JP2009250931A - Magnetic sensor, operation method thereof, and magnetic sensor system - Google Patents

Magnetic sensor, operation method thereof, and magnetic sensor system Download PDF

Info

Publication number
JP2009250931A
JP2009250931A JP2008102702A JP2008102702A JP2009250931A JP 2009250931 A JP2009250931 A JP 2009250931A JP 2008102702 A JP2008102702 A JP 2008102702A JP 2008102702 A JP2008102702 A JP 2008102702A JP 2009250931 A JP2009250931 A JP 2009250931A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic sensor
bias
magnetoresistive element
sensor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008102702A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yoshikawa
泰弘 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2008102702A priority Critical patent/JP2009250931A/en
Publication of JP2009250931A publication Critical patent/JP2009250931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic sensor, capable of detecting a low magnetic field with high sensitivity, and performing low power consumption operation, and to provide an operation method thereof. <P>SOLUTION: The magnetic sensor 40 comprises magnetoresistance elements R1-R4 having full-bridge structure, and a bias magnetic field generation coil 18, disposed in parallel with the longitudinal direction of the magnetic resistance elements R1-R4, and applying two-directional opposite bias magnetic fields to the magnetoresistance elements R1-R4, in which the bias current of the bias magnetic field generation coil 18 is controlled, to vary the sensitivity and detection range. The operation method of the magnetic sensor is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、磁気センサおよびその動作方法、および磁気センサシステムに関し、特に、地磁気などの低磁界を高感度に検出可能な磁気センサおよびその動作方法、および磁気センサシステムに関する。   The present invention relates to a magnetic sensor, an operation method thereof, and a magnetic sensor system, and more particularly to a magnetic sensor capable of detecting a low magnetic field such as geomagnetism with high sensitivity, an operation method thereof, and a magnetic sensor system.

NiFeパーマロイやFe,Co合金などの強磁性体素子に、直流電流I、外部磁界Hを印加した場合に現れる強磁性体素子の電界Eは、ガルバノ磁気効果として知られており、ロシアのレフ・ランダウ(L.Landau)によってE=ρi+a(i×H)+bH(i・H)と表されることが示されている。ここで、iは単位面積当たりの電流値、ρは抵抗率、aおよびbは、物理的定数である。このうち右辺第3項が磁気抵抗(MR:Magneto-resistive)効果である。   An electric field E of a ferromagnetic element that appears when a direct current I and an external magnetic field H are applied to a ferromagnetic element such as NiFe permalloy or Fe, Co alloy is known as a galvanomagnetic effect. It is shown that E = ρi + a (i × H) + bH (i · H) by L. Landau. Here, i is a current value per unit area, ρ is a resistivity, and a and b are physical constants. Of these, the third term on the right side is the magnetoresistive (MR) effect.

MR効果によれば、磁化容易軸方向(通常は素子の長手方向)に電流を流した時、それに垂直な方向に磁界を印加すると、図21に示すように、外部磁界Hに対して対称的にMRの抵抗値Rが減少する。図21において、Hkは飽和磁界を表す。   According to the MR effect, when a current is applied in the easy axis direction (usually the longitudinal direction of the element) and a magnetic field is applied in a direction perpendicular thereto, the magnetic field is symmetrical with respect to the external magnetic field H as shown in FIG. The resistance value R of MR decreases. In FIG. 21, Hk represents a saturation magnetic field.

しかし、その感度は、例えば、0.1(%/Oe)程度と小さい。地磁気(例えば、日本国内において、約0.4Oe程度)などの低磁界を検出するには、図22に示すように、通常、外部磁界Hに対してバイアス磁界HBを印加し、入力信号に対して、MRの抵抗値Rの出力感度を高める必要がある。 However, the sensitivity is as small as about 0.1 (% / Oe), for example. In order to detect a low magnetic field such as geomagnetism (for example, about 0.4 Oe in Japan), a bias magnetic field H B is usually applied to an external magnetic field H as shown in FIG. On the other hand, it is necessary to increase the output sensitivity of the MR resistance value R.

更に、このようなMR素子は、温度による変化が大きいことや、抵抗値変化を電圧に変換するため、図23(a)および(b)に示すように、2素子を直交配置する構成や、或いは、図24(a)および(b)に示すように、4素子をフルブリッジ型に配置する構成によって、感度・精度を高めている。   Furthermore, such an MR element has a large change due to temperature, and in order to convert a resistance value change into a voltage, as shown in FIGS. 23A and 23B, a configuration in which two elements are arranged orthogonally, Alternatively, as shown in FIGS. 24A and 24B, the sensitivity and accuracy are enhanced by a configuration in which four elements are arranged in a full bridge type.

従って、直交配置したMR素子に容易に均一方向にバイアス磁界を印加するために、バイアスコイルを45°傾けて配置することが、一般的である(例えば、特許文献1および特許文献2参照。)。   Therefore, in order to easily apply a bias magnetic field to the MR elements arranged orthogonally in a uniform direction, it is common to dispose the bias coil at 45 ° (see, for example, Patent Document 1 and Patent Document 2). .

また、MR素子は、その磁化履歴により、ヒステリシス特性を有するために正負両方向に飽和磁化とバイアス磁化を交互に印加し、バイアス磁化印加時に出力を読み取る方法が提案されている(例えば、特許文献1、特許文献3、および非特許文献1参照。)。   Further, since the MR element has hysteresis characteristics due to its magnetization history, a method of alternately applying saturation magnetization and bias magnetization in both positive and negative directions and reading the output when bias magnetization is applied has been proposed (for example, Patent Document 1). , Patent Document 3 and Non-Patent Document 1).

また磁化反転が生じる為、検出磁界範囲が狭くなる。
特開平05−157565号公報 特許第3573100号公報 特許第4006674号公報 下江治、阿部泰典、諸野脇幸昌、橋爪繁直著“磁気抵抗効果素子を用いた方位センサ”、日立金属技報Vo1,18(2002)p.37−42
Further, since the magnetization reversal occurs, the detection magnetic field range becomes narrow.
JP 05-157565 A Japanese Patent No. 3573100 Japanese Patent No. 4006674 Osamu Shimoe, Yasunori Abe, Yukimasa Moronowaki, Shigenao Hashizume, “Orientation Sensor Using Magnetoresistive Element”, Hitachi Metals Technical Report Vo1, 18 (2002) p. 37-42

しかし、MR素子を直交配置し、一律45°方向にバイアス磁界を印加する場合、磁気センサの感度につながる抵抗変化量(R−H特性グラフの傾き)は大きくなるものの、大きなバイアス磁化が必要となり、センサの消費電流が増える。   However, when MR elements are arranged orthogonally and a bias magnetic field is applied uniformly in the 45 ° direction, the amount of change in resistance (the slope of the RH characteristic graph) that leads to the sensitivity of the magnetic sensor increases, but large bias magnetization is required. The current consumption of the sensor increases.

本発明の目的は、外部磁界強度による出力の直線近似域が広く得られ、検出可能範囲を狭く限定し、バイアス磁界を小さくしても、低磁界を、高感度に検出可能でかつ低消費電力動作の磁気センサおよびその動作方法を提供することにある。   The object of the present invention is to provide a wide linear approximation range of output by external magnetic field strength, limit the detectable range narrowly, and can detect low magnetic fields with high sensitivity and low power consumption even if the bias magnetic field is reduced. It is an object of the present invention to provide an operation magnetic sensor and an operation method thereof.

本発明の目的は、外部磁界強度による出力の直線近似域が広く得られ、検出可能範囲を狭く限定し、バイアス磁界を小さくしても、低磁界を、高感度に検出可能でかつ低消費電力動作の磁気センサを搭載した磁気センサシステムを提供することにある。   The object of the present invention is to provide a wide linear approximation range of output by external magnetic field strength, limit the detectable range narrowly, and can detect low magnetic fields with high sensitivity and low power consumption even if the bias magnetic field is reduced. An object of the present invention is to provide a magnetic sensor system equipped with an operating magnetic sensor.

上記目的を達成するための本発明の一態様によれば、磁気抵抗素子と、前記磁気抵抗素子の長手方向と平行に配置され、相反する2方向のバイアス磁界を前記磁気抵抗素子に印加するバイアス磁界発生用コイルとを備える磁気センサが提供される。   According to one aspect of the present invention for achieving the above-described object, a magnetoresistive element and a bias that is arranged in parallel with the longitudinal direction of the magnetoresistive element and applies two opposite bias magnetic fields to the magnetoresistive element A magnetic sensor comprising a magnetic field generating coil is provided.

本発明の他の態様によれば、互いにフルブリッジ構成に接続された4素子を2組基板上に配置した磁気抵抗素子と、前記磁気抵抗素子の長手方向と平行に配置され、相反する2方向のバイアス磁界を前記磁気抵抗素子に印加するバイアス磁界発生用平面コイルとを備え、前記バイアス磁界発生用平面コイルを前記磁気抵抗素子上に配置して、2軸電子コンパスを形成する磁気センサが提供される。   According to another aspect of the present invention, a magnetoresistive element in which four elements connected to each other in a full-bridge configuration are arranged on two sets of substrates, and two opposite directions arranged in parallel to the longitudinal direction of the magnetoresistive element. Provided with a bias magnetic field generating planar coil for applying a bias magnetic field to the magnetoresistive element, and arranging the bias magnetic field generating planar coil on the magnetoresistive element to form a biaxial electronic compass. Is done.

