light of the semiconductor laser 1 as parallel light, and collects the returned light (hereinafter also referred to as return light) on the AR-coated end face 1 a of the semiconductor laser 1.

回折格子3は、レンズ2からの光を波長分散してミラー4に出射したり、ミラー4からの反射光を再度波長分散してレンズ2に出射する。   The diffraction grating 3 wavelength-disperses the light from the lens 2 and emits the light to the mirror 4, or wavelength-disperses the reflected light from the mirror 4 again and emits the light to the lens 2.

ミラー4は、回折格子3で波長分散された回折光のうち所望の波長の光を選択して回折格子3に反射する。また、ミラー4は、リットマン配置となるように所定の点を中心に回転する。   The mirror 4 selects light of a desired wavelength from the diffracted light wavelength-dispersed by the diffraction grating 3 and reflects it to the diffraction grating 3. Further, the mirror 4 rotates around a predetermined point so as to be a Littman arrangement.

ビームスプリッタ5は、レンズ2と回折格子3の間に設けられ、回折格子3からの戻り光の一部を分岐して出力光として出力し、他方をレンズ2を介して半導体レーザ1に帰還する。   The beam splitter 5 is provided between the lens 2 and the diffraction grating 3. A part of the return light from the diffraction grating 3 is branched and output as output light, and the other is fed back to the semiconductor laser 1 through the lens 2. .

ビーム拡大器6は、アナモルフィックプリズムペア(アナモルフィックプリズム61、62)を有し、ビームスプリッタ5と回折格子3の間に設けられ、半導体レーザ1からの光のビーム形状を円形に整形して回折格子3に出射する。   The beam expander 6 has an anamorphic prism pair (anamorphic prisms 61 and 62), is provided between the beam splitter 5 and the diffraction grating 3, and shapes the beam shape of light from the semiconductor laser 1 into a circle. Then, the light is emitted to the diffraction grating 3.

このような装置の動作を説明する。
半導体レーザ1の一方の端面1aから出射された光はレンズ2によって平行光に変換され、ビームスプリッタ5を透過してビーム拡大器6によってビーム整形(水平方向にビーム形状を拡大)される。そして、ビーム整形された光は、回折格子3で波長分散されてミラー4に出射される。さらに、ミラー4で所望の波長の光のみが回折格子3に反射され、この反射光が再度回折格子3で波長選択される。
The operation of such an apparatus will be described.
The light emitted from one end face 1a of the semiconductor laser 1 is converted into parallel light by the lens 2, passes through the beam splitter 5, and is shaped by the beam expander 6 (the beam shape is expanded in the horizontal direction). The beam-shaped light is wavelength-dispersed by the diffraction grating 3 and emitted to the mirror 4. Further, only light having a desired wavelength is reflected by the diffraction grating 3 by the mirror 4, and the wavelength of the reflected light is selected again by the diffraction grating 3.

そして、波長選択が2回行われた光がビーム拡大器6、ビームスプリッタ5、レンズ2を介して半導体レーザ1に帰還され、半導体レーザ1の他方の端面とミラー4とで外部共振器が形成されてレーザ発振する。また、ミラー4を回転移動させることにより、共振器長・反射波長も変わり、所望の波長で安定したシングルモード発振を行う。   Then, the light whose wavelength has been selected twice is fed back to the semiconductor laser 1 through the beam expander 6, the beam splitter 5, and the lens 2, and an external resonator is formed by the other end face of the semiconductor laser 1 and the mirror 4. The laser oscillates. Further, by rotating the mirror 4, the resonator length and reflection wavelength are also changed, and stable single mode oscillation is performed at a desired wavelength.

さらに、ビームスプリッタ5が、半導体レーザに帰還される光(つまり2回波長選択された戻り光)を分岐し、一部を出力光とする。これにより、半導体レーザ1自身で発生する自然放出光が除去された極めて単一性の高いレーザ光が出力光として出力される。   Further, the beam splitter 5 branches the light that is fed back to the semiconductor laser (that is, the return light that has been wavelength-selected twice), and uses a part as output light. As a result, laser light with extremely high unity from which spontaneous emission light generated by the semiconductor laser 1 itself is removed is output as output light.

