JP2009265271A - Electro-optical display - Google Patents

Electro-optical display Download PDF

Info

Publication number
JP2009265271A
JP2009265271A JP2008113060A JP2008113060A JP2009265271A JP 2009265271 A JP2009265271 A JP 2009265271A JP 2008113060 A JP2008113060 A JP 2008113060A JP 2008113060 A JP2008113060 A JP 2008113060A JP 2009265271 A JP2009265271 A JP 2009265271A
Authority
JP
Japan
Prior art keywords
electrode
thin film
film transistor
electrophoretic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008113060A
Other languages
Japanese (ja)
Inventor
Tatsuya Shimoda
達也 下田
Mitsuo Kushino
光雄 串野
Terunori Matsushita
輝紀 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2008113060A priority Critical patent/JP2009265271A/en
Publication of JP2009265271A publication Critical patent/JP2009265271A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16757Microcapsules
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • G02F2001/1635Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor the pixel comprises active switching elements, e.g. TFT
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electro-optical display, surely synchronizing the display states of two displays with each other while avoiding complicatedness of circuit configuration. <P>SOLUTION: An electronic circuit layer 6 for driving an EC element 2 and an electrophoretic element 4 includes: a signal line for the EC element; a first switching thin film transistor 14 connected to the signal line for the EC element; a signal line for the electrophoretic element; a second switching thin film transistor 15 connected to the signal line for the electrophoretic element; a common scanning line connected to a control electrode of the first switching thin film transistor 14 and a control electrode of the second switching thin film transistor 15; and a driving thin film transistor 16 whose control electrode is connected to the second switching thin film transistor 15, wherein the driving thin film transistor 16 is connected to a pixel electrode 8 of the EC element 2, and the second switching thin film transistor 15 is connected to a pixel electrode 12 of the electrophoretic element 4. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、エレクトロクロミック(以下、「EC」と記載する)反応に基づく表示ができるEC層と、電気泳動する帯電粒子(以下、「電気泳動粒子」と記載する)により表示ができる電気泳動層とを重ね合わせて構成される電気光学表示装置に関するものである。   The present invention relates to an EC layer capable of displaying based on an electrochromic (hereinafter referred to as “EC”) reaction, and an electrophoretic layer capable of displaying based on electrophoretic charged particles (hereinafter referred to as “electrophoretic particles”). The electro-optical display device is configured by superimposing and.

近年、紙媒体と同様の取り扱い性と視認性を有する電子ペーパーやフレキシブルディスプレイ等の表示装置の研究開発が盛んに行われている。このような表示装置を実現するものとして、セル内に封入した電気泳動粒子を電場により移動させ、これにより光の反射状態を変調する電気泳動表示装置が注目を集めている。しかし、電気泳動表示装置は、基本的には印加電圧のオン/オフによって電気泳動粒子の分布状態を2値的に制御するものであるために、少なくとも3原色を必要とするフルカラー表示への対応は、一般的に困難であるとされている。   In recent years, research and development of display devices such as electronic paper and flexible displays having the same handling and visibility as paper media have been actively conducted. As a means for realizing such a display device, an electrophoretic display device that moves electrophoretic particles enclosed in a cell by an electric field and modulates a light reflection state by the electrophoretic particles has attracted attention. However, since the electrophoretic display device basically controls the distribution state of the electrophoretic particles by binary on / off of the applied voltage, the electrophoretic display device supports full-color display that requires at least three primary colors. Is generally considered difficult.

このような背景のもと、特許文献1には、電圧・電流制御に基づくEC反応によって透明領域と着色領域(例えば青色領域)を呈するEC層と、EC層の下部に重ね合わせる形態にて、電界制御によってEC層の着色領域の色と異なる第1の色領域(例えば赤色領域)および第2の色領域(例えば緑色領域)を呈する電気泳動層とを備え、視認側に赤色,緑色,青色、およびこれらの混色の多色表示を行うことが記載されている。   Under such a background, Patent Document 1 discloses that an EC layer exhibiting a transparent region and a colored region (for example, a blue region) by an EC reaction based on voltage / current control is superposed on a lower portion of the EC layer. An electrophoretic layer having a first color region (for example, a red region) and a second color region (for example, a green region) different from the color of the colored region of the EC layer by electric field control, and red, green, and blue on the viewing side And the multicolor display of these mixed colors is described.

また、特許文献2には、顔料を含むマイクロカプセル、または顔料を隔離するための隔壁を、二枚の電極間に挟み作製した電気泳動型表示素子に、二枚の電極間に形成したEC表示素子を重ね合わせた構成からなるカラーリライタブル表示装置が記載されている。この表示装置は、表示に関してメモリ性を有することから、情報の書き替え時のみ、画像書込装置により書込みのエネルギーを与えるだけで良く、表示を維持するエネルギー付与は不要である。従って、情報の書込み後に画像書込装置から表示装置のみを切り離し、紙媒体のように手軽に持ち運んだり、重ねたり、並べたり、手に持って文字情報を読むという使用方法も可能である。
特開平10−161161号公報(図4) 特開2004−286977号公報(図1)
Patent Document 2 discloses an EC display in which an electrophoretic display element in which a microcapsule containing a pigment or a partition for separating the pigment is sandwiched between two electrodes is formed between the two electrodes. A color rewritable display device having a configuration in which elements are superposed is described. Since this display device has a memory property with respect to display, it is only necessary to give writing energy by the image writing device only when information is rewritten, and it is not necessary to apply energy to maintain the display. Therefore, after writing information, only the display device is disconnected from the image writing device, and it can be easily carried like a paper medium, stacked, arranged, or read text information by hand.
Japanese Patent Laid-Open No. 10-161161 (FIG. 4) Japanese Patent Laying-Open No. 2004-286977 (FIG. 1)

上記特許文献1,2には、電気泳動型表示装置とEC表示装置を重ね合わせるというアイデアとしては記載されているが、現実問題として、(1)2つの表示装置の相対向する個別の画素が合わせて一画素分の色彩を表現しなければならないため、重なり合う画素への信号が確実に同期されていなければない。また、(2)EC表示装置に入射した光がEC表示装置を透過し、電気泳動型表示装置で反射し、再びEC表示装置を透過して初めて表示光として視認されるのであるから、光線の伝搬を妨げるような複雑な回路構成を組むことは、重ね合わせにより構成される表示装置の反射率を落としてしまう結果につながる。   Although the above Patent Documents 1 and 2 describe the idea of superposing an electrophoretic display device and an EC display device, as a practical problem, (1) the individual pixels of the two display devices facing each other are Since the color for one pixel must be expressed together, the signals to the overlapping pixels must be surely synchronized. In addition, (2) since light incident on the EC display device is transmitted through the EC display device, reflected by the electrophoretic display device, and again transmitted through the EC display device, the light is visually recognized as display light. Building a complicated circuit configuration that prevents propagation leads to a decrease in reflectance of a display device configured by superposition.

したがって、本発明は、回路構成の複雑化を回避しつつ、2つの表示装置の表示状態を確実に同期させることを目的とする。   Accordingly, an object of the present invention is to reliably synchronize the display states of two display devices while avoiding the complexity of the circuit configuration.

上記目的を達成し得た本発明の電気光学表示装置は、
第一画素電極と第二画素電極との間にEC材料層を挟持したEC素子を複数備えるEC層と、
第三画素電極と第四画素電極との間に電気泳動粒子を挟持した電気泳動素子を複数備える電気泳動層と、
前記EC素子と前記電気泳動素子とを駆動するための電子回路層と、
を重ね合わせて構成される電気光学表示装置であって、前記電子回路層は、
前記EC素子に表示信号を伝送するためのEC素子用信号線と、
第一電極、第二電極、及び制御電極を有し、該第一電極が前記EC素子用信号線に接続された第一のスイッチ用薄膜トランジスタと、
前記電気泳動素子に表示信号を伝送するための電気泳動素子用信号線と、
第一電極、第二電極、及び制御電極を有し、該第一電極が前記電気泳動素子用信号線に接続された第二のスイッチ用薄膜トランジスタと、
前記第一のスイッチ用薄膜トランジスタの制御電極および前記第二のスイッチ用薄膜トランジスタの制御電極に接続された共通走査線と、
第一電極、第二電極、及び制御電極を有し、該制御電極が前記第二のスイッチ用薄膜トランジスタの第二電極に接続された駆動用薄膜トランジスタと、
を有し、該駆動用薄膜トランジスタの第一電極が接地され、第二電極が前記EC素子の第二画素電極に接続され、前記第二のスイッチ用薄膜トランジスタの第二電極が前記電気泳動素子の第三画素電極に接続されたものである。
The electro-optic display device of the present invention that can achieve the above object is
An EC layer comprising a plurality of EC elements sandwiching an EC material layer between the first pixel electrode and the second pixel electrode;
An electrophoretic layer comprising a plurality of electrophoretic elements sandwiching electrophoretic particles between a third pixel electrode and a fourth pixel electrode;
An electronic circuit layer for driving the EC element and the electrophoretic element;
In which the electronic circuit layer is
An EC element signal line for transmitting a display signal to the EC element;
A first switch thin film transistor having a first electrode, a second electrode, and a control electrode, wherein the first electrode is connected to the EC element signal line;
An electrophoretic element signal line for transmitting a display signal to the electrophoretic element;
A second thin film transistor for a switch having a first electrode, a second electrode, and a control electrode, wherein the first electrode is connected to the electrophoretic element signal line;
A common scanning line connected to a control electrode of the first switch thin film transistor and a control electrode of the second switch thin film transistor;
A driving thin film transistor having a first electrode, a second electrode, and a control electrode, wherein the control electrode is connected to the second electrode of the second switching thin film transistor;
The first electrode of the driving thin film transistor is grounded, the second electrode is connected to the second pixel electrode of the EC element, and the second electrode of the second switching thin film transistor is the first electrode of the electrophoretic element. It is connected to the three pixel electrodes.