本発明の他の態様によれば、磁気抵抗素子の長手方向と平行にバイアス磁界発生用コイルを配置し、相反する2方向のバイアス磁界を前記磁気抵抗素子に印加するステップと、正方向に飽和磁化をパルス状に印加した後、前記正方向と同一方向にバイアス磁化を印加し第1出力電圧を検出するステップと、前記正方向とは逆方向の負方向に、飽和磁化をパルス状に印加した後、前記負方向と同一方向にバイアス磁化を印加し第2出力電圧を検出するステップと、前記第1出力電圧と、前記第1出力電圧と前記第2出力電圧の平均値との差より正方向の外部磁界強度を算出するステップとを有する磁気センサの動作方法が提供される。   According to another aspect of the present invention, a bias magnetic field generating coil is arranged in parallel with the longitudinal direction of the magnetoresistive element, and two opposite bias magnetic fields are applied to the magnetoresistive element and saturated in the positive direction. After applying magnetization in pulses, applying bias magnetization in the same direction as the positive direction to detect the first output voltage, and applying saturation magnetization in the negative direction opposite to the positive direction in pulses Then, applying a bias magnetization in the same direction as the negative direction to detect a second output voltage, and a difference between the first output voltage and an average value of the first output voltage and the second output voltage. A method of operating a magnetic sensor is provided that includes calculating a positive external magnetic field strength.

本発明の他の態様によれば、請求項1〜9のいずれか1項に記載の磁気センサと、前記磁気センサの出力に接続され、前記磁気センサの差動出力を増幅する差動アンプと、前記差動アンプの出力電圧のアナログ信号をディジタル変換するADコンバータと、前記ADコンバータの出力に接続され、ディジタル信号演算処理を実行するCPUとを備える磁気センサシステムが提供される。   According to another aspect of the present invention, a magnetic sensor according to any one of claims 1 to 9, a differential amplifier connected to the output of the magnetic sensor and amplifying the differential output of the magnetic sensor; There is provided a magnetic sensor system comprising an AD converter that digitally converts an analog signal of an output voltage of the differential amplifier, and a CPU that is connected to the output of the AD converter and executes digital signal arithmetic processing.

本発明の磁気センサによれば、外部磁界強度による出力の直線近似域が広く得られ、検出可能範囲を狭く限定し、バイアス磁界を小さくしても、低磁界を、高感度に検出可能でかつ低消費電力動作を可能にする。   According to the magnetic sensor of the present invention, a wide linear approximation range of the output by the external magnetic field strength is obtained, the detectable range is limited, the low magnetic field can be detected with high sensitivity even if the bias magnetic field is reduced, and Enables low power consumption operation.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号を付している。ただし、図面は模式的なものであり、現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic and different from the actual ones. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、各構成部品の配置などを下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   Further, the embodiment described below exemplifies an apparatus and a method for embodying the technical idea of the present invention. The technical idea of the present invention is the arrangement of each component as described below. It is not something specific. The technical idea of the present invention can be variously modified within the scope of the claims.

[第1の実施の形態]
本発明の第1の実施の形態に係る磁気センサに適用するMR素子は、図1(a)に示すように、電源端子12と接地(GND)端子14間に、MR素子R1,R2の2素子を中点取り出し端子16を介して直列に、基板10上に配置した構成を備える。
[First embodiment]
As shown in FIG. 1A, the MR element applied to the magnetic sensor according to the first embodiment of the present invention includes two MR elements R1, R2 between a power supply terminal 12 and a ground (GND) terminal 14. A configuration in which the elements are arranged on the substrate 10 in series via the midpoint extraction terminal 16 is provided.

あるいはまた、第1の実施の形態に係る磁気センサに適用するMR素子は、図1(b)に示すように、MR素子を4素子フルブリッジ構成に基板上に配置した構成を備えていてもよい。図1(b)においては、電源端子121とGND端子141間に、MR素子R1,R2の2素子を中点取り出し端子161を介して直列に、基板10上に配置した図1(a)と同様の構成と、電源端子122とGND端子142間に、MR素子R3,R4の2素子を中点取り出し端子162を介して直列に、基板10上に配置した図1(a)と同様の構成によって、MR素子を4素子フルブリッジ構成に形成している。 Alternatively, the MR element applied to the magnetic sensor according to the first embodiment may have a configuration in which MR elements are arranged on a substrate in a four-element full bridge configuration as shown in FIG. Good. In FIG. 1B, two elements MR elements R1 and R2 are arranged in series on the substrate 10 between the power supply terminal 12 1 and the GND terminal 14 1 via the midpoint extraction terminal 16 1 . FIG. 1 (a) in which two elements MR elements R3 and R4 are arranged in series via a midpoint extraction terminal 16 2 between a power supply terminal 12 2 and a GND terminal 14 2 in the same configuration as in a). With the same configuration as in a), the MR element is formed in a four-element full bridge configuration.

第1の実施の形態に係る磁気センサに適用するバイアス磁界発生用コイル18は、図1(c)に示すように、巻き線方向が互いに逆(左右で巻き方が逆転)の構成を有する。   As shown in FIG. 1C, the bias magnetic field generating coil 18 applied to the magnetic sensor according to the first embodiment has a configuration in which the winding directions are opposite to each other (the winding direction is reversed on the left and right).

図1(c)に示す巻き線方向が互いに逆(左右で巻き方が逆転)のバイアス磁界発生用コイル18内に、図1(c)の矢印で示されるように、図1(a)若しくは(b)に示したMR素子を配置した基板10を収納することによって、一軸構成の磁気センサ40が得られる。   As shown by the arrow in FIG. 1 (c), the winding direction shown in FIG. 1 (c) is reversed (the left and right winding directions are reversed) in the bias magnetic field generating coil 18. By accommodating the substrate 10 on which the MR element shown in FIG. 5B is housed, a uniaxial magnetic sensor 40 is obtained.

このように、図1(c)に示すバイアス磁界発生用コイル18内に図1(a)若しくは(b)に示すMR素子を配置した基板10を収納した一軸構成の磁気センサ40は、図2に示すように模式的に表される。   As described above, the uniaxial magnetic sensor 40 in which the substrate 10 on which the MR element shown in FIG. 1A or 1B is arranged in the bias magnetic field generating coil 18 shown in FIG. As shown in FIG.

第1の実施の形態に係る磁気センサ40は、MR素子と、MR素子の長手方向と平行に配置され、相反する2方向のバイアス磁界をMR素子に印加するバイアス磁界発生用コイル18とを備える。   The magnetic sensor 40 according to the first embodiment includes an MR element and a bias magnetic field generating coil 18 that is arranged in parallel with the longitudinal direction of the MR element and applies opposite bias magnetic fields to the MR element. .

バイアス磁界発生用コイル18のバイアス電流を制御して、感度および検出範囲を可変にすることができる。   The sensitivity and detection range can be varied by controlling the bias current of the bias magnetic field generating coil 18.

MR素子4素子をフルブリッジに組み、外部巻き線のバイアス磁界発生用コイル18(左右で巻き方向逆転)内に収納した形態によって、一軸磁気センサとなる。また、MR素子2素子で分圧して出力することもできる。   A uniaxial magnetic sensor is formed by combining four MR elements in a full bridge and storing them in a coil 18 for generating a bias magnetic field of an external winding (reverse winding direction on the left and right). Further, the voltage can be divided and output by two MR elements.

[第2の実施の形態]
本発明の第2の実施の形態に係る磁気センサに適用するバイアス磁界発生用平面コイル20の模式的構成は、図3に示すように表される。また、第2の実施の形態に係る磁気センサに適用するMR素子の構成であって、4素子フルブリッジ構成のMR素子を2組基板上に配置した構成は、図4に示すように表される。
[Second Embodiment]
A schematic configuration of the bias magnetic field generating planar coil 20 applied to the magnetic sensor according to the second embodiment of the present invention is expressed as shown in FIG. Further, the configuration of the MR element applied to the magnetic sensor according to the second embodiment, in which the MR element having a four-element full bridge configuration is arranged on two sets of substrates, is expressed as shown in FIG. The

第2の実施の形態に係る磁気センサ40は、互いにフルブリッジ構成に接続された4素子を2組基板上に配置したMR素子30と、MR素子30の長手方向と平行に配置され、相反する2方向のバイアス磁界をMR素子30に印加するバイアス磁界発生用平面コイル20とを備える。   The magnetic sensor 40 according to the second embodiment is arranged in parallel with the MR element 30 in which four elements connected to each other in a full bridge configuration are arranged on two substrates and in parallel with the longitudinal direction of the MR element 30. A bias magnetic field generating planar coil 20 that applies a bias magnetic field in two directions to the MR element 30.

