JP2009277959A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2009277959A
JP2009277959A JP2008129150A JP2008129150A JP2009277959A JP 2009277959 A JP2009277959 A JP 2009277959A JP 2008129150 A JP2008129150 A JP 2008129150A JP 2008129150 A JP2008129150 A JP 2008129150A JP 2009277959 A JP2009277959 A JP 2009277959A
Authority
JP
Japan
Prior art keywords
external electrode
hole
housing
semiconductor device
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008129150A
Other languages
Japanese (ja)
Inventor
Shingo Sudo
進吾 須藤
Tatsuo Ota
達雄 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008129150A priority Critical patent/JP2009277959A/en
Publication of JP2009277959A publication Critical patent/JP2009277959A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and its manufacturing method, which prevents adhesion of a resin burr on external electrodes without lowering productivity. <P>SOLUTION: An IGBT 16 (semiconductor chip) and external electrodes 24 are electrically connected. A housing 30 seals the IGBT 16 in such a way that a part of each external electrode 24 is led out to the outside. Each external electrode 24 has a through-hole 34 at the base of the part led out from the housing 30. A thermoplastic resin that constitutes the housing 30 is filled in at least a part of the through-hole 34. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱可塑性樹脂の筐体から外部電極が導出した半導体装置及びその製造方法に関し、特に生産性を落とすことなく、外部電極に樹脂バリが付着するのを防ぐことができる半導体装置及びその製造方法に関するものである。   The present invention relates to a semiconductor device in which an external electrode is led out from a casing of a thermoplastic resin and a method for manufacturing the same, and particularly to a semiconductor device capable of preventing resin burrs from adhering to the external electrode without reducing productivity. It relates to a manufacturing method.

樹脂封止型の半導体装置は、外部電極が取り付けられた樹脂製のケースを用いたケースタイプの半導体装置に比べて、ケース接続やゲル封止の工程の削減が可能であり、耐振動性も優れている。樹脂封止型の半導体装置の製造には、PPSなどの熱可塑性樹脂を用いたインジェクションモールドや、熱硬化性樹脂を用いたトランスファモールドなどが用いられる。インジェクションモールドの成形時間は、およそ30秒であり、トランスファモールドのおよそ5分の1である。そして、インジェクションモールドは、樹脂の硬化を完了させるキュアを必要としないため、生産性が高い。   Resin-encapsulated semiconductor devices can reduce the case connection and gel encapsulation processes compared to case-type semiconductor devices that use resin cases with external electrodes attached, and also have vibration resistance. Are better. For the production of a resin-encapsulated semiconductor device, an injection mold using a thermoplastic resin such as PPS, a transfer mold using a thermosetting resin, or the like is used. The molding time of the injection mold is approximately 30 seconds, which is approximately one fifth of that of the transfer mold. And since the injection mold does not require curing for completing the curing of the resin, it is highly productive.

インジェクションモールドにおいて、樹脂が成形金型内に充填されると、成形機で設定した充填圧力で成形金型内が高圧となる。この段階で外部電極の導出部と成形金型との間隙に樹脂が押し込まれて、外部電極に樹脂バリが付着する。外部電極は電流の入出力のための端子であり、数百Aの通電が行われる場合もある。このため、絶縁体である樹脂バリが外部電極に付着していると、接触抵抗が増大し、電力損失の増大や異常発熱が発生する。   In the injection mold, when the resin is filled into the molding die, the inside of the molding die becomes a high pressure with the filling pressure set by the molding machine. At this stage, resin is pushed into the gap between the lead-out portion of the external electrode and the molding die, and resin burrs adhere to the external electrode. The external electrode is a terminal for current input / output, and may be energized with several hundreds of A. For this reason, when the resin burr | flash which is an insulator has adhered to the external electrode, contact resistance will increase, an increase in power loss and abnormal heat generation will generate | occur | produce.

従って、樹脂バリを取る必要があるが、薄い樹脂バリは除去が困難であるため、モールド時において樹脂バリを防ぐ方が望ましい。このような樹脂バリ防止方法として、樹脂の成形温度を下げて、流動性を抑制する方法が提案されている(例えば、特許文献1の図1及び図3参照)。   Therefore, it is necessary to remove resin burrs. However, since thin resin burrs are difficult to remove, it is desirable to prevent resin burrs during molding. As such a resin burr prevention method, a method of suppressing fluidity by lowering the resin molding temperature has been proposed (see, for example, FIGS. 1 and 3 of Patent Document 1).

特開平9−232349号公報Japanese Patent Laid-Open No. 9-232349

特許文献1の方法では成形後に熱処理が必要になる。このような熱処理や樹脂バリ取りなどの後処理により、製造時間が長くなり、生産性が落ちるという問題があった。   In the method of Patent Document 1, heat treatment is required after molding. Such post-treatment such as heat treatment and resin deburring has a problem that the manufacturing time becomes long and the productivity is lowered.

本発明は、上述のような課題を解決するためになされたもので、その目的は、生産性を落とすことなく、外部電極に樹脂バリが付着するのを防ぐことができる半導体装置及びその製造方法を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device capable of preventing resin burrs from adhering to an external electrode without reducing productivity, and a method for manufacturing the same. Is what you get.