上記電気光学表示装置において、前記EC素子の第一画素電極が1枚の共通電極で構成され、前記電気泳動素子の第四画素電極が1枚の共通電極で構成され、前記EC素子の第二画素電極と前記電気泳動素子の第三画素電極とが対向しており、前記電子回路層が前記EC層と前記電気泳動層との間に挟まれるように形成される態様としてもよい。   In the electro-optical display device, the first pixel electrode of the EC element is configured by one common electrode, the fourth pixel electrode of the electrophoretic element is configured by one common electrode, and the second pixel electrode of the EC element is configured. The pixel electrode and the third pixel electrode of the electrophoretic element may be opposed to each other, and the electronic circuit layer may be formed to be sandwiched between the EC layer and the electrophoretic layer.

上記電気光学表示装置において、前記共通走査線に並行して共通接地線が形成され、前記第一のスイッチ用薄膜トランジスタの第二電極が、第一容量素子を介して前記共通接地線に接続され、前記第二のスイッチ用薄膜トランジスタの第二電極が、第二容量素子を介して前記共通接地線に接続される構成が好ましく用いられる。   In the electro-optic display device, a common ground line is formed in parallel with the common scanning line, and a second electrode of the first switching thin film transistor is connected to the common ground line through a first capacitor element, A configuration in which the second electrode of the second switch thin film transistor is connected to the common ground line via a second capacitor element is preferably used.

上記電気光学表示装置において、第一のスイッチ用薄膜トランジスタ、第二のスイッチ用薄膜トランジスタ、及び駆動用薄膜トランジスタが透明薄膜トランジスタで構成される構成が好ましく用いられる。   In the electro-optical display device, a configuration in which the first switch thin film transistor, the second switch thin film transistor, and the drive thin film transistor are formed of transparent thin film transistors is preferably used.

上記電気光学表示装置において、電気泳動層がEC層と電子回路層との間に挟まれるように形成される態様としてもよい。   In the electro-optic display device, the electrophoretic layer may be formed so as to be sandwiched between the EC layer and the electronic circuit layer.

上記電気光学表示装置において、第一のスイッチ用薄膜トランジスタ、第二のスイッチ用薄膜トランジスタ、及び駆動用薄膜トランジスに用いられる半導体が有機半導体である構成が好ましく用いられる。   In the electro-optical display device, a configuration in which a semiconductor used for the first switching thin film transistor, the second switching thin film transistor, and the driving thin film transistor is an organic semiconductor is preferably used.

上記電気光学表示装置において、電子回路層とEC層、および/または、電子回路層と電気泳動層が、異方性導電膜を介して接続される構成が好ましく用いられる。   In the electro-optical display device, a configuration in which the electronic circuit layer and the EC layer and / or the electronic circuit layer and the electrophoretic layer are connected via an anisotropic conductive film is preferably used.

上記電気光学表示装置において、異方性導電膜が透明異方性導電膜である態様が推奨される。   In the electro-optical display device, an embodiment in which the anisotropic conductive film is a transparent anisotropic conductive film is recommended.

上記電気光学表示装置において、EC層が、シアン色、マゼンダ色、イエロー色の3色によるカラー表示、又は、赤色、青色、緑色の3色によるカラー表示が可能に構成される構成が好ましく用いられる。   In the electro-optical display device, a configuration in which the EC layer is configured to be capable of color display with three colors of cyan, magenta, and yellow, or color display with three colors of red, blue, and green is preferably used. .

上記電気光学表示装置において、視認側にタッチパネルが形成される構成が好ましく用いられる。   In the electro-optical display device, a configuration in which a touch panel is formed on the viewing side is preferably used.

本発明において、「接続」とは電気的に信号を伝搬し得る状態をいい、配線による直接的な接続の他、容量素子や抵抗器などの受動素子を介して接続されている間接的な接続も含まれる。   In the present invention, “connection” means a state in which a signal can be propagated electrically. In addition to direct connection by wiring, indirect connection connected via a passive element such as a capacitor or a resistor. Is also included.

本発明では、EC層の裏側(視認側とは反対側)に無彩色(グレイスケール)を表示することに適している電気泳動層を配置するため、色要素が豊富化され、EC層のみによるカラー表示では表現できないような階調度の高い、表現豊かなフルカラー画像を表示することができる。また、各EC層は無色透明色が表示可能であるため、電気泳動層による無彩色画像をより一層鮮明に表示することができる。   In the present invention, since an electrophoretic layer suitable for displaying an achromatic color (gray scale) is disposed on the back side (opposite side to the viewing side) of the EC layer, the color elements are enriched and only the EC layer is used. An expressive full-color image with high gradation that cannot be expressed in color display can be displayed. Further, since each EC layer can display a colorless and transparent color, an achromatic image by the electrophoretic layer can be displayed more clearly.

さらに本発明では、EC素子を複数備えるEC層と、電気泳動素子を複数備える電気泳動層と、EC素子及び電気泳動素子とを駆動するための電子回路層とを重ね合わせて構成される電気光学表示装置において、EC素子を駆動する薄膜トランジスタと電気泳動素子を駆動する薄膜トランジスタとを共通走査線により駆動させることにより、回路構成の複雑化を回避しつつ、2つの表示装置の表示状態を確実に同期させることができ、フルカラー表示対応の電子ペーパーやフレキシブルディスプレイの実用化に向けて大きく貢献するものである。   Furthermore, in the present invention, an electro-optic configured by superposing an EC layer having a plurality of EC elements, an electrophoretic layer having a plurality of electrophoretic elements, and an electronic circuit layer for driving the EC elements and the electrophoretic elements. In the display device, the thin film transistor for driving the EC element and the thin film transistor for driving the electrophoretic element are driven by a common scanning line, so that the display state of the two display devices can be reliably synchronized while avoiding the complexity of the circuit configuration. This contributes greatly to the practical application of electronic paper and flexible displays compatible with full-color display.

(実施の形態1)
以下、本発明の実施の形態1にかかる電気光学表示装置について図面を参照しつつ詳しく説明する。
(Embodiment 1)
Hereinafter, an electro-optic display device according to a first exemplary embodiment of the present invention will be described in detail with reference to the drawings.

1.電気光学表示装置の概略構造
図1は、本発明の実施の形態1にかかる電気光学表示装置の概略断面図である。図1において、電気光学表示装置1は、EC素子2を複数備えるEC層3と、電気泳動素子4を複数備える電気泳動層5と、EC素子2及び電気泳動素子4とを駆動するための電子回路層6とを重ね合わせて構成される。本実施の形態におけるEC層3は、光透過型の表示装置(乃至カラーフィルター)であり、電気泳動層5は、本実施の形態においては光反射型の表示装置であるので、電気光学表示装置1の視認側は、EC層3側である。
1. FIG. 1 is a schematic cross-sectional view of an electro-optic display device according to a first embodiment of the present invention. In FIG. 1, an electro-optic display device 1 includes an EC layer 3 including a plurality of EC elements 2, an electrophoretic layer 5 including a plurality of electrophoretic elements 4, and electrons for driving the EC elements 2 and the electrophoretic elements 4. The circuit layer 6 is overlapped. The EC layer 3 in the present embodiment is a light transmission type display device (or color filter), and the electrophoretic layer 5 is a light reflection type display device in the present embodiment. The viewing side of 1 is the EC layer 3 side.

2.EC素子
上記EC素子2は、第一画素電極7と第二画素電極8との間に、酸化還元反応により着色状態/無色透明状態が選択可能なEC材料層9を挟持して構成されるものである。第一画素電極7又は第二画素電極8の少なくとも一方は、固定電位としてもよいことから1枚の共通電極で構成することが可能であり、本実施の形態においては、第一画素電極7を共通電極とした例について説明し、以降、第一画素電極7を「共通電極7」、第二画素電極8を単に「画素電極8」と記載する。
2. EC element The EC element 2 is configured by sandwiching an EC material layer 9 between a first pixel electrode 7 and a second pixel electrode 8 that can be selected between a colored state and a colorless transparent state by an oxidation-reduction reaction. It is. Since at least one of the first pixel electrode 7 or the second pixel electrode 8 may have a fixed potential, it can be constituted by one common electrode. In the present embodiment, the first pixel electrode 7 is An example in which the common electrode is used will be described. Hereinafter, the first pixel electrode 7 is referred to as “common electrode 7”, and the second pixel electrode 8 is simply referred to as “pixel electrode 8”.