特開平5−198881号公報Japanese Patent Laid-Open No. 5-198881

このように、ビーム拡大器6を半導体レーザ1と回折格子3との間に設けることによって、回折格子3への水平方向の照射幅が改善され、波長選択性が高くなる。また、ビームスプリッタ5を半導体レーザ1と回折格子3との間に設けることにより、半導体レーザ1自身で発生する自然放出光を除去でき、極めて単一性の高い出力光が得られる。   Thus, by providing the beam expander 6 between the semiconductor laser 1 and the diffraction grating 3, the irradiation width in the horizontal direction to the diffraction grating 3 is improved, and the wavelength selectivity is increased. Further, by providing the beam splitter 5 between the semiconductor laser 1 and the diffraction grating 3, spontaneous emission light generated by the semiconductor laser 1 itself can be removed, and output light with extremely high unity can be obtained.

しかしながら、ビームスプリッタ5やビーム拡大器6におけるアナモルフィックプリズム61、62は、空気よりも屈折率の大きいガラスなどの屈折媒体である。そのため、光路中にこれらの屈折媒体5、61、62を設けることにより外部共振器長が増加し、モード間隔が狭くなって波長選択性が悪くなるという問題があった。   However, the anamorphic prisms 61 and 62 in the beam splitter 5 and the beam expander 6 are refractive media such as glass having a higher refractive index than air. Therefore, the provision of these refractive media 5, 61, 62 in the optical path increases the external resonator length, narrows the mode interval, and degrades the wavelength selectivity.

また、光出力を取り出すためにビームスプリッタ5を設けることにより、外部共振器内の光パワーの損失が増大し、光パワーの効率が悪化するという問題があった。   Further, by providing the beam splitter 5 for taking out the optical output, there is a problem that the optical power loss in the external resonator increases and the optical power efficiency deteriorates.

さらに、図8(A),(B)に示すようにアナモルフィックプリズム61,62を単体で用いてビーム整形を行うことにより、屈折媒体であるプリズム61,62の厚さを最小限に抑えることができるため、結果として外部共振器長の増加が最小限となり、図7のようにアナモルフィックプリズムペア6とビームスプリッタ5で構成する場合に比べ良好な波長選択性を得ることができる。   Further, as shown in FIGS. 8A and 8B, by performing beam shaping using the anamorphic prisms 61 and 62 alone, the thickness of the prisms 61 and 62 as the refractive medium is minimized. Therefore, as a result, the increase in the length of the external resonator is minimized, and a favorable wavelength selectivity can be obtained as compared with the case where the anamorphic prism pair 6 and the beam splitter 5 are configured as shown in FIG.

ところが、出力光を光ファイバに結合して取り出す際に、プリズム61,62で生じる屈折率の波長分散によって結合効率が低下することになり、特に広波長帯域な波長可変光源において重大な問題となる。   However, when the output light is coupled to the optical fiber and taken out, the coupling efficiency decreases due to the chromatic dispersion of the refractive index generated by the prisms 61 and 62, which becomes a serious problem particularly in a tunable light source having a wide wavelength band. .

本発明は、これらの問題点を解決するものであり、その目的は、水平方向のファーフィールドパターンが狭い半導体レーザであっても、少ない部品点数で優れた波長選択性を確保し、広い波長帯域に渡って効率よく光出力を取り出すことができる外部共振器型の波長可変光源を実現することにある。   The present invention solves these problems, and its purpose is to ensure excellent wavelength selectivity with a small number of components and a wide wavelength band even for a semiconductor laser having a narrow horizontal far-field pattern. It is to realize an external resonator type wavelength tunable light source that can efficiently extract light output over a wide range.

請求項1記載の発明は、
半導体レーザからの光を回折格子を用いて波長選択する外部共振器型の波長可変光源において、
前記半導体レーザと前記回折格子との間に、アッベ数の異なる2種の硝材を貼り合わせた色消しプリズムを設けたことを特徴とする。
The invention described in claim 1
In an external resonator type tunable light source that selects light from a semiconductor laser using a diffraction grating,
An achromatic prism in which two kinds of glass materials having different Abbe numbers are bonded is provided between the semiconductor laser and the diffraction grating.