本発明に係る半導体装置は、半導体素子と、前記半導体素子と電気的に接続された外部電極と、前記外部電極の一部が外部に導出するように前記半導体素子を封止した熱可塑性樹脂の筐体とを備え、前記外部電極には、前記筐体から導出した部分の根本に貫通穴が設けられ、前記貫通穴の少なくとも一部には、前記筐体を構成する前記熱可塑性樹脂が充填されている。   A semiconductor device according to the present invention includes a semiconductor element, an external electrode electrically connected to the semiconductor element, and a thermoplastic resin in which the semiconductor element is sealed so that a part of the external electrode is led out to the outside. The external electrode is provided with a through hole at the root of a portion derived from the housing, and at least a part of the through hole is filled with the thermoplastic resin constituting the housing Has been.

本発明に係る半導体装置の製造方法は、貫通穴が設けられた外部電極を半導体素子と電気的に接続する工程と、成形金型のキャビティに前記半導体素子を入れた状態で前記外部電極の一部を前記キャビティの外に導出し、前記キャビティに熱可塑性樹脂を注入して前記半導体素子を封止する工程とを備え、前記半導体素子を封止する際に、前記貫通穴を前記キャビティの外縁に配置し、前記貫通穴の少なくとも一部に前記熱可塑性樹脂を充填させる。   The method of manufacturing a semiconductor device according to the present invention includes a step of electrically connecting an external electrode provided with a through hole to a semiconductor element, and a step of inserting the semiconductor element into a cavity of a molding die. And a step of injecting a thermoplastic resin into the cavity to seal the semiconductor element, and when the semiconductor element is sealed, the through hole is formed at the outer edge of the cavity. The thermoplastic resin is filled in at least a part of the through hole.

本発明により、生産性を落とすことなく、外部電極に樹脂バリが付着するのを防ぐことができる。   According to the present invention, it is possible to prevent the resin burrs from adhering to the external electrode without reducing the productivity.

実施の形態1.
図1は、実施の形態1に係る半導体装置の外形を示す斜視図であり、図2は、実施の形態1に係る半導体装置の内部構造を示す斜視図である。図3は図1のI−Iにおける断面図であり、図4は図1のII−IIにおける断面図である。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing an outer shape of the semiconductor device according to the first embodiment, and FIG. 2 is a perspective view showing an internal structure of the semiconductor device according to the first embodiment. 3 is a cross-sectional view taken along the line II of FIG. 1, and FIG. 4 is a cross-sectional view taken along the line II-II of FIG.

放熱板10は、縦40mm×横60mm、厚さ2mmであり、アルミニウムを基材とする高熱伝導材料からなる。この放熱板10上にセラミック板12が搭載されている。セラミック板12は、アルミナ、窒化アルミニウム、窒化珪素などの比較的熱伝導率の高い物質からなる。セラミック板12上に、電力用半導体装置の回路を構成する厚さ0.3mmの銅パターン14aが形成されている。セラミック板12の裏面にも同様に銅パターン14bが形成されている。裏面の銅パターン14bと放熱板10は、はんだ付などの放熱性の高い接続方法によって固着されている。   The heat radiating plate 10 is 40 mm long × 60 mm wide and 2 mm thick, and is made of a high heat conductive material based on aluminum. A ceramic plate 12 is mounted on the heat sink 10. The ceramic plate 12 is made of a material having a relatively high thermal conductivity such as alumina, aluminum nitride, or silicon nitride. On the ceramic plate 12, a copper pattern 14a having a thickness of 0.3 mm constituting a circuit of the power semiconductor device is formed. Similarly, a copper pattern 14 b is formed on the back surface of the ceramic plate 12. The copper pattern 14b on the back surface and the heat radiating plate 10 are fixed by a connection method with high heat dissipation such as soldering.

セラミック板12上にIGBT16(半導体素子)とフリーホイールダイオード18が搭載されている。IGBT16は、縦7.5mm×横9mm、厚さが250μmであり、表面にゲート電極とエミッタ電極を有し、裏面にコレクタ電極を有する。フリーホイールダイオード18は、縦4mm×横9mm、厚さ250μmであり、表面にアノード電極を有し、裏面にカソード電極を有する。   An IGBT 16 (semiconductor element) and a free wheel diode 18 are mounted on the ceramic plate 12. The IGBT 16 has a length of 7.5 mm × width of 9 mm, a thickness of 250 μm, a gate electrode and an emitter electrode on the surface, and a collector electrode on the back surface. The freewheel diode 18 has a length of 4 mm × width of 9 mm and a thickness of 250 μm, and has an anode electrode on the front surface and a cathode electrode on the back surface.

IGBT16のコレクタ電極及びフリーホイールダイオード18のカソード電極は、Sn−Ag−Cuなどを基材とする半田を介して銅パターン14aに接続されている。IGBT16のエミッタ電極及びフリーホイールダイオード18のアノード電極は、厚さ0.3mmの銅からなるリード20を介して銅パターン14aに接続されている。IGBT16のゲート電極は、アルミワイヤ22を介して銅パターン14aに接続されている。   The collector electrode of the IGBT 16 and the cathode electrode of the free wheel diode 18 are connected to the copper pattern 14a via solder based on Sn—Ag—Cu or the like. The emitter electrode of the IGBT 16 and the anode electrode of the free wheel diode 18 are connected to the copper pattern 14a via a lead 20 made of copper having a thickness of 0.3 mm. The gate electrode of the IGBT 16 is connected to the copper pattern 14 a via the aluminum wire 22.