EC材料層9としては、例えば、赤色系材料としてアントラキノン系色素やスチリル系スピロピラン色素、緑色系材料として芳香族アミン系色素やビオロゲン系色素、青色系材料としてビオロゲン系色素やピラゾリン系色素等の有機EC色素をRGB3原色として用いることができる。或いは、シアン系材料として1,4−ジアセチルベンゼン、マゼンタ系材料としてテレフタル酸ジメチル、イエロー系材料として4,4’−ビフェニルジカルボン酸ジエチルをそれぞれ1−メチル−2−ピロリドンに溶解したものをCMY3原色として用いることができる。なお、無色透明の場合は、視認側において、下地である電気泳動層5から反射される色がそのまま反映されることになる。   Examples of the EC material layer 9 include organic materials such as anthraquinone dyes and styryl spiropyran dyes as red materials, aromatic amine dyes and viologen dyes as green materials, and viologen dyes and pyrazoline dyes as blue materials. EC dyes can be used as RGB three primary colors. Alternatively, 1,4-diacetylbenzene as a cyan material, dimethyl terephthalate as a magenta material, and diethyl 4,4'-biphenyldicarboxylate as a yellow material are each dissolved in 1-methyl-2-pyrrolidone. Can be used as In the case of being colorless and transparent, on the viewing side, the color reflected from the electrophoretic layer 5 as a base is reflected as it is.

また、呈色の濃淡は、直流電圧の印加時間と電圧値を変化させることによっても制御可能である。すなわち、印加時間を変化させたり、印加電圧に幅を持たせたりすることにより、呈色の濃淡を制御することも可能である。或いは、複数のEC素子2を一画素とし、一画素内において着色状態にあるEC素子2の個数により呈色の濃淡を調節することも可能である。   The color density can also be controlled by changing the DC voltage application time and voltage value. That is, it is also possible to control the color density by changing the application time or giving a width to the applied voltage. Alternatively, the plurality of EC elements 2 may be one pixel, and the color density may be adjusted according to the number of EC elements 2 in a colored state within one pixel.

さらに、一つのEC素子2に対する単位時間当たりの電圧印加時間を調節することによっても呈色の濃淡を制御することができる。例えば1秒間当たりに印加する電圧パルスの数、幅、高さを増減する等の方法を採ってもよい。   Furthermore, the color density can also be controlled by adjusting the voltage application time per unit time for one EC element 2. For example, a method of increasing or decreasing the number, width, and height of voltage pulses applied per second may be employed.

EC層3は、光透過型表示装置(或いはカラーフィルター)として機能させるため、共通電極7と画素電極8は、透明導電材料により構成することが必要である。透明導電材料としては、酸化インジウム錫(ITO)や酸化インジウム亜鉛(IZO)等を用いることができる。   Since the EC layer 3 functions as a light transmissive display device (or color filter), the common electrode 7 and the pixel electrode 8 must be made of a transparent conductive material. As the transparent conductive material, indium tin oxide (ITO), indium zinc oxide (IZO), or the like can be used.

EC材料層9は、例えば共通電極7上にインクジェット法により塗布することができる。EC材料層9は、スペーサー10を側壁とするセル内に充填され得る液状物でも良いが、取り扱いや製造上の便宜のために、共通電極7と画素電極8との間から流出せずに形状を保持し得る固形状または半固形状とすることが好ましい。   The EC material layer 9 can be applied on the common electrode 7 by an inkjet method, for example. The EC material layer 9 may be a liquid material that can be filled in a cell having the spacer 10 as a side wall, but for convenience of handling and manufacturing, the EC material layer 9 has a shape without flowing out between the common electrode 7 and the pixel electrode 8. It is preferable to use a solid or semi-solid state capable of holding

1つの画素を構成するのに、必ずしもEC素子2を3つ用いる必要はなく、2つのEC素子2により1画素の単位を構成してもよい。1画素に用いるEC素子2が多ければ、色の重ね合わせにより多彩な呈色が可能であるが、その分、1画素に割り当てるEC素子2が増え、解像度が低下してしまうので、使用目的により1画素の構成を選択することが好ましい。   It is not always necessary to use three EC elements 2 to configure one pixel, and a unit of one pixel may be configured by two EC elements 2. If there are a large number of EC elements 2 used for one pixel, various colors can be produced by superimposing colors. However, the number of EC elements 2 allocated to one pixel increases, and the resolution decreases. It is preferable to select a one-pixel configuration.

3.電気泳動層
図1において、電気泳動層5は、分散液を封入したマイクロカプセル11を第三画素電極12と第四画素電極13との間に挟持して構成される電気泳動素子4を複数備えるものである。第三画素電極12又は第四画素電極13の少なくとも一方は、固定電位としてもよいことから1枚の共通電極で構成することが可能であり、本実施の形態においては、第四画素電極13を共通電極とした例について説明し、以降、第四画素電極13を「共通電極13」、第三画素電極12を単に「画素電極12」と記載する。
3. Electrophoretic Layer In FIG. 1, the electrophoretic layer 5 includes a plurality of electrophoretic elements 4 configured by sandwiching a microcapsule 11 enclosing a dispersion liquid between a third pixel electrode 12 and a fourth pixel electrode 13. Is. Since at least one of the third pixel electrode 12 or the fourth pixel electrode 13 may have a fixed potential, it can be composed of one common electrode. In the present embodiment, the fourth pixel electrode 13 An example in which the common electrode is used will be described. Hereinafter, the fourth pixel electrode 13 is referred to as “common electrode 13”, and the third pixel electrode 12 is simply referred to as “pixel electrode 12”.

分散液は、帯電した電気泳動粒子と色素を溶かした絶縁性液体等からなる。画素電極12により分散液に電圧を印加すると、電荷を有する電気泳動粒子は、その電荷とは逆の極性の電極へ移動する。観測者側の電極(図1においては、画素電極12)に電気泳動粒子が集まると、当該電気泳動粒子の色が表示される。一方、観測者側と反対の電極(図1においては、共通電極13)に電気泳動粒子が集まると、観測者は絶縁性液体の色を視認することになる。すなわち、電気泳動粒子と絶縁性液体の色の差によって表示の切り替えが行われる。例えば、電気泳動粒子が白色、絶縁性液体が黒色に着色されていれば、画素電極12に印加する電圧を切り替えることに白又は黒を表示することができる。もちろん、画素毎に白と黒を切り替えれば、グレースケールの表示を行うことができる。   The dispersion is composed of an insulating liquid in which charged electrophoretic particles and a dye are dissolved. When a voltage is applied to the dispersion by the pixel electrode 12, electrophoretic particles having a charge move to an electrode having a polarity opposite to that of the charge. When the electrophoretic particles gather on the observer side electrode (pixel electrode 12 in FIG. 1), the color of the electrophoretic particles is displayed. On the other hand, when the electrophoretic particles gather on the electrode opposite to the observer side (common electrode 13 in FIG. 1), the observer visually recognizes the color of the insulating liquid. That is, the display is switched depending on the color difference between the electrophoretic particles and the insulating liquid. For example, if the electrophoretic particles are colored white and the insulating liquid is colored black, white or black can be displayed by switching the voltage applied to the pixel electrode 12. Of course, if white and black are switched for each pixel, grayscale display can be performed.

マイクロカプセル11は、ゼラチンとアラビアガムによるコアセルべーションによって作成した壁体物で構成することができる。白色電気泳動粒子を用いる場合は、酸化チタンを好ましく使用することができる。黒色電気泳動粒子を用いる場合は、カーボンブラックを好ましく使用することができる。分散液の溶剤(上記絶縁性液体)としては、トルエンやケロシン等の炭化水素化合物および/またはシリコーンオイルのようなケイ素化合物溶媒を好ましく使用することができる。   The microcapsule 11 can be composed of a wall body made by coacervation with gelatin and gum arabic. When white electrophoretic particles are used, titanium oxide can be preferably used. When black electrophoretic particles are used, carbon black can be preferably used. As a solvent for the dispersion (the insulating liquid), a hydrocarbon compound such as toluene and kerosene and / or a silicon compound solvent such as silicone oil can be preferably used.

電気泳動素子4の配列方法は、方眼状に限られず、ストライプ状、ハニカム状などの様々な配置を採り得る。EC素子2の配列方法も、これに合わせて同様の形態を取り得る。   The arrangement method of the electrophoretic elements 4 is not limited to a grid shape, and various arrangements such as a stripe shape and a honeycomb shape can be adopted. The arrangement method of the EC elements 2 can also take the same form according to this.

4.電子回路層
図1に示すように、本実施の形態においては、EC素子2及び電気泳動素子4を駆動するための電子回路層6は、EC層3と電気泳動層5との間に挟持されている。電子回路層6には、少なくとも3種類の能動素子、すなわち、第一のスイッチ用薄膜トランジスタ14、第二のスイッチ用薄膜トランジスタ15、及び、駆動用薄膜トランジスタ16が含まれる。トランジスタのタイプとしては、電界効果型トランジスタ、バイポーラトランジスタ、サイリスタ、IGBT等を用いることができるが、オフ電流の少ない電界効果型トランジスタを選択することが好ましい。この場合の制御電極はゲート電極であり、第一電極、第二電極は、ソース電極、ドレイン電極のいずれかに相当する。一般的にはソース電極側を接地する、いわゆるソース接地型の回路構成をとることが多い。
4). Electronic Circuit Layer As shown in FIG. 1, in the present embodiment, an electronic circuit layer 6 for driving the EC element 2 and the electrophoretic element 4 is sandwiched between the EC layer 3 and the electrophoretic layer 5. ing. The electronic circuit layer 6 includes at least three types of active elements, that is, a first switching thin film transistor 14, a second switching thin film transistor 15, and a driving thin film transistor 16. As a transistor type, a field effect transistor, a bipolar transistor, a thyristor, an IGBT, or the like can be used, but it is preferable to select a field effect transistor with a small off-state current. The control electrode in this case is a gate electrode, and the first electrode and the second electrode correspond to either the source electrode or the drain electrode. In general, a so-called grounded source circuit configuration in which the source electrode side is grounded is often employed.