請求項2記載の発明は、請求項1記載の発明において、
前記色消しプリズムの後段は高屈折材料で形成されたことを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
The latter stage of the achromatic prism is formed of a high refractive material.

請求項3記載の発明は、請求項1または請求項2記載の波長可変光源において、
前記色消しプリズムは、屈折率が同程度の2種の硝材を貼り合わせたものであることを特徴とする
The invention according to claim 3 is the wavelength tunable light source according to claim 1 or 2,
The achromatic prism is a laminate of two glass materials having the same refractive index.

本発明によれば、外部共振器内にアッベ数の異なる2種の硝材を貼り合わせた色消しプリズムを設けたことにより、半導体レーザの出力光のビーム整形を行うとともにプリズム通過時の屈折角を波長にかかわらず一定に保つことができ、回折光出力を広い波長帯域に渡って効率良く光ファイバに結合して取り出すことができる。   According to the present invention, by providing the achromatic prism in which two kinds of glass materials having different Abbe numbers are bonded in the external resonator, the beam shaping of the output light of the semiconductor laser is performed and the refraction angle when passing through the prism is set. It can be kept constant regardless of the wavelength, and the diffracted light output can be efficiently coupled to the optical fiber and taken out over a wide wavelength band.

また、外部共振器内に入れる部品点数や光路長を少なく構成できるため、外部共振器長の増加を少なくすることができ、結果としてモード間隔が狭くなるのを抑えられ、波長選択性のマイナス要因を最小限にできる。   In addition, since the number of components and the optical path length that can be inserted into the external resonator can be reduced, the increase in the external resonator length can be reduced, and as a result, the mode interval can be prevented from being narrowed, and the wavelength selectivity is a negative factor. Can be minimized.

以下図面を用いて本発明の実施の形態を説明する。
図1は、本発明の第1の実施例を示した構成図であり、図7と同一のものには同一符号を付し、説明を省略する。図1において、図7のビームスプリッタ5およびビーム拡大器6の代わりに、色消しプリズム7が設けられている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing a first embodiment of the present invention. Components identical with those shown in FIG. 7 are designated by like reference characters and need not be described again. In FIG. 1, an achromatic prism 7 is provided instead of the beam splitter 5 and the beam expander 6 shown in FIG.

色消しプリズム7は、アッベ数(屈折率の波長分散)の異なる少なくとも2種の硝材からなるプリズム71と72を貼り合わせたものであり、レンズ2と回折格子3の光路上に設けられる。具体的な硝材例としては、たとえばプリズム71としてはKVC89(ウェッジ角24.9deg)を用い、プリズム72としてはKPSFN3(ウェッジ角16.2deg)などを用いる。   The achromatic prism 7 is obtained by bonding prisms 71 and 72 made of at least two kinds of glass materials having different Abbe numbers (wavelength dispersion of refractive index), and is provided on the optical path of the lens 2 and the diffraction grating 3. As a specific glass material example, for example, KVC89 (wedge angle 24.9 deg) is used as the prism 71, and KPSFN3 (wedge angle 16.2 deg) is used as the prism 72.

色消しプリズム7において、半導体レーザ1の出力光が入射する面を入射面7aとし、この入射面7aからの入射光を回折格子3に出射する面(つまり、回折格子3からの戻り光が入射される面)を出射面7bとする。   In the achromatic prism 7, the surface on which the output light of the semiconductor laser 1 is incident is defined as an incident surface 7a, and the surface from which the incident light from the incident surface 7a is emitted to the diffraction grating 3 (that is, the return light from the diffraction grating 3 is incident). The outgoing surface 7b is defined as the outgoing surface 7b.