外部電極24及び信号電極26は、それぞれはんだ付けなどによって銅パターン14aに接続されている。即ち、IGBT16と外部電極24は銅パターン14aを介して電気的に接続されている。外部電極24は、0.8mm厚程度の銅板であり、外部装置との間で100A以下の電流を入出力する。信号電極26は、0.5mm□程度の細い電極であり、半導体素子を動作させる小さな電流を入出力する。このような細い信号電極26ははんだ付けだけでは支持が困難であるため、はんだ付温度までの耐熱性を有する部材28を用いて信号電極26の間隔を維持している。   The external electrode 24 and the signal electrode 26 are connected to the copper pattern 14a by soldering or the like. That is, the IGBT 16 and the external electrode 24 are electrically connected through the copper pattern 14a. The external electrode 24 is a copper plate having a thickness of about 0.8 mm, and inputs and outputs a current of 100 A or less with an external device. The signal electrode 26 is a thin electrode of about 0.5 mm □, and inputs and outputs a small current for operating the semiconductor element. Since such a thin signal electrode 26 is difficult to support only by soldering, the distance between the signal electrodes 26 is maintained using a member 28 having heat resistance up to the soldering temperature.

筐体30は、外部電極24及び信号電極26の一部が外部に導出するようにIGBT16等を封止している。筐体30は、ガラス繊維を配合することで強度を向上させたPPS(ポリフェニレンサルファイド)やPBT(ポリブチレンテレフタレート)などの熱可塑性樹脂からなる。放熱板10の裏面から筐体30の外部電極24が導出している所までの高さは17mm、筐体30の外形は縦45mm×横80mmである。   The housing 30 seals the IGBT 16 and the like so that part of the external electrode 24 and the signal electrode 26 is led out to the outside. The housing 30 is made of a thermoplastic resin such as PPS (polyphenylene sulfide) or PBT (polybutylene terephthalate) whose strength is improved by blending glass fibers. The height from the rear surface of the heat sink 10 to the location where the external electrode 24 of the housing 30 is led out is 17 mm, and the outer shape of the housing 30 is 45 mm long × 80 mm wide.

IGBT16やフリーホイールダイオード18で発生した熱は、放熱板10の裏面からシリコーングリスなどの放熱補助部材(図示せず)を介して、ヒートシンク(図示せず)に放熱される。そこで、放熱板10とヒートシンクとの熱交換を確実にするために、筐体30には、ヒートシンクにネジ締結するための穴32が形成されている。   The heat generated by the IGBT 16 and the free wheel diode 18 is radiated from the back surface of the heat radiating plate 10 to a heat sink (not shown) via a heat radiating auxiliary member (not shown) such as silicone grease. Therefore, in order to ensure heat exchange between the heat radiating plate 10 and the heat sink, the housing 30 is formed with a hole 32 for screwing the heat sink.

外部電極24には、筐体30から導出した部分(導出部)の根本に直径2mmの貫通穴34が設けられている。貫通穴34の少なくとも一部には、筐体30を構成する熱可塑性樹脂が充填されている。外部電極24は貫通穴34の部分で折り曲げられて、外部電極24の先端が筐体30の上面と概ね平行になっている。外部電極24の穴36と筐体30の穴38にナット40が挿入されて、外部電極24がネジ止めされている。   The external electrode 24 is provided with a through hole 34 having a diameter of 2 mm at the root of a portion (leading portion) led out from the housing 30. At least a part of the through hole 34 is filled with a thermoplastic resin constituting the housing 30. The external electrode 24 is bent at the portion of the through hole 34, and the tip of the external electrode 24 is substantially parallel to the upper surface of the housing 30. A nut 40 is inserted into the hole 36 of the external electrode 24 and the hole 38 of the housing 30, and the external electrode 24 is screwed.

本実施の形態に係る半導体装置の製造方法について説明する。まず、貫通穴34が設けられた外部電極24をIGBT16と電気的に接続する等の工程を行って、図2に示す構造を形成する。   A method for manufacturing a semiconductor device according to the present embodiment will be described. First, a process such as electrically connecting the external electrode 24 provided with the through hole 34 to the IGBT 16 is performed to form the structure shown in FIG.

次に、図5に示すように、成形金型42のキャビティ44内にIGBT16等を入れた状態で外部電極24の一部をキャビティ44の外に導出する。この際に、貫通穴34をキャビティ44の外縁に配置する。   Next, as shown in FIG. 5, a part of the external electrode 24 is led out of the cavity 44 with the IGBT 16 and the like placed in the cavity 44 of the molding die 42. At this time, the through hole 34 is disposed on the outer edge of the cavity 44.

次に、図6に示すように、インジェクションモールド法によって、キャビティ44に熱可塑性樹脂を注入してIGBT16等を封止して筐体30を形成する。この際に、外部電極24及び信号電極26の一部と、放熱板10の裏面は露出させる。また、貫通穴34の少なくとも一部に熱可塑性樹脂を充填させる。その後、外部電極24を曲げる等の工程を経て、本実施の形態に係る半導体装置が製造される。   Next, as shown in FIG. 6, the housing 30 is formed by injecting a thermoplastic resin into the cavity 44 and sealing the IGBT 16 and the like by an injection molding method. At this time, a part of the external electrode 24 and the signal electrode 26 and the back surface of the heat sink 10 are exposed. Further, at least a part of the through hole 34 is filled with a thermoplastic resin. Thereafter, the semiconductor device according to the present embodiment is manufactured through processes such as bending the external electrode 24.