図2は、上述したEC素子2や電気泳動素子4と、第一のスイッチ用薄膜トランジスタ14、第二のスイッチ用薄膜トランジスタ15、並びに駆動用薄膜トランジスタ16との接続関係を示す電子回路図である。図2において、EC素子2に表示信号を伝送するためのEC素子用信号線21と、電気泳動素子4に表示信号を伝送するための電気泳動素子用信号線22とが、図面縦方向に並列に配線されている。一方、図面横方向には、共通走査線23が配線され、EC素子用信号線21/電気泳動素子用信号線22と共通走査線23によりマトリックス構造が形成されている。共通走査線23には、第一のスイッチ用薄膜トランジスタ14の制御電極14g、および第二のスイッチ用薄膜トランジスタ15の制御電極15gが接続される。   FIG. 2 is an electronic circuit diagram showing a connection relationship between the EC element 2 and the electrophoretic element 4 described above and the first switching thin film transistor 14, the second switching thin film transistor 15, and the driving thin film transistor 16. In FIG. 2, an EC element signal line 21 for transmitting a display signal to the EC element 2 and an electrophoretic element signal line 22 for transmitting a display signal to the electrophoretic element 4 are arranged in parallel in the vertical direction of the drawing. Wired to On the other hand, a common scanning line 23 is wired in the horizontal direction of the drawing, and a matrix structure is formed by the EC element signal line 21 / electrophoretic element signal line 22 and the common scanning line 23. A control electrode 14 g of the first switch thin film transistor 14 and a control electrode 15 g of the second switch thin film transistor 15 are connected to the common scanning line 23.

上記のEC素子用信号線21は、詳しくは、シアン表示用、マゼンタ表示用、イエロー表示用の3つのラインの繰り返し、或いは、赤色表示用、緑色表示用、青色表示用の3つのラインの繰り返しを構成している。3原色を用いれば、フルカラー表示に対応することが可能となるが、本発明を実施するにあたり必須の構成要件ではない。   More specifically, the EC element signal line 21 repeats three lines for cyan display, magenta display, and yellow display, or repeats three lines for red display, green display, and blue display. Is configured. If the three primary colors are used, it is possible to support full-color display, but this is not an essential component for implementing the present invention.

また、第一のスイッチ用薄膜トランジスタ14の第一電極14aはEC素子用信号線21に接続され、第二のスイッチ用薄膜トランジスタ15の第一電極15aは電気泳動素子用信号線22に接続されている。一方、第一のスイッチ用薄膜トランジスタ14の第二電極14bはEC素子2の駆動用薄膜トランジスタ16の制御電極16gに接続され、第二のスイッチ用薄膜トランジスタ15の第二電極15bは電気泳動素子4の画素電極12(図1、図2参照)に接続されている。   The first electrode 14 a of the first switch thin film transistor 14 is connected to the EC element signal line 21, and the first electrode 15 a of the second switch thin film transistor 15 is connected to the electrophoretic element signal line 22. . On the other hand, the second electrode 14b of the first switching thin film transistor 14 is connected to the control electrode 16g of the driving thin film transistor 16 of the EC element 2, and the second electrode 15b of the second switching thin film transistor 15 is the pixel of the electrophoretic element 4. It is connected to the electrode 12 (see FIGS. 1 and 2).

駆動用薄膜トランジスタ16の第一電極16aは接地され、第二電極16bは、EC素子2の画素電極8(図1、図2参照)に接続され、EC素子2の共通電極7(図1、図2参照)は、一定電位を与える電源Vcomに接続されている。共通電極7がマトリックス構造全面に一様に形成されている場合は、電源Vcomは、各マトリックスまで個別に配線されている必要はないが、電気伝導率の良いアルミニウムや銅により個別に配線すれば、共通電極7全体の電位が所定の電位となるまでにかかる時間が短縮される。また、共通電極7がマトリックス構造全体に形成されているのではなく、ライン毎やEC素子2毎に形成される場合であれば、電源Vcomを個別に配線することが必要である。   The first electrode 16a of the driving thin film transistor 16 is grounded, the second electrode 16b is connected to the pixel electrode 8 (see FIGS. 1 and 2) of the EC element 2, and the common electrode 7 (FIG. 1, FIG. 2) of the EC element 2. 2) is connected to a power supply Vcom that provides a constant potential. When the common electrode 7 is uniformly formed on the entire surface of the matrix structure, the power source Vcom does not need to be individually wired up to each matrix, but can be individually wired with aluminum or copper having good electrical conductivity. The time taken for the potential of the entire common electrode 7 to become a predetermined potential is shortened. Further, if the common electrode 7 is not formed in the entire matrix structure but is formed for each line or each EC element 2, it is necessary to individually wire the power supply Vcom.

駆動用薄膜トランジスタ16の第一電極16aは、上記のように接地されているが、直接接地でも間接接地でもよい。例えば、容量素子(図示せず)等の受動素子を介在させていてもよい。容量素子を用いた場合は、サージ電流に対して駆動用薄膜トランジスタ16やEC素子2を保護することができる。   Although the first electrode 16a of the driving thin film transistor 16 is grounded as described above, it may be directly grounded or indirectly grounded. For example, a passive element such as a capacitive element (not shown) may be interposed. When the capacitive element is used, the driving thin film transistor 16 and the EC element 2 can be protected against a surge current.

第一のスイッチ用薄膜トランジスタ14の第二電極14b、第二のスイッチ用薄膜トランジスタ15の第二電極15bも、それぞれ接地されているが、接地される際に第一容量素子27,第二容量素子28を介在させていてもよい。第二容量素子28を用いることにより、電気泳動素子4の表示状態を保持することができる。また、第一容量素子27を用いることにより、駆動用トランジスタ16のオンオフ状態を保持し、EC素子2の表示状態を保持することができる。   The second electrode 14b of the first switch thin film transistor 14 and the second electrode 15b of the second switch thin film transistor 15 are also grounded, but when they are grounded, the first capacitor element 27 and the second capacitor element 28 are also grounded. May be interposed. By using the second capacitor element 28, the display state of the electrophoretic element 4 can be maintained. Further, by using the first capacitor element 27, the on / off state of the driving transistor 16 can be maintained, and the display state of the EC element 2 can be maintained.

第一及び第二容量素子27,28の接地先は、電気泳動素子4の共通電極13であってもよいが、この場合は、電気泳動層5を貫通するバイアホール(図示せず)を設ける必要があり、電気光学表示装置の製造工程を複雑にしてしまう。   The grounding destination of the first and second capacitive elements 27 and 28 may be the common electrode 13 of the electrophoretic element 4. In this case, a via hole (not shown) penetrating the electrophoretic layer 5 is provided. This complicates the manufacturing process of the electro-optic display device.

図3は、第一及び第二容量素子27,28の他の接地方法を示す回路図である。この回路図によれば、第一及び第二容量素子27,28の接地先を、電子回路層6内に設けられた共通走査線23に並行に設けられた共通接地線24としている。共通接地線24は、電子回路層6内を通して外部で接地することができる。このような共通接地線24を形成すれば、第一及び第二容量素子27,28の接地構造を電子回路層6内に収めることができるため、上記のようなバイアホールを設ける必要もなく、電気光学表示装置の製造工程を簡略化することができる。   FIG. 3 is a circuit diagram showing another grounding method for the first and second capacitive elements 27 and 28. According to this circuit diagram, the ground destination of the first and second capacitive elements 27 and 28 is a common ground line 24 provided in parallel with the common scanning line 23 provided in the electronic circuit layer 6. The common ground line 24 can be grounded outside through the electronic circuit layer 6. If such a common ground line 24 is formed, the ground structure of the first and second capacitive elements 27 and 28 can be accommodated in the electronic circuit layer 6, so there is no need to provide a via hole as described above. The manufacturing process of the electro-optic display device can be simplified.

本実施の形態1における電子回路層6は、EC層3と電気泳動層5との間に挟まれた位置に構成されるため、電子回路層6の光透過率が高いことが好ましい。この観点から、薄膜トランジスタとして透明薄膜トランジスタを用いることが好ましい。本発明において、透明薄膜トランジスタとは、電極材料(薄膜トランジスタが電界効果型トランジスタであれば、ソース電極・ドレイン電極、ゲート電極の各電極材)に、透明酸化物伝導体(上述のITOやIZO等)を使用したものをいうものとする。さらに、ゲート電極と活性層との間に配置するゲート絶縁膜をYOx等の透明絶縁物で構成することにより透明度は高まる。トランジスタの活性層としては、アモルファス酸化物半導体膜(InGaZnO)、電子回路層6の基体としては、PETフィルムを好ましく用いることができる。 Since the electronic circuit layer 6 in the first embodiment is configured at a position sandwiched between the EC layer 3 and the electrophoretic layer 5, the electronic circuit layer 6 preferably has a high light transmittance. From this viewpoint, it is preferable to use a transparent thin film transistor as the thin film transistor. In the present invention, a transparent thin film transistor refers to an electrode material (if the thin film transistor is a field effect transistor), a transparent oxide conductor (such as the above-mentioned ITO or IZO) on a source electrode / drain electrode or a gate electrode. It shall mean the one using. Furthermore, transparency is increased by configuring the gate insulating film disposed between the gate electrode and the active layer with a transparent insulator such as Y 2 Ox. An amorphous oxide semiconductor film (InGaZnO 4 ) is preferably used as the active layer of the transistor, and a PET film can be preferably used as the base of the electronic circuit layer 6.