ここで、半導体レーザ1から入射面7aに入射される光の入射角をブリュースター角に設定することにより反射率をほぼゼロにすることができ、入射面7aの反射防止膜および出射面7bの部分反射膜のコーティングを不要にできる。すなわち、半導体レーザ1からの光は直線偏光なので、半導体レーザ1から入射面7aへの入射光は入射面7aで反射することがなく全透過する。   Here, by setting the incident angle of light incident on the incident surface 7a from the semiconductor laser 1 to the Brewster angle, the reflectance can be made substantially zero, and the antireflection film on the incident surface 7a and the emission surface 7b can be reduced. The coating of the partial reflection film can be made unnecessary. That is, since the light from the semiconductor laser 1 is linearly polarized light, the incident light from the semiconductor laser 1 to the incident surface 7a is totally reflected without being reflected by the incident surface 7a.

図1の実施例における半導体レーザ1、回折格子3、ミラー4などは、リットマン配置となるように構成される。なお、色消しプリズム7、レンズ2などの屈折媒体が外部共振器内に存在するので、ミラー4の回転移動の基準となる位置は、これらの屈折媒体が無い場合とは異なる。   The semiconductor laser 1, the diffraction grating 3, the mirror 4 and the like in the embodiment of FIG. 1 are configured to have a Littman arrangement. Since refractive media such as the achromatic prism 7 and the lens 2 are present in the external resonator, the position serving as a reference for the rotational movement of the mirror 4 is different from the case where these refractive media are not present.

このような装置の動作を説明する。
半導体レーザ1の一方の端面(無反射端)1aから出射された光はレンズ2によってコリメートされて平行光になり、色消しプリズム7に入射される。この際、レンズ2からのコリメート光が、色消しプリズム7の入射面7aで反射することなく色消しプリズム7に入射される。
The operation of such an apparatus will be described.
The light emitted from one end face (non-reflecting end) 1 a of the semiconductor laser 1 is collimated by the lens 2 to become parallel light and is incident on the achromatic prism 7. At this time, the collimated light from the lens 2 is incident on the achromatic prism 7 without being reflected by the incident surface 7 a of the achromatic prism 7.

コリメート光は、色消しプリズム7によって水平方向にビーム形状を拡大するようにビーム整形され、出射面7bから回折格子3に出射される。回折格子3は、このようにビーム整形された光について1回目の波長分散を行い、ミラー4に出射する。ミラー4で所望の波長の光のみが波長選択されて回折格子3に反射され、回折格子3はこの反射光を再度波長分散させて波長選択を行い、色消しプリズム7に出射する。   The collimated light is beam shaped by the achromatic prism 7 so as to expand the beam shape in the horizontal direction, and is emitted from the emission surface 7 b to the diffraction grating 3. The diffraction grating 3 performs the first wavelength dispersion for the light thus shaped and emits the light to the mirror 4. Only the light having a desired wavelength is selected by the mirror 4 and reflected by the diffraction grating 3, and the diffraction grating 3 performs wavelength selection by wavelength-dispersing the reflected light again and emits it to the achromatic prism 7.

回折格子3で波長選択が2回行われた戻り光が、色消しプリズム7の出射面7bに入射される。この際、色消しプリズム7の屈折率と空気の屈折率との屈折率差によって一部の戻り光は出射面7bで反射されるが、大部分の戻り光は出射面7bで反射されることなく色消しプリズム7に入射される。   The return light whose wavelength is selected twice by the diffraction grating 3 is incident on the exit surface 7 b of the achromatic prism 7. At this time, part of the return light is reflected by the exit surface 7b due to the difference in refractive index between the refractive index of the achromatic prism 7 and the refractive index of air, but most of the return light is reflected by the exit surface 7b. Without being incident on the achromatic prism 7.

色消しプリズム7に入射された戻り光は入射面7aから出射されてレンズ2を介して半導体レーザ1に帰還され、半導体レーザ1の他方の端面とミラー4とで外部共振器が形成されてレーザ発振する。なお、ミラー4を回転移動させることにより、共振器長および反射波長も変わり、所望の波長で安定したシングルモード発振を行う。   The return light incident on the achromatic prism 7 is emitted from the incident surface 7a and fed back to the semiconductor laser 1 through the lens 2, and an external resonator is formed by the other end surface of the semiconductor laser 1 and the mirror 4 to form a laser. Oscillates. By rotating the mirror 4, the resonator length and the reflection wavelength are also changed, and stable single mode oscillation is performed at a desired wavelength.