ここで、モールド時において貫通穴34には熱可塑性樹脂が早期に充填される。そして、熱可塑性樹脂は、成形金型42に熱を奪われて次第に流速が遅くなり、やがて固化される。従って、キャビティ44内において樹脂の充填圧力が上昇する頃には、外部電極24の導出部の根本において樹脂が十分に固化されている。これにより、外部電極24の導出部と成形金型42との間隙に樹脂が押し込まれるのを抑制できるため、外部電極24に樹脂バリが付着するのを防ぐことができる。また、熱処理や樹脂バリ取りなどの後処理が不要であるため、生産性を落とさない。   Here, at the time of molding, the through hole 34 is filled with the thermoplastic resin at an early stage. The thermoplastic resin is deprived of heat by the molding die 42 so that the flow rate gradually decreases and is eventually solidified. Therefore, the resin is sufficiently solidified at the base of the lead-out portion of the external electrode 24 when the filling pressure of the resin in the cavity 44 increases. Thereby, since it can suppress that resin is pushed into the clearance gap between the derivation | leading-out part of the external electrode 24, and the shaping die 42, it can prevent that the resin burr | flash adheres to the external electrode 24. FIG. Further, since post-treatment such as heat treatment and resin deburring is unnecessary, productivity is not reduced.

また、モールド時に外部電極24の表裏に印加される圧力が貫通穴34によって均等になる。このように圧力が分散されることも、樹脂バリの発生の抑制に寄与している。   Further, the pressure applied to the front and back surfaces of the external electrode 24 during molding is made uniform by the through holes 34. The dispersion of pressure in this way also contributes to the suppression of the generation of resin burrs.

また、外部電極24が貫通穴34内の樹脂で強固に支えられるため、貫通穴34を形成した部分で外部電極24を比較的容易に折り曲げることができ、外部電極24の曲げ形状が安定する。樹脂が貫通穴34を通過する際に樹脂に混合されたガラス繊維が揃うことで、筐体30の強度が増す。従って、外部電極24に他の設備や電源からのケーブルの圧着端子をネジ止めする際に、例えば工程短縮のために自動のネジ締め装置を使った場合に、瞬間的に規定値より大きな締め付け力が加わっても筐体30が割れ難い。   Further, since the external electrode 24 is firmly supported by the resin in the through hole 34, the external electrode 24 can be bent relatively easily at the portion where the through hole 34 is formed, and the bent shape of the external electrode 24 is stabilized. When the resin passes through the through hole 34, the glass fibers mixed with the resin are aligned, so that the strength of the housing 30 is increased. Therefore, when screwing a crimp terminal of a cable from another facility or power source to the external electrode 24, for example, when an automatic screw tightening device is used for shortening the process, the tightening force momentarily larger than the specified value is used. Even if added, the housing 30 is difficult to break.

また、PPSやPBTなどの熱可塑性樹脂は金属との密着性が低いため、外部電極24の導出部から筐体30内への水分の浸入が懸念される。これに対し、外部電極24に貫通穴34を設けることで、モールド時の樹脂の硬化収縮による圧縮応力を維持できるため、水分の侵入経路が減少し、信頼性が向上する。   In addition, since thermoplastic resins such as PPS and PBT have low adhesion to metal, there is a concern that moisture may enter the housing 30 from the lead-out portion of the external electrode 24. On the other hand, by providing the through hole 34 in the external electrode 24, the compressive stress due to the curing shrinkage of the resin at the time of molding can be maintained, so that the moisture intrusion path is reduced and the reliability is improved.

なお、貫通穴34の形状や大きさは、外部電極24の電気抵抗や強度を考慮して、外部電極24の厚さや成形金型との間隙、使用する樹脂の粘度に合わせて自由に選択することができる。樹脂の粘度はガラス繊維などのフィラーを多く含むほど高くなる。粘度の高い樹脂を用いる場合は、貫通穴34を大きくする。例えば300Pa・sの樹脂を用いる場合には、直径3〜4mmの1つの貫通穴34を形成する。一方、粘度の低い樹脂、例えば100Pa・sの樹脂を用いる場合には、図7に示すように直径1mm程度の小さい貫通穴34を複数並べる。粘度の低い樹脂は小さい貫通穴34でも十分に流入される。また、粘度の低い樹脂を用いると樹脂バリが発生しやすいが、貫通穴34の間隔を小さくすることによって樹脂バリの発生を抑制することができる。また、図8に示すように貫通穴34を楕円するか、長方形にしてもよい。これにより、折り曲げ部で外部電極24の面積が小さくなり、更に樹脂バリの発生を抑制することができる。   The shape and size of the through hole 34 can be freely selected according to the thickness of the external electrode 24, the gap with the molding die, and the viscosity of the resin to be used in consideration of the electrical resistance and strength of the external electrode 24. be able to. The viscosity of the resin increases as it contains more filler such as glass fiber. When using resin with high viscosity, the through hole 34 is enlarged. For example, when a 300 Pa · s resin is used, one through hole 34 having a diameter of 3 to 4 mm is formed. On the other hand, when a resin having a low viscosity, for example, 100 Pa · s, is used, a plurality of small through holes 34 having a diameter of about 1 mm are arranged as shown in FIG. Resin having a low viscosity can be sufficiently introduced even through the small through hole 34. In addition, if a resin having a low viscosity is used, resin burrs are likely to occur, but the occurrence of resin burrs can be suppressed by reducing the interval between the through holes 34. Further, as shown in FIG. 8, the through hole 34 may be oval or rectangular. Thereby, the area of the external electrode 24 becomes small at the bent portion, and the occurrence of resin burrs can be further suppressed.