図3において、A+,A−およびB+,B−は、相反する2方向のバイアス磁界の発生方向を表す。また、図4において、(A1,A3)、(A2,A4)、(B1,B3)、(B2,B4)は、互いにフルブリッジ構成に接続された4素子を2組基板上に配置したMR素子30上にバイアス磁界発生用平面コイル20をMR素子30の長手方向と平行に配置した場合の相反する2方向のバイアス磁界の発生方向を表す。   In FIG. 3, A +, A− and B +, B− represent the generation directions of the opposite two bias magnetic fields. In FIG. 4, (A1, A3), (A2, A4), (B1, B3), (B2, B4) are MR elements in which four elements connected to each other in a full bridge configuration are arranged on two sets of substrates. The directions in which the bias magnetic field is generated in two opposite directions when the planar coil 20 for generating a bias magnetic field is arranged on the element 30 in parallel with the longitudinal direction of the MR element 30 are shown.

バイアス磁界発生用平面コイル20をMR素子30上に配置して、2軸磁気センサの電子コンパスを形成する磁気センサを得ることができる。   A magnetic sensor that forms the electronic compass of a biaxial magnetic sensor by arranging the planar coil 20 for generating a bias magnetic field on the MR element 30 can be obtained.

バイアス磁界発生用平面コイル20のバイアス電流を制御して、感度および検出範囲を可変にすることが可能である。   It is possible to make the sensitivity and the detection range variable by controlling the bias current of the planar coil 20 for generating the bias magnetic field.

MR素子のヒステリシス特性例であって、ストライプ形状のMR素子において、長手方向(容易磁化方向)と印加磁界Hとの成す角が、90°傾いた場合のMR素子の抵抗値Rと印加磁界Hとの関係は、図5に示すように表される。外部磁界Hを正方向から負方向に変化させた後、負方向から正方向に変化した場合、図5上において動作点は、A→B→C→D→Aの軌跡をたどる。   This is an example of hysteresis characteristics of an MR element. In a stripe-shaped MR element, the resistance value R of the MR element and the applied magnetic field H when the angle formed by the longitudinal direction (easy magnetization direction) and the applied magnetic field H is inclined by 90 °. The relationship is expressed as shown in FIG. When the external magnetic field H is changed from the positive direction to the negative direction and then changed from the negative direction to the positive direction, the operating point follows a path of A → B → C → D → A in FIG.

MR素子のヒステリシス特性例であって、ストライプ形状のMR素子において、長手方向(容易磁化方向)と印加磁界Hとの成す角が、45°傾いた場合のMR素子の抵抗値Rと印加磁界Hとの関係は、図6に示すように表される。外部磁界Hを正方向から負方向に変化させた後、負方向から正方向に変化した場合、図6上において動作点は、A→B→C→D→Aの軌跡をたどる。   This is an example of hysteresis characteristics of an MR element. In a stripe-shaped MR element, when the angle between the longitudinal direction (easy magnetization direction) and the applied magnetic field H is inclined by 45 °, the resistance value R of the MR element and the applied magnetic field H The relationship is expressed as shown in FIG. When the external magnetic field H is changed from the positive direction to the negative direction and then changed from the negative direction to the positive direction, the operating point follows a path of A → B → C → D → A in FIG.

(磁気センサの動作方法)
本発明の第2の実施の形態に係る磁気センサの動作方法は、MR素子の長手方向と平行にバイアス磁界発生用コイルを配置し、相反する2方向のバイアス磁界をMR素子に印加するステップと、正方向に飽和磁化をパルス状に短時間印加した後、正方向と同一方向にバイアス磁化を印加し第1出力電圧Vout(+)を検出するステップと、正方向とは逆方向の負方向に、飽和磁化をパルス状に短時間印加した後、負方向と同一方向にバイアス磁化を印加し第2出力電圧Vout(−)を検出するステップと、第1出力電圧Vout(+)と、第1出力電圧Vout(+)と第2出力電圧Vout(−)の平均値との差より正方向の外部磁界強度を算出するステップとを有する。
(Operation method of magnetic sensor)
The magnetic sensor operating method according to the second embodiment of the present invention includes a step of arranging a bias magnetic field generating coil parallel to the longitudinal direction of the MR element, and applying two opposite bias magnetic fields to the MR element. Applying a saturation magnetization in the positive direction for a short time and then applying a bias magnetization in the same direction as the positive direction to detect the first output voltage Vout (+), and a negative direction opposite to the positive direction In addition, after applying saturation magnetization in a pulse for a short time, applying bias magnetization in the same direction as the negative direction to detect the second output voltage Vout (−), the first output voltage Vout (+), And calculating a positive external magnetic field intensity from a difference between an average value of the first output voltage Vout (+) and the second output voltage Vout (−).

本発明の比較例として、ストライプ形状のMR素子において、長手方向(容易磁化方向)と印加磁界Hとの成す角が、90°傾いた場合のMR素子を用いた場合、図5に示すようなヒステリシス特性を有することから、このようなMR素子を適用した磁気センサに導通するパルス電流波形の模式図は、図7に示すように表される。すなわち、本発明の比較例に係る磁気センサに適用するパルス電流は、MR素子の、負方向と逆方向にバイアス電流IA をバイアス磁界発生用平面コイル20導通させている。或いは、正方向と逆方向にバイアス電流−IAをバイアス磁界発生用平面コイル20導通させている。 As a comparative example of the present invention, when an MR element in which the angle formed between the longitudinal direction (easy magnetization direction) and the applied magnetic field H is inclined by 90 ° is used in a stripe-shaped MR element, as shown in FIG. Since it has hysteresis characteristics, a schematic diagram of a pulse current waveform conducted to a magnetic sensor to which such an MR element is applied is expressed as shown in FIG. That is, the pulse current applied to a magnetic sensor according to a comparative example of the present invention, the MR element, the bias current I A was conducting bias magnetic field generating plane coil 20 in the reverse direction and reverse direction. Alternatively, and a bias current -I A is made conductive bias magnetic field generating plane coil 20 in the forward and backward directions.

一方、本発明の第2の実施の形態に係る磁気センサに適用するパルス電流波形の模式図は、図8に示すように表される。本発明の第2の実施の形態に係る磁気センサに適用するパルス電流は、正方向と同一方向にバイアス電流IB をバイアス磁界発生用平面コイル20導通させている。或いは、負方向と同一方向にバイアス電流−IB をバイアス磁界発生用平面コイル20導通させている。 On the other hand, a schematic diagram of a pulse current waveform applied to the magnetic sensor according to the second embodiment of the present invention is expressed as shown in FIG. Pulse current to be applied to a magnetic sensor according to a second embodiment of the present invention is a bias current I B to conduct a bias magnetic field generating plane coil 20 in the positive direction in the same direction. Alternatively, the bias current -I B was conducting bias magnetic field generating plane coil 20 in the negative direction in the same direction.

(a)正方向に飽和磁化をパルス状に短時間印加した後、正方向と同一方向にバイアス電流IB をバイアス磁界発生用平面コイル20導通させて、バイアス磁化を印加し、第1出力電圧Vout(+)を検出する。 After applying short saturation magnetization (a) positive pulsed, in a positive direction in the same direction as the bias current I B is made conductive bias magnetic field generating plane coil 20, a bias magnetization, the first output voltage Vout (+) is detected.

(b)次に、正方向とは逆方向の負方向に、飽和磁化をパルス状に短時間印加した後、負方向と同一方向にバイアス電流−IB をバイアス磁界発生用平面コイル20導通させて、バイアス磁化を印加し、第2出力電圧Vout(−)を検出する。 (B) Next, in the negative direction of the direction opposite to the forward direction, after applying a short time saturation magnetization in a pulse form, the bias current -I B into conduction bias magnetic field generating plane coil 20 in the reverse direction in the same direction Then, bias magnetization is applied, and the second output voltage Vout (−) is detected.

(c)次に、第1出力電圧Vout(+)と、第1出力電圧Vout(+)と第2出力電圧Vout(−)の平均値との差で表される(1)式により、正方向の外部磁界強度を算出する。 (C) Next, the first output voltage Vout (+) and the difference between the average value of the first output voltage Vout (+) and the second output voltage Vout (−) Calculate the external magnetic field strength in the direction.


out=Vout(+)−{(Vout(+)+Vout(−))/2} …(1)

第2の実施の形態に係る磁気センサに適用する一軸構成の磁気センサの回路構成は、図9に示すように、MR素子MR1とMR素子MR2のハーフブリッジとMR素子MR3とMR素子MR4のハーフブリッジからなるフルブリッジ構成のMR素子MR1〜MR4と、MR素子MR1〜MR4に印加される外部磁界Hexと、、MR素子MR1〜MR4に印加されるバイアス磁界HBとを備える。矢印は、それぞれのMR素子MR1〜MR4に印加される外部磁界Hexおよびバイアス磁界HBの方向を表す。

V out = Vout (+) − {(Vout (+) + Vout (−)) / 2} (1)

As shown in FIG. 9, the circuit configuration of the uniaxial magnetic sensor applied to the magnetic sensor according to the second embodiment is a half bridge of MR element MR1 and MR element MR2, and a half of MR element MR3 and MR element MR4. It includes the MR element MR1~MR4 full-bridge structure comprising a bridge, a bias magnetic field H B to be applied to the external magnetic field Hex and ,, MR element MR1~MR4 applied to the MR element MR1~MR4. Arrows represent the direction of the external magnetic field Hex and bias magnetic field H B is applied to each of the MR elements MR1~MR4.