図1に示すように、EC層3と電子回路層6との接続には、導電性の微粒子(導電性フィラー)を分散させた熱硬化性樹脂によって形成される異方性導電膜17(ACF:Anisotropic Conductive Film)を用いれば、電子回路層6の駆動用薄膜トランジスタ16とEC素子2の画素電極8とを容易に接続することができる。接続の方法は、まず、電子回路層6とEC層3との間に異方性導電膜17を挟んで、ヒーター等で熱を加えながら電子回路層6とEC層3との導通を図りたい場所に異方性導電膜17の垂直方向から圧力を加えることにより、導電性フィラー同士が接触し、異方性導電膜17の垂直方向の接続点18を形成することができる。上記の異方性導電膜17の他、耐熱性の高い異方性導電ペーストを用いることもできる。   As shown in FIG. 1, an anisotropic conductive film 17 (ACF) formed of a thermosetting resin in which conductive fine particles (conductive filler) are dispersed is used to connect the EC layer 3 and the electronic circuit layer 6. : Anisotropic Conductive Film), the driving thin film transistor 16 of the electronic circuit layer 6 and the pixel electrode 8 of the EC element 2 can be easily connected. As a method of connection, first, an anisotropic conductive film 17 is sandwiched between the electronic circuit layer 6 and the EC layer 3, and conduction between the electronic circuit layer 6 and the EC layer 3 is desired while applying heat with a heater or the like. By applying pressure from the vertical direction of the anisotropic conductive film 17 to the place, the conductive fillers can come into contact with each other, and the connection point 18 in the vertical direction of the anisotropic conductive film 17 can be formed. In addition to the anisotropic conductive film 17, an anisotropic conductive paste having high heat resistance can also be used.

電子回路層6の駆動用薄膜トランジスタ16とEC素子2の画素電極8とは、最低1点において接続されていればEC素子2の機能は果たすが、電子回路層6の駆動用薄膜トランジスタ16とEC素子2の画素電極8との接点は多い方が良い。画素電極8の材料であるITO等の透明材料は、アルミニウムや銅等に比べて電気伝導性が低い。このため、電子回路層6の駆動用薄膜トランジスタ16とEC素子2の画素電極8との接続点が少ない場合には画素内における呈色のムラや表示遅れが発生してしまうが、接点が多い場合は、画素電極8全体が等電位になるまでの時間が短縮できるため、表示状態を高速で切り替える場合にも対応できる。したがって、異方性導電膜17は点状ではなく線状領域において通電されることが望ましく、画素電極8の一つの辺と同等の長さに亘って配置されることが特に望ましい。   The driving thin film transistor 16 of the electronic circuit layer 6 and the pixel electrode 8 of the EC element 2 function as the EC element 2 if they are connected at least at one point. It is preferable that the number of contacts with the second pixel electrode 8 is larger. A transparent material such as ITO, which is a material of the pixel electrode 8, has a lower electrical conductivity than aluminum or copper. For this reason, when the number of connection points between the driving thin film transistor 16 of the electronic circuit layer 6 and the pixel electrode 8 of the EC element 2 is small, uneven coloring or display delay occurs in the pixel, but there are many contacts. Since the time until the entire pixel electrode 8 becomes equipotential can be shortened, it is possible to cope with the case where the display state is switched at high speed. Accordingly, it is desirable that the anisotropic conductive film 17 is energized in a linear region rather than a dot shape, and it is particularly desirable that the anisotropic conductive film 17 be disposed over a length equivalent to one side of the pixel electrode 8.

上述のように、本実施の形態1にかかる電気泳動層5よりも視認側にある構造、例えばEC層3は、透過型の表示層として機能するものであり、異方性導電膜17においても光の透過を阻害しないようにする必要がある。このため、異方性導電膜17を透明のフィルム材料によって構成することが望ましい。   As described above, the structure on the viewer side of the electrophoretic layer 5 according to the first embodiment, for example, the EC layer 3 functions as a transmissive display layer. It is necessary not to disturb the light transmission. For this reason, it is desirable that the anisotropic conductive film 17 is made of a transparent film material.

5.電子回路層の駆動方法
次に、電子回路層6の駆動方法について説明する。図1に示したように、EC素子2及び電気泳動素子4はそれぞれ重なるように配置され、電気泳動素子4の表示色とEC素子2の表示色によって、視認側から観察できる色が決定されるので、EC素子2及び電気泳動素子4をタイミングよく所定の呈色をしなければならない。まず、表示の目的とするEC素子2に接続されているEC素子用信号線21に所定の電圧をアドレスし、このEC素子2に対向する電気泳動素子4に接続されている電気泳動素子用信号線22に所定の電圧をアドレスする。この状態で、EC素子2と電気泳動素子4とを同時に呈色させる準備は完了している。
5. Next, a method for driving the electronic circuit layer 6 will be described. As shown in FIG. 1, the EC element 2 and the electrophoretic element 4 are arranged so as to overlap each other, and the color that can be observed from the viewing side is determined by the display color of the electrophoretic element 4 and the display color of the EC element 2. Therefore, the EC element 2 and the electrophoretic element 4 must be colored with a predetermined timing. First, a predetermined voltage is addressed to the EC element signal line 21 connected to the EC element 2 to be displayed, and the electrophoretic element signal connected to the electrophoretic element 4 facing the EC element 2. The line 22 is addressed with a predetermined voltage. In this state, preparation for simultaneously coloring the EC element 2 and the electrophoretic element 4 is completed.

次に、共通走査線23にオン電圧(例えば0.7V)を印加し、第一のスイッチ用薄膜トランジスタ14の制御電極14g、第二のスイッチ用薄膜トランジスタ15の制御電極15gをオン状態とする。制御電極15gがオン状態になれば、第一電極15a及び第二電極15b間が導通状態となり、電気泳動素子4の画素電極12が所定電位となり、電気泳動素子4が所望の呈色状態となる。また、第一のスイッチ用薄膜トランジスタ14の制御電極14gがオン状態になれば、第一電極14a及び第二電極間14bが導通状態となり、これにより駆動用トランジスタ16の制御電極16gがオン状態となる。制御電極16gがオンになれば、第一電極16a及び第二電極16b間が導通状態となり、EC素子2の画素電極8が所定電位となり、EC素子2が所望の呈色状態となる。   Next, an ON voltage (for example, 0.7 V) is applied to the common scanning line 23, and the control electrode 14g of the first switch thin film transistor 14 and the control electrode 15g of the second switch thin film transistor 15 are turned on. When the control electrode 15g is turned on, the first electrode 15a and the second electrode 15b are in a conductive state, the pixel electrode 12 of the electrophoretic element 4 is at a predetermined potential, and the electrophoretic element 4 is in a desired color state. . Further, when the control electrode 14g of the first switching thin film transistor 14 is turned on, the first electrode 14a and the second electrode 14b are brought into conduction, and thereby the control electrode 16g of the driving transistor 16 is turned on. . When the control electrode 16g is turned on, the first electrode 16a and the second electrode 16b are in a conductive state, the pixel electrode 8 of the EC element 2 is at a predetermined potential, and the EC element 2 is in a desired color state.

以上のように、本実施の形態における電気光学表示装置では、1本の共通走査線23により電気泳動素子4とEC素子2の駆動タイミングが制御されるため、回路構造上、電気泳動素子4とEC素子2の呈色タイミングがずれることはなく、安定した色又は明るさの表示を行うことが可能となる。また、走査線を共通走査線23の1本としたことにより、各画素の開口率が上がるため、最終的に観者に視認される光量が多くなる。   As described above, in the electro-optical display device according to the present embodiment, the driving timing of the electrophoretic element 4 and the EC element 2 is controlled by one common scanning line 23. The coloration timing of the EC element 2 is not shifted, and stable color or brightness can be displayed. Further, since the scanning line is one common scanning line 23, the aperture ratio of each pixel is increased, so that the amount of light finally seen by the viewer increases.

(実施の形態2)
上記実施の形態1では、EC層3と電気泳動層5との間に電子回路層6が挟まれた構成について説明したが、共通走査線23を配置できる方法でれば、電子回路層6はどの層に形成されていてもよい。図4は、本発明の実施の形態2にかかる電気光学表示装置1の概略断面図である。図4に示すように、電子回路層6は、電気泳動層5の下側、すなわち、EC層3とは反対側に形成されていてもよい。この場合は、EC層3と電気泳動層5との間隔が狭くなるため、EC素子2と電気泳動素子4との視差が少なくなり、色むら、色のにじみ等が低減される。ただし、電子回路層6からEC素子2に信号を伝達するため、電気泳動層5中にバイアホール等の穴を設ける必要がある。
(Embodiment 2)
In the first embodiment, the configuration in which the electronic circuit layer 6 is sandwiched between the EC layer 3 and the electrophoretic layer 5 has been described. However, if the common scanning line 23 can be arranged, the electronic circuit layer 6 is It may be formed in any layer. FIG. 4 is a schematic cross-sectional view of the electro-optic display device 1 according to the second embodiment of the present invention. As shown in FIG. 4, the electronic circuit layer 6 may be formed on the lower side of the electrophoretic layer 5, that is, on the side opposite to the EC layer 3. In this case, since the interval between the EC layer 3 and the electrophoretic layer 5 is narrowed, the parallax between the EC element 2 and the electrophoretic element 4 is reduced, and color unevenness, color blurring, and the like are reduced. However, in order to transmit a signal from the electronic circuit layer 6 to the EC element 2, it is necessary to provide a hole such as a via hole in the electrophoretic layer 5.