また、外部電極24としてネジ止め電極を用いたが、これに限らず、はんだ付け電極や圧接電極を用いてもよい。これらの場合でも、外部電極24に樹脂バリが付着するのを防ぐことで同様の効果を有する。   Moreover, although the screwing electrode is used as the external electrode 24, the present invention is not limited thereto, and a soldering electrode or a pressure contact electrode may be used. Even in these cases, the same effect can be obtained by preventing the resin burr from adhering to the external electrode 24.

また、銅パターン14aの回路上をエポキシ系又はシリコーン系の樹脂でコーティングしてもよい。これにより、絶縁耐圧及び信頼性が向上し、外部電極24からの水分の侵入を防止することもできる。   Further, the circuit of the copper pattern 14a may be coated with an epoxy or silicone resin. As a result, the withstand voltage and reliability are improved, and moisture can be prevented from entering from the external electrode 24.

また、セラミック板12の表裏に銅パターン14a,14bが形成されたセラミック基板を用いたが、これに限らず、メタルベース基板を用いてもよい。放熱板10上にセラミック板12を搭載する代わりに、高熱伝導のフィラーを接着性のあるエポキシ絶縁層に混合したものを用いて放熱板10上に銅パターン14aを接着してもよい。   Moreover, although the ceramic board | substrate with which the copper patterns 14a and 14b were formed in the front and back of the ceramic board 12 was used, you may use not only this but a metal base board | substrate. Instead of mounting the ceramic plate 12 on the heat sink 10, the copper pattern 14 a may be bonded on the heat sink 10 using a mixture of a highly heat conductive filler in an adhesive epoxy insulating layer.

また、半導体素子としてIGBTを用いた電力用半導体装置に限らず、例えばMOSFETモジュールやダイオードモジュールでもよい。筐体30を構成する材料として、PPSやPBTに限らず、LCP(液晶ポリマー)などを用いてもよい。その他、本発明の効果を損ねない範囲で様々な変更が可能である。これらの変更は以下の実施の形態でも同様に適用できる。   Further, the semiconductor device is not limited to a power semiconductor device using an IGBT as a semiconductor element, and may be a MOSFET module or a diode module, for example. The material constituting the housing 30 is not limited to PPS and PBT, and LCP (liquid crystal polymer) may be used. In addition, various modifications can be made without departing from the effects of the present invention. These changes can be similarly applied to the following embodiments.

実施の形態2.
図9は、実施の形態2に係る半導体装置を示す断面図である。この図9は図1のII−IIにおける断面図に対応する。電力用半導体装置の外形は実施の形態1とほぼ同一のため、説明を省略する。
Embodiment 2. FIG.
FIG. 9 is a cross-sectional view showing the semiconductor device according to the second embodiment. 9 corresponds to a cross-sectional view taken along II-II in FIG. Since the external shape of the power semiconductor device is almost the same as that of the first embodiment, description thereof is omitted.

筐体30には、筐体30の一部が突出して外部電極24の貫通穴34の周辺を覆う凸部46が設けられている。凸部46は、貫通穴34の領域内に存在し、筐体30の内側から外側に向かって細くなる。また、凸部46は、筐体30の平面に対して概ね40度ぐらいの角度で構成される。なお、20度以下の場合は、外部電極24を曲げる際に先端が欠損するのを防ぐため、先端の一部を平坦にする必要がある。   The housing 30 is provided with a convex portion 46 that partially protrudes from the housing 30 and covers the periphery of the through hole 34 of the external electrode 24. The convex part 46 exists in the area | region of the through-hole 34, and becomes thin toward the outer side from the inner side of the housing | casing 30. As shown in FIG. Further, the convex portion 46 is configured at an angle of about 40 degrees with respect to the plane of the housing 30. In the case of 20 degrees or less, it is necessary to flatten a part of the tip in order to prevent the tip from being lost when the external electrode 24 is bent.

本実施の形態に係る半導体装置を製造する場合、図10のような成形金型を用いる。 成形金型42には、外部電極24の貫通穴34の周辺において、キャビティ44の内側から外側に向かって狭くなる凹部48が設けられている。その他の構成は実施の形態1と同様である。   When manufacturing the semiconductor device according to the present embodiment, a molding die as shown in FIG. 10 is used. The molding die 42 is provided with a recess 48 that narrows from the inside to the outside of the cavity 44 around the through hole 34 of the external electrode 24. Other configurations are the same as those of the first embodiment.

ここで、外部電極24に300A以上の大電流を通電する場合、外部電極24での電力損失が大きくなるので、貫通穴34の面積を大きくすることができない。そこで、本実施の形態では、貫通穴34の周辺において凹部48を形成して、貫通穴34への樹脂の充填性を向上させている。これにより粘度の高い樹脂を使った場合でも、外部電極24に樹脂バリが付着するのを防ぐことができる。   Here, when a large current of 300 A or more is applied to the external electrode 24, the power loss in the external electrode 24 increases, and thus the area of the through hole 34 cannot be increased. Therefore, in the present embodiment, a recess 48 is formed around the through hole 34 to improve the resin filling property into the through hole 34. Accordingly, even when a resin having a high viscosity is used, it is possible to prevent the resin burr from adhering to the external electrode 24.