MR素子MR1とMR素子MR2の中点電位取り出し端子Aと、MR素子MR3とMR素子MR4の中点電位取り出し端子B間には、それぞれを入力端子に接続された差動アンプ44が接続されている。   Between the midpoint potential extraction terminal A of the MR elements MR1 and MR2 and the midpoint potential extraction terminal B of the MR elements MR3 and MR4, a differential amplifier 44, which is connected to the input terminals, is connected. Yes.

MR素子MR1に印加される磁界はHB+Hex、MR素子MR2に印加される磁界は−HB+Hex、MR素子MR3に印加される磁界は−HB+Hex、MR素子MR4に印加される磁界はHB+Hexとなる。 The magnetic field applied to the MR element MR1 is H B + Hex, the magnetic field applied to the MR element MR2 is −H B + Hex, the magnetic field applied to the MR element MR3 is −H B + Hex, and the magnetic field applied to the MR element MR4 is H B + Hex.

2方向(正・逆)のバイアス磁界HBと、MR素子MR1〜MR4の平行配置により、図9に示すように、各MR素子MR1〜MR4への磁化条件が相反した状態となり、MR素子MR1とMR素子MR2の中点電位取り出し端子Aと、MR素子MR3とMR素子MR4の中点電位取り出し端子B間の電位差を差動アンプ44によって検出することで、検出方向(正のバイアス方向)における外部磁界Hexの強度測定が可能となる。 Due to the parallel arrangement of the two-direction (forward / reverse) bias magnetic field H B and the MR elements MR1 to MR4, the magnetization conditions for the MR elements MR1 to MR4 are in conflict with each other as shown in FIG. Is detected by the differential amplifier 44 in the detection direction (positive bias direction), and the midpoint potential extraction terminal A of the MR element MR2 and the midpoint potential extraction terminal B of the MR element MR3 and MR element MR4 are detected. The intensity of the external magnetic field Hex can be measured.

第2の実施の形態に係る磁気センサに適用するMR素子の抵抗値Rと印加磁界Hの関係は、図10に示すように表される。また、第2の実施の形態に係る磁気センサの出力電圧Voutと外部印加磁界Hexの関係は、図11に示すように表される。 The relationship between the resistance value R of the MR element applied to the magnetic sensor according to the second embodiment and the applied magnetic field H is expressed as shown in FIG. Further, the relationship between the output voltage Vout of the magnetic sensor according to the second embodiment and the externally applied magnetic field Hex is expressed as shown in FIG.

この時のバイアス磁界HB(=バイアスコイル電流)(90°)の値は、図10に示すように、45°配置時のバイアス磁界HB(45°)の値よりも小さい。また、図11に示すように、出力電圧Voutと外部印加磁界Hexの関係において、Vout(90°)時の直線近似域の方が、Vout(45°)時の直線近似域よりも、広い直線近似域が得られている。 The value of the bias magnetic field H B (= bias coil current) (90 °) at this time is smaller than the value of the bias magnetic field H B (45 °) at the time of 45 ° arrangement, as shown in FIG. Further, as shown in FIG. 11, in the relationship between the output voltage Vout and the externally applied magnetic field Hex , the linear approximation area at Vout (90 °) is larger than the linear approximation area at Vout (45 °). A wide linear approximation area is obtained.

第2の実施の形態に係る磁気センサの出力電圧Voutと外部印加磁界Hexの関係において、平行配置(90°)の時、バイアス電圧をVB2<VB1と設定して、バイアス磁界を小さく設定して、感度を高める例は、図12に示すように、模式的に表される。 In the relationship between the output voltage V out of the magnetic sensor according to the second embodiment and the externally applied magnetic field H ex , the bias voltage is set to V B2 <V B1 when the parallel arrangement (90 °) is set, and the bias magnetic field is set to An example of increasing the sensitivity by setting a smaller value is schematically represented as shown in FIG.

検出可能範囲を狭く限定しても、低磁界をより高感度に検出する用途、例えば地磁気を検出する電子コンパスなどの場合、バイアス磁界HBを小さくして、感度(ΔVout/ΔHex)を高めることができる。 Even if the detectable range is narrowly limited, in the case of an application for detecting a low magnetic field with higher sensitivity, for example, an electronic compass for detecting geomagnetism, the bias magnetic field H B is reduced to increase sensitivity (ΔV out / ΔHex). be able to.

相反するバイアス磁界を発生させるには、平面状コイルが適している。   A planar coil is suitable for generating opposite bias magnetic fields.

平面コイルは、磁気抵抗素子上に絶縁層成膜後、Cu又はAl等の導体を成膜→ホトリソパターニングして形成することが、特性上、コスト上適しているが、シート状に作製したコイルを貼り付けても良い。   A planar coil is formed on a magnetoresistive element, after forming an insulating layer, and then forming a conductor such as Cu or Al by film formation → photolithography patterning, which is suitable in terms of cost, but was produced in a sheet shape. A coil may be attached.

(地磁気センサ)
第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成したMR変化型地磁気センサについて以下に説明する。
(Geomagnetic sensor)
An MR change type geomagnetic sensor formed on a ceramic substrate will be described below as a prototype of the magnetic sensor according to the second embodiment.

MR変化型磁気センサの作製においては、厚膜スクリーン印刷技術を取り入れることで、歩留りが向上する。第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成した地磁気センサによって、地磁気レベルの磁界を0.89mV/V/Gの高い感度で検出している。   In the production of the MR change type magnetic sensor, the yield is improved by adopting the thick film screen printing technique. As a prototype of the magnetic sensor according to the second embodiment, a magnetic field at a geomagnetic level is detected with a high sensitivity of 0.89 mV / V / G by a geomagnetic sensor formed on a ceramic substrate.

スクリーン印刷法は、スクリーン版上のペーストをスキージにより開口部を通して基板に転写する工法であり、必要箇所のみに厚膜形成可能で、材料の無駄が無く生産性の高い方法である。   The screen printing method is a method of transferring a paste on a screen plate to a substrate through an opening with a squeegee, and can form a thick film only at a necessary portion, and is a highly productive method with no material waste.

第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成したMR変化型地磁気センサにおいては、MR方式により、数百Åの磁性薄膜を成膜する下地に、同じスクリーン印刷法によりグレーズ(ガラス)厚膜を形成し、必要箇所のみ極平坦化を行っている。   As a prototype of the magnetic sensor according to the second embodiment, in the MR change type geomagnetic sensor formed on the ceramic substrate, the same screen printing method is applied to the ground on which several hundreds of magnetic thin films are formed by the MR method. Thus, a thick glaze (glass) film is formed and only necessary portions are extremely flattened.

MR素子にはパーマロイ系薄膜(Fe27%−Ni72.5%−Co0.5%)を用いた。磁性体の容易磁化方向と印加磁界によってMRが変化する磁気異方性を利用し、MR素子に微弱電流を流して抵抗値変化を検出する。   A permalloy-based thin film (Fe27% -Ni72.5% -Co0.5%) was used for the MR element. Utilizing magnetic anisotropy in which MR changes depending on the easy magnetization direction of the magnetic material and the applied magnetic field, a weak current is passed through the MR element to detect a change in resistance value.

本発明の第2の実施の形態に係る磁気センサの試作例として、地磁気センサに適用するMR素子の配置構成例は、図13(a)に示すように模式的に表され、適用するバイアス磁界発生用平面コイル20は、図13(b)に示すように模式的に表される。また、地磁気センサの模式的鳥瞰図は、図14に示すように表される。また、地磁気センサの模式的回路構成は、図15に示すように表される。   As a prototype example of the magnetic sensor according to the second embodiment of the present invention, an arrangement configuration example of MR elements applied to the geomagnetic sensor is schematically represented as shown in FIG. The generating planar coil 20 is schematically represented as shown in FIG. Further, a schematic bird's-eye view of the geomagnetic sensor is expressed as shown in FIG. A schematic circuit configuration of the geomagnetic sensor is expressed as shown in FIG.

MR素子のパターン構成は、形状異方性と所望の抵抗値を得るため、図13(a)に示すように、折り返しパターンとした。図13(a)の構成は、図4の構成に対応している。このパターンをX,Y各軸あたりMR素子を4個でフルブリッジ構成し、合計8個作製して異なる向きに配置し、磁界の変化に対して異なる信号を取り出すことにより、XY方向を検出することが可能となる。   The pattern configuration of the MR element was a folded pattern as shown in FIG. 13A in order to obtain shape anisotropy and a desired resistance value. The configuration of FIG. 13A corresponds to the configuration of FIG. This pattern is configured as a full bridge with four MR elements for each of the X and Y axes, a total of eight MR elements are manufactured and arranged in different directions, and different signals are extracted in response to changes in the magnetic field, thereby detecting the XY direction. It becomes possible.