(実施の形態3)
実施の形態1および2では、EC層3が視認側となる場合について説明したが、電気泳動層5が透明表示可能であれば、電気泳動層5が視認側となるように形成されていてもよい。図5に示すように、透明表示が可能な電気泳動層5としては、凹状のセルを形成し、セルの側壁側に隔壁電極31を配置し、透明な絶縁性液体32と着色された電気泳動粒子33とを用いて電気泳動粒子33を水平方向に動かす、いわゆるインプレイン型の電気泳動層5を使用することができる。この方法によれば、電気泳動粒子33を隔壁電極31に引きつけておくことにより、下部電極34を介して光が透過することが可能となる。
(Embodiment 3)
In Embodiments 1 and 2, the case where the EC layer 3 is on the viewing side has been described. However, if the electrophoretic layer 5 can be transparently displayed, the electrophoretic layer 5 may be formed on the viewing side. Good. As shown in FIG. 5, as the electrophoretic layer 5 capable of transparent display, a concave cell is formed, a partition wall electrode 31 is disposed on the side wall side of the cell, and the transparent electrophoretic liquid 32 and the colored electrophoresis are provided. A so-called in-plane type electrophoretic layer 5 in which the electrophoretic particles 33 are moved in the horizontal direction using the particles 33 can be used. According to this method, by attracting the electrophoretic particles 33 to the partition wall electrode 31, light can be transmitted through the lower electrode 34.

(実施の形態4)
上記実施の形態1〜3において第一のスイッチ用薄膜トランジスタ14、第二のスイッチ用薄膜トランジスタ15、及び駆動用薄膜トランジスタ16に用いられる半導体を有機半導体で構成することができる。有機半導体は、ポリエチレンテレフタレート(PET)等の透明樹脂の上に印刷により形成することができ、軽量で、大面積、フレキシブルという特徴を有し、電子ペーパー等の用途に好適に用いられる。有機p型半導体としては、ペンタセンが上げられる。ペンタセンは、ベンゼン環が五つ結合した構造の低分子化合物である。電子伝導の原理は、ベンゼン環の二重結合に存在するπ電子が移動することにある。
(Embodiment 4)
In the first to third embodiments, the semiconductors used for the first switch thin film transistor 14, the second switch thin film transistor 15, and the drive thin film transistor 16 can be formed of an organic semiconductor. An organic semiconductor can be formed on a transparent resin such as polyethylene terephthalate (PET) by printing, has characteristics of light weight, large area, and flexibility, and is suitably used for applications such as electronic paper. An example of an organic p-type semiconductor is pentacene. Pentacene is a low molecular weight compound having a structure in which five benzene rings are bonded. The principle of electron conduction is that π electrons existing in the double bond of the benzene ring move.

(実施の形態5)
上記実施の形態1〜4において視認側にタッチパネルを形成することもできる。タッチパネルは、マトリックス状に形成された配線等により、指先やペン先等が物理的に接触された位置を検出し、特定することができるものである。例えば、電子ブックにペンの圧力により書き込んだ情報を電子ペーパー上に表示したり保存したりすることができる。
(Embodiment 5)
In the first to fourth embodiments, a touch panel can be formed on the viewing side. The touch panel can detect and specify a position where a fingertip, a pen tip, or the like is physically contacted by wiring or the like formed in a matrix. For example, information written on the electronic book by the pressure of the pen can be displayed or stored on the electronic paper.

タッチパネルを動作原理別に分類すると、軽量で製造コストの低い抵抗膜方式(アナログ抵抗膜方式)、透過率が高い静電容量方式、透過率が高く耐久性が高い超音波表面弾性波方式、透過率が高く誤動作の少ない赤外線遮光方式等が挙げられるが、中でも抵抗膜方式は、製造コストが低く、柔軟性が高いという観点から、電子ペーパーやフレキシブルディスプレイの用途に適した方式である。   The touch panel is categorized by operating principle. Lightweight and low-cost resistive membrane method (analog resistive membrane method), high transmittance capacitance method, high transmittance and high durability ultrasonic surface acoustic wave method, transmittance Among them, an infrared light shielding method that is high and has few malfunctions, among others, the resistive film method is a method that is suitable for use in electronic paper and a flexible display from the viewpoint of low manufacturing cost and high flexibility.

以上説明したように、本発明の電気光学表示装置によれば、EC層の裏側(視認側とは反対側)に無彩色(グレイスケール)を表示することに適している電気泳動層を配置するため、EC層のみによるカラー表示では表現できないような階調度の高い、表現豊かなフルカラー画像を表示することができる。また、各EC層は無色透明色が表示可能であるため、電気泳動層による無彩色画像をより一層鮮明に表示することができる。   As described above, according to the electro-optic display device of the present invention, the electrophoretic layer suitable for displaying an achromatic color (gray scale) is disposed on the back side (the side opposite to the viewing side) of the EC layer. Therefore, it is possible to display an expressive full color image with high gradation that cannot be expressed by color display using only the EC layer. Further, since each EC layer can display a colorless and transparent color, an achromatic image by the electrophoretic layer can be displayed more clearly.

本発明の電気光学表示装置は、ノートパソコン、PDA、携帯電話、電子ブック、電子新聞、電子文庫等の電子ペーパー、カレンダー、看板、ポスター、黒板等の掲示板、電卓、家電製品、自動車用品等の表示部、ポイントカード、ICカード等のカード表示部、電子広告、電子値札、電子楽譜のほか、外部情報入力手段を用いて表示媒体駆動を行うリライタブルペーパーとしても好適に用いられる。   The electro-optical display device of the present invention includes notebook PCs, PDAs, mobile phones, electronic books, electronic newspapers, electronic papers such as electronic library, bulletin boards such as calendars, signboards, posters, blackboards, calculators, home appliances, automobile supplies, etc. In addition to a display unit, a card display unit such as a point card, an IC card, an electronic advertisement, an electronic price tag, and an electronic score, it is also suitably used as a rewritable paper that drives a display medium using external information input means.

本発明の実施の形態1にかかる電気光学表示装置の概略断面図である。1 is a schematic cross-sectional view of an electro-optic display device according to a first embodiment of the present invention. 本発明の実施の形態1にかかる電気光学表示装置の電子回路である。3 is an electronic circuit of the electro-optic display device according to the first exemplary embodiment of the present invention. 本発明の実施の形態1にかかる電気光学表示装置の他の電子回路である。6 is another electronic circuit of the electro-optical display device according to the first exemplary embodiment of the present invention. 本発明の実施の形態2にかかる電気光学表示装置の概略断面図である。FIG. 6 is a schematic cross-sectional view of an electro-optic display device according to a second embodiment of the present invention. 本発明の実施の形態3にかかる電気光学表示装置の電気泳動層の概略断面図である。FIG. 6 is a schematic cross-sectional view of an electrophoretic layer of an electro-optic display device according to a third embodiment of the present invention.

符号の説明Explanation of symbols

1 電気光学表示装置
2 EC素子
3 EC層
4 電気泳動素子
5 電気泳動層
6 電子回路層
7 第一画素電極(共通電極)
8 第二画素電極(画素電極)
9 EC材料層
10 スペーサー
11 マイクロカプセル
12 第三画素電極(画素電極)
13 第四画素電極(共通電極)
14 第一のスイッチ用薄膜トランジスタ
15 第二のスイッチ用薄膜トランジスタ
16 駆動用薄膜トランジスタ
17 異方性導電膜
18 接続点
21 EC素子用信号線
22 電気泳動素子用信号線
23 共通走査線
24 共通接地線
27 第一容量素子
28 第二容量素子
31 隔壁電極
32 絶縁性液体
33 電気泳動粒子
34 下部電極
DESCRIPTION OF SYMBOLS 1 Electro-optical display device 2 EC element 3 EC layer 4 Electrophoretic element 5 Electrophoretic layer 6 Electronic circuit layer 7 First pixel electrode (common electrode)
8 Second pixel electrode (pixel electrode)
9 EC material layer 10 Spacer 11 Microcapsule 12 Third pixel electrode (pixel electrode)
13 Fourth pixel electrode (common electrode)
14 First switch thin film transistor 15 Second switch thin film transistor 16 Driving thin film transistor 17 Anisotropic conductive film 18 Connection point 21 EC element signal line 22 Electrophoretic element signal line 23 Common scanning line 24 Common ground line 27 First One capacitive element 28 Second capacitive element 31 Partition electrode 32 Insulating liquid 33 Electrophoretic particle 34 Lower electrode

Claims (10)