また、成形金型42の凹部48は、キャビティ44内に樹脂を注入するゲートに近い側に形成するのが有効である。ただし、樹脂量のバランスを考慮すると、貫通穴34の両側に形成することが好ましい。   It is also effective to form the recess 48 of the molding die 42 on the side close to the gate for injecting resin into the cavity 44. However, in consideration of the balance of the amount of resin, it is preferable to form it on both sides of the through hole 34.

また、筐体30の凸部46は、外部電極24に接続するケーブルの圧着端子の位置決めに使用することができるため、組み立て性が向上する。なお、圧着端子のサイズやケーブルの配線方向の都合で凸部46が干渉してしまう場合には、凸部46が外部電極24の表面から出ないようにするために、筐体30の上面から突出している貫通穴34の高さを外部電極24の厚み以下とすれば良い。   Moreover, since the convex part 46 of the housing | casing 30 can be used for positioning of the crimp terminal of the cable connected to the external electrode 24, assembly property improves. In the case where the convex portion 46 interferes due to the size of the crimp terminal or the wiring direction of the cable, in order to prevent the convex portion 46 from protruding from the surface of the external electrode 24, The height of the protruding through hole 34 may be set to be equal to or less than the thickness of the external electrode 24.

また、筐体30の凸部46が貫通穴34の周辺を覆うため、外部電極24の変形に対する筐体30の強度が実施の形態1よりも増す。従って、大電流に対応するために厚さが1mmを超える外部電極24を使用した場合でも、筐体30が割れるのを防ぐことができる。   Further, since the convex portion 46 of the housing 30 covers the periphery of the through hole 34, the strength of the housing 30 against the deformation of the external electrode 24 is increased as compared with the first embodiment. Therefore, even when the external electrode 24 having a thickness exceeding 1 mm is used in order to cope with a large current, the casing 30 can be prevented from cracking.

また、筐体30の凸部46は、外部電極24を曲げる際に干渉しないようにするため、貫通穴34の領域内に存在するのが好ましい。ただし、外部電極24の曲げRで吸収されるため、外部電極24の厚さ分であれば貫通穴34の領域外に凸部46が存在してもよい。   Further, the convex portion 46 of the housing 30 is preferably present in the region of the through hole 34 so as not to interfere when the external electrode 24 is bent. However, since it is absorbed by the bending R of the external electrode 24, the convex portion 46 may exist outside the region of the through hole 34 as long as it is the thickness of the external electrode 24.

実施の形態3.
図11は、実施の形態3に係る半導体装置の外形を示す斜視図であり、図12は図11のIII−IIIにおける断面図である。電力用半導体装置の外形は、外部電極24の導出部の根本付近を除いて、実施の形態1とほぼ同一のため、説明を省略する。
Embodiment 3 FIG.
FIG. 11 is a perspective view showing the outer shape of the semiconductor device according to the third embodiment, and FIG. 12 is a cross-sectional view taken along line III-III in FIG. Since the outer shape of the power semiconductor device is substantially the same as that of the first embodiment except for the vicinity of the root of the lead-out portion of the external electrode 24, description thereof is omitted.

筐体30の外部電極24が導出される部分の近傍2mm程度の凸部46を含む領域は、筐体30の表面から1mm程度内側に向かって沈み込んでいる。   A region including a convex portion 46 of about 2 mm in the vicinity of a portion from which the external electrode 24 of the housing 30 is led sinks inward by about 1 mm from the surface of the housing 30.

本実施の形態に係る半導体装置を製造する場合、図13のような成形金型を用いる。 成形金型42は、外部電極24が導出される部分の近傍の凹部48を含む領域において、キャビティ44の内側に向かって突出している。その他の構成は実施の形態2と同様である。   When manufacturing the semiconductor device according to the present embodiment, a molding die as shown in FIG. 13 is used. The molding die 42 protrudes toward the inside of the cavity 44 in a region including a recess 48 in the vicinity of a portion from which the external electrode 24 is led out. Other configurations are the same as those of the second embodiment.

ここで、実施の形態2の場合、樹脂の流動性、外部電極24の厚さ、位置精度などの問題から、外部電極24を曲げる際に凸部46が干渉する可能性がある。これに対し、本実施の形態では、筐体30の外部電極24が導出される部分の近傍の凸部46を含む領域が、筐体30の表面から内側に向かって沈み込んでいるため、外部電極24を曲げる際に凸部46が干渉するのを防ぐことができる。   Here, in the case of the second embodiment, the convex portion 46 may interfere when the external electrode 24 is bent due to problems such as resin fluidity, the thickness of the external electrode 24, and position accuracy. On the other hand, in the present embodiment, the region including the convex portion 46 in the vicinity of the portion from which the external electrode 24 of the housing 30 is led sinks inward from the surface of the housing 30. When the electrode 24 is bent, the protrusion 46 can be prevented from interfering.