図2はミラー4を波長に応じて回転移動させた場合の波長分散説明図、図3は図2のプリズム部分の説明図であって、(A)はアナモルフィックプリズム61を単体で用いた従来例を示し、(B)は色消しプリズム7を用いた本発明の例を示している。(A)に示す従来例では、波長に応じてミラー4を回転移動させるとプリズム通過時の屈折角も波長に応じて変化することになり、波長分散が生じる。これに対し、(B)に示す本発明によれば、波長に応じてミラー4を回転移動させてもプリズム通過時の屈折角を波長にかかわらず一定に保つことができ、波長分散は生じない。   FIG. 2 is an explanatory diagram of wavelength dispersion when the mirror 4 is rotated according to the wavelength. FIG. 3 is an explanatory diagram of the prism portion of FIG. 2. FIG. 2A is a diagram using an anamorphic prism 61 alone. A conventional example is shown, and (B) shows an example of the present invention using an achromatic prism 7. In the conventional example shown in (A), when the mirror 4 is rotated according to the wavelength, the refraction angle when passing through the prism also changes according to the wavelength, and chromatic dispersion occurs. On the other hand, according to the present invention shown in (B), even if the mirror 4 is rotated according to the wavelength, the refraction angle when passing through the prism can be kept constant regardless of the wavelength, and chromatic dispersion does not occur. .

本発明によれば、(B)に示すように、回折格子3からの戻り光のうち、色消しプリズム7の出射面7bで反射された光が出力光として取り出されて出力される。この際、出力光が、回折格子3での0次光と略平行(0次光の光軸と、色消しプリズム7の反射光の光軸とが平行)に出力されるように色消しプリズム7の出射面7bを設定しておく。なお、回折格子3の0次光には、色消しプリズム7から回折格子3に入射する光によるものとミラー4の反射光によるものの2種類があるが、ここでの0次光は、色消しプリズム7から回折格子3に入射する光に対するものである。   According to the present invention, as shown in (B), of the return light from the diffraction grating 3, the light reflected by the exit surface 7b of the achromatic prism 7 is extracted and output as output light. At this time, the achromatic prism is output so that the output light is output substantially in parallel with the zero-order light from the diffraction grating 3 (the optical axis of the zero-order light and the optical axis of the reflected light of the achromatic prism 7 are parallel). 7 emission surfaces 7b are set. Note that there are two types of zero-order light from the diffraction grating 3, one based on light incident on the diffraction grating 3 from the achromatic prism 7 and one reflected on the mirror 4. The zero-order light here is achromatic. This is for light incident on the diffraction grating 3 from the prism 7.

図4は図2の波長可変光源の出力光を光ファイバに結合する場合の説明図であって、(A)は出力光に波長分散がある従来例を示し、(B)は出力光に波長分散がない本発明の例を示している。(A)に示す従来例の出力光には波長分散があることから、出力光をレンズ8で集光しても、波長の一部しか光ファイバ9に結合されない。ところが、(B)に示す本発明の出力光には波長分散がないので、出力光をレンズ8で集光することによって、ほぼ全波長を光ファイバ9に結合させることができる。   4A and 4B are explanatory diagrams when the output light of the wavelength tunable light source of FIG. 2 is coupled to an optical fiber. FIG. 4A shows a conventional example in which the output light has chromatic dispersion, and FIG. 4B shows the wavelength of the output light. An example of the present invention without dispersion is shown. Since the output light of the conventional example shown in (A) has wavelength dispersion, even if the output light is condensed by the lens 8, only a part of the wavelength is coupled to the optical fiber 9. However, since the output light of the present invention shown in (B) has no wavelength dispersion, almost all wavelengths can be coupled to the optical fiber 9 by collecting the output light with the lens 8.