第一画素電極と第二画素電極との間にエレクトロクロミック(以下、「EC」と記載する)材料層を挟持したEC素子を複数備えるEC層と、
第三画素電極と第四画素電極との間に電気泳動粒子を挟持した電気泳動素子を複数備える電気泳動層と、
前記EC素子と前記電気泳動素子とを駆動するための電子回路層と、
を重ね合わせて構成される電気光学表示装置であって、前記電子回路層は、
前記EC素子に表示信号を伝送するためのEC素子用信号線と、
第一電極、第二電極、及び制御電極を有し、該第一電極が前記EC素子用信号線に接続された第一のスイッチ用薄膜トランジスタと、
前記電気泳動素子に表示信号を伝送するための電気泳動素子用信号線と、
第一電極、第二電極、及び制御電極を有し、該第一電極が前記電気泳動素子用信号線に接続された第二のスイッチ用薄膜トランジスタと、
前記第一のスイッチ用薄膜トランジスタの制御電極および前記第二のスイッチ用薄膜トランジスタの制御電極に接続された共通走査線と、
第一電極、第二電極、及び制御電極を有し、該制御電極が前記第二のスイッチ用薄膜トランジスタの第二電極に接続された駆動用薄膜トランジスタと、
を有し、該駆動用薄膜トランジスタの第一電極が接地され、第二電極が前記EC素子の第二画素電極に接続され、前記第二のスイッチ用薄膜トランジスタの第二電極が前記電気泳動素子の第三画素電極に接続されることを特徴とする電気光学表示装置。
An EC layer including a plurality of EC elements each having an electrochromic (hereinafter referred to as “EC”) material layer sandwiched between the first pixel electrode and the second pixel electrode;
An electrophoretic layer comprising a plurality of electrophoretic elements sandwiching electrophoretic particles between a third pixel electrode and a fourth pixel electrode;
An electronic circuit layer for driving the EC element and the electrophoretic element;
In which the electronic circuit layer is
An EC element signal line for transmitting a display signal to the EC element;
A first switch thin film transistor having a first electrode, a second electrode, and a control electrode, wherein the first electrode is connected to the EC element signal line;
An electrophoretic element signal line for transmitting a display signal to the electrophoretic element;
A second thin film transistor for a switch having a first electrode, a second electrode, and a control electrode, wherein the first electrode is connected to the electrophoretic element signal line;
A common scanning line connected to a control electrode of the first switch thin film transistor and a control electrode of the second switch thin film transistor;
A driving thin film transistor having a first electrode, a second electrode, and a control electrode, wherein the control electrode is connected to the second electrode of the second switching thin film transistor;
The first electrode of the driving thin film transistor is grounded, the second electrode is connected to the second pixel electrode of the EC element, and the second electrode of the second switching thin film transistor is the first electrode of the electrophoretic element. An electro-optic display device connected to three pixel electrodes.
前記EC素子の第一画素電極が1枚の共通電極で構成され、前記電気泳動素子の第四画素電極が1枚の共通電極で構成され、前記EC素子の第二画素電極と前記電気泳動素子の第三画素電極とが対向しており、前記電子回路層が前記EC層と前記電気泳動層との間に挟まれるように形成される請求項1に記載の電気光学表示装置。   The first pixel electrode of the EC element is composed of one common electrode, the fourth pixel electrode of the electrophoretic element is composed of one common electrode, and the second pixel electrode of the EC element and the electrophoretic element The electro-optical display device according to claim 1, wherein the third pixel electrode is opposed to the electronic circuit layer, and the electronic circuit layer is formed between the EC layer and the electrophoretic layer. 前記共通走査線に並行して共通接地線が形成され、前記第一のスイッチ用薄膜トランジスタの第二電極が、第一容量素子を介して前記共通接地線に接続され、前記第二のスイッチ用薄膜トランジスタの第二電極が、第二容量素子を介して前記共通接地線に接続される請求項2に記載の電気光学表示装置。   A common ground line is formed in parallel with the common scanning line, and a second electrode of the first switch thin film transistor is connected to the common ground line via a first capacitor element, and the second switch thin film transistor The electro-optical display device according to claim 2, wherein the second electrode is connected to the common ground line via a second capacitive element. 前記第一のスイッチ用薄膜トランジスタ、前記第二のスイッチ用薄膜トランジスタ、及び前記駆動用薄膜トランジスタが透明薄膜トランジスタで構成される請求項2または3に記載の電気光学表示装置。   4. The electro-optical display device according to claim 2, wherein the first switch thin film transistor, the second switch thin film transistor, and the drive thin film transistor are formed of transparent thin film transistors. 5. 前記電気泳動層が前記EC層と前記電子回路層との間に挟まれるように形成される請求項1に記載の電気光学表示装置。   The electro-optical display device according to claim 1, wherein the electrophoretic layer is formed so as to be sandwiched between the EC layer and the electronic circuit layer. 前記第一のスイッチ用薄膜トランジスタ、前記第二のスイッチ用薄膜トランジスタ、及び前記駆動用薄膜トランジスに用いられる半導体が有機半導体である請求項1〜5のいずれかに記載の電気光学表示装置。   The electro-optic display device according to claim 1, wherein a semiconductor used for the first switching thin film transistor, the second switching thin film transistor, and the driving thin film transistor is an organic semiconductor. 前記電子回路層と前記EC層および/または前記電子回路層と前記電気泳動層が、異方性導電膜を介して接続される請求項1〜6のいずれかに記載の電気光学表示装置。   The electro-optical display device according to claim 1, wherein the electronic circuit layer and the EC layer and / or the electronic circuit layer and the electrophoretic layer are connected via an anisotropic conductive film. 前記異方性導電膜が透明異方性導電膜である請求項7に記載の電気光学表示装置。   The electro-optic display device according to claim 7, wherein the anisotropic conductive film is a transparent anisotropic conductive film. 前記EC層が、シアン色、マゼンダ色、イエロー色の3色によるカラー表示、又は、赤色、青色、緑色の3色によるカラー表示が可能に構成されている請求項1〜8のいずれかに記載の電気光学表示装置。   The EC layer is configured to be capable of color display with three colors of cyan, magenta, and yellow, or color display with three colors of red, blue, and green. Electro-optic display device. 視認側にタッチパネルが形成された請求項1〜9のいずれかに記載の電気光学表示装置。
The electro-optical display device according to claim 1, wherein a touch panel is formed on the viewing side.
JP2008113060A 2008-04-23 2008-04-23 Electro-optical display Withdrawn JP2009265271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008113060A JP2009265271A (en) 2008-04-23 2008-04-23 Electro-optical display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113060A JP2009265271A (en) 2008-04-23 2008-04-23 Electro-optical display

Publications (1)

Publication Number Publication Date
JP2009265271A true JP2009265271A (en) 2009-11-12

Family

ID=41391228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113060A Withdrawn JP2009265271A (en) 2008-04-23 2008-04-23 Electro-optical display

Country Status (1)

Country Link
JP (1) JP2009265271A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011203728A (en) * 2010-03-05 2011-10-13 Semiconductor Energy Lab Co Ltd Display device
JP2011203726A (en) * 2010-03-05 2011-10-13 Semiconductor Energy Lab Co Ltd Display device
US8115883B2 (en) 2009-08-27 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
WO2012086516A1 (en) * 2010-12-20 2012-06-28 シャープ株式会社 Display device
US8218099B2 (en) 2009-09-04 2012-07-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
US8236627B2 (en) 2009-09-04 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8242496B2 (en) 2009-07-17 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8293594B2 (en) 2009-07-18 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device having oxide semiconductor layer
US8324621B2 (en) 2009-10-14 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer
CN102879946A (en) * 2012-09-26 2013-01-16 京东方科技集团股份有限公司 Color film substrate, liquid crystal display panel and method for preparing color film substrate
US8378344B2 (en) 2009-09-04 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with plural kinds of thin film transistors and circuits over one substrate
US8377762B2 (en) 2009-09-16 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US8378343B2 (en) 2009-07-17 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8389989B2 (en) 2009-09-04 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Transistor having oxide semiconductor layer and display utilizing the same
CN103207493A (en) * 2013-04-19 2013-07-17 京东方科技集团股份有限公司 Electrochromic structure and method, and display equipment
US8492764B2 (en) 2009-08-07 2013-07-23 Semicondcutor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US8492758B2 (en) 2009-09-24 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8502225B2 (en) 2009-09-04 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8502220B2 (en) 2009-08-07 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8552423B2 (en) 2009-07-18 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8563976B2 (en) 2009-12-11 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8629441B2 (en) 2009-08-07 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8648343B2 (en) 2009-07-23 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8654272B2 (en) 2009-08-07 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein each of a first oxide semiconductor layer and a second oxide semiconductor layer includes a portion that is in an oxygen-excess state which is in contact with a second insulatng layer
US8669556B2 (en) 2010-12-03 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8729550B2 (en) 2009-07-18 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8742422B2 (en) 2009-09-04 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8890166B2 (en) 2009-09-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8912541B2 (en) 2009-08-07 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8994024B2 (en) 2009-07-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9048094B2 (en) 2009-09-24 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising forming oxide semiconductor by sputtering
CN104777663A (en) * 2015-04-28 2015-07-15 深圳市华星光电技术有限公司 Color film substrate and liquid crystal display panel
US9218966B2 (en) 2011-10-14 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US9741860B2 (en) 2011-09-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9935202B2 (en) 2009-09-16 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device comprising oxide semiconductor layer
JP2021533412A (en) * 2018-08-14 2021-12-02 イー インク カリフォルニア, エルエルシー Piezoelectric electrophoresis display
US11997859B2 (en) 2009-09-16 2024-05-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof

Cited By (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242496B2 (en) 2009-07-17 2012-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8445905B2 (en) 2009-07-17 2013-05-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8378343B2 (en) 2009-07-17 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9184185B2 (en) 2009-07-18 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8729550B2 (en) 2009-07-18 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US11177289B2 (en) 2009-07-18 2021-11-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9190424B2 (en) 2009-07-18 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8293594B2 (en) 2009-07-18 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a display device having oxide semiconductor layer
US8994024B2 (en) 2009-07-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8987048B2 (en) 2009-07-18 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US11715741B2 (en) 2009-07-18 2023-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8698143B2 (en) 2009-07-18 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Display device
US9263472B2 (en) 2009-07-18 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8552423B2 (en) 2009-07-18 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US10461098B2 (en) 2009-07-18 2019-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8643018B2 (en) 2009-07-18 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a pixel portion and a driver circuit
US8648343B2 (en) 2009-07-23 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8912541B2 (en) 2009-08-07 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9583509B2 (en) 2009-08-07 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein an oxide semiconductor layer has a degree of crystallization of 80% or more
US9153602B2 (en) 2009-08-07 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein an oxide semiconductor layer comprises a crystal and has a degree of crystallization of 80% or more
US8492764B2 (en) 2009-08-07 2013-07-23 Semicondcutor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US8502220B2 (en) 2009-08-07 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8885115B2 (en) 2009-08-07 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein each of a first oxide semiconductor layer and a second oxide semiconductor layer includes a portion that is in an oxygen-excess state and is in contact with an insulating layer
US10243005B2 (en) 2009-08-07 2019-03-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8629441B2 (en) 2009-08-07 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9202851B2 (en) 2009-08-07 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9837442B2 (en) 2009-08-07 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a plurality of N-channel transistors wherein the oxide semiconductor layer comprises a portion being in an oxygen-excess state
US8654272B2 (en) 2009-08-07 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein each of a first oxide semiconductor layer and a second oxide semiconductor layer includes a portion that is in an oxygen-excess state which is in contact with a second insulatng layer
US9466756B2 (en) 2009-08-07 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8994889B2 (en) 2009-08-27 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US8698970B2 (en) 2009-08-27 2014-04-15 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US8115883B2 (en) 2009-08-27 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11024516B2 (en) 2009-08-27 2021-06-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
KR20180039034A (en) * 2009-08-27 2018-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing a semiconductor device
US11923206B2 (en) 2009-08-27 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11532488B2 (en) 2009-08-27 2022-12-20 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US8879011B2 (en) 2009-08-27 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US8488077B2 (en) 2009-08-27 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
KR101969290B1 (en) 2009-08-27 2019-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing a semiconductor device
US10373843B2 (en) 2009-08-27 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US8218099B2 (en) 2009-09-04 2012-07-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
US9368641B2 (en) 2009-09-04 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US8957411B2 (en) 2009-09-04 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US11862643B2 (en) 2009-09-04 2024-01-02 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US8502225B2 (en) 2009-09-04 2013-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US8889496B2 (en) 2009-09-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10418384B2 (en) 2009-09-04 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US9954007B2 (en) 2009-09-04 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US8236627B2 (en) 2009-09-04 2012-08-07 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9105735B2 (en) 2009-09-04 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US8466014B2 (en) 2009-09-04 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8389989B2 (en) 2009-09-04 2013-03-05 Semiconductor Energy Laboratory Co., Ltd. Transistor having oxide semiconductor layer and display utilizing the same
US8890166B2 (en) 2009-09-04 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US9768207B2 (en) 2009-09-04 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8742422B2 (en) 2009-09-04 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8378344B2 (en) 2009-09-04 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device with plural kinds of thin film transistors and circuits over one substrate
US11094717B2 (en) 2009-09-04 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US10629627B2 (en) 2009-09-04 2020-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8710499B2 (en) 2009-09-04 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US11024747B2 (en) 2009-09-04 2021-06-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US9640670B2 (en) 2009-09-04 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Transistors in display device
US9601516B2 (en) 2009-09-04 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10854640B2 (en) 2009-09-04 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11695019B2 (en) 2009-09-04 2023-07-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9431465B2 (en) 2009-09-04 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US10672915B2 (en) 2009-09-04 2020-06-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US11626521B2 (en) 2009-09-04 2023-04-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
US10665615B2 (en) 2009-09-04 2020-05-26 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
US9530806B2 (en) 2009-09-04 2016-12-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9935202B2 (en) 2009-09-16 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device comprising oxide semiconductor layer
US10374184B2 (en) 2009-09-16 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US11469387B2 (en) 2009-09-16 2022-10-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US8377762B2 (en) 2009-09-16 2013-02-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US9666820B2 (en) 2009-09-16 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US11171298B2 (en) 2009-09-16 2021-11-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US11997859B2 (en) 2009-09-16 2024-05-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and manufacturing method thereof
US9048094B2 (en) 2009-09-24 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising forming oxide semiconductor by sputtering
US9853167B2 (en) 2009-09-24 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9214563B2 (en) 2009-09-24 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9520288B2 (en) 2009-09-24 2016-12-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including IGZO layer and manufacturing method thereof
US9318617B2 (en) 2009-09-24 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
US10418491B2 (en) 2009-09-24 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8492758B2 (en) 2009-09-24 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8324621B2 (en) 2009-10-14 2012-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer
US9142683B2 (en) 2009-12-11 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8889499B2 (en) 2009-12-11 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8563976B2 (en) 2009-12-11 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2016012142A (en) * 2010-03-05 2016-01-21 株式会社半導体エネルギー研究所 Display device
JP2011203728A (en) * 2010-03-05 2011-10-13 Semiconductor Energy Lab Co Ltd Display device
JP2019174840A (en) * 2010-03-05 2019-10-10 株式会社半導体エネルギー研究所 Display
JP2011203726A (en) * 2010-03-05 2011-10-13 Semiconductor Energy Lab Co Ltd Display device
US10103277B2 (en) 2010-12-03 2018-10-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film
US8994021B2 (en) 2010-12-03 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8669556B2 (en) 2010-12-03 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9711655B2 (en) 2010-12-03 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8680522B2 (en) 2010-12-03 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9331208B2 (en) 2010-12-03 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US10916663B2 (en) 2010-12-03 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US9201253B2 (en) 2010-12-20 2015-12-01 Sharp Kabushiki Kaisha Display device
WO2012086516A1 (en) * 2010-12-20 2012-06-28 シャープ株式会社 Display device
US10290744B2 (en) 2011-09-29 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11791415B2 (en) 2011-09-29 2023-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11217701B2 (en) 2011-09-29 2022-01-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10622485B2 (en) 2011-09-29 2020-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9741860B2 (en) 2011-09-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9218966B2 (en) 2011-10-14 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
CN102879946A (en) * 2012-09-26 2013-01-16 京东方科技集团股份有限公司 Color film substrate, liquid crystal display panel and method for preparing color film substrate
US9459509B2 (en) 2013-04-19 2016-10-04 Boe Technology Group Co., Ltd. Electrochromic structure, method and display apparatus
WO2014169629A1 (en) * 2013-04-19 2014-10-23 京东方科技集团股份有限公司 Electrochromic structure and method, and display device
CN103207493A (en) * 2013-04-19 2013-07-17 京东方科技集团股份有限公司 Electrochromic structure and method, and display equipment
CN103207493B (en) * 2013-04-19 2015-09-16 京东方科技集团股份有限公司 A kind of electrochromic structure, method and display device
CN104777663A (en) * 2015-04-28 2015-07-15 深圳市华星光电技术有限公司 Color film substrate and liquid crystal display panel
WO2016173106A1 (en) * 2015-04-28 2016-11-03 深圳市华星光电技术有限公司 Colour film substrate and liquid crystal display panel
US11493821B2 (en) 2018-08-14 2022-11-08 E Ink California, Llc Piezo electrophoretic display
JP7104852B2 (en) 2018-08-14 2022-07-21 イー インク カリフォルニア, エルエルシー Piezoelectric electrophoresis display
JP2021533412A (en) * 2018-08-14 2021-12-02 イー インク カリフォルニア, エルエルシー Piezoelectric electrophoresis display

Similar Documents

Publication Publication Date Title
JP2009265271A (en) Electro-optical display
JP4746933B2 (en) Color electronic paper display device
JP6929255B2 (en) Electro-optic display and how to drive it
JP4584239B2 (en) Electronic ink panel, electronic ink display device including the same, and driving method thereof
JP5500329B1 (en) Electrophoretic display substrate, inspection method thereof, and electrophoretic display device
US8139050B2 (en) Addressing schemes for electronic displays
US8040594B2 (en) Multi-color electrophoretic displays
US6664944B1 (en) Rear electrode structures for electrophoretic displays
JP5390136B2 (en) Electrophoretic display element and driving method thereof
JP2006227470A (en) Electrooptical device and electronic apparatus
TW202020539A (en) Backplanes with hexagonal and triangular electrodes
US10551713B2 (en) Electro-optic displays, and methods for driving same
JP4609468B2 (en) Display device and display driving method thereof
CN107817638B (en) Array substrate, display panel and display device
JP2013164538A (en) Image display medium
JP2009511979A (en) In-plane switching display device
TWI698690B (en) Via placement for slim border electro-optic display backplanes with decreased capacitive coupling between t-wires and pixel electrodes and method of forming an electro-optic display
CN113574450A (en) Electro-optic display and method of driving an electro-optic display
JP2009265270A (en) Electro-optical display
JP2008170527A (en) Display device and voltage application circuit
JP2001022303A (en) Both surface display device
EP1989700B1 (en) Active-matrix electronic display comprising diode based matrix driving circuit
KR20070082346A (en) Electrophoretic display device and method for driving the same
JP5478395B2 (en) Electrophoretic display device and driving method thereof
JP2009265272A (en) Electro-optical display

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110705