また、筐体30を成形する際に、外部電極24と成形金型42の位置決めが必要となる。特に、外部電極24をセラミック板12上にはんだ付けする場合は、位置精度が良くなく、部材の寸法公差も考慮してプラスマイナス0.5mmぐらいの位置ズレを許容しなくてはならない。しかし、成形金型42と外部電極24との間に0.5mmの隙間を開けてしまうと、最大で1mm厚の樹脂バリが発生してしまう。これに対し、本実施の形態の成形金型42は外部電極24をそれ用の穴に誘い込み易い構造であるため、外部電極24のはんだ付け位置精度が±1mm程度まで許容され、製造が容易になる。   Further, when the casing 30 is molded, the external electrode 24 and the molding die 42 need to be positioned. In particular, when the external electrode 24 is soldered on the ceramic plate 12, the positional accuracy is not good, and a positional deviation of about plus or minus 0.5 mm must be allowed in consideration of the dimensional tolerance of the member. However, if a gap of 0.5 mm is formed between the molding die 42 and the external electrode 24, a resin burr having a thickness of 1 mm at maximum is generated. On the other hand, the molding die 42 according to the present embodiment has a structure in which the external electrode 24 can be easily guided into the hole therefor, so that the soldering position accuracy of the external electrode 24 is allowed to about ± 1 mm, and manufacturing is easy. Become.

かかる効果を発揮するためには、成形金型42のキャビティ44の内側への突出を外部電極24の厚さ以上にすることが好ましい。成形金型42の凹部48の傾斜角度は、外部電極24が1mm以上と厚い場合には例えば45度と大きく、外部電極24が薄い場合には例えば30度と小さくすることで、成形金型42や内部の電気回路へのダメージを抑制することができる。   In order to exert such an effect, it is preferable that the protrusion of the molding die 42 to the inside of the cavity 44 is equal to or greater than the thickness of the external electrode 24. The inclination angle of the recess 48 of the molding die 42 is as large as 45 degrees when the external electrode 24 is as thick as 1 mm or more, and as small as 30 degrees when the external electrode 24 is thin. And damage to the internal electric circuit can be suppressed.

実施の形態1に係る半導体装置の外形を示す斜視図である。1 is a perspective view showing an outer shape of a semiconductor device according to a first embodiment. 実施の形態1に係る半導体装置の内部構造を示す斜視図である。1 is a perspective view showing an internal structure of a semiconductor device according to a first embodiment. 図1のI−Iにおける断面図である。It is sectional drawing in II of FIG. 図1のII−IIにおける断面図である。It is sectional drawing in II-II of FIG. 実施の形態1に係る半導体装置の製造方法を説明するための断面図である。8 is a cross-sectional view for illustrating the method for manufacturing the semiconductor device according to the first embodiment. FIG. 実施の形態1に係る半導体装置の製造方法を説明するための断面図である。8 is a cross-sectional view for illustrating the method for manufacturing the semiconductor device according to the first embodiment. FIG. 実施の形態1に係る半導体装置の変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modification of the semiconductor device according to the first embodiment. 実施の形態1に係る半導体装置の変形例を示す断面図である。FIG. 6 is a cross-sectional view showing a modification of the semiconductor device according to the first embodiment. 実施の形態2に係る半導体装置を示す断面図である。FIG. 6 is a cross-sectional view showing a semiconductor device according to a second embodiment. 実施の形態2に係る半導体装置の製造方法を説明するための断面図である。FIG. 10 is a cross-sectional view for illustrating the method for manufacturing the semiconductor device according to the second embodiment. 実施の形態3に係る半導体装置の外形を示す斜視図である。FIG. 6 is a perspective view showing an outer shape of a semiconductor device according to a third embodiment. 図11のIII−IIIにおける断面図である。It is sectional drawing in III-III of FIG. 実施の形態3に係る半導体装置の製造方法を説明するための断面図である。FIG. 10 is a cross-sectional view for illustrating the method for manufacturing the semiconductor device according to the third embodiment.

符号の説明Explanation of symbols

16 IGBT(半導体素子)
24 外部電極
30 筐体
34 貫通穴
42 成形金型
44 キャビティ
46 凸部
48 凹部
16 IGBT (semiconductor element)
24 External electrode 30 Housing 34 Through-hole 42 Molding die 44 Cavity 46 Convex part 48 Concave part

Claims (6)