試作に用いたMR素子は図13のようなパターンとした。図13(a)はMR素子の配置を示す。図13(b)のバイアス磁界発生用平面コイル20は、図14に示すようにMR素子の完成後にMR素子の上部(Z軸方向)に絶縁処理をした状態で重ねて配置する。これにより、MR素子とバイアス磁界発生用平面コイル20とは、互いに平行な方向(図14中のAからBの方向)に電流が流れる。   The MR element used for the trial production has a pattern as shown in FIG. FIG. 13A shows the arrangement of MR elements. As shown in FIG. 14, the planar coil 20 for generating a bias magnetic field shown in FIG. 13B is arranged in an overlapping manner on the upper part (Z-axis direction) of the MR element after completion of the MR element. As a result, current flows between the MR element and the bias magnetic field generating planar coil 20 in directions parallel to each other (directions A to B in FIG. 14).

図15に示すように、バイアス磁界発生用平面コイル20からはバイアス磁界HBが生じ、磁界の強さを調整するとMR素子の抵抗値Rが変化する。MR素子は、材料特性により磁界変化量に対する抵抗値変化量が全磁場領域で一定ではないので、最も抵抗値変化量が大きい磁場領域にバイアス磁界HBを固定することで、磁気センサの感度を最大限に上げることができる。 As shown in FIG. 15, a bias magnetic field H B is generated from the bias magnetic field generating planar coil 20, and the resistance value R of the MR element changes when the strength of the magnetic field is adjusted. Since the MR element has a resistance value change amount with respect to the magnetic field change amount that is not constant in the whole magnetic field region due to material characteristics, the sensitivity of the magnetic sensor can be improved by fixing the bias magnetic field H B in the magnetic field region having the largest resistance value change amount. Can be maximized.

また、図15に示すように配置することで、MR素子MR1〜MR4はそれぞれ異なる磁場環境となることがわかる。   It can also be seen that the MR elements MR1 to MR4 have different magnetic field environments by being arranged as shown in FIG.

(地磁気センサの作製方法)
(a)アルミナ基板にグレーズ層を膜厚スクリーン印刷し、下地を平坦化したものを使用する。
(Geomagnetic sensor fabrication method)
(A) A glaze layer is screen-printed on an alumina substrate and the substrate is flattened.

(b)グレーズ層の上にリフトオフ用のレジストを形成し、パーマロイをスパッタ・リフトオフ形成する。膜厚tは、例えば、約300Å程度とした。また、パターン幅L1は、例えば、約40μm程度とした。 (B) A lift-off resist is formed on the glaze layer, and permalloy is formed by sputtering and lift-off. The film thickness t is about 300 mm, for example. The pattern width L1 is about 40 μm, for example.

(c)その後、成膜されたパーマロイ磁気センサの感度を出すためにアニール処理を行う。アニールによって感度が向上するメカニズムは、アニールがFeN3結晶の成長を抑制しつつ、結晶粒径の拡大、残留応力と内部歪みの除去、結晶欠陥の低減することによる。 (C) Thereafter, annealing treatment is performed in order to increase the sensitivity of the formed permalloy magnetic sensor. The mechanism by which the sensitivity is improved by annealing is that annealing suppresses the growth of the FeN 3 crystal, enlarges the crystal grain size, removes residual stress and internal strain, and reduces crystal defects.

(d)この結晶はMR特性に不利に働く構造であるため、アニール後のサンプルをX線回折解析し、その結果を指標として、より効果的なアニール条件出しを行う。 (D) Since this crystal has a structure that adversely affects the MR characteristics, the annealed sample is subjected to X-ray diffraction analysis, and more effective annealing conditions are determined using the result as an index.

一般にアニールは真空下で行なわれるが、第2の実施の形態に係る磁気センサの製造方法においては、酸化対策として還元雰囲気において行った。条件は、水素雰囲気で、約10-4Torr程度の減圧下において室温から約400℃程度まで約20分で昇温して、約400℃で約3時間保持する。 In general, annealing is performed under vacuum, but in the method of manufacturing the magnetic sensor according to the second embodiment, it was performed in a reducing atmosphere as a countermeasure against oxidation. The condition is that the temperature is raised from room temperature to about 400 ° C. in about 20 minutes under a reduced pressure of about 10 −4 Torr in a hydrogen atmosphere and held at about 400 ° C. for about 3 hours.

(e)熱処理後、約2時間程度で常温まで降温して取り出す。 (E) After the heat treatment, the temperature is lowered to room temperature in about 2 hours and taken out.

(f)次に、バイアス磁界発生用平面コイル20を作製する。第2の実施の形態に係る磁気センサの製造方法においては、評価用に簡易コイルを作製した。線径φ0.02mmの銅線を絶縁フィルム上に21ターン平面にまきつける。バイアス磁界発生用平面コイル20はMR素子のZ軸上部に密接させて、測定を行う。 (F) Next, the bias magnetic field generating planar coil 20 is fabricated. In the method of manufacturing the magnetic sensor according to the second embodiment, a simple coil was produced for evaluation. A copper wire having a wire diameter of φ 0.02 mm is put on a 21-turn plane on an insulating film. The bias magnetic field generating planar coil 20 is in close contact with the upper part of the Z axis of the MR element for measurement.

(実験結果)
−MR特性計測方法−
試作した地磁気センサの材料特性評価結果を以下に説明する。
(Experimental result)
-MR characteristic measurement method-
The material property evaluation results of the prototype geomagnetic sensor will be described below.

第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成した地磁気センサのMR素子の表面顕微鏡写真は、図16に示すように表される。図16の端子Aと端子B間(図13(a)におけるMR素子R3とMR素子R4を直列に接続)に電流100μAを流し、±200Gの範囲で磁場を印加して、端子Aと端子C間(端子A,Cはそれぞれ図13(a)におけるMR素子R3の両端)の電位差として抵抗値変化を読み取り、素子の材料特性評価を行った。   As a prototype of the magnetic sensor according to the second embodiment, a surface micrograph of the MR element of the geomagnetic sensor formed on the ceramic substrate is represented as shown in FIG. A current of 100 μA is passed between the terminal A and the terminal B in FIG. 16 (the MR element R3 and the MR element R4 in FIG. 13A are connected in series), and a magnetic field is applied in the range of ± 200 G. A change in resistance value was read as a potential difference between the terminals (terminals A and C are both ends of the MR element R3 in FIG. 13A), and the material characteristics of the element were evaluated.

バイアス磁界発生用平面コイル20を実装した磁気センサ40の状態の写真を図17に示す。バイアス磁界発生用平面コイル20に流すバイアスコイル電流Icoilは、15〜40mAの範囲で、地磁気を測定するための最適なバイアス磁界の条件を探した。 A photograph of the state of the magnetic sensor 40 mounted with the bias magnetic field generating planar coil 20 is shown in FIG. The bias coil current I coil flowing through the bias magnetic field generating planar coil 20 was in the range of 15 to 40 mA, and the optimum bias magnetic field conditions for measuring geomagnetism were sought.

さらに、磁気センサを水平面内で回転させて地磁気を測定した。また、検出感度評価においては、ヘルムホルツコイルにて磁界印加し出力特性を測定した。   Furthermore, the geomagnetism was measured by rotating the magnetic sensor in a horizontal plane. In the detection sensitivity evaluation, a magnetic field was applied with a Helmholtz coil to measure the output characteristics.

−計測結果−
第2の実施の形態に係る地磁気センサの計測結果であって、地磁気に対する回転角度θ(deg.)と出力電圧Vout(mV)との関係は、図18に示すように表される。バイアスコイル電流Icoilが15mAの一定電流の場合、地磁気に対する回転角度θと出力電圧Voutとの関係は、正弦波的な特性が得られた。
-Measurement results-
FIG. 18 is a measurement result of the geomagnetic sensor according to the second embodiment, and the relationship between the rotation angle θ (deg.) With respect to geomagnetism and the output voltage V out (mV) is expressed as shown in FIG. When the bias coil current I coil is a constant current of 15 mA, the relationship between the rotation angle θ with respect to the geomagnetism and the output voltage V out has a sinusoidal characteristic.

また、ヘルムホルツコイル電流(印加磁界)と出力電圧Voutとの関係は、図19に示すように表される。±2Gの範囲において直線性を示し、感度は0.89mV/V/Gとなった。 Further, the relationship between the Helmholtz coil current (applied magnetic field) and the output voltage Vout is expressed as shown in FIG. Linearity was exhibited in the range of ± 2 G, and the sensitivity was 0.89 mV / V / G.

図18および図19より、第2の実施の形態に係る磁気センサは、地磁気レベルの微弱磁場環境において検出できることが確認できた。同様に、直交する2軸の出力の逆正接関数より、方位を確定することが可能である。よって地磁気により方位を検知する磁気センサを得ることができた。   From FIG. 18 and FIG. 19, it was confirmed that the magnetic sensor according to the second embodiment can be detected in a weak magnetic field environment at the geomagnetic level. Similarly, it is possible to determine the azimuth from the arc tangent function of two orthogonal outputs. Therefore, a magnetic sensor that detects the direction by geomagnetism was obtained.

厚膜スクリーン印刷を用いて磁気センサの根幹となる部分の作製を行い、地磁気センサを作製して次の結果を得た。   The base part of the magnetic sensor was manufactured using thick film screen printing, and the geomagnetic sensor was manufactured to obtain the following results.

厚膜スクリーン印刷により、誘導体厚やグレーズを数10μm形成することができ、試作全体を通してハンドリング性は良好であった。   Thick film screen printing can form derivative thicknesses and glazes of several tens of μm, and the handling properties are good throughout the entire prototype.