図5は図4の結合効率の説明図であって、各波長での結合効率ピークを0とした場合の比率を示したものである。出力光に波長分散がある(A)に示す従来例では、特定の波長λにおいて結合効率のピークを示し、短波長側λ−αおよび長波長側λ+αでは結合効率が低下している。これに対し、出力光に波長分散がない(B)に示す本発明の場合には、特定の波長λにおいて結合効率のピークを示すとともに、短波長側λ−αおよび長波長側λ+αの全域でほぼ平坦な結合効率を示している。   FIG. 5 is an explanatory diagram of the coupling efficiency of FIG. 4 and shows the ratio when the coupling efficiency peak at each wavelength is zero. In the conventional example shown in (A) where the output light has chromatic dispersion, the coupling efficiency peaks at a specific wavelength λ, and the coupling efficiency decreases at the short wavelength side λ−α and the long wavelength side λ + α. On the other hand, in the case of the present invention shown in (B) in which the output light has no chromatic dispersion, the peak of the coupling efficiency is shown at a specific wavelength λ, and the entire region of the short wavelength side λ−α and the long wavelength side λ + α The coupling efficiency is almost flat.

このように構成することにより、半導体レーザ1と回折格子3との間に設けられた色消しプリズム7はコリメート光のビーム整形と2回目の回折光からの出力光の取り出しを兼ねるので、図7に示す従来の装置に比べて外部共振器内の屈折媒体の部品点数を削減できる。   With such a configuration, the achromatic prism 7 provided between the semiconductor laser 1 and the diffraction grating 3 serves both as beam shaping of collimated light and extraction of output light from the second diffracted light. The number of parts of the refractive medium in the external resonator can be reduced as compared with the conventional device shown in FIG.

したがって、図6に示すように外部共振器長の増加を少なくすることができ、モード間隔が狭くなることが抑えられ、波長選択性を向上させることができる。   Therefore, as shown in FIG. 6, the increase in the length of the external resonator can be reduced, the mode interval can be suppressed from being narrowed, and the wavelength selectivity can be improved.

さらに、屈折媒体の部品点数の減少により光パワーの損失を抑えることができ、波長選択性を改善できるとともに出力光を効率よく出力することができる。   Further, the loss of optical power can be suppressed by reducing the number of parts of the refractive medium, the wavelength selectivity can be improved and the output light can be output efficiently.

また、従来の構成に比べて部品点数を削減できることから、コストの削減および小型化も図れる。   Further, since the number of parts can be reduced as compared with the conventional configuration, the cost can be reduced and the size can be reduced.

また、各部品間で平行平面になる部分がなくなるので、多重反射による干渉や迷光の影響を抑えることができる。   In addition, since there is no parallel plane portion between the components, the influence of interference and stray light due to multiple reflection can be suppressed.

また、色消しプリズム7の入射面7aに入射される光の入射角をブリュースター角に設定することにより、入射面7a側の反射防止膜コーティングを省略でき、さらに製造コストを抑えることができる。   Further, by setting the incident angle of the light incident on the incident surface 7a of the achromatic prism 7 to the Brewster angle, the antireflection film coating on the incident surface 7a side can be omitted, and the manufacturing cost can be further reduced.

また、色消しプリズム7は半導体レーザに帰還される光(つまり、2回波長選択された戻り光)の一部を出射面7bで反射させて出力光とするので、半導体レーザ1自身で発生する自然放出光が除去された極めて単一性の高いレーザ出力光が得られる。   Further, since the achromatic prism 7 reflects a part of the light fed back to the semiconductor laser (that is, the return light whose wavelength is selected twice) to the output surface 7b, it is generated by the semiconductor laser 1 itself. Laser output light with extremely high unity from which spontaneous emission light has been removed can be obtained.

そして、出力光を光ファイバに容易にカップリングさせることができ、構造上の簡略化および小型化を図ることができる。   The output light can be easily coupled to the optical fiber, and the structure can be simplified and downsized.