半導体素子と、
前記半導体素子と電気的に接続された外部電極と、
前記外部電極の一部が外部に導出するように前記半導体素子を封止した熱可塑性樹脂の筐体とを備え、
前記外部電極には、前記筐体から導出した部分の根本に貫通穴が設けられ、
前記貫通穴の少なくとも一部には、前記筐体を構成する前記熱可塑性樹脂が充填されていることを特徴とする半導体装置。
A semiconductor element;
An external electrode electrically connected to the semiconductor element;
A thermoplastic resin housing that seals the semiconductor element so that a part of the external electrode is led out,
The external electrode is provided with a through hole at the root of the portion derived from the housing,
At least a part of the through hole is filled with the thermoplastic resin constituting the housing.
前記筐体には、前記外部電極の前記貫通穴の周辺を覆い、前記筐体の内側から外側に向かって細くなる凸部が設けられていることを特徴とする請求項1に記載の半導体装置。   2. The semiconductor device according to claim 1, wherein the casing is provided with a convex portion that covers a periphery of the through hole of the external electrode and that narrows from the inside to the outside of the casing. . 前記筐体の前記外部電極が導出される部分の近傍の前記凸部を含む領域は、前記筐体の内側に向かって沈み込んでいることを特徴とする請求項2に記載の半導体装置。   3. The semiconductor device according to claim 2, wherein a region including the convex portion in the vicinity of a portion where the external electrode is led out of the housing is depressed toward the inside of the housing. 貫通穴が設けられた外部電極を半導体素子と電気的に接続する工程と、
成形金型のキャビティに前記半導体素子を入れた状態で前記外部電極の一部を前記キャビティの外に導出し、前記キャビティに熱可塑性樹脂を注入して前記半導体素子を封止する工程とを備え、
前記半導体素子を封止する際に、前記貫通穴を前記キャビティの外縁に配置し、前記貫通穴の少なくとも一部に前記熱可塑性樹脂を充填させることを特徴とする半導体装置の製造方法。
Electrically connecting an external electrode provided with a through hole to a semiconductor element;
A step of leading a part of the external electrode out of the cavity in a state where the semiconductor element is placed in a cavity of a molding die, and injecting a thermoplastic resin into the cavity to seal the semiconductor element. ,
When sealing the semiconductor element, the through hole is disposed at an outer edge of the cavity, and at least a part of the through hole is filled with the thermoplastic resin.
前記成形金型には、前記外部電極の前記貫通穴の周辺において、前記キャビティの内側から外側に向かって狭くなる凹部が設けられていることを特徴とする請求項4に記載の半導体装置の製造方法。   The semiconductor device according to claim 4, wherein the molding die is provided with a recess that narrows from the inside to the outside of the cavity around the through hole of the external electrode. Method. 前記成形金型は、前記外部電極が導出される部分の近傍の前記凹部を含む領域において、前記キャビティの内側に向かって突出していることを特徴とする請求項5に記載の半導体装置の製造方法。   6. The method of manufacturing a semiconductor device according to claim 5, wherein the molding die protrudes toward the inside of the cavity in a region including the concave portion in the vicinity of a portion from which the external electrode is led out. .
JP2008129150A 2008-05-16 2008-05-16 Semiconductor device and method of manufacturing the same Pending JP2009277959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008129150A JP2009277959A (en) 2008-05-16 2008-05-16 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008129150A JP2009277959A (en) 2008-05-16 2008-05-16 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2009277959A true JP2009277959A (en) 2009-11-26

Family

ID=41443097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008129150A Pending JP2009277959A (en) 2008-05-16 2008-05-16 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2009277959A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187437A (en) * 2012-03-09 2013-09-19 Mitsubishi Electric Corp Resin sealing type power module
DE102021132966A1 (en) 2021-04-08 2022-10-13 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090846U (en) * 1983-11-26 1985-06-21 ニチコン株式会社 hybrid integrated circuit
JPH0167763U (en) * 1987-10-23 1989-05-01
JPH06188335A (en) * 1992-12-22 1994-07-08 Fuji Electric Co Ltd Resin sealed semiconductor device
JP2006202885A (en) * 2005-01-19 2006-08-03 Mitsubishi Electric Corp Semiconductor device
JP2007173272A (en) * 2005-12-19 2007-07-05 Mitsubishi Electric Corp Semiconductor device and method of manufacturing same
JP2007235004A (en) * 2006-03-03 2007-09-13 Mitsubishi Electric Corp Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090846U (en) * 1983-11-26 1985-06-21 ニチコン株式会社 hybrid integrated circuit
JPH0167763U (en) * 1987-10-23 1989-05-01
JPH06188335A (en) * 1992-12-22 1994-07-08 Fuji Electric Co Ltd Resin sealed semiconductor device
JP2006202885A (en) * 2005-01-19 2006-08-03 Mitsubishi Electric Corp Semiconductor device
JP2007173272A (en) * 2005-12-19 2007-07-05 Mitsubishi Electric Corp Semiconductor device and method of manufacturing same
JP2007235004A (en) * 2006-03-03 2007-09-13 Mitsubishi Electric Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013187437A (en) * 2012-03-09 2013-09-19 Mitsubishi Electric Corp Resin sealing type power module
DE102021132966A1 (en) 2021-04-08 2022-10-13 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the semiconductor device

Similar Documents

Publication Publication Date Title
JP5669866B2 (en) Power semiconductor module
JP4455488B2 (en) Semiconductor device
US8674492B2 (en) Power module
JP5071405B2 (en) Power semiconductor device
JP5936310B2 (en) Power semiconductor module and its mounting structure
JP2008243970A (en) Semiconductor device and its manufacturing method
JP6266168B2 (en) Semiconductor device
JP5071719B2 (en) Power semiconductor device
JP4967701B2 (en) Power semiconductor device
WO2011117935A1 (en) Power module and method for manufacturing same
WO2013171946A1 (en) Method for manufacturing semiconductor device and semiconductor device
US10163752B2 (en) Semiconductor device
CN110914975B (en) Power semiconductor module
CN111095537B (en) Semiconductor device and power conversion device provided with same
JP2016181536A (en) Power semiconductor device
JP2015130457A (en) Semiconductor device
JP2007073782A (en) High power semiconductor apparatus
JP2010050395A (en) Semiconductor device, and method of manufacturing the same
CN113113401A (en) Semiconductor circuit and method for manufacturing semiconductor circuit
KR20150071336A (en) Power module Package and Manufacturing Method for the same
JP2009277959A (en) Semiconductor device and method of manufacturing the same
EP3428962B1 (en) Semiconductor device and method for manufacturing semiconductor device
CN111354709B (en) Semiconductor device and method for manufacturing the same
JP2010219385A (en) Semiconductor device
CN215869380U (en) Modular intelligent power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100520

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100827

A131 Notification of reasons for refusal

Effective date: 20120508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121211