地磁気センサは、1軸方向の地磁気レベルの磁場を検出することに成功し、0.89mV/V/Gの高感度を実現させることができた。   The geomagnetic sensor succeeded in detecting a magnetic field at the geomagnetic level in the uniaxial direction, and was able to realize a high sensitivity of 0.89 mV / V / G.

(磁気センサシステム)
本発明の第1乃至第2の実施の形態に係る磁気センサを適用する磁気センサシステムは、図20に示すように、磁気センサ40と、磁気センサ40の出力に接続され、磁気センサ40の差動出力を増幅する差動アンプ44と、差動アンプ44の出力電圧Voutのアナログ信号をディジタル変換するADコンバータ46と、ADコンバータ46の出力に接続され、ディジタル信号演算処理を実行する中央演算処理装置(CPU)48とを備える。図20に示すように、磁気センサ40およびCPU48には、バイアス駆動回路42が接続されていてもよい。
(Magnetic sensor system)
The magnetic sensor system to which the magnetic sensor according to the first or second embodiment of the present invention is applied is connected to the magnetic sensor 40 and the output of the magnetic sensor 40 as shown in FIG. A differential amplifier 44 that amplifies the dynamic output, an AD converter 46 that digitally converts the analog signal of the output voltage Vout of the differential amplifier 44, and a central operation that is connected to the output of the AD converter 46 and executes digital signal arithmetic processing And a processing unit (CPU) 48. As shown in FIG. 20, a bias drive circuit 42 may be connected to the magnetic sensor 40 and the CPU 48.

また、図20において、集積化された磁気センサ40に加えて、差動アンプ44、ADコンバータ46およびCPU48なども集積化することができる。   In FIG. 20, in addition to the integrated magnetic sensor 40, a differential amplifier 44, an AD converter 46, a CPU 48, and the like can also be integrated.

本発明によれば、外部磁界強度による出力の直線近似域が広く得られ、検出可能範囲を狭く限定し、バイアス磁界を小さくしても、低磁界を、高感度に検出可能でかつ低消費電力動作の磁気センサおよびその動作方法を提供することができる。   According to the present invention, a wide linear approximation range of the output by the external magnetic field strength is obtained, the detectable range is narrowly limited, and even if the bias magnetic field is reduced, a low magnetic field can be detected with high sensitivity and low power consumption. A magnetic sensor of operation and a method of operation thereof can be provided.

また、本発明によれば、このような磁気センサを搭載した磁気センサシステムを提供することができる。   In addition, according to the present invention, a magnetic sensor system equipped with such a magnetic sensor can be provided.

[その他の実施の形態]
上記のように、本発明は第1乃至第2の実施の形態によって記載したが、この開示の一部をなす論述および図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
[Other embodiments]
As described above, the present invention has been described according to the first to second embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

このように、本発明はここでは記載していない様々な実施の形態などを含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の磁気センサは、産業用制御機器に適用可能であり、より具体的には、折りたたみ式携帯機器の開閉検出に利用可能な近接センサ、携帯電話の地図情報のヘッディングやナビゲーション装置に利用可能な電子コンパス、およびゲーム機器において姿勢把握可能な磁気センサなど幅広い産業上の利用可能性がある。   The magnetic sensor of the present invention can be applied to industrial control devices, and more specifically, it can be used for proximity sensors that can be used to detect the opening and closing of folding portable devices, headings for map information of mobile phones, and navigation devices. There is a wide range of industrial applicability, such as an electronic compass and a magnetic sensor capable of grasping a posture in a game machine.

本発明の第1の実施の形態に係る磁気センサに適用するMR素子の構成であって、(a)MR素子を2素子を基板上に配置した構成例、(b)MR素子を4素子フルブリッジ構成に基板上に配置した構成例、(c)巻き線方向が互いに逆(左右で巻き方が逆転)のバイアス磁界発生用コイルの構成例。The configuration of the MR element applied to the magnetic sensor according to the first embodiment of the present invention, wherein (a) a configuration example in which two MR elements are arranged on a substrate, (b) four MR elements are full. Configuration example arranged on a substrate in a bridge configuration, (c) Configuration example of a coil for generating a bias magnetic field in which the winding directions are opposite to each other (the winding direction is reversed on the left and right). 本発明の第1の実施の形態に係る磁気センサの構成例であって、図1(c)に示す巻き線方向が互いに逆のバイアス磁界発生用コイル内に図1(a)若しくは(b)に示すMR素子を配置した基板を収納した一軸構成の磁気センサの構成例。FIG. 1B is a configuration example of the magnetic sensor according to the first embodiment of the present invention, and FIG. 1C or FIG. 1B is placed in a bias magnetic field generating coil whose winding directions are opposite to each other shown in FIG. The structural example of the uniaxial magnetic sensor which accommodated the board | substrate which has arrange | positioned MR element shown in FIG. 本発明の第2の実施の形態に係る磁気センサに適用するバイアス磁界発生用平面コイルの模式的構成例。The typical structural example of the planar coil for bias magnetic field generation applied to the magnetic sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る磁気センサに適用するMR素子の構成であって、4素子フルブリッジ構成のMR素子を2組基板上に配置した構成例。6 is a configuration example of an MR element applied to a magnetic sensor according to a second embodiment of the present invention, in which MR elements having a four-element full bridge configuration are arranged on two sets of substrates. MR素子のヒステリシス特性例であって、ストライプ形状のMR素子において、長手方向(容易磁化方向)と印加磁界との成す角が、90°傾いた場合のMR抵抗値と印加磁界との関係。It is an example of hysteresis characteristics of an MR element, and in a stripe-shaped MR element, the relationship between the MR resistance value and the applied magnetic field when the angle formed by the longitudinal direction (easy magnetization direction) and the applied magnetic field is inclined by 90 °. MR素子のヒステリシス特性例であって、ストライプ形状のMR素子において、長手方向(容易磁化方向)と印加磁界との成す角が、45°傾いた場合のMR素子の抵抗値と印加磁界との関係。This is an example of hysteresis characteristics of an MR element, and in a stripe-shaped MR element, the relationship between the resistance value of the MR element and the applied magnetic field when the angle between the longitudinal direction (easy magnetization direction) and the applied magnetic field is inclined by 45 ° . 本発明の比較例に係る磁気センサに適用するパルス電流波形の模式図。The schematic diagram of the pulse current waveform applied to the magnetic sensor which concerns on the comparative example of this invention. 本発明の第2の実施の形態に係る磁気センサに適用するパルス電流波形の模式図。The schematic diagram of the pulse current waveform applied to the magnetic sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る磁気センサに適用する一軸構成の磁気センサの回路構成図であって、4素子フルブリッジ構成のMR素子を適用する回路構成図。It is a circuit block diagram of the magnetic sensor of the uniaxial structure applied to the magnetic sensor which concerns on the 2nd Embodiment of this invention, Comprising: The circuit block diagram which applies MR element of a 4 element full bridge structure. 本発明の第2の実施の形態に係る磁気センサに適用するMR素子の抵抗値Rと印加磁界Hの関係の説明図。Explanatory drawing of the relationship between the resistance value R of the MR element applied to the magnetic sensor which concerns on the 2nd Embodiment of this invention, and the applied magnetic field H. FIG. 本発明の第2の実施の形態に係る磁気センサの出力電圧Voutと外部印加磁界Hexの関係の説明図。Explanatory drawing of the relationship between the output voltage Vout of the magnetic sensor which concerns on the 2nd Embodiment of this invention, and the externally applied magnetic field Hex . 本発明の第2の実施の形態に係る磁気センサの出力電圧Voutと外部印加磁界Hexの関係において、平行配置(90°)の時、バイアス磁界を小さくして、感度を高める例の説明図。Description of an example of increasing the sensitivity by reducing the bias magnetic field in the parallel arrangement (90 °) in the relationship between the output voltage Vout of the magnetic sensor according to the second embodiment of the present invention and the externally applied magnetic field Hex. Figure. 本発明の第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成した地磁気センサであって、(a)適用するMR素子の模式的配置構成例、(b)適用するバイアス磁界発生用コイルの模式的構成例。As a prototype of the magnetic sensor according to the second embodiment of the present invention, it is a geomagnetic sensor formed on a ceramic substrate, and (a) a schematic arrangement configuration example of an MR element to be applied, and (b) a bias to be applied. The typical structural example of the coil for magnetic field generation. 本発明の第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成した地磁気センサの模式的鳥瞰図。The typical bird's-eye view of the geomagnetic sensor formed on the ceramic substrate as a trial manufacture example of the magnetic sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成した地磁気センサの模式的回路構成図。The typical circuit block diagram of the geomagnetic sensor formed on the ceramic substrate as a prototype of the magnetic sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成した地磁気センサのMR素子の表面顕微鏡写真。The surface micrograph of the MR element of the geomagnetic sensor formed on the ceramic substrate as a prototype of the magnetic sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成した地磁気センサのMR素子上にコイルを配置した表面顕微鏡写真。The surface micrograph which has arrange | positioned the coil on the MR element of the geomagnetic sensor formed on the ceramic substrate as a prototype of the magnetic sensor which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成した地磁気センサの計測結果であって、地磁気に対する回転角度θ(deg.)と出力電圧Vout(mV)との関係。As a prototype example of the magnetic sensor according to the second embodiment of the present invention, it is a measurement result of a geomagnetic sensor formed on a ceramic substrate, and the rotation angle θ (deg.) With respect to the geomagnetism and the output voltage V out (mV). Relationship with. 本発明の第2の実施の形態に係る磁気センサの試作例として、セラミック基板上に形成した地磁気センサの計測結果であって、ヘルムホルツコイル電流(印加磁界)と出力電圧Voutとの関係。FIG. 6 shows a measurement result of a geomagnetic sensor formed on a ceramic substrate as a prototype of the magnetic sensor according to the second embodiment of the present invention, and shows the relationship between Helmholtz coil current (applied magnetic field) and output voltage Vout . 本発明の第1乃至第2の実施の形態に係る磁気センサを適用する磁気センサシステムの模式的ブロック構成図。The typical block block diagram of the magnetic sensor system to which the magnetic sensor which concerns on the 1st thru | or 2nd embodiment of this invention is applied. MR素子の磁気抵抗値Rと外部磁界Hとの関係の模式図。The schematic diagram of the relationship between the magnetoresistive value R of MR element, and the external magnetic field H. FIG. MR素子の磁気抵抗値Rと外部磁界Hとの関係を表す図において、バイアス磁界を印加し、感度を高める例の説明図。FIG. 5 is an explanatory diagram of an example in which a sensitivity is increased by applying a bias magnetic field in a diagram showing a relationship between a magnetoresistance value R of an MR element and an external magnetic field H. MR素子の配置例であって、(a)MR素子を2素子を直交に配置した構成例、(b)(a)の等価回路図。It is an example of arrangement | positioning of MR element, Comprising: (a) The structural example which arrange | positioned two MR elements orthogonally, (b) The equivalent circuit schematic of (a). MR素子の配置例であって、(a)MR素子を4素子フルブリッジ型に配置した構成例、(b)(a)の等価回路図。It is an example of arrangement | positioning of MR element, Comprising: (a) The structural example which arrange | positioned MR element in 4 element full bridge type, (b) The equivalent circuit diagram of (a).

符号の説明Explanation of symbols

10…基板
12,121,122…電源端子
14,141,142…接地(GND)端子
16,161,162…中点電位取り出し端子
18…バイアス磁界発生用コイル
20…バイアス磁界発生用平面コイル
30,R1〜R8,MR1〜MR4…MR素子
40…磁気センサ
42…バイアス駆動回路
44…差動アンプ
46…ADコンバータ
48…中央演算処理装置(CPU)
10 ... substrate 12, 12 1, 12 2 ... power supply terminal 14, 14 1, 14 2 ... ground (GND) terminal 16, 16 1, 16 2 ... midpoint potential drawing terminal 18 ... bias field generating coil 20 ... bias magnetic field Planar coil 30 for generation, R1 to R8, MR1 to MR4, MR element 40, magnetic sensor 42, bias drive circuit 44, differential amplifier 46, AD converter 48, central processing unit (CPU)

Claims (12)

磁気抵抗素子と、
前記磁気抵抗素子の長手方向と平行に配置され、相反する2方向のバイアス磁界を前記磁気抵抗素子に印加するバイアス磁界発生用コイルと
を備えることを特徴とする磁気センサ。
A magnetoresistive element;
A magnetic sensor comprising: a bias magnetic field generating coil that is arranged in parallel with a longitudinal direction of the magnetoresistive element and applies bias magnetic fields in two opposite directions to the magnetoresistive element.
前記バイアス磁界発生用コイルのバイアス電流を制御して、感度および検出範囲を可変にすることを特徴とする請求項1に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the sensitivity and the detection range are made variable by controlling a bias current of the bias magnetic field generating coil. 前記磁気抵抗素子は、互いに直列接続された2素子を基板上に配置したことを特徴とする請求項1に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the magnetoresistive element includes two elements connected in series to each other on a substrate. 前記磁気抵抗素子は、互いにフルブリッジ構成に接続された4素子を基板上に配置したことを特徴とする請求項1に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the magnetoresistive element includes four elements connected to each other in a full bridge configuration on a substrate. 前記バイアス磁界発生用コイルは、巻き線方向が互いに逆の2つのコイルを直列接続したことを特徴とする請求項1に記載の磁気センサ。   2. The magnetic sensor according to claim 1, wherein the bias magnetic field generating coil is formed by connecting two coils whose winding directions are opposite to each other in series. 前記磁気抵抗素子を、前記バイアス磁界発生用コイル内に収納した一軸構成を備えることを特徴とする請求項5に記載の磁気センサ。   The magnetic sensor according to claim 5, comprising a uniaxial configuration in which the magnetoresistive element is housed in the bias magnetic field generating coil. 前記バイアス磁界発生用コイルは、平面コイルであることを特徴とする請求項1に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the bias magnetic field generating coil is a planar coil. 前記磁気抵抗素子は、互いにフルブリッジ構成に接続された4素子を2組基板上に配置したことを特徴とする請求項1に記載の磁気センサ。   The magnetic sensor according to claim 1, wherein the magnetoresistive element includes four elements connected to each other in a full bridge configuration on a two-set substrate. 互いにフルブリッジ構成に接続された4素子を2組基板上に配置した磁気抵抗素子と、
前記磁気抵抗素子の長手方向と平行に配置され、相反する2方向のバイアス磁界を前記磁気抵抗素子に印加するバイアス磁界発生用平面コイルと
を備え、前記バイアス磁界発生用平面コイルを前記磁気抵抗素子上に配置して、2軸電子コンパスを形成することを特徴とする磁気センサ。
A magnetoresistive element in which four elements connected to each other in a full-bridge configuration are arranged on two sets of substrates;
A bias magnetic field generating planar coil that is disposed in parallel with the longitudinal direction of the magnetoresistive element and applies bias magnetic fields in two opposite directions to the magnetoresistive element, and the bias magnetic field generating planar coil is the magnetoresistive element A magnetic sensor, characterized in that it is arranged on top to form a biaxial electronic compass.
前記バイアス磁界発生用平面コイルのバイアス電流を制御して、感度および検出範囲を可変にすることを特徴とする請求項9に記載の磁気センサ。   The magnetic sensor according to claim 9, wherein the sensitivity and the detection range are made variable by controlling a bias current of the planar coil for generating the bias magnetic field. 磁気抵抗素子の長手方向と平行にバイアス磁界発生用コイルを配置し、相反する2方向のバイアス磁界を前記磁気抵抗素子に印加するステップと、
正方向に飽和磁化をパルス状に印加した後、前記正方向と同一方向にバイアス磁化を印加し第1出力電圧を検出するステップと、
前記正方向とは逆方向の負方向に、飽和磁化をパルス状に印加した後、前記負方向と同一方向にバイアス磁化を印加し第2出力電圧を検出するステップと、
前記第1出力電圧と、前記第1出力電圧と前記第2出力電圧の平均値との差より正方向の外部磁界強度を算出するステップと
を有することを特徴とする磁気センサの動作方法。
Disposing a bias magnetic field generating coil parallel to the longitudinal direction of the magnetoresistive element, and applying two opposite bias magnetic fields to the magnetoresistive element;
Applying a saturation magnetization in the positive direction in a pulsed manner and then applying a bias magnetization in the same direction as the positive direction to detect a first output voltage;
Applying a saturation magnetization in a pulsed manner in a negative direction opposite to the positive direction and then applying a bias magnetization in the same direction as the negative direction to detect a second output voltage;
A method of operating a magnetic sensor, comprising: calculating a positive external magnetic field intensity from a difference between the first output voltage and an average value of the first output voltage and the second output voltage.
請求項1〜10のいずれか1項に記載の磁気センサと、
前記磁気センサの出力に接続され、前記磁気センサの差動出力を増幅する差動アンプと、
前記差動アンプの出力電圧のアナログ信号をディジタル変換するADコンバータと、
前記ADコンバータの出力に接続され、ディジタル信号演算処理を実行するCPUと
を備えることを特徴とする磁気センサシステム。
The magnetic sensor according to any one of claims 1 to 10,
A differential amplifier connected to the output of the magnetic sensor and amplifying the differential output of the magnetic sensor;
An AD converter for digitally converting an analog signal of the output voltage of the differential amplifier;
A magnetic sensor system comprising: a CPU that is connected to an output of the AD converter and executes digital signal arithmetic processing.
JP2008102702A 2008-04-10 2008-04-10 Magnetic sensor, operation method thereof, and magnetic sensor system Pending JP2009250931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008102702A JP2009250931A (en) 2008-04-10 2008-04-10 Magnetic sensor, operation method thereof, and magnetic sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008102702A JP2009250931A (en) 2008-04-10 2008-04-10 Magnetic sensor, operation method thereof, and magnetic sensor system

Publications (1)

Publication Number Publication Date
JP2009250931A true JP2009250931A (en) 2009-10-29

Family

ID=41311788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008102702A Pending JP2009250931A (en) 2008-04-10 2008-04-10 Magnetic sensor, operation method thereof, and magnetic sensor system

Country Status (1)

Country Link
JP (1) JP2009250931A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102073023A (en) * 2009-11-19 2011-05-25 Nxp股份有限公司 Magnetic field sensor
CN102323554A (en) * 2011-05-17 2012-01-18 杭州电子科技大学 Integrated coil-biased giant magnetoresistance magneto-dependent sensor
CN102549442A (en) * 2009-08-14 2012-07-04 森泰克有限公司 Current sensor
JP2013016630A (en) * 2011-07-04 2013-01-24 Yamanashi Nippon Denki Kk Magnetoresistance effect element and magnetic sensor using the same
JP2013200303A (en) * 2012-02-20 2013-10-03 Hitachi Metals Ltd Magnetic sensor device
JP2014085339A (en) * 2012-10-18 2014-05-12 Analog Devices Inc Magnetic field direction detector
WO2014181382A1 (en) * 2013-05-10 2014-11-13 株式会社村田製作所 Magnetic current sensor and current measurement method
JP2015001617A (en) * 2013-06-14 2015-01-05 株式会社リコー Magnetic permeability detector, magnetic permeability detector attachment method, and development device
JP2016099291A (en) * 2014-11-25 2016-05-30 日立金属株式会社 Current detector
JP2016525216A (en) * 2013-07-19 2016-08-22 アレグロ・マイクロシステムズ・エルエルシー Method and apparatus for a magnetic sensor for generating a varying magnetic field
JP2016531481A (en) * 2013-07-24 2016-10-06 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Magnetoresistive mixer
JP2017078594A (en) * 2015-10-19 2017-04-27 アルプス電気株式会社 Magnetic sensor, method for measuring magnetic field, current sensor, and method for measuring current
RU2630716C2 (en) * 2015-08-11 2017-09-12 Федеральное государственное казенное учреждение "Войсковая часть 35533" Combined magnetoresistive sensor
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
CN109752677A (en) * 2019-01-10 2019-05-14 东南大学 A kind of double bridge formula thin-film magnetoresistive sensor
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
JP2020511663A (en) * 2017-03-24 2020-04-16 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Magnetic sensor packaging structure with hysteresis coil
US10739165B2 (en) 2017-07-05 2020-08-11 Analog Devices Global Magnetic field sensor
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
CN113495233A (en) * 2020-03-18 2021-10-12 Tdk株式会社 Magnetic field detection device and current detection device
US11187763B2 (en) 2016-03-23 2021-11-30 Analog Devices International Unlimited Company Offset compensation for magnetic field detector
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
JP2022108344A (en) * 2021-01-13 2022-07-26 株式会社東芝 Magnetic sensor and inspection device
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571714U (en) * 1992-03-03 1993-09-28 カシオ計算機株式会社 Magnetic sensor and electronic compass
JPH05264695A (en) * 1992-03-02 1993-10-12 Sharp Corp Superconductive magnetic field measuring device
JP2005291728A (en) * 2004-03-31 2005-10-20 Hitachi Metals Ltd Goniometer with giant magnetoresistive element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264695A (en) * 1992-03-02 1993-10-12 Sharp Corp Superconductive magnetic field measuring device
JPH0571714U (en) * 1992-03-03 1993-09-28 カシオ計算機株式会社 Magnetic sensor and electronic compass
JP2005291728A (en) * 2004-03-31 2005-10-20 Hitachi Metals Ltd Goniometer with giant magnetoresistive element

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549442A (en) * 2009-08-14 2012-07-04 森泰克有限公司 Current sensor
CN102073023A (en) * 2009-11-19 2011-05-25 Nxp股份有限公司 Magnetic field sensor
US8587299B2 (en) 2009-11-19 2013-11-19 Nxp B.V. Magnetic field sensor
CN102323554A (en) * 2011-05-17 2012-01-18 杭州电子科技大学 Integrated coil-biased giant magnetoresistance magneto-dependent sensor
JP2013016630A (en) * 2011-07-04 2013-01-24 Yamanashi Nippon Denki Kk Magnetoresistance effect element and magnetic sensor using the same
JP2013200303A (en) * 2012-02-20 2013-10-03 Hitachi Metals Ltd Magnetic sensor device
US11680996B2 (en) 2012-05-10 2023-06-20 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having integrated coil
JP2014085339A (en) * 2012-10-18 2014-05-12 Analog Devices Inc Magnetic field direction detector
CN105190323A (en) * 2013-05-10 2015-12-23 株式会社村田制作所 Magnetic current sensor and current measurement method
WO2014181382A1 (en) * 2013-05-10 2014-11-13 株式会社村田製作所 Magnetic current sensor and current measurement method
US10184959B2 (en) 2013-05-10 2019-01-22 Murata Manufacturing Co., Ltd. Magnetic current sensor and current measurement method
JPWO2014181382A1 (en) * 2013-05-10 2017-02-23 株式会社村田製作所 Magnetic current sensor and current measuring method
JP2015001617A (en) * 2013-06-14 2015-01-05 株式会社リコー Magnetic permeability detector, magnetic permeability detector attachment method, and development device
JP2016525216A (en) * 2013-07-19 2016-08-22 アレグロ・マイクロシステムズ・エルエルシー Method and apparatus for a magnetic sensor for generating a varying magnetic field
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
KR101926383B1 (en) * 2013-07-19 2018-12-07 알레그로 마이크로시스템스, 엘엘씨 Methods and apparatus for magnetic sensor producing a changing magnetic field
JP2016531481A (en) * 2013-07-24 2016-10-06 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Magnetoresistive mixer
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
CN105629023A (en) * 2014-11-25 2016-06-01 日立金属株式会社 Current detector
US10338105B2 (en) 2014-11-25 2019-07-02 Hitachi Metals, Ltd. Current detector that prevents fluctuatons in detection sensitivity
JP2016099291A (en) * 2014-11-25 2016-05-30 日立金属株式会社 Current detector
RU2630716C2 (en) * 2015-08-11 2017-09-12 Федеральное государственное казенное учреждение "Войсковая часть 35533" Combined magnetoresistive sensor
JP2017078594A (en) * 2015-10-19 2017-04-27 アルプス電気株式会社 Magnetic sensor, method for measuring magnetic field, current sensor, and method for measuring current
US11294003B2 (en) 2016-03-23 2022-04-05 Analog Devices International Unlimited Company Magnetic field detector
US11187763B2 (en) 2016-03-23 2021-11-30 Analog Devices International Unlimited Company Offset compensation for magnetic field detector
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
JP7072265B2 (en) 2017-03-24 2022-05-20 江▲蘇▼多▲維▼科技有限公司 Magnetic sensor packaging structure with hysteresis coil
JP2020511663A (en) * 2017-03-24 2020-04-16 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Magnetic sensor packaging structure with hysteresis coil
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10739165B2 (en) 2017-07-05 2020-08-11 Analog Devices Global Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
CN109752677A (en) * 2019-01-10 2019-05-14 东南大学 A kind of double bridge formula thin-film magnetoresistive sensor
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
CN113495233A (en) * 2020-03-18 2021-10-12 Tdk株式会社 Magnetic field detection device and current detection device
CN113495233B (en) * 2020-03-18 2024-04-05 Tdk株式会社 Magnetic field detection device and current detection device
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
JP2022108344A (en) * 2021-01-13 2022-07-26 株式会社東芝 Magnetic sensor and inspection device
JP7426956B2 (en) 2021-01-13 2024-02-02 株式会社東芝 Magnetic sensor and inspection equipment
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Similar Documents

Publication Publication Date Title
JP2009250931A (en) Magnetic sensor, operation method thereof, and magnetic sensor system
US6640652B2 (en) Rotation angle sensor capable of accurately detecting rotation angle
US8519704B2 (en) Magnetic-balance-system current sensor
US6642714B2 (en) Thin-film magnetic field sensor
US9557392B2 (en) Integrated magnetometer and its manufacturing process
US7495624B2 (en) Apparatus for detection of the gradient of a magnetic field, and a method for production of the apparatus
KR101267246B1 (en) Flux gate senior and electronic azimuth indicator making use thereof
EP3229035B1 (en) Magnetic field sensor with permanent magnet biasing
JP2008197089A (en) Magnetic sensor element and method for manufacturing the same
JPWO2005081007A1 (en) Magnetic field detector, current detection device using the same, position detection device, and rotation detection device
JP2000514920A (en) Thin layer magnetic field sensor
EP3236276B1 (en) Magnetic field sensor with multiple axis sense capability
JP2001345498A (en) Magnetic sensor and manufacturing method thereof
JP2009122041A (en) Composite sensor
JP5447616B2 (en) Manufacturing method of magnetic sensor
JP2011027633A (en) Magnetic sensor and manufacturing method thereof
KR101233662B1 (en) Flexible magnetoresistance sensor and manufacturing method thereof
JP2002131407A (en) Thin film magnetic field sensor
JP2002131407A5 (en)
EP3851864B1 (en) Magnetic sensor and current sensor
JP2004117367A (en) Magnetic sensor and method of manufacturing the same
JP3969002B2 (en) Magnetic sensor
Mattheis et al. Giant magnetoresistance-stack optimization for current sensor application with low hysteresis and a temperature-independent sensitivity at low current
JP4501858B2 (en) Magneto-impedance element and current / magnetic field sensor
JP4316836B2 (en) Magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001