以上説明したように、本発明によれば、水平方向のファーフィールドパターンが狭い半導体レーザであっても、少ない部品点数で優れた波長選択性を確保できるとともに広い波長帯域に渡って効率よく光出力を取り出すことができる外部共振器型の波長可変光源を実現することができ、光通信分野の光源などに好適である。   As described above, according to the present invention, it is possible to ensure excellent wavelength selectivity with a small number of components and efficiently output light over a wide wavelength band even in a semiconductor laser having a narrow horizontal far field pattern. An external resonator type wavelength tunable light source that can take out the light can be realized, and is suitable for a light source in the field of optical communication.

本発明の一実施例を示す構成図である。It is a block diagram which shows one Example of this invention. 色消しプリズム7によるビーム整形説明図である。It is a beam shaping explanatory drawing by the achromatic prism 7. 図1の動作説明図である。FIG. 2 is an operation explanatory diagram of FIG. 図1の動作説明図である。FIG. 2 is an operation explanatory diagram of FIG. 図1の動作説明図である。FIG. 2 is an operation explanatory diagram of FIG. 図1の動作説明図である。FIG. 2 is an operation explanatory diagram of FIG. 従来の外部共振器型の波長可変光源の構成例図である。It is a structural example figure of the conventional wavelength variable light source of an external resonator type. 従来の動作説明図である。It is conventional operation explanatory drawing.

符号の説明Explanation of symbols

1 半導体レーザ
2、8 レンズ
3 回折格子
4 ミラー
7 色消しプリズム
71、72 プリズム
7a 入射面
7b 出射面
9 光ファイバ
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2, 8 Lens 3 Diffraction grating 4 Mirror 7 Achromatic prism 71, 72 Prism 7a Incident surface 7b Output surface 9 Optical fiber

Claims (3)

半導体レーザの出力光を回折格子に入射して波長選択する外部共振器型の波長可変光源において、
前記半導体レーザと前記回折格子との間に、アッベ数の異なる2種の硝材を貼り合わせた色消しプリズムを設けたことを特徴とする波長可変光源。
In an external resonator type tunable light source that selects the wavelength by making the output light of the semiconductor laser incident on the diffraction grating
A wavelength tunable light source, wherein an achromatic prism in which two kinds of glass materials having different Abbe numbers are bonded is provided between the semiconductor laser and the diffraction grating.
前記色消しプリズムの後段は高屈折材料で形成されたことを特徴とする請求項1記載の波長可変光源。   The wavelength tunable light source according to claim 1, wherein a stage subsequent to the achromatic prism is formed of a highly refractive material. 前記色消しプリズムは、屈折率が同程度の2種の硝材を貼り合わせたものであることを特徴とする請求項1または請求項2記載の波長可変光源。   3. The wavelength tunable light source according to claim 1, wherein the achromatic prism is obtained by bonding two kinds of glass materials having the same refractive index.
JP2008131692A 2008-05-20 2008-05-20 Tunable light source Active JP5228616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008131692A JP5228616B2 (en) 2008-05-20 2008-05-20 Tunable light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008131692A JP5228616B2 (en) 2008-05-20 2008-05-20 Tunable light source

Publications (2)

Publication Number Publication Date
JP2009283531A true JP2009283531A (en) 2009-12-03
JP5228616B2 JP5228616B2 (en) 2013-07-03

Family

ID=41453722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008131692A Active JP5228616B2 (en) 2008-05-20 2008-05-20 Tunable light source

Country Status (1)

Country Link
JP (1) JP5228616B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513792A (en) * 2012-02-14 2015-05-14 テラダイオード,インコーポレーテッド Two-dimensional multi-beam stabilizer and combining system and method
WO2016013653A1 (en) * 2014-07-25 2016-01-28 三菱電機株式会社 Semiconductor laser device
CN108063364A (en) * 2018-01-05 2018-05-22 南京大学 Semiconductor exocoel mode-locked laser based on Cadmium arsenide's material
CN108281883A (en) * 2018-01-04 2018-07-13 哈尔滨工业大学 A kind of method of tunable laser frequency expansion
CN109632011A (en) * 2019-01-23 2019-04-16 中国科学院长春光学精密机械与物理研究所 It is a kind of to be displaced and angle synchronized measurement system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279216A (en) * 1988-05-02 1989-11-09 Matsushita Electric Ind Co Ltd Collimate lens for external resonator type semiconductor laser
JPH0359617A (en) * 1989-07-28 1991-03-14 Seiko Epson Corp Light beam shaping means
JPH05198881A (en) * 1991-07-30 1993-08-06 Hewlett Packard Co <Hp> Lattice tuning type laser device
JPH05264814A (en) * 1992-03-19 1993-10-15 Canon Inc Luminous flux splitting device and optical information device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01279216A (en) * 1988-05-02 1989-11-09 Matsushita Electric Ind Co Ltd Collimate lens for external resonator type semiconductor laser
JPH0359617A (en) * 1989-07-28 1991-03-14 Seiko Epson Corp Light beam shaping means
JPH05198881A (en) * 1991-07-30 1993-08-06 Hewlett Packard Co <Hp> Lattice tuning type laser device
JPH05264814A (en) * 1992-03-19 1993-10-15 Canon Inc Luminous flux splitting device and optical information device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015513792A (en) * 2012-02-14 2015-05-14 テラダイオード,インコーポレーテッド Two-dimensional multi-beam stabilizer and combining system and method
WO2016013653A1 (en) * 2014-07-25 2016-01-28 三菱電機株式会社 Semiconductor laser device
JPWO2016013653A1 (en) * 2014-07-25 2017-04-27 三菱電機株式会社 Semiconductor laser device
CN108281883A (en) * 2018-01-04 2018-07-13 哈尔滨工业大学 A kind of method of tunable laser frequency expansion
CN108063364A (en) * 2018-01-05 2018-05-22 南京大学 Semiconductor exocoel mode-locked laser based on Cadmium arsenide's material
CN108063364B (en) * 2018-01-05 2020-06-26 南京大学 Semiconductor external cavity mode-locked laser based on cadmium arsenide material
CN109632011A (en) * 2019-01-23 2019-04-16 中国科学院长春光学精密机械与物理研究所 It is a kind of to be displaced and angle synchronized measurement system
CN109632011B (en) * 2019-01-23 2020-08-21 中国科学院长春光学精密机械与物理研究所 Displacement and angle synchronous measurement system

Also Published As

Publication number Publication date
JP5228616B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
US9905993B2 (en) Wavelength selective external resonator and beam combining system for dense wavelength beam combining laser
JP4226482B2 (en) Laser beam multiplexer
JP4947367B2 (en) External resonator type tunable light source
JP6157194B2 (en) Laser apparatus and light beam wavelength coupling method
WO2017022142A1 (en) Semiconductor laser device
JP5228616B2 (en) Tunable light source
WO2005098529A1 (en) Coherent light source and optical device
JP2017204530A (en) External cavity diode laser device
TWI291274B (en) Resonating cavity system for broadly tunable multi-wavelength semiconductor lasers
US8537865B1 (en) Fiber-laser pumped by stabilized diode-laser bar stack
US20080080585A1 (en) Volume bragg lasers based on high efficiency diffractive elements in photo-thermo-refractive glass
JP2001284715A (en) External resonator type laser light source
US6690709B2 (en) Device and method for reduction of spontaneous emission from external cavity lasers
JP6223650B1 (en) Laser oscillator
JP4402030B2 (en) External cavity semiconductor laser
WO2006104034A1 (en) External resonance type semiconductor laser
JP2005142197A (en) Variable-wavelength light source
JP5507874B2 (en) Wavelength conversion laser device
JP2011018779A (en) Wavelength variable light source
JP2006073549A (en) External resonator-type wavelength variable optical source
JP2011040627A (en) Variable wavelength light source
JP2987644B2 (en) Narrow band laser device
CN115995749A (en) Three-beam fiber laser external cavity spectrum synthesis method and system for reducing spectrum interval
JP2004140172A (en) External cavity laser beam source
WO2011008130A9 (en) Tunable frequency selector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5228